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Motivation

Geometric transformations on digital images

Given a source image S, we generate a target image S depending on
the chosen transformation, for example:

S Geometric
transformation
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Motivation

Geometric transformations on digital images

Given a source image S, we generate a target image S depending on
the chosen transformation, for example:
» translation, rotation (and its combination, called rigid motions)

» affine transformation (scaling, symmetries and rigid motion)

» projective transformation, ...

S Geometric
transformation
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Applications

» 2D: Image registration, image warping, data augmentation ...
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Applications

» 2D: Image registration, image warping, data augmentation ...

mnput views

Image registration for panorama [Zhang et al., 2022]
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Motivation

Applications

» 2D: Image registration, image warping, data augmentation . ..

Image registration for object detection [Rodriguez et al., 2023]
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Motivation

Applications

» 2D: Image registration, image warping, data augmentation ...

Test Warped Reference Warping Reference

Image Warping For Face Recognition [Pishchulin et al., 2011]
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Motivation

Applications

» 2D: Image registration, image warping, data augmentation ...
» 3D: Medical imagery, deformable models, 3D reconstruction . ..
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Motivation

Applications

» 2D: Image registration, image warping, data augmentation ...

» 3D: Medical imagery, deformable models, 3D reconstruction . ..

Voxel Free-Form Deformations [Kenwright, 2013]
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Motivation

Applications

» 2D: Image registration, image warping, data augmentation . ..
» 3D: Medical imagery, deformable models, 3D reconstruction . ..

(B

Point set registration with probablistic model [Kenta-Tanaka et al., 2019]
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Motivation

Applications

» 2D: Image registration, image warping, data augmentation . ..

» 3D: Medical imagery, deformable models, 3D reconstruction . ..

.'///////

3D object reconstruction from laser point cloud data [Nguyen et al., 2012]
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Motivation

Applications

» 2D: Image registration, image warping, data augmentation . ..

» 3D: Medical imagery, deformable models, 3D reconstruction . ..

In this course, we are interested in

» Discrete data: Digital images and discrete points of Z? / 73
» Classes of transformation: Rigid motion and affine transformation

» Topic: Geometric and topological properties of such transformations
in the discrete space of Z? / 73

» Applications: Digital image processing and analysis
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Motivation

Topological issue of rigid motion on digital images
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Dataset: histological sections

(Laboratoire ICube - Strasbourg)
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Motivation

Topological issue of rigid motion on digital images

I Source image

Yy

Dataset: histological sections  Target image

Registered image

(Laboratoire ICube - Strasbourg)
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Motivation

Topological issue of rigid motion on digital images
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Dataset: histological sections

Registered image

Target image

(Laboratoire ICube - Strasbourg)
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Motivation

Topological issue of rigid motion on digital images
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Dataset: histological sections

Registered image

Target image

(Laboratoire ICube - Strasbourg)
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Information loss of digitized rotation on digital images

All the information of a numerical image will be lost by applying
many times a naive algorithm of rotation.

CIDEENE

Discretization of rotations on a whi ixel image of size 50 X 50 pixels
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Motivation Digit gid motion  Discrete rigid motion graph Topologica ct Geometrical aspect Affine mation C

Information loss of digitized rotation on digital images

All the information of a numerical image will be lost by applying
many times a naive algorithm of rotation.

Successive random rotations on an image of size 50 x 50 pixels
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Motivation

Contents

1. Digitized rigid motion

2. Discrete rigid motion graph

3. Topological aspect of DRM

4. Geometrical aspect of DRM

5. Affine transformation
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Digitized rigid motion

Rigid motion on R¢

A rigid motion is a bijection defined for x € R? € R?, as
R : R — R
x +— Rx+t

with R a rotation matrix et t € R? a translation vector.
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Digitized rigid motion

Rigid motion on R¢

A rigid motion is a bijection defined for x € R? € R?, as
R : R — R
x +— Rx+t

with R a rotation matrix et t € R? a translation vector.

Rigid motions are isometric, bijective and preserve the orientation and shape of objects, ...
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Digitized rigid motion

Rigid motion on Z<

A digitized rigid motion R : Z9 — Z9 is defined as
R =D 0Rz
where © is the discretization operator defined as a rounding function:
D : R4 — 7
p=(p1,-,Ps) — q=1(q1,..qd) = (|p1+ 3], [Pa+1])
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Digitized rigid motion

Rigid motion on Z<

A digitized rigid motion R : Z9 — Z9 is defined as
R =D 0Rz
where © is the discretization operator defined as a rounding function:
D : R4 — 7
p=(p1,-,Ps) — q=1(q1,..qd) = (|p1+ 3], [Pa+1])

| BE :::{I:j N

Digitized rigid motions are neither isometric nor bijective and do not preserve
geometric and topological properties of transformed objects.

Geometric Transformations on Digital Images — Strasbourg 2023




Motivation Digitized rigid motion Discrete rigid

Rigid motion on Z<

A digitized rigid motion R : Z¢ — Z9 is defined as
R=D0Rze
where © is the discretization operator defined as a rounding function:
D : R4 — zd
p=(p1,-»ps) — a=1(q1,-,9a) = (lpr+ 3], .., [Pa + 3])

Input image Transformed Image (with interpolation)
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Motivation Digitized rigid motion Discrete rigid

Rigid motion on Z<

A digitized rigid motion R : Z¢ — Z9 is defined as
R=D0Rze
where © is the discretization operator defined as a rounding function:
D : R4 — zd
p=(p1,-»ps) — a=1(q1,-,9a) = (lpr+ 3], .., [Pa + 3])

Input image Transformed Image (with interpolation)
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ation Digitized rigid motion D

Rigid motion on Z¢

A digitized rigid motion R : Z9 — Z9 is defined as
R =9 oRyza
where © is the discretization operator defined as a rounding function:
D : R — 2z
p=(p1,-»ps) — a=1(q1,-,9a) = (lpr+ 3], .., [Pa + 3])

3D binary image Transformed image by R
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Digitized rigid motion

Rigid motion on Z<

A digitized rigid motion R : Z¢ — Z9 is defined as
R=D0Rze
where © is the discretization operator defined as a rounding function:
D : R4 — zd
p=(p1,-»ps) — a=1(q1,-,9a) = (lpr+ 3], .., [Pa + 3])

3D digital plane Transformed plane by R
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Digitized rigid motion

Rigid motion on Z<

f n@' u@]'

Original image Fourrier transf. Linear interpolation Cubical interpolation

Interpolation techniques
— Generating new contents in the transformed image

— Visual artifacts: distortions, blurs,
» Continuous transformation methods (e.g. Fourier transform)

< Precision/approximation, blurs, distortions
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Digitized rigid motion

Rigid motion on Z<

|_I|:'[-§];|"|

Original image Fourrier transf. Linear interpolation No interpolation: R

» Interpolation techniques
— Generating new contents in the transformed image
< Visual artifacts: distortions, blurs, ...

» Continuous transformation methods (e.g. Fourier transform)
< Precision/approximation, blurs, distortions, . ..
» Digital transformation R = ® o R

— Topology and geometry alteration, ...
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Digitized rigid motion

Rigid motion on Z? and Z3

1. Combinatorial structure of rigid motions on Z?

— Graph of discrete rigid motions ~~ neighbouring relationships
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Digitized rigid motion

Rigid motion on Z? and Z3

1. Combinatorial structure of rigid motions on Z?
— Graph of discrete rigid motions ~~ neighbouring relationships
2. Topological characterization of digital images under rigid motions

— Notion of regularity and image regularization methods
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Digitized rigid motion

Rigid motion on Z? and Z3

1. Combinatorial structure of rigid motions on Z?
— Graph of discrete rigid motions ~~ neighbouring relationships
2. Topological characterization of digital images under rigid motions
— Notion of regularity and image regularization methods
3. Geometric characterization of continuous objects by Gauss discretization

— Notion of quasi-regularity and verification of quasi-regular polygons
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Digitized rigid motion

Rigid motion on Z? and Z3

1. Combinatorial structure of rigid motions on Z?
— Graph of discrete rigid motions ~~ neighbouring relationships
2. Topological characterization of digital images under rigid motions
— Notion of regularity and image regularization methods
3. Geometric characterization of continuous objects by Gauss discretization
— Notion of quasi-regularity and verification of quasi-regular polygons
4. New models for geometric transformations on Z* / Z*:

< Polygon/polyhedron-based models for shape preservation of objects
< Geometric transformations on Z? as an optimization scheme
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Discrete rigid motion graph

Rigid motion on R?

A rigid

with a,

motion is a bijection defined for any x = (x,y) € R? as

cosf) —sinf X a
ERabg(x)_(sinG c050><y>+<b>

beR and 6 € [0, 2n].

X

R
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Discrete rigid motion graph

Rigid motion on Z?

A digitized rigid motion on Z2 is defined for any p = (p, q) € Z? as

[pcos® — gsinf + a] )

R(p) =D oR(p) = ( [psin6 + g cos 6 + b]

where D : R? — 7?2 is a digitization, a,b € R and 6 € [0, 27[.

D
=
[ ]

N—rt"

Lagrangian model — Forward transformation : R =9 o R
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Discrete rigid motion graph

Rigid motion on Z?

A digitized rigid motion on Z2 is defined for any p = (p, q) € Z? as

[pcosf — gsin 6 + a] >

R(p) =D o%(p) = ( [psin€ + g cos 6 + b]

where D : R? — 7?2 is a digitization, a, b € R and 6 € [0, 27].

° — %—N D

~N

q
A
N

Eulerian model — Backward transformation: R~! = © o R~1
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Discrete rigid motion graph

Non-isometry of rigid motion on Z?
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Discrete rigid motion graph

Non-isometry of rigid motion on Z?
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Discrete rigid motion graph

Non-isometry of rigid motion on Z?
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Discrete rigid motion graph

Non-isometry of rigid motion on Z?
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Discrete rigid motion graph

Non-isometry of rigid motion on Z?
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Angle alterations by digitized rigid motion
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Discrete rigid motion graph

Non-isometry of rigid motion on Z?

Angle alterations by digitized rigid motion

Before After
90° 135°
180° 0°
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Discrete rigid motion graph

Non-isometry of rigid motion on Z?

Angle alterations by digitized rigid motion

Before After
90° 135°
180° 0°
45° 90°
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Discrete rigid motion graph

Non-bijectivity of rigid motion en Z?

]/ ~d

Input grid Double pixels Null pixels
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Discrete rigid motion graph

Non-bijectivity of rigid motion en Z?

Input grid Double pixels Null pixels
X Non surjective X Non injective
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Discrete rigid motion graph

Non-bijectivity of rigid motion en Z?

Input grid Double pixels Null pixels
X Non surjective X Non injective

Lagrangian model Eulerian model

X Incomplete and ambiguous issues of color v No issue of color ~+ use to generate images!
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Discrete rigid motion graph

Discontinuities of rigid motion on 72

[pcosd — gsinf + a]
Ra = Ra = .
b0(P) =D © Ravo (p) ( [psin® + qgcosb + b]
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Discrete rigid motion graph

Discontinuities of rigid motion on 72

A discrete rigid motion (DRM) is the set of all the rigid motions that
generate a same image.

The parameter space (a, b, 0) is subdivided into disjoint sets of DRMs.
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Discrete rigid motion graph

Critical rigid motions

A critical rigid motion moves at least one point of Z? to a point on
the vertical or horizontal half-grid.

The critical transformations correspond to the discontinuities of DRM.
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Discrete rigid motion graph

Critical rigid motions

A critical rigid motion moves at least one point of Z? to a point on
the vertical or horizontal half-grid.

The critical transformations correspond to the discontinuities of DRM.

Geometric Transformations on Digital Images — Strasbourg 2023




Discrete rigid motion graph

Tipping surfaces

The tipping surfaces are the surfaces associated to critical transformations in

the parameter space (a, b, 6).

¢qu : Rz — R
(b,0) — a=k+1+gqgsinf—pcosd (vertical)

Vo : R* — R
(a,0) — b=1I+3—psing—qcosf (horizontal)

for p,q, k,l € 7Z.
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Discrete rigid motion graph

Tipping surfaces

The tipping surfaces are the surfaces associated to critical transformations in

the parameter space (a, b, 6).

¢qu : Rz — R
(b,0) — a=k+1+gqgsinf—pcosd (vertical)

Vo : R* — R
(a,0) — b=1I+3—psing—qcosf (horizontal)

for p,q, k,l € 7Z.

Each tipping surface
» is indexed by a triplet of integers (p, q, k) (resp. (p,q,!)),
» indicates that the pixel (p, q) in a transformed image changes its value
from the one at (k, *) (resp. (*,/)) in the original image to the one at
(k4 1,%) (resp. (x,141)).

Geometric Transformations on Digital Images — Strasbourg 2023




Discrete rigid motion graph

Example of tipping surfaces

Tipping surfaces Tipping curves

Vertical surfaces ®pqi and horizontal ones W, for p,q € [0,2] and k,/ € [0, 3].
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Discrete rigid motion graph

Graph of discrete rigid motions

A graph of discrete rigid motions (DRM graph) is a graph
G = (V, E) such that

» each vertex v € V corresponds to a DRM
» each edge e € E connects two DRMs sharing a tipping surface
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Discrete rigid motion graph

Graph of discrete rigid motions

A graph of discrete rigid motions (DRM graph) is a graph
G = (V, E) such that

» each vertex v € V corresponds to a DRM
» each edge e € E connects two DRMs sharing a tipping surface

e=(u, ’U,\I/321)
—_—
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Discrete rigid motion graph

Graph of discrete rigid motions

A graph of discrete rigid motions (DRM graph) is a graph
G = (V, E) such that

» each vertex v € V corresponds to a DRM

» each edge e € E connects two DRMs sharing a tipping surface

> % 104,
1 L ) . 9
Q &
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Discrete rigid motion graph

Graph of discrete rigid motions

A graph of discrete rigid motions (DRM graph) is a graph
G = (V, E) such that

» each vertex v € V corresponds to a DRM
» each edge e € E connects two DRMs sharing a tipping surface
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Properties of DRM graphs

» DRMs are computed in a discrete process with exact calculation.
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Motivation Dig g Discrete rigid motion graph

Properties of DRM graphs

» DRMs are computed in a discrete process with exact calculation.

» Their combinatorial structure is represented by a DRM graph G
whose complexity is O(N?®) for images of size N x N.
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Motivation Dig g ion Discrete rigid motion graph

Properties of DRM graphs

» DRMs are computed in a discrete process with exact calculation.

» Their combinatorial structure is represented by a DRM graph G
whose complexity is O(N?®) for images of size N x N.
» G models all the DRMs with the topological information such that
< a vertex corresponds to one transformed image
< an edge corresponds to one pixel change, i.e. a tipping surface,
(each edge posesses such pixel transition information)
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Motivation Dig g ion Discrete rigid motion graph

Properties of DRM graphs

» DRMs are computed in a discrete process with exact calculation.

» Their combinatorial structure is represented by a DRM graph G
whose complexity is O(N?®) for images of size N x N.

» G models all the DRMs with the topological information such that
< a vertex corresponds to one transformed image
< an edge corresponds to one pixel change, i.e. a tipping surface,

(each edge posesses such pixel transition information)

» It enables to generate exhaustively & incrementally all trans-

formed images.
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Motivation Dig igid motion  Discrete rigid motion graph  Top

Properties of DRM graphs

» DRMs are computed in a discrete process with exact calculation.

» Their combinatorial structure is represented by a DRM graph G
whose complexity is O(N?®) for images of size N x N.
» G models all the DRMs with the topological information such that

< a vertex corresponds to one transformed image
< an edge corresponds to one pixel change, i.e. a tipping surface,
(each edge posesses such pixel transition information)

» It enables to generate exhaustively & incrementally all trans-
formed images.

Disadvantages
It has high complexity to generate the entire structure for large images.
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Discrete rigid motion graph

Application: Discrete transition path of transformed images

glidsdededed
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Discrete rigid motion graph

Application: Discrete rigid motion graph search
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Discrete rigid motion graph

Image registration as a combinatorial optimisation problem

Problem formulation
Given two digital images A and B of size N x N, image registration
consists of finding a discrete rigid motion (DRM) such that

v* = arg min d(A,R,(B))

where R, is the digitized rigid motion of a DRM v, and d is a given

distance between two images.

Geometric Transformations on Digital Images — Strasbourg 2023




Discrete rigid motion graph

Image registration as a combinatorial optimisation problem

Problem formulation
Given two digital images A and B of size N x N, image registration
consists of finding a discrete rigid motion (DRM) such that

v* = arg min d(A,R,(B))

where R, is the digitized rigid motion of a DRM v, and d is a given
distance between two images.

Disadvantage

Exhaustive search on DRM graph costs O(N?) in complexity.
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Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect ~Affine transformation Conclusion References

Image registration as a combinatorial optimisation problem

Problem formulation

Given two digital images A and B of size N x N, image registration
consists of finding a discrete rigid motion (DRM) such that

v* = arg min d(A,R,(B))

where R, is the digitized rigid motion of a DRM v, and d is a given
distance between two images.

Disadvantage

Exhaustive search on DRM graph costs O(N?) in complexity.

A local search on DRM graph can determine a local optimum.
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Discrete rigid motion graph

Local search on discrete rigid motion graph

Local search

» Input: A reference image A, a target image B,
an initial DRM vy € V and
a distance metric d

» Output: A local optimum v € V

» Approach: Gradient descent to find a better solution in neighbours.
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Discrete rigid motion graph

Local search on discrete rigid motion graph

Local search

» Input: A reference image A, a target image B,
an initial DRM vy € V and
a distance metric d

» Output: A local optimum v € V

» Approach: Gradient descent to find a better solution in neighbours.

DRM graph G = (V, E) provides

» neighbourhood structure N(v)

» efficient computation of d
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Discrete rigid motion graph

Local search on discrete rigid motion graph

Local search

» Input: A reference image A, a target image B,
an initial DRM vy € V and
a distance metric d

» Output: A local optimum v € V

» Approach: Gradient descent to find a better solution in neighbours.

DRM graph G = (V, E) provides
» neighbourhood structure N(v)
k-neighbourhood N*(v):
N (v) = N (v) UU, e k1) N(v)
» efficient computation of d
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Local search on discrete rigid motion graph

Local search

» Input: A reference image A, a target image B,
an initial DRM vy € V and
a distance metric d

» Output: A local optimum v € V

» Approach: Gradient descent to find a better solution in neighbours.

DRM graph G = (V, E) provides

» neighbourhood structure

» efficient computation of d
We use signed distance with linear
complexity w.r.t image size [Kim-
mel et al., 1996]
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Experiment on binary images

t Affine transformation Conclusion References

(a) reference image

(b) target image

(c) initial solution

(d) solution k =1

(g) k=10

(h) k=15




Discrete rigid motion graph

Experiment on binary images: distance evolutions

A —— 1.neighbours
3-neighbours
—— 5-neighbours
9 10-neighbour
— 15-neighbour
o
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é g | —— 1-neighbours
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5-neighbours
10-neighbours
3+ —— 15-neighbours
o
8

0 5 10 15 20
# lteration
(a) Distance evolutions (b) Transformation sequences
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Discrete rigid motion graph

Experiment on binary images: runtime complexity

runtime of k-neighbours

<
o /
©
g
w
— o™
g o
£
prg
o |
o
T T T T
0 5 10 15
k-neighbour

Geometric Transformations on Digital Images — Strasbourg 2023




Discrete rigid motion graph

Experiment on gray images

Detect and follow the moving objects in a sequence of 3D grain images

X-ray CT image: original and labelled cross-section images

Laboraoire
Grenablr

Grenable,

scanner 1 scanner 2 scanner 3 3D visualisation

Movements of Schneebeli rolls (Laboratoire 3SR, Grenoble)




0 Discrete rigid motion graph

Experiment on gray images

(=)

Movements of Schneebeli rolls (Laboratoire 3SR, Grenoble)
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0 Discrete rigid motion graph

Experiment on gray images

(a) reference image ) target image  (c) solution k=1

) k=10 (f) k=15
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Discrete rigid motion graph

Experiment on gray images: distance

evolutions
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Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect ~Affine transformation Conclusion ~References

Topological issue of rigid motion on digital images

Input retina image Transformed image
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Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect ~Affine transformation Conclusion ~References

Topological issue of rigid motion on digital images

Input retina image Transformed image

» Do binary images exist that preserve their topology under any rigid motions?

» What are conditions for images to preserve their topology?

P. Ngo Geometric Transformations on Digital Images — Strasbourg 2023 30/92




Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect

Connectivity of digital set of points

Affine transformation Conclusion

Two distinct grid points p,q € Z9 are said k-neighbours if:

lp—alls <1
with k = 2d (resp. 3d — 1) for | =1 (resp. o).

» 2D: 4- and 8-neighbourhood Ni(p) = {q € Z?: ||p —q||; < 1}

([ J [ ] [ ([

[ J ([ J [ J [ ] [ J ([

[ [ ] [ [ ]
4-neighbourhood 8-neighbourhood
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Topological aspect

Connectivity of digital set of points

Two distinct grid points p,q € Z9 are said k-neighbours if:

lp—alli <1
with k = 2d (resp. 3d — 1) for / =1 (resp. o).

» 2D: 4- and 8-neighbourhood Ni(p) = {q € Z%: ||p — q||; < 1}
» 3D: 6- and 26-neighbourhood Ni(p) = {q € Z*: ||p — ql|; < 1}

6-neighbourhood 26-neighbourhood
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Topological aspect

Connectivity of digital set of points

Two distinct grid points p,q € Z9 are said k-neighbours if:

lp—alls <1
with k = 2d (resp. 3d — 1) for | =1 (resp. o).

» 2D: 4- and 8-neighbourhood Ni(p) = {q € Z%: ||p — q||; < 1}
» 3D: 6- and 26-neighbourhood Nk(p) = {q € Z3: ||p —q||; < 1}

Grid points of 7> 4-connected components
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Topological aspect

Connectivity of digital set of points

Two distinct grid points p,q € Z9 are said k-neighbours if:
lp—all <1

with k = 2d (resp. 3d — 1) for | =1 (resp. o).

» 2D: 4- and 8-neighbourhood Ni(p) = {q € Z%: ||p — q||; < 1}

» 3D: 6- and 26-neighbourhood Nk(p) = {q € Z3: ||p —q||; < 1}

E. [

Grid points of 7> 8-connected components
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Topological aspect

Well-composeness

A digital set X C Z? is well-composed if each 8-connected component
of X and of its complement X is also 4-connected.

| . .
. ol o
F o | e o le e
oo e o | el e
Non well-composed set Well-composed set
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Topological aspect

Well-composeness

A digital set X C Z? is well-composed if each 8-connected component
of X and of its complement X is also 4-connected.

Non well-composed set
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Topological aspect

Well-composeness

A digital set X C Z? is well-composed if each 8-connected component
of X and of its complement X is also 4-connected.

Non well-composed set
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Topological aspect

Well-composeness

A digital set X C Z? is well-composed if each 8-connected component
of X and of its complement X is also 4-connected.

Critical configuration

Geometric Transformations on Digital Images — Strasbourg 2023




Topological aspect

Topological preservation of digital image

Binary image / Connected components of / Adjacent tree T(/)

Let / be a binary image. We say that / is topologically invariant if,
for all rigid motions R, Iy = | o R induces a isomorphism between
adjacency trees T(I) and X(/r).
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Motivation Dig g ion Disc g graph  Topological aspect

Topological preservation of digital image

Binary image / Transformed image Iz Adjacent tree T(/)

Let / be a binary image. We say that / is topologically invariant if,
for all rigid motions R, Iy = | o R induces a isomorphism between
adjacency trees T(I) and X(/r).
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Motivation Dig gid motion  Discrete otion graph Topological aspect G

Topological characterization: regularity

Let / be a binary image. We say that / is regular if it is :

» well-composed,

Non well-composed image Singular image Non squarely regular image
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Motivation Dig gid motion  Discrete otion graph Topological aspect G

Topological characterization: regularity

Let / be a binary image. We say that / is regular if it is :
» well-composed,

» non singular and

Non well-composed image Singular image Non squarely regular image
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Topological aspect Ge

Topological characterization: regularity

Let / be a binary image. We say that / is regular if it is :
» well-composed,
» non singular and
» squarely regular: Vp,q € I7*({v}) with v € {0,1} and |[[p—q]|1 = 1,
3B C 171({v}) tel que p,q € B,
ot B = {x,x+1} x {y,y + 1}, pour (x,y) € Z2.

Non well-composed image Singular image Non squarely regular image
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Topological aspect Ge

Topological characterization: regularity

Let / be a binary image. We say that / is regular if it is :
» well-composed,
» non singular and
» squarely regular: Vp,q € I7*({v}) with v € {0,1} and |[[p—q]|1 = 1,
3B C 171({v}) tel que p,q € B,
ot B = {x,x+1} x {y,y + 1}, pour (x,y) € Z2.

Non well-composed image Singular image Regular image
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Topological aspect

Topological characterization of binary images

If a binary image / is regular then it is topologically invariant under any
rigid motion.

Prohibited configurations

A binary image [ is regular iff it does not contain the configurations:

& & &3

The regularity of / can be verified locally and in linear time !
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Motivation Dig g g graph  Topological aspect

Topological characterization of binary images

If a binary image / is regular then it is topologically invariant under any
rigid motion.

Input image Prohibited config. Transformed image
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Motivation Dig igid motion Discrete rigid graph Topological aspect Geometrical aspect Affine t

Topological characterization of binary images

If a binary image / is regular then it is topologically invariant under any
rigid motion.

Input image Prohibited config. Transformed image

Extension

Regularity is extended to grayscale and Labelled images.
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Motivation g g g graph Topological aspect

Regularization of images by homotopic transformation
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Input image Prohibited config. Transformed image Regular Image Transformed image
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Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect

Regularization of images by homotopic transformation

No solution in the cases at the limit of the resolution:

Input mage

Image transformée




Topological aspect

Regularization of images by oversampling

By doubling the resolution, well-composed images become regular:

Input image

Image transformée

-

-
uml
u
u
-

Binary image Grayscale image Labelled image
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Affine transformation Cc

aph  Topological aspect Geometrical as

Motivation Di

Some experimental results

= o
.\ .\
/d

-
.

Input image Transformed image Regular image Transformed image

Thresholded images

sformations on Digital Images — Strasbou
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Topological aspect

Some experimental results

Transformed image
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Topological aspect

Extending the regularity in 3D

The 3D extension of the regularity would be to consider a cover of
cubes 2 x 2 x 2 that locally overlap everywhere.

Is such an object in Z3 topologically invariant?

Regular object Transformed object
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Topological aspect

Extending the regularity in 3D

The 3D extension of the regularity would be to consider a cover of
cubes 2 x 2 x 2 that locally overlap everywhere.

Is such an object in Z3 topologically invariant? — No!

Regular object Transformed object
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h  Topological aspect

Topological characterizations of digital images

The point-to-point rigid motion model: Rpoinr =D © m‘zd
v/ Simple and easy to apply on digital images
v/ The notion of regularity allows a characterization of 2D images
whose topological properties are preserved by R
< Regularization: homotopic transformation or oversampling

(=69

Input image (non regular) Regularized image
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Motivation Dig igid motion Discrete rigid graph Topological aspect Geometrical aspect Affine t

Topological characterizations of digital images

The point-to-point rigid motion model: Rpoinr =D © m‘zd
X The notion of regularity reaches its limit of validity by passing to Z3
X Geometric properties are not well preserved in general

(=)

Digitized rotations of a half-plane: linearity and convexity problems
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Topological aspect

Topological characterizations of digital images

The point-to-point rigid motion model: Rpoinr =D © m‘zd
X The notion of regularity reaches its limit of validity by passing to Z3

X Geometric properties are not well preserved in general

Ellipse Transformed ellipse
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Geometrical aspect

Geometrical preservation of rigid motion for discrete objects

New solutions for rigid transformations on Z? and Z3:
— with intermediate models to transform a discrete object

— better preserves the shape of the object by the transformation

P’ nz?
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Geometrical aspect

Geometrical preservation of rigid motion for discrete objects

New solutions for rigid transformations on Z? and Z3:
— with intermediate models to transform a discrete object

— better preserves the shape of the object by the transformation

Polygons to represent the object’s shape and used it for the
transformation.

P’ nz?
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Geometrical aspect

Geometrical preservation of rigid motion for discrete objects

New solutions for rigid transformations on Z? and Z3:
— with intermediate models to transform a discrete object

— better preserves the shape of the object by the transformation

Polygons to represent the object’s shape and used it for the
transformation.

P’ nz?

Digitalisation process

The transformed object model need to be digitized for a result in Z9.
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Geometrical aspect

Digitization and topology preservation

Given a bounded and connected subset X C RY, for d > 2, the Gauss
digitization of X is a discrete object X defined as:

X=xnz?
L OTOOQ‘
° LR SR SRR SRR 2
* LS I B SRR 2
L 2 @ @ K @
] @ S - @

X C R?




Geometrical aspect

Digitization and topology preservation

Given a bounded and connected subset X € RY, for d > 2, the Gauss
digitization of X is a discrete object X defined as:

X=xnz
L @ [ ] { 2 { 1 L 2 L ]
L 4 L] L] * ® L 2 *
2 L 2 @ L ] L L 2 L 2
® 'S ® 'Y ° ® ®
° L 2 L L] L) L] *
L & L 2 [ ] ] L 2 *
X CR? X =xnNz? X cCz?

Topology of the object can be altered under the digitization process.
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Geometrical aspect

Digitization and topology preservation

Given a bounded and connected subset X C RY, for d > 2, the Gauss
digitization of X is a discrete object X defined as:
X=xnz

» What are conditions for continuous objects to preserve their topology
under Gauss digitization?

» How to verify such conditions for a given continuous object?

» How to perform shape-preserving rigid motion of discrete objects?

Geometric Transformations on Digital Images — Strasbourg 2023




Geometrical aspect

r-regularity

A finite and connected subset X C R? is r-regular if for each boundary
point of X, there exist two tangent open balls of radius r, lying entirely
in X and its complement X, respectively.
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Geometrical aspect

r-regularity

A finite and connected subset X C R? is r-regular if for each boundary
point of X, there exist two tangent open balls of radius r, lying entirely
in X and its complement X, respectively.

Proposition [Latecki et al., 1998]
If X c R?is r-regular, for r > Q, then X = XNZ2%is a well-composed.
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Geometrical aspect

r-regularity

A finite and connected subset X C R? is r-regular if for each boundary
point of X, there exist two tangent open balls of radius r, lying entirely
in X and its complement X, respectively.

Proposition [Latecki et al., 1998]
If X c R?is r-regular, for r > Q, then X = XNZ2%is a well-composed.
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Geometrical aspect

r-regularity

A finite and connected subset X C R? is r-regular if for each boundary
point of X, there exist two tangent open balls of radius r, lying entirely
in X and its complement X, respectively.




Geometrical aspect

r-regularity

A finite and connected subset X C R? is r-regular if for each boundary
point of X, there exist two tangent open balls of radius r, lying entirely
in X and its complement X, respectively.

° o [Ne ° 3 ® )
4 . L4 4 4 e *
. ° ° ° ] ° .
* o ® o | e 0 ®
. L 4 L ] L] L] L 4
o ) ) o | o ) °

Object X must have a differentiable boundary.
What about objects with non-differentiable boundary (e.g. polygons)?
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Geometrical aspect

Morphological Operations: Erosion and dilation

Mathematical morphology [Serra, 1983]
The basic idea of mathematical morphology is to compare the set to be
analyzed with a set with a known geometry called structuring element.
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Geometrical aspect

Morphological Operations: Erosion and dilation

Mathematical morphology [Serra, 1983]
The basic idea of mathematical morphology is to compare the set to be
analyzed with a set with a known geometry called structuring element.

Structuring element B is a set with the following characteristics:
» has a known geometry,

» has a certain size r > 0,

» is located by its origin.

LT—’L

Disk Square Segment A Shape
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Geometrical aspect

Morphological Operations: Erosion and dilation

Mathematical morphology [Serra, 1983]
The basic idea of mathematical morphology is to compare the set to be
analyzed with a set with a known geometry called structuring element.

Let X C R? be a set, and B be a structuring element located by its

origin. The erosion of X by B in a space E is
Ee(X)=XeB={xcE|B CX}
where By is the translation of B by x.

The erosion is a transformation relative to the inclusion.

B, C R?
X C R? X © B,
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Geometrical aspect

Morphological Operations: Erosion and dilation

Mathematical morphology [Serra, 1983]
The basic idea of mathematical morphology is to compare the set to be
analyzed with a set with a known geometry called structuring element.

Let X C R? be a set, and B be a structuring element located by its

origin. The dilation of X by B in a space E is
g(X)=X@eB={x€E|BNX#D}

where By is the translation of B by x.

The dilation is a transformation relative to the intersection.

B, C R?
XCR2 X@BT

Geometric Transformations on Digital Images — Strasbourg 2023




Geometrical aspect

Quasi-r-regularity

Let X C R? be a finite and simply connected set (i.e. connected and
without hole). X is quasi-r-regular with margin r' — r, if

» X © B, (resp. X © B,) is non-empty and connected, and

> XY CXOB @B, (resp. Y CX OB, @B,

ol @, S are the dilation and erosion operators and B,, B, C R? are
respectively the balls of radius r and r/, for r' > r > 0.

Quasi-r-regular object Non quasi-r-regular objects
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Geometrical aspect

Quasi-r-regularity

Let X C R? be a finite and simply connected set (i.e. connected and
without hole). X is quasi-r-regular with margin r’ — r, if

» X © B, (resp. X © B,) is non-empty and connected, and

> XY CXOB @B, (resp. Y CXS B, @B,

olu @, S are the dilation and erosion operators and B,, B, € R? are
respectively the balls of radius r and r/, for r' > r > 0.

Quasi-r-regular polygon Non quasi-r-regular polygons
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Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion

Quasi-r-regularity

Let X C R? be a finite and simply connected set (i.e. connected and
without hole). X is quasi-r-regular with margin r’ — r, if

» X © B, (resp. X © B,) is non-empty and connected, and

> XY CXOB @B, (resp. Y CXS B, @B,

olu @, S are the dilation and erosion operators and B,, B, € R? are
respectively the balls of radius r and r/, for r' > r > 0.

Proposition [Ngo et al., 2019]

If X is quasi-1-regular with margin v/2 — 1 (also called quasi-regular),
then X = X NZ2 and X = X N Z2 are both 4-connected. In particular,
X is then well-composed.
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Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Quasi-r-regularity

Let X C R? be a finite and simply connected set (i.e. connected and
without hole). X is quasi-r-regular with margin r’ — r, if

» X © B, (resp. X © B,) is non-empty and connected, and

> XY CXOB @B, (resp. Y CXS B, @B,

olu @, S are the dilation and erosion operators and B,, B, € R? are
respectively the balls of radius r and r/, for r' > r > 0.

Proposition [Ngo et al., 2019]

If X is quasi-1-regular with margin v/2 — 1 (also called quasi-regular),
then X = X NZ2 and X = X N Z2 are both 4-connected. In particular,
X is then well-composed.

Verify the quasi-regularity of polygonal objects? ~~ Medial axis
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Motivation Dig igid motion Discrete rigid grapl opolog ct Geometrical aspect Affine ti

Topology and geometry preserving rigid motion on 7?2

Approach via polygonization

» polygonal representation of discrete objects for rigid motion
» shape preservation of transformed object by the transformation

» quasi-regularity for topology preservation of object by the digitization
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Motivation Digitized rigid motion Discrete rigid motion graph Topologic spect Geometrical aspect Affine transformation Co

Topology and geometry preserving rigid motion on 7?2
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Approach via polygonization
» polygonal representation of discrete objects for rigid motion
» shape preservation of transformed object by the transformation

» quasi-regularity for topology preservation of object by the digitization

Proposition [Ngo et al., 2019]

If P is quasi-regular, then 93(P) N Z2 preserves connectivity.
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Geometrical aspect

Polygonalization method

Polygonal representation

The properties to satisfy for computing a polygonal representation P(X)
of a discrete object X C Z? are

> reversibility : P(X)NZ?=X;

» vertices with rational coordinates (exact calculation).
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Geometrical aspect

Polygonalization method

Polygonal representation

The properties to satisfy for computing a polygonal representation P(X)
of a discrete object X C Z? are

> reversibility : P(X)NZ?=X;

» vertices with rational coordinates (exact calculation).

For an object X C 72, different results can be obtained from different
polygonalization techniques:
» Digital convex objects: convex hull 4 representation by half-planes

» Non-convex objects: polygonalization using contour of the discrete
object (decomposition into convex parts, concavity tree, ...)
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Geometrical aspect

Digital convexity

An object X C IR? is said to be convex if, for any pair of points
x,y € X, the line segment joining x and y, defined by
xyl={x+(1-NyeR*|0< A< 1},

is included in X.
’\\\
| \ o |-
\ T T A .
\
N e
Convex object in R? Non-convex objet in R? in 72
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Geometrical aspect

Digital convexity

A digital object X C Z? is H-convex, for Conv(X) the convex hull of X
X = Conv(X) NZ?

Kuaanl Lt
\ . \ o | o . N
\o . \o . . \
[P o« [P el P
"z iz 7
Non H-convex object H-convex objects
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Geometrical aspect

Digital convexity

A digital object X C Z? is H-convex, for Conv(X) the convex hull of X
X = Conv(X) NZ?

Kuaanl Lt
\ . \ o | o . N
\o . \o . . \
[P o« [P el P
"z iz 7
Non H-convex object H-convex objects

Digital convexity does not imply the connectivity!
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Geometrical aspect

Convexity under rigid motion

. PN . T-
efele]e]] A 11Ty ] ofefe]e
ST o e 2 B aoE
o | o | o DOJ L a4

Soit X C Z? connexe et bien composé et Conv(X) son enveloppe
convexe. Si X est convexe (i.e. X = Conv(X) N Z?) et Conv(X) est
quasi-régulier, alors R(Conv(X)) N Z? est convexe et bien composé.
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Geometrical aspect

Convexity under rigid motion

. PN . T-
efele]e]] A 11Ty ] ofefe]e
ST o e 2 B aoE
o | o | o DOJ L a4

Soit X C Z? connexe et bien composé et Conv(X) son enveloppe
convexe. Si X est convexe (i.e. X = Conv(X) N Z?) et Conv(X) est
quasi-régulier, alors R(Conv(X)) N Z? est convexe et bien composé.

The half-plane representation ~~ Gauss discretization in exact calculation!
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Geometrical aspect

Half-plane representation of H-convex object

Let X be a H-convex object and Conv(X) be the convex hull of X. Then,
X = Conv(X) N Z? = ( N H) nz2= (HmZZ)
HER(X) HER(X)
where R(X) is the minimal set of closed half-planes including X. Each

half-plane H has coefficients defined by consecutive vertices of Conv(X).

/ 1 4 “
/. L . L4 . . 0\ l. . . . . . .\
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Geometrical aspect

Rigid motion of H-convex objects via convex hull

Reonv(X) = R(Conv(X)) NZ> =R| (| H|nz?
HER(X)
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Geometrical aspect

Rigid motion of H-convex objects via convex hull

Reonv(X) = R(Conv(X)) N 72 = 9%< N H> N 72

HeR(X)

i_.,-_......./j R e o [ I

_;_o'c/ L:.oo‘w/
25 e

Property [Ngo et al., 2019]

Conv(Rconv(X)) C 9R(Conv(X))

Geometric Transformations on Digital Images — Strasbourg 2023




Motivation Digiti igid motion Discrete rigid motion ¢ [ aspect Geometrical aspect Affine transformation Cc

Experimental results
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Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Experimental results

— — 27 — 37 — 4m
9710 9710 9710 9710
RPoint .

RConv
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Geometrical aspect

Rigid motion of non-convex objects
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Geometrical aspect

Rigid motion of non-convex objects
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Geometrical aspect

Polygonization of digital objects

Marching square method:
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Geometrical aspect

Polygonization of digital objects

Marching square method:
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Geometrical aspect

Polygonization of digital objects

Marching square method:
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Geometrical aspect
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Geometrical aspect

Polygonization of digital objects

Marching square method:
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Geometrical aspect
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Geometrical aspect

Polygonization of digital objects

Marching square method:
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Geometrical aspect

Polygonization of digital objects

Marching square method:
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Geometrical aspect
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Geometrical aspect

Polygonization of digital objects

Marching square method:
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Geometrical aspect

Polygonization of digital objects

Marching square method:
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Geometrical aspect

Polygonization of digital objects

Marching square method: Local configurations
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Geometrical aspect

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

Cpe LR 3
|0 . L] . . . . . P
e . LR ] .
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|0 . . . . L . .
O=C o e

Look-up table contour lines
[e] lo] p

O J
Case0 Casel Case?2 Case3 Case4 Case5 Case6 Case?7
q q ]
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Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14 Case 15
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Geometrical aspect

Polygonization of digital objects

Marching square method [Maple, 2003]

Generation of iso-contours for 2D scalar field (e.g., gray-scale images)

» Compute a binary image of the 2D field for an isovalue by a threshold

e e
=N W N
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Binary image L
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(Illustration from Wikipedia)

Geometric Transformations on Digital Images — Strasbourg 2023




Geometrical aspect

Polygonization of digital objects

Marching square method [Maple, 2003]

Generation of iso-contours for 2D scalar field (e.g., gray-scale images)

» Compute a binary image of the 2D field for an isovalue by a threshold
» Create contouring cells by 2x2 block of pixels in the binary image

— Compute the binary code (=cell index) of each contouring cell
— Access a pre-built LUT with the cell index for the contour lines

o0 0 0 0 c " ® 0,050, 0 o0 0 00
ontouring cel
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(Illustration from Wikipedia)
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Geometrical aspect

Polygonization of digital objects

Marching square method [Maple, 2003]

Generation of iso-contours for 2D scalar field (e.g., gray-scale images)

» Compute a binary image of the 2D field for an isovalue by a threshold
» Create contouring cells by 2x2 block of pixels in the binary image
— Compute the binary code (=cell index) of each contouring cell
— Access a pre-built LUT with the cell index for the contour lines
— Apply interpolation between the original 2D field to find the
exact contour lines

o o/ 0o o @ ) 505050, 0 11,1 171
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(Illustration from Wikipedia)
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Geometrical aspect

Polygonization of digital objects

Extension to 3D: Marching cube method [Maple, 2003]
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(llustration from Wikipedia)
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Geometrical aspect

Polygonization of digital objects

Extension to 3D: Marching cube method [Maple, 2003]

(lllustration from Wikipedia)
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Geometrical aspect

Polygonization of digital objects

Marching square/cube method [Maple, 2003]

» Simple and easy to implement

» Linear computation w.r.t image size
» Exact computation: polygon vertices with rational coordinates

» Extension to dimension 3
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Geometrical aspect

Polygonization of digital objects

Marching square/cube method [Maple, 2003]

Advantages

» Simple and easy to implement
» Linear computation w.r.t image size
» Exact computation: polygon vertices with rational coordinates

» Extension to dimension 3

Disadvantages

» Polygon is composed of small segments

» It may not optimal/fit to the digital form
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Geometrical aspect

Polygonization of digital objects

Concavity tree by Sklansky [Sklansky, 1972]
— decompose an object into concavities

— encode description of a binary image
— possible to process each one separately

< measure/compare the concavities of digital objects

Input object Concave parts Concavity tree

Geometric Transformations on Digital Images — Strasbou




Geometrical aspect

Polygonization of digital objects

Concavity tree method [Sklansky, 1972]
Concavity tree structure for a digital object X:
» The root corresponds to points in the convex hull: Conv(X) N Z?

» Each node corresponds to points in the convex hull of a concave part
(i-e., a connected component €) of its parents.
Then, X is represented as follows:

x=(cmnz)( U x)

X/ €€((Conv(X)NZ2)\X)

€G!

Input object Concave parts Concavity tree
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Geometrical aspect Affine t

Polygonization of digital objects

Concavity tree method [Sklansky, 1972]
Concavity tree structure for a digital object X:

» The root corresponds to points in the convex hull: Conv(X) N Z?

» Each node corresponds to points in the convex hull of a concave part
(i-e., a connected component €) of its parents.
Then, X is represented as follows:

~(em0nz) (Y x)

X’e€((Conv(X

X1’

Transformed concave parts Reconstructed object Transformed object
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Geometrical aspect

Polygonization of digital objects

Concavity tree method [Sklansky, 1972]

» Structural and hierarchical descriptions of 2D shape

» H-convex object = convex hull of the shape
» Exact computation: polygon vertices with integer coordinates

» Possible extension to dimension 3

&,

Input object Concave parts Concavity tree
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Geometrical aspect

Polygonization of digital objects

Concavity tree method [Sklansky, 1972]

Disadvantages

» Data structure for the concavity tree

» Operations performed to reconstruct the digital object

» Artifacts when applying geometric transformations on the structure

&

Input object Concave parts Concavity tree

Geometric Transformations on Digital Images — Strasbou




Geometrical aspect Affine tran

Polygonization of digital objects

Concavity tree method [Sklansky, 1972]

Disadvantages

» Data structure for the concavity tree

» Operations performed to reconstruct the digital object

» Artifacts when applying geometric transformations on the structure

0%®

Transformed concave parts Reconstructed object Transformed object
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Geometrical aspect

Polygonization of digital objects

Contour-based polygonization:
— Extract 8-connected contour points C(X) of X
— Compute convex hull of C(X) as part of P(X)
— Determine the polygon segments of P(X) from the contour points
that best fit the concave parts of X
X = P(X)N7Z?

oo

Polygon curve

Input object 8-connected contour
Geometric Transformations on Digital Images — Strasbourg 2023




Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Contour-based polygonization

» Extract 8-connected contour C(X) of X and compute Conv(C(X))

» Initialize P(X) with Conv(C(X)) (in CW order), for each segment
[pi, pi+1] € P(X), select p € C(pj, pi+1), C(X) between p;, pj41, s.t.
p= argmax {d(p;,q)| (Apigr N Zz) NX=0Are C(pi,q)}

q€C(pi,pi+1)\P
with d(.,.) the Euclidean distance, Ap;qgr the triangle whose vertices are p;, g, r.
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Geometrical aspect

Convex decomposition of polygons

Convex decomposition [Lien and Amato, 2006]

The method decomposes a simple polygon into convex pieces by

iteratively removing the most significant non-convex features.

P=| &

X=PX)nz>=| ] (P;nZ?).
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Geometrical aspect

Extension to 3D

Let X C R3 be a bounded, simply connected set. X is quasi-r-regular
with margin r' —r, for r' > r > 0, if

» X © B, (resp. X © B,) is non-empty and connected, and

> XY CXOB @B, (resp. Y CXS B, @B,

olu @, S are the dilation and erosion operators and B,, B, € R? are
respectively the balls of radius r and r’.

Proposition [Ngo et al., 2019]

Let X C Z3 be a digital object. If X is quasi-1-regular with margin

% — 1, then X =X NZ3 and X = X NZ3 are both 6-connected.
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Geometrical aspect

Proposed method of rigid motions on Z3

Polyhedrization of
voxels
—
Convex
decomposition

| Rigid motion

(Re)digitization
P —
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Geometrical aspect

Experimental results of rigid motions on Z3

Input object R Point Rpomy: quasi-regular polyhedron
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Geometrical aspect

Experimental results of rigid motions on Z3

Input object R Point Rpomy: quasi-regular polyhedron
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Geometrical aspect

Experimental results of rigid motions on Z3

Input object R Point Rpomy: quasi-regular polyhedron
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Geometrical aspect

Experimental results of rigid motions on Z3

Input object R Point Rpomy: quasi-regular polyhedron
| ( '! -
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Geometrical aspect

Experimental results of rigid motions on Z3
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Affine transformation

Affine transformation on R?

An affine transformation A : R? — R? is defined, for any p € R?, by

a a t
Ap)=A-p+t= 11 d12| |Px 4| ™
a1 axn Py ty

where t = (tx, ty)t € Rz, A= [a,"j]lg,'ngg, det(A) 75 0, and ajj € R.
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Affine transformation

Affine transformation on R?

An affine transformation A : R?> — R? is defined, for any p € R?, by

a a t
A(p):A-p+t: 11 12| [Px |
a1 axn Py ty

where t = (., t,)! € R?, A = [a;j]1<ij<2, det(A) #0, and a;; € R.

The affine transformations include, in particular:
> translations (A =5h) ; et
» when t =0:
< rotations (a13 = ax = cosf, —ajp = ax; = sinf pour 6 € R) ;
< symmetries (a;3 = 1,8 = 1, a1 = ap; = 0) ;
< scalings (a11 # 0, ax # 0 and a1p = ax; =0) ;
and their compositions (e.g. rigid transformation: rotation + translation)
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Affine transformation

Affine transformation on Z2

A digitized affine transformation A : Z? — Z? is defined as

A= fD O A\ZZ
where © is a digitization defined with the rounding operation:
D R? — 72

p=(Px;Py) — a=(dxay) = ([px],[py])

Digitized transformations can alter the topology of the transformed object.
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Affine transformation

Affine transformation on Z2

Given a binary object X and A an affine transformation, construct a

transformed binary object X 4 preserving the homotopy type.

The problem is formulated as an optimization in the refined space of
the initial and transformed grids, called the space of cellular complexes.

Geometric Transformations on Digital Images — Strasbourg 2023



Affine transformation

Affine transformation on Z2

Given a binary object X and A an affine transformation, construct a
transformed binary object X 4 preserving the homotopy type.

The problem is formulated as an optimization in the refined space of
the initial and transformed grids, called the space of cellular complexes.
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Affine transformation

Problem formulation

Reaching the most similar X4 C Z? to A(X) can be formalized as:
XA = argyc,2 minD 4 x(Y)
where D4 x(Y) is a dissimilarity measure between A(X) and Y.
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Affine transformation

Problem formulation

Reaching the most similar X4 C Z? to A(X) can be formalized as:
XA = argy,z2 min Dax(Y)
where D4 x(Y) is a dissimilarity measure between A(X) and Y.

Example of dissimilarity measure

Based on Gauss digitization:
DEx(Y) =13 (A@X)N)\ Y]+ Y\ B(AD(X))]

» Continuous analogue of X CR*: O(X)=Xa O =X

< @ is the dilation operator and

< O is the structuring element [, 2]* C R?,

» Gauss digitization of X C R%: @(X) = X NnZ°
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Affine transformation

Problem formulation

Reaching the most similar X4 C Z? to A(X) can be formalized as:
XA = argy,z2 min Dax(Y)
where D4 x(Y) is a dissimilarity measure between A(X) and Y.

Example of dissimilarity measure

Based on Gauss digitization:

DAx(Y) =13 (AON)\ Y]+ Y\ 3(ADCX)))|
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Affine transformation

Problem formulation

Reaching the most similar X4 C Z? to A(X) can be formalized as:
XA = argy,z2 min Dax(Y)
where D4 x(Y) is a dissimilarity measure between A(X) and Y.

Example of dissimilarity measure

Based on Gauss digitization:
Dax(Y) =3 (ACN\ Y|+ Y\ B(ADC(X)))]

Topological constraint is missing!
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Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Co

Problem formulation

Reaching the most similar X4 C Z? to A(X) can be formalized as:
XA = argy,z2 min Dax(Y)
where D4 x(Y) is a dissimilarity measure between A(X) and Y.

Example of dissimilarity measure

Based on Gauss digitization:
Dax(Y) =13 (ACXN\ Y|+ Y\ B(AC(X)))]

Solution

Topological preservation via the optimization in space of cellular

complexes with the notion of collapse on the complexes.

— Simple cell: Cells that can be removed/added without changing the
topological structure

— Collapse operation: Detachment/Attachment of simple cells to the
existing cellular complexes
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Affine transformation

Affine transformation on Z? under topological constraint

Proposed method

The main steps to transform X C Z? by A:

1. Generate refined cellular space H from [F and G

2. Compute the complex H in H from G

3. Optimize by a homotopic transformation $) from H to H
4. Embed the digitized complex H in F, i.e. F = Mg(H) C Z2.

o] T2 e - g

Geometric Transformations on Digital Images — Strasbourg 2023



Affine transformation

Cellular space T induced by 72

Let A =7+ %.The induced cellular complex space FF is composed of:
» set of O-faces Fo = {{d} | d € A%}

> set of 1-faces F1 = J;_; ,{ld,d + e[ | d € A%}

» set of 2-faces Fy = {]d,d +e;[ x ]d,d +ey[ | d € A%}

where e; = (1,0) and e, = (0, 1).

Geometric Transformations on Digital Images — Strasbourg 2023




Affine transformation

Cellular space T induced by 72

Given a digital object X C Z?, the associated complex F = My(0(X))

is defined as:
F=Jcmx)
xeX
where B(p) =p & ] — 1, 1[? for p € Z2.

Geometric Transformations on Digital Images — Strasbourg 2023




Affine transformation

Transformed cellular space G induced by A(Z?)

The cellular space G induced by an affine transformation A and Z? is
composed of the three sets of d-faces (0 < d < 2):
Gg = A(Fq) = {A(f) | f € Fa}

- ,//7/'/
A //'7‘///
gy s
7 .

The continuous object X 4 is modeled by the complex G = Mg (X 4),
which is defined by
G = A(F) = A(Ne(X)) = {A(f) [ f € Me(X)}
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Affine transformation

Cellular space H refining F and G

A new cellular space H that refines both F and G is built.

Jiri: i e H=F &G ve )
Agj farat 25t

For each 2-face h, of HI, there exists exactly one 2-face f, of I and one
2-face go of G such that hr = fo N go.
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Affine transformation

Cellular space H refining F and G

A new cellular space H that refines both F and G is built.

=g s o ,
g G H=F &G Jiv::
B Snnas LN <ol

For each 2-face h, of HI, there exists exactly one 2-face f, of I and one
2-face go of G such that h = f» N go. We can define
» ¢ : Hy — 5 such that ¢(h2) = fz

» v :H, — Gy such that y(h2) = gs.
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Affine transformation

Cellular space H refining F and G

A new cellular space H that refines both F and G is built.

BPEogwE o

L / //\

! .S vy javavi
e T

For each 2-face h, of HI, there exists exactly one 2-face f, of I and one
2-face go of G such that h = f» N go. We can define
» ¢ : Hy — 5 such that ¢(h2) = fz

» v :H, — Gy such that y(h2) = gs.
and reversely,
» & F, — 22 guch that ¢(f2) = {f)g € H» | ¢(h2) = fg}

» [ : Gy — 2% such that I(g2) = {h2 € Hy | y(h2) = g2}
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Affine transformation

Transformation affine sur Z? sous contrainte topologique

Proposed method

The main steps to transform X C Z2 by A :

1. Generate refined cellular space H from F and G

2. Compute the complex H in H from G

3. Optimize by a homotopic transformation § from H to H
4. Embed the digitized complex H in F, i.e. F = Ng(H) C Z2.

Geometric Transformations on Digital Images — Strasbourg 2023



Affine transformation

Homotopic transformation $ on H

(=]

Geometric Transformations on Digital Images — Strasbou




Affine transformation

Homotopic transformation $ on H

A discrete optimization process with topological constraint on H

» Topology: § is a homotopic transformation of H to H
< a sequence of additions/removals of simple 2-cells
» Digitization: H can be embedded into I, i.e. F = Mg(H)
» Geometry: the digital analogue X 4 = E(Mg2(H)) C Z2 of H is as
close as possible to the solution of the optimization problem
XA = argyc,z2 minD g x(Y)
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Affine transformation

Optimization-based affine transformation with constraints

The cost function:
C= &opo + Eaigi + Eseom
— = —
Etopo(H,H)=0  Eaigi(H)>0  Egeom(H,H)>0
With
» Topological energy: Eopo 1 Cu x Cy — Ry
— Eropol(H, ﬁ) =0, i.e. H and H have the same topology
» Digitization energy: £qipi 1 Cy — Ry
s Edigi(ﬁ) — 0 if there exists F in Cp s.t F= I'I]F(Iq)
» Geometrical energy: Egeom 1 Cu x Cy — R

— Egeom(H, ﬁ) measures the dissimilarity between H and H
— Egeom(H, H) =0, i.e. H and H are the same.
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Affine transformation

Optimization-based affine transformation with constraints

The cost function:
C= gtopo + Edigi + ggeom
~—— ~—~— ——

gtopo(HaFI):O gdigi(ﬁ)zo ggeom(Hyﬁ)zo

Conditions and objectives of the optimization process:

> Eiopol(H, ﬁ) = 0 throughout the optimization process
> Edigi(ﬁ) = 0 at the end of the process to have H embeddable in F

» Eeeom(H, ﬁ) is as small as possible at the end of the process.

Geometric Transformations on Digital Images — Strasbourg 2023




Affine transformation

Optimization-based affine transformation with constraints

The cost function:
C= 5top0 + gdigi + ggeom
—— ~— ——

gtopo(HaFI):O gdigi(ﬁ)zo ggeom(Hyﬁ)zo
Let H be the current solution of the optimization process. At each step:

» we add/remove a simple 2-face h, € H (i.e. Eopo(H, H) = 0) that
minimizes Egigi(H ) and Egeom(H, H)

» we are interested in the 2-faces h, belonging to the boundary of H.
This set is defined by

Bo1(H) = {ho. € Ho(H) UH;(H) | S(ho1) € H}
Bo(H) = {ho € Ha | C(h2) N Bo1(H) # 0}

(They are the 2-faces h, whose 0- and 1-faces belong to the background)
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Affine transformation

Dissimilarity measures

We search X 4 C Z? resulting from X C Z? by the affine transformation A as
close as possible to the solution of the optimization problem:

XA = argY€2zz min 'DA)((Y)

Examples of E;com

» based on majority vote digitization:
DEx(Y) = [AC(X)) \ B + [5(Y) \ AE(X))]
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Affine transformation

Dissimilarity measures

We search X 4 C Z? resulting from X C Z? by the affine transformation A as
close as possible to the solution of the optimization problem:

XA = argY€2zz min 'DA)((Y)

Examples of E;com

» based on majority vote digitization:

DEx(Y) = [AC(X)) \ B + [5(Y) \ AE(X))]
» based on Gauss digitization:

DEx(Y) =13 (AOXN\ Y|+ Y\ B(ADCX)))|
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Affine transformation

General algorithm of homotopic affine transformation on 72

Algorithm 1: Construction of H from H by 9.

Input tHeCy
Input : Egeom 1 Cu X Cg — Ry
Output :HeCHnCh
1 H+—H
2 Build By(H)
3 while Egi4i(H) > 0 do
4 Choose b, € Bz(ﬁ) st He C(h2) —~n H that minimizes Edigi and
————

by is a simple 2-face

ggeom("’v : )

Ho C(h) ifhaeH

’ HHH@C(bQ){HUC(M) if by ¢ H

6 | Update Bo(H)




Affine transformation

Results of rotation on Z? with/without topological constraint

T Gauss digitization Majority vote
Original image

w.o cont. topo with cont. topo w.o cont. topo with cont. topo
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Affine transformation

Results of affine transformation on Z2

Gauss digitization Majority vote

Original image - -
w.o cont. topo with cont. topo w.o cont. topo with cont. topo

nnnmnmm i !!!!!!!!!!!!!!!!! i
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Affine transformation

Non-existence of solutions

(=]
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Conclusion

Take home messages

» Topological issues when applying geometric transformations on
digital images/digital shapes
» Several solutions exist for topology-preserving transformations
— Regularity, quasi-regularity, ...
— Transformation model: complex cellular, intermediate model of
digital object, ...
— Multi-grid strategies, continuous techniques,. ..
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Conclusion

Take home messages

» Topological issues when applying geometric transformations on
digital images/digital shapes
» Several solutions exist for topology-preserving transformations
— Regularity, quasi-regularity, ...
— Transformation model: complex cellular, intermediate model of
digital object, ...
— Multi-grid strategies, continuous techniques,. ..

» Still many open questions, especially in higher dimensions

v

geometric properties of transformed objects . ..

» and other families of transformations (projective transformations,
free deformation, diffeomorphism,...)
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Let X C R? be a closed, bounded set such that the boundary X of X
is a 1-manifold. The medial axis of X is defined as the locus of the
centers of the maximal balls included in X

M(X) = {x € X | By € X, B(x,r(x)) C B(y, r(y))}
where B(y,r) C X is the ball of center y and radius r € R..

Corner
point

Non-generic
point

Maximal diameter circle

End point

Normal point Bifurcation

point
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Let X C R? be a closed, bounded set such that the boundary X of X
is a 1-manifold. The medial axis of X is defined as the locus of the

centers of the maximal balls included in X
M(X)={xe X |Py € X,B(x,r(x)) C By, r(y))}
where B(y,r) C X is the ball of center y and radius r € R.

We define the A-level medial axis, noted M (X)), by
M(X) = {x e M(X) | r(x) > A}

In particular, Ay < Ay = M, (X) C M, (X), and Mo(X) = M(X).

We also define
MR(X) = {x € M(X) | A1 < r(x) < Ao}
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Properties of medial axis

Proposition [Lieutier, 2004]

X and M(X) have the same homotopy type, and noted X —~ M(X).
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Properties of medial axis

Proposition [Lieutier, 2004]

X and M(X) have the same homotopy type, and noted X —~ M(X).

Proposition [Serra, 1983]

Let By be the ball of center Or2 and of radius A > 0. We have
XoBy= |J B(xr(x)-X)
XGM)\(X)
XeB= [J Bxr(x)+))
XEM(X)
M(X © By) = Mx(&X)
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Properties of medial axis

Proposition [Lieutier, 2004]

X and M(X) have the same homotopy type, and noted X —~ M(X).

Proposition [Serra, 1983]

Let By be the ball of center Or2 and of radius A > 0. We have
XoBy= |J B(xr(x)-X)
XGM)\(X)
XeB= [J Bxr(x)+))
XEM(X)
M(X © By) = Mx(&X)

We now verify the quasi-regularity of polygon via its medial axis.
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Verification of quasi-regularity

Property [Ngo et al., 2021]

Let X C R? be a bounded, simply connected polygon. If
M(X) ~ M1(X) and M(X) ~ M(X) then

(i) X © By is non-empty and connected
(i) X © By is connected
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Verification of quasi-regularity

Let Y € {X, X} and M C M}(Y) a connected component of ME(Y).
M contains a set of k points, noted z; (1 < i < k), with r(z) = 0 (they
are convex vertices of the polygon Y'), and a point y with r(y) = 1.

Let (P): V1< i < k ly —zilla < \f We have

Uer CY@BlEBB\[
xeM
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Verification of quasi-regularity

Let Y € {X, X} and M C M}(Y) a connected component of ME(Y).
M contains a set of k points, noted z; (1 < i < k), with r(z) =0 (they
are convex vertices of the polygon Y'), and a point y with r(y) = 1.

Let (P): V1< i < k ly — zill2 < \f We have

Uer CY@Bl@B\[
xeM

Proposition [Ngo et al., 2021]

Let X C R? be a simply connected polygon. If M(X) ~ M;(X),
M(X) ~ M;(X) and, for each connected component of M(X) and
MGI(X), the property (P) holds. Then, X is quasi-regular.
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Quasi-regularity verification method

The method consists in verifying the following two conditions:

(i) M(X) ~ M1(X) and M(X) ~ My (X)
(i) (P) holds for each connected component of M(X') and M(X).

Algorithm 2: Quasi-regularity verification.

Input : A simply connected polygonal object X C R?
Output : A boolean indicating whether X" is quasi-regular
1 for Y € {X, X} do
2 if not M(Y) —~ M1(Y) then return false

3 foreach connected component M € M}(Y) do
4 Let y € M such that r(y) =1

5 foreach z; € M such that r(z;) = 0 do

6 L if ||y — z]|3 > 2 then return false

7 return true
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Quasi-regularity verification method

The method consists in verifying the following two conditions:

(i) M(X) ~ My(X) and M(X) ~ M;(X)
(i) (P) holds for each connected component of M}(X) and M3(X).

AN
N =

(3.1)

1 2
(1) () @

(3.2)
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Definition of cellular space

A closed convex polygon P and its partition F(P)

F(P) contains:

’—/_\ o
— \ /\ » 2-face (interior of P, P),

J \ » 1-faces (edges of P), and

» 0-faces (vertices of P).



Definition of cellular space

A closed convex polygon P and its partition F(P)

F(P) contains:
» 2-face (interior of P, .E’),

\ » 1-faces (edges of P), and

» 0-faces (vertices of P).

A union of closed convex polygons 2 and its partition K(Q)

Let Q = [J K where K is a set of closed, convex polygons such that for any
pair P1, P, € K, PLN Py = 0. Then, K(Q) = Upcic F(P).



Definition of cellular complexes

Let K be a cellular space and f € K be a face.
Cell C()

The cell C(f) induced by f is the subset of faces of K such that |J C(¥)
is the smallest closed set that includes f.
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Definition of cellular complexes

Let K be a cellular space and f € K be a face.
Cell C(f)

The cell C(f) induced by f is the subset of faces of K such that J C(¥)
is the smallest closed set that includes f.

Complex of K

A complex K of K is a union of cells of K.

The embedding of K into R? is defined by Mg2(K) = [J K.
If X =MNge(K), K is the embedding of X into K, K = MNg(X).



Collapse on complexes

Let K be a complex defined in a cellular space K.

Elementary collapse

Suppose that 7 and o are two faces of K such that

T C o with dim(7) = dim(c) — 1 and

o is a maximal face of K and no other maximal face of K contains 7,
then 7 is called a free face and the removal of the faces, K\ {7,0}, is
called an elementary collapse.

If there is a sequence of elementary collapses from K to a complex K’,
we say that K collapses to K'.

RSSO



Simple cells

Let K be a complex defined in a cellular space K on R2.
Let f, be a 2-face of K.
Let Dg(f2), d = 0,1, be the subset of C(f2) composed by the d-faces § such

that S(f) N K = S(f) N C(f).

Simple cells
If |Di(f2)| = |Do(f2)| + 1, C(f2) is called a simple 2-cell for K.

Detachment of a simple 2-cell C(f2) from K: collapse operation from K
to KO C(f2) = K\ ({f2} U D1(f2) U Do(F2))

Attachment of a simple 2-cell C(f,) for K U C(f2) where § € K\ K: the
inverse collapse operation from K into K U C(f2)

g
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