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Geometric transformations on digital images

Given a source image S, we generate a target image S depending on

the chosen transformation, for example:

I translation, rotation (and its combination, called rigid motions)

I affine transformation (scaling, symmetries and rigid motion)

I projective transformation, . . .

S TGeometric 
transformation
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Applications

I 2D: Image registration, image warping, data augmentation . . .

I 3D: Medical imagery, deformable models, 3D reconstruction . . .

Image registration on satellite imagery [Sommervold et al., 2023]
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Applications

I 2D: Image registration, image warping, data augmentation . . .

I 3D: Medical imagery, deformable models, 3D reconstruction . . .

Image registration for panorama [Zhang et al., 2022]
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Applications

I 2D: Image registration, image warping, data augmentation . . .

I 3D: Medical imagery, deformable models, 3D reconstruction . . .

Image registration for object detection [Rodŕıguez et al., 2023]
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Applications

I 2D: Image registration, image warping, data augmentation . . .

I 3D: Medical imagery, deformable models, 3D reconstruction . . .

Image Warping For Face Recognition [Pishchulin et al., 2011]
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Applications

I 2D: Image registration, image warping, data augmentation . . .

I 3D: Medical imagery, deformable models, 3D reconstruction . . .

Image transformation for data augmentation [Shorten and Khoshgoftaar, 2019]
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Applications

I 2D: Image registration, image warping, data augmentation . . .

I 3D: Medical imagery, deformable models, 3D reconstruction . . .

Registration of 3D multi-modal medical images [Islam et al., 2021]
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Applications

I 2D: Image registration, image warping, data augmentation . . .

I 3D: Medical imagery, deformable models, 3D reconstruction . . .

Voxel Free-Form Deformations [Kenwright, 2013]
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Applications

I 2D: Image registration, image warping, data augmentation . . .

I 3D: Medical imagery, deformable models, 3D reconstruction . . .

Point set registration with probablistic model [Kenta-Tanaka et al., 2019]
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Applications

I 2D: Image registration, image warping, data augmentation . . .

I 3D: Medical imagery, deformable models, 3D reconstruction . . .

3D object reconstruction from laser point cloud data [Nguyen et al., 2012]
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Applications

I 2D: Image registration, image warping, data augmentation . . .

I 3D: Medical imagery, deformable models, 3D reconstruction . . .

Content

In this course, we are interested in

I Discrete data: Digital images and discrete points of Z2 / Z3

I Classes of transformation: Rigid motion and affine transformation

I Topic: Geometric and topological properties of such transformations

in the discrete space of Z2 / Z3

I Applications: Digital image processing and analysis
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Topological issue of rigid motion on digital images

Dataset: histological sections  

(Laboratoire ICube - Strasbourg)
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Topological issue of rigid motion on digital images

Dataset: histological sections
Registered image

 

Source image

Target image

(Laboratoire ICube - Strasbourg)
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Topological issue of rigid motion on digital images

Dataset: histological sections
Registered image

 Target image

(Laboratoire ICube - Strasbourg)
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Topological issue of rigid motion on digital images

Dataset: histological sections
Registered image

 Target image

(Laboratoire ICube - Strasbourg)
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Information loss of digitized rotation on digital images

Discretization of isometries [Guihéneuf, 2016]

All the information of a numerical image will be lost by applying

many times a naive algorithm of rotation.

Discretization of rotations on a white-pixel image of size 50× 50 pixels
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Information loss of digitized rotation on digital images

Discretization of isometries [Guihéneuf, 2016]

All the information of a numerical image will be lost by applying

many times a naive algorithm of rotation.

Successive random rotations on an image of size 50× 50 pixels
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Contents

1. Digitized rigid motion

2. Discrete rigid motion graph

3. Topological aspect of DRM

4. Geometrical aspect of DRM

5. Affine transformation
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Rigid motion on Rd

Definition

A rigid motion is a bijection defined for x ∈ Rd ∈ R2, as

R : Rd −→ Rd

x 7−→ Rx + t

with R a rotation matrix et t ∈ Rd a translation vector.

x

z

y x

z

y

Rigid motions are isometric, bijective and preserve the orientation and shape of objects, . . .
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Rigid motion on Zd

Definition

A digitized rigid motion R : Zd → Zd is defined as

R = D ◦R|Zd

where D is the discretization operator defined as a rounding function:
D : Rd −→ Zd

p = (p1, .., pd) 7−→ q = (q1, .., qd) = (bp1 + 1
2c, .., bpd + 1

2c)

Digitized rigid motions are neither isometric nor bijective and do not preserve

geometric and topological properties of transformed objects.
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Rigid motion on Zd

Definition

A digitized rigid motion R : Zd → Zd is defined as

R = D ◦R|Zd
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2c)

Input image Transformed Image (with interpolation)
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Rigid motion on Zd

Definition

A digitized rigid motion R : Zd → Zd is defined as

R = D ◦R|Zd

where D is the discretization operator defined as a rounding function:
D : Rd −→ Zd

p = (p1, .., pd) 7−→ q = (q1, .., qd) = (bp1 + 1
2c, .., bpd + 1

2c)

3D binary image Transformed image by R
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Rigid motion on Zd

Definition

A digitized rigid motion R : Zd → Zd is defined as

R = D ◦R|Zd

where D is the discretization operator defined as a rounding function:
D : Rd −→ Zd

p = (p1, .., pd) 7−→ q = (q1, .., qd) = (bp1 + 1
2c, .., bpd + 1

2c)

3D digital plane Transformed plane by R
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Rigid motion on Zd

Original image Fourrier transf. Linear interpolation Cubical interpolation

Issues

I Interpolation techniques

↪→ Generating new contents in the transformed image

↪→ Visual artifacts: distortions, blurs, . . .

I Continuous transformation methods (e.g. Fourier transform)

↪→ Precision/approximation, blurs, distortions, . . .

I Digital transformation R = D ◦R
↪→ Topology and geometry alteration, . . .
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Rigid motion on Zd

Original image Fourrier transf. Linear interpolation No interpolation: R

Issues

I Interpolation techniques

↪→ Generating new contents in the transformed image

↪→ Visual artifacts: distortions, blurs, . . .

I Continuous transformation methods (e.g. Fourier transform)

↪→ Precision/approximation, blurs, distortions, . . .

I Digital transformation R = D ◦R
↪→ Topology and geometry alteration, . . .
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Rigid motion on Z2 and Z3

Topics covered in this course

1. Combinatorial structure of rigid motions on Z2

↪→ Graph of discrete rigid motions  neighbouring relationships

2. Topological characterization of digital images under rigid motions

↪→ Notion of regularity and image regularization methods

3. Geometric characterization of continuous objects by Gauss discretization

↪→ Notion of quasi-regularity and verification of quasi-regular polygons

4. New models for geometric transformations on Z2 / Z3:

↪→ Polygon/polyhedron-based models for shape preservation of objects

↪→ Geometric transformations on Z2 as an optimization scheme
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Rigid motion on R2

Definition

A rigid motion is a bijection defined for any x = (x , y) ∈ R2 as

Rabθ(x) =

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
+

(
a

b

)
with a, b ∈ R and θ ∈ [0, 2π[.
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Rigid motion on Z2

Definition

A digitized rigid motion on Z2 is defined for any p = (p, q) ∈ Z2 as

R(p) = D ◦R(p) =

(
[p cos θ − q sin θ + a]

[p sin θ + q cos θ + b]

)
where D : R2 → Z2 is a digitization, a, b ∈ R and θ ∈ [0, 2π[.

Lagrangian model – Forward transformation : R = D ◦R
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Rigid motion on Z2

Definition

A digitized rigid motion on Z2 is defined for any p = (p, q) ∈ Z2 as

R(p) = D ◦R(p) =

(
[p cos θ − q sin θ + a]

[p sin θ + q cos θ + b]

)
where D : R2 → Z2 is a digitization, a, b ∈ R and θ ∈ [0, 2π[.

Eulerian model – Backward transformation: R−1 = D ◦R−1
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Non-isometry of rigid motion on Z2

Distance alterations by digitized rigid motion

Before After

1
√

2

1 0√
2 1√
2 2
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Non-isometry of rigid motion on Z2

Angle alterations by digitized rigid motion

Before After

90◦ 135◦

180◦ 0◦

45◦ 90◦
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Non-bijectivity of rigid motion en Z2

Input grid Double pixels Null pixels

7 Non surjective 7 Non injective
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Non-bijectivity of rigid motion en Z2

Input grid Double pixels Null pixels

7 Non surjective 7 Non injective

?

Lagrangian model Eulerian model

7 Incomplete and ambiguous issues of color 3 No issue of color  use to generate images!
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Discontinuities of rigid motion on Z2

Rabθ(p) = D ◦Rabθ(p) =

(
[p cos θ − q sin θ + a]

[p sin θ + q cos θ + b]

)
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Discontinuities of rigid motion on Z2

Rabθ(p) = D ◦Rabθ(p) =

(
[p cos θ − q sin θ + a]

[p sin θ + q cos θ + b]

)

This model is also called point-wise rigid motion and noted by RPoint .
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Discontinuities of rigid motion on Z2

Definition [Ngo et al., 2013]

A discrete rigid motion (DRM) is the set of all the rigid motions that

generate a same image.

The parameter space (a, b, θ) is subdivided into disjoint sets of DRMs.
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Critical rigid motions

Definition [Ngo et al., 2013]

A critical rigid motion moves at least one point of Z2 to a point on

the vertical or horizontal half-grid.

The critical transformations correspond to the discontinuities of DRM.
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Tipping surfaces

Definition [Ngo et al., 2013]

The tipping surfaces are the surfaces associated to critical transformations in

the parameter space (a, b, θ).∣∣∣∣∣ Φpqk : R2 −→ R
(b, θ) 7−→ a = k + 1

2
+ q sin θ − p cos θ (vertical)∣∣∣∣∣ Ψpql : R2 −→ R

(a, θ) 7−→ b = l + 1
2
− p sin θ − q cos θ (horizontal)

for p, q, k, l ∈ Z.

Each tipping surface

I is indexed by a triplet of integers (p, q, k) (resp. (p, q, l)),

I indicates that the pixel (p, q) in a transformed image changes its value

from the one at (k, ∗) (resp. (∗, l)) in the original image to the one at

(k + 1, ∗) (resp. (∗, l + 1)).
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Tipping surfaces

Definition [Ngo et al., 2013]

The tipping surfaces are the surfaces associated to critical transformations in

the parameter space (a, b, θ).∣∣∣∣∣ Φpqk : R2 −→ R
(b, θ) 7−→ a = k + 1

2
+ q sin θ − p cos θ (vertical)∣∣∣∣∣ Ψpql : R2 −→ R

(a, θ) 7−→ b = l + 1
2
− p sin θ − q cos θ (horizontal)

for p, q, k, l ∈ Z.

Each tipping surface

I is indexed by a triplet of integers (p, q, k) (resp. (p, q, l)),

I indicates that the pixel (p, q) in a transformed image changes its value

from the one at (k, ∗) (resp. (∗, l)) in the original image to the one at

(k + 1, ∗) (resp. (∗, l + 1)).
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Example of tipping surfaces

Tipping surfaces Tipping curves

Vertical surfaces Φpqk and horizontal ones Ψpql for p, q ∈ [0, 2] and k, l ∈ [0, 3].
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Graph of discrete rigid motions

Definition [Ngo et al., 2013]

A graph of discrete rigid motions (DRM graph) is a graph

G = (V ,E ) such that

I each vertex v ∈ V corresponds to a DRM

I each edge e ∈ E connects two DRMs sharing a tipping surface
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Properties of DRM graphs

Advantages

I DRMs are computed in a discrete process with exact calculation.

I Their combinatorial structure is represented by a DRM graph G

whose complexity is O(N9) for images of size N × N.

I G models all the DRMs with the topological information such that

↪→ a vertex corresponds to one transformed image

↪→ an edge corresponds to one pixel change, i.e. a tipping surface,

(each edge posesses such pixel transition information)

I It enables to generate exhaustively & incrementally all trans-

formed images.

Disadvantages

It has high complexity to generate the entire structure for large images.
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Application: Discrete transition path of transformed images
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Application: Discrete rigid motion graph search
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Image registration as a combinatorial optimisation problem

Problem formulation

Given two digital images A and B of size N × N, image registration

consists of finding a discrete rigid motion (DRM) such that

v∗ = arg min
v∈V

d(A,Rv (B))

where Rv is the digitized rigid motion of a DRM v , and d is a given

distance between two images.

Disadvantage

Exhaustive search on DRM graph costs O(N9) in complexity.

Advantage

A local search on DRM graph can determine a local optimum.
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Local search on discrete rigid motion graph

Local search

I Input: A reference image A, a target image B,

an initial DRM v0 ∈ V and

a distance metric d

I Output: A local optimum v̂ ∈ V

I Approach: Gradient descent to find a better solution in neighbours.

DRM graph G = (V ,E ) provides

I neighbourhood structure N(v)

k-neighbourhood Nk(v):

Nk (v) = Nk−1(v) ∪
⋃

u∈Nk−1(v)
N(u)

I efficient computation of d
We use signed distance with linear

complexity w.r.t image size [Kim-

mel et al., 1996]
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Experiment on binary images

(a) reference image (b) target image (c) initial solution (d) solution: k = 1

(e) k = 3 (f) k = 5 (g) k = 10 (h) k = 15
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Experiment on binary images: distance evolutions

(a) Distance evolutions

1-neighbours
3-neighbours
5-neighbours
10-neighbours
15-neighbours

(b) Transformation sequences
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Experiment on binary images: runtime complexity
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Experiment on gray images

Detect and follow the moving objects in a sequence of 3D grain images

X-ray CT image: original and labelled cross-section images

scanner 1 scanner 2 scanner 3 3D visualisation

Movements of Schneebeli rolls (Laboratoire 3SR, Grenoble)
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Experiment on gray images

Movements of Schneebeli rolls (Laboratoire 3SR, Grenoble)
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Experiment on gray images

(a) reference image (b) target image (c) solution: k = 1

(d) k = 5 (e) k = 10 (f) k = 15 (g) k = 20
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Experiment on gray images: distance evolutions
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Topological issue of rigid motion on digital images

Input retina image Transformed image

Questions

I Do binary images exist that preserve their topology under any rigid motions?

I What are conditions for images to preserve their topology?
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Connectivity of digital set of points

Definition [Latecki et al., 1995]

Two distinct grid points p, q ∈ Zd are said k-neighbours if:

||p− q||l < 1

with k = 2d (resp. 3d − 1) for l = 1 (resp. ∞).

I 2D: 4- and 8-neighbourhood Nk(p) = {q ∈ Z2 : ||p− q||l < 1}
I 3D: 6- and 26-neighbourhood Nk(p) = {q ∈ Z3 : ||p− q||l < 1}

4-neighbourhood 8-neighbourhood
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Well-composeness

Definition [Latecki et al., 1995]

A digital set X ⊂ Z2 is well-composed if each 8-connected component

of X and of its complement X is also 4-connected.

Non well-composed set Well-composed set
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Well-composeness

Definition [Latecki et al., 1995]

A digital set X ⊂ Z2 is well-composed if each 8-connected component

of X and of its complement X is also 4-connected.

Critical configuration
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Topological preservation of digital image

Binary image I Connected components of I Adjacent tree T(I )

Définition [Ngo et al., 2014]

Let I be a binary image. We say that I is topologically invariant if,

for all rigid motions R, IR = I ◦R induces a isomorphism between

adjacency trees T(I ) and T(IR).
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Topological preservation of digital image
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Topological characterization: regularity

Définition [Ngo et al., 2014]

Let I be a binary image. We say that I is regular if it is :

I well-composed,

I non singular and

I squarely regular: ∀p, q ∈ I−1({v}) with v ∈ {0, 1} and ||p−q||1 = 1,

∃� ⊆ I−1({v}) tel que p, q ∈ �,
où � = {x , x + 1} × {y , y + 1}, pour (x , y) ∈ Z2.

Non well-composed image Singular image Non squarely regular image
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∃� ⊆ I−1({v}) tel que p, q ∈ �,
où � = {x , x + 1} × {y , y + 1}, pour (x , y) ∈ Z2.

Non well-composed image Singular image Regular image
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Topological characterization of binary images

Proposition [Ngo et al., 2014]

If a binary image I is regular then it is topologically invariant under any

rigid motion.

Prohibited configurations

A binary image I is regular iff it does not contain the configurations:

C1 C2 C3

The regularity of I can be verified locally and in linear time !

Extension

Regularity is extended to grayscale and Labelled images.
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Regularization of images by homotopic transformation

Input image Prohibited config. Transformed image Regular Image Transformed image
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Regularization of images by homotopic transformation

No solution in the cases at the limit of the resolution:

In
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m
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Binary image Grayscale image Labelled image
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Regularization of images by oversampling

By doubling the resolution, well-composed images become regular:

In
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Binary image Grayscale image Labelled image
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Some experimental results

Input image Transformed image Regular image Transformed image

Thresholded images
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Some experimental results

Input image Regular image

Transformed image Transformed image
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Extending the regularity in 3D

The 3D extension of the regularity would be to consider a cover of

cubes 2× 2× 2 that locally overlap everywhere.

Is such an object in Z3 topologically invariant? → No!

Regular object Transformed object
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Topological characterizations of digital images

The point-to-point rigid motion model: RPoint = D ◦R|Zd

3 Simple and easy to apply on digital images

3 The notion of regularity allows a characterization of 2D images

whose topological properties are preserved by R
↪→ Regularization: homotopic transformation or oversampling

Input image (non regular) Regularized image

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 40/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Topological characterizations of digital images

The point-to-point rigid motion model: RPoint = D ◦R|Zd

7 The notion of regularity reaches its limit of validity by passing to Z3

7 Geometric properties are not well preserved in general

Digitized rotations of a half-plane: linearity and convexity problems
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Topological characterizations of digital images

The point-to-point rigid motion model: RPoint = D ◦R|Zd

7 The notion of regularity reaches its limit of validity by passing to Z3

7 Geometric properties are not well preserved in general

Ellipse Transformed ellipse
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Geometrical preservation of rigid motion for discrete objects

New solutions for rigid transformations on Z2 and Z3:

↪→ with intermediate models to transform a discrete object

↪→ better preserves the shape of the object by the transformation

Polygons to represent the object’s shape and used it for the

transformation.

Digitalisation process

The transformed object model need to be digitized for a result in Zd .
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Digitization and topology preservation

Definition [Klette and Rosenfeld, 2004]

Given a bounded and connected subset X ⊂ Rd , for d ≥ 2, the Gauss

digitization of X is a discrete object X defined as:

X = X ∩ Zd

X ⊂ R2 X = X ∩ Z2 X ⊂ Z2
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Digitization and topology preservation

Definition [Klette and Rosenfeld, 2004]

Given a bounded and connected subset X ⊂ Rd , for d ≥ 2, the Gauss

digitization of X is a discrete object X defined as:

X = X ∩ Zd

X ⊂ R2 X = X ∩ Z2 X ⊂ Z2

Topology of the object can be altered under the digitization process.
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Digitization and topology preservation

Definition [Klette and Rosenfeld, 2004]

Given a bounded and connected subset X ⊂ Rd , for d ≥ 2, the Gauss

digitization of X is a discrete object X defined as:

X = X ∩ Zd

Questions

I What are conditions for continuous objects to preserve their topology

under Gauss digitization?

I How to verify such conditions for a given continuous object?

I How to perform shape-preserving rigid motion of discrete objects?
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r-regularity

Définition [Pavlidis, 1982]

A finite and connected subset X ⊂ R2 is r-regular if for each boundary

point of X , there exist two tangent open balls of radius r , lying entirely

in X and its complement X , respectively.
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r-regularity

Définition [Pavlidis, 1982]

A finite and connected subset X ⊂ R2 is r-regular if for each boundary

point of X , there exist two tangent open balls of radius r , lying entirely

in X and its complement X , respectively.

Proposition [Latecki et al., 1998]

If X ⊂ R2 is r -regular, for r ≥
√

2
2 , then X = X ∩Z2 is a well-composed.
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r-regularity

Définition [Pavlidis, 1982]

A finite and connected subset X ⊂ R2 is r-regular if for each boundary

point of X , there exist two tangent open balls of radius r , lying entirely

in X and its complement X , respectively.

Object X must have a differentiable boundary.

What about objects with non-differentiable boundary (e.g. polygons)?
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Morphological Operations: Erosion and dilation

Mathematical morphology [Serra, 1983]

The basic idea of mathematical morphology is to compare the set to be

analyzed with a set with a known geometry called structuring element.

Structuring element B is a set with the following characteristics:

I has a known geometry,

I has a certain size r > 0,

I is located by its origin.

Disk Square Segment A Shape
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Morphological Operations: Erosion and dilation

Mathematical morphology [Serra, 1983]

The basic idea of mathematical morphology is to compare the set to be

analyzed with a set with a known geometry called structuring element.

Structuring element B is a set with the following characteristics:

I has a known geometry,

I has a certain size r > 0,

I is located by its origin.

Disk Square Segment A Shape
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Morphological Operations: Erosion and dilation

Mathematical morphology [Serra, 1983]

The basic idea of mathematical morphology is to compare the set to be

analyzed with a set with a known geometry called structuring element.

Definition [Serra, 1983]

Let X ⊂ R2 be a set, and B be a structuring element located by its

origin. The erosion of X by B in a space E is

EB(X ) = X 	 B = {x ∈ E | Bx ⊆ X}
where Bx is the translation of B by x .

The erosion is a transformation relative to the inclusion.

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 46/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Morphological Operations: Erosion and dilation

Mathematical morphology [Serra, 1983]

The basic idea of mathematical morphology is to compare the set to be

analyzed with a set with a known geometry called structuring element.

Definition [Serra, 1983]

Let X ⊂ R2 be a set, and B be a structuring element located by its

origin. The dilation of X by B in a space E is

δB(X ) = X ⊕ B = {x ∈ E | Bx ∩ X 6= ∅}
where Bx is the translation of B by x .

The dilation is a transformation relative to the intersection.
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Quasi-r-regularity

Definition [Ngo et al., 2019]

Let X ⊂ R2 be a finite and simply connected set (i.e. connected and

without hole). X is quasi-r-regular with margin r ′ − r , if

I X 	 Br (resp. X 	 Br ) is non-empty and connected, and

I X ⊆ X 	 Br ⊕ Br ′ (resp. X ⊆ X 	 Br ⊕ Br ′)

où ⊕,	 are the dilation and erosion operators and Br ,Br ′ ⊂ Rd are

respectively the balls of radius r and r ′, for r ′ ≥ r > 0.

Quasi-r -regular object Non quasi-r -regular objects
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Quasi-r-regularity

Definition [Ngo et al., 2019]

Let X ⊂ R2 be a finite and simply connected set (i.e. connected and

without hole). X is quasi-r-regular with margin r ′ − r , if

I X 	 Br (resp. X 	 Br ) is non-empty and connected, and

I X ⊆ X 	 Br ⊕ Br ′ (resp. X ⊆ X 	 Br ⊕ Br ′)

où ⊕,	 are the dilation and erosion operators and Br ,Br ′ ⊂ Rd are

respectively the balls of radius r and r ′, for r ′ ≥ r > 0.

Quasi-r -regular polygon Non quasi-r -regular polygons
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Quasi-r-regularity

Definition [Ngo et al., 2019]

Let X ⊂ R2 be a finite and simply connected set (i.e. connected and

without hole). X is quasi-r-regular with margin r ′ − r , if

I X 	 Br (resp. X 	 Br ) is non-empty and connected, and

I X ⊆ X 	 Br ⊕ Br ′ (resp. X ⊆ X 	 Br ⊕ Br ′)

où ⊕,	 are the dilation and erosion operators and Br ,Br ′ ⊂ Rd are

respectively the balls of radius r and r ′, for r ′ ≥ r > 0.

Proposition [Ngo et al., 2019]

If X is quasi-1-regular with margin
√

2− 1 (also called quasi-regular),

then X = X ∩ Z2 and X = X ∩ Z2 are both 4-connected. In particular,

X is then well-composed.

Verify the quasi-regularity of polygonal objects?  Medial axis
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Topology and geometry preserving rigid motion on Z2

Approach via polygonization

I polygonal representation of discrete objects for rigid motion

I shape preservation of transformed object by the transformation

I quasi-regularity for topology preservation of object by the digitization

Proposition [Ngo et al., 2019]

If P is quasi-regular, then R(P) ∩ Z2 preserves connectivity.
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Topology and geometry preserving rigid motion on Z2

Approach via polygonization

I polygonal representation of discrete objects for rigid motion

I shape preservation of transformed object by the transformation

I quasi-regularity for topology preservation of object by the digitization

Proposition [Ngo et al., 2019]

If P is quasi-regular, then R(P) ∩ Z2 preserves connectivity.
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Polygonalization method

Polygonal representation

The properties to satisfy for computing a polygonal representation P(X)

of a discrete object X ⊂ Z2 are

I reversibility : P(X) ∩ Z2 = X ;

I vertices with rational coordinates (exact calculation).

For an object X ⊂ Z2, different results can be obtained from different

polygonalization techniques:

I Digital convex objects: convex hull + representation by half-planes

I Non-convex objects: polygonalization using contour of the discrete

object (decomposition into convex parts, concavity tree, . . . )
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Digital convexity

Definition

An object X ⊂ R2 is said to be convex if, for any pair of points

x, y ∈ X , the line segment joining x and y, defined by

[x, y] = {λx + (1− λ)y ∈ R2 | 0 ≤ λ ≤ 1},
is included in X .

Convex object in R2 Non-convex objet in R2 in Z2

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 50/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Digital convexity

Definition [Kim, 1981]

A digital object X ⊂ Z2 is H-convex, for Conv(X) the convex hull of X

X = Conv(X) ∩ Z2

Non H-convex object H-convex objects

Digital convexity does not imply the connectivity!
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Convexity under rigid motion

Conv

Proposition [Ngo et al., 2019]

Soit X ⊂ Z2 connexe et bien composé et Conv(X) son enveloppe

convexe. Si X est convexe (i.e. X = Conv(X) ∩ Z2) et Conv(X) est

quasi-régulier, alors R(Conv(X)) ∩ Z2 est convexe et bien composé.

The half-plane representation  Gauss discretization in exact calculation!
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Half-plane representation of H-convex object

Let X be a H-convex object and Conv(X) be the convex hull of X. Then,

X = Conv(X) ∩ Z2 =
( ⋂

H∈R(X)

H
)
∩ Z2 =

⋂
H∈R(X)

(
H ∩ Z2

)
where R(X) is the minimal set of closed half-planes including X. Each

half-plane H has coefficients defined by consecutive vertices of Conv(X).
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Rigid motion of H-convex objects via convex hull

RConv(X) = R(Conv(X)) ∩ Z2 = R

( ⋂
H∈R(X)

H

)
∩ Z2

Property [Ngo et al., 2019]

Conv(RConv(X)) ⊆ R(Conv(X))
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Experimental results

θ = π
10 θ = 2π

10 θ = 3π
10 θ = 4π

10

RPoint

RConv
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Experimental results

θ = π
10 θ = 2π

10 θ = 3π
10 θ = 4π

10

RPoint

RConv
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Rigid motion of non-convex objects

RPoly(X) = R(Poly(X)) ∩ Z2
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Rigid motion of non-convex objects

RPoly(X) = R(Poly(X)) ∩ Z2

Décomposition 
en parties
convexes
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Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 57/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Marching square method: Local configurations + lookup table (LUT)

Case 0 Case 1 Case 2 Case 3

Case 8 Case 9 Case 10 Case 11

Look-up table contour lines

Case 4 Case 5 Case 6 Case 7

Case 12 Case 13 Case 14 Case 15
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Polygonization of digital objects

Marching square method [Maple, 2003]

Generation of iso-contours for 2D scalar field (e.g., gray-scale images)

I Compute a binary image of the 2D field for an isovalue by a threshold

I Create contouring cells by 2x2 block of pixels in the binary image

↪→ Compute the binary code (=cell index) of each contouring cell

↪→ Access a pre-built LUT with the cell index for the contour lines

↪→ Apply interpolation between the original 2D field to find the

exact contour lines

1
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Binary image
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(Illustration from Wikipedia)
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Polygonization of digital objects

Marching square method [Maple, 2003]

Generation of iso-contours for 2D scalar field (e.g., gray-scale images)

I Compute a binary image of the 2D field for an isovalue by a threshold

I Create contouring cells by 2x2 block of pixels in the binary image

↪→ Compute the binary code (=cell index) of each contouring cell

↪→ Access a pre-built LUT with the cell index for the contour lines

↪→ Apply interpolation between the original 2D field to find the

exact contour lines
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Polygonization of digital objects

Marching square method [Maple, 2003]

Generation of iso-contours for 2D scalar field (e.g., gray-scale images)

I Compute a binary image of the 2D field for an isovalue by a threshold

I Create contouring cells by 2x2 block of pixels in the binary image

↪→ Compute the binary code (=cell index) of each contouring cell

↪→ Access a pre-built LUT with the cell index for the contour lines

↪→ Apply interpolation between the original 2D field to find the

exact contour lines
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Polygonization of digital objects

Extension to 3D: Marching cube method [Maple, 2003]

(Illustration from Wikipedia)
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Polygonization of digital objects

Marching square/cube method [Maple, 2003]

Advantages

I Simple and easy to implement

I Linear computation w.r.t image size

I Exact computation: polygon vertices with rational coordinates

I Extension to dimension 3

Disadvantages

I Polygon is composed of small segments

I It may not optimal/fit to the digital form
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Polygonization of digital objects

Concavity tree by Sklansky [Sklansky, 1972]

↪→ decompose an object into concavities

↪→ encode description of a binary image

↪→ possible to process each one separately

↪→ measure/compare the concavities of digital objects

0

1 2 3 4

Input object Concave parts Concavity tree
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Polygonization of digital objects

Concavity tree method [Sklansky, 1972]

Concavity tree structure for a digital object X:

I The root corresponds to points in the convex hull: Conv(X) ∩ Z2

I Each node corresponds to points in the convex hull of a concave part

(i.e., a connected component C) of its parents.

Then, X is represented as follows:

X =

(
Conv(X) ∩ Z2

)
\
( ⋃

X′∈C((Conv(X)∩Z2)\X)

X′
)

0

1

Input object Concave parts Concavity tree
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Polygonization of digital objects

Concavity tree method [Sklansky, 1972]

Concavity tree structure for a digital object X:

I The root corresponds to points in the convex hull: Conv(X) ∩ Z2

I Each node corresponds to points in the convex hull of a concave part

(i.e., a connected component C) of its parents.

Then, X is represented as follows:

X =

(
Conv(X) ∩ Z2

)
\
( ⋃

X′∈C((Conv(X)∩Z2)\X)

X′
)

Transformed concave parts Reconstructed object Transformed object
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Polygonization of digital objects

Concavity tree method [Sklansky, 1972]

Advantages

I Structural and hierarchical descriptions of 2D shape

I H-convex object = convex hull of the shape

I Exact computation: polygon vertices with integer coordinates

I Possible extension to dimension 3

0

1 2 3 4

Input object Concave parts Concavity tree

P. Ngo Geometric Transformations on Digital Images – Strasbourg 2023 63/92



Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Polygonization of digital objects

Concavity tree method [Sklansky, 1972]

Disadvantages

I Data structure for the concavity tree

I Operations performed to reconstruct the digital object

I Artifacts when applying geometric transformations on the structure

0

1 2 3 4

Input object Concave parts Concavity tree
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Polygonization of digital objects

Concavity tree method [Sklansky, 1972]

Disadvantages

I Data structure for the concavity tree

I Operations performed to reconstruct the digital object

I Artifacts when applying geometric transformations on the structure
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Polygonization of digital objects

Contour-based polygonization:

↪→ Extract 8-connected contour points C (X) of X

↪→ Compute convex hull of C (X) as part of P(X)

↪→ Determine the polygon segments of P(X) from the contour points

that best fit the concave parts of X

X = P(X) ∩ Z2

Input object 8-connected contour Polygon curve
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Polygonization of digital objects

Contour-based polygonization

I Extract 8-connected contour C (X) of X and compute Conv(C (X))

I Initialize P(X) with Conv(C (X)) (in CW order), for each segment

[pi , pi+1] ∈ P(X), select p ∈ C (pi , pi+1), C (X) between pi , pi+1, s.t.

p = arg max
q∈C(pi ,pi+1)\P

{
d(pi , q) |

(
∆piqr ∩ Z2

)
∩ X = ∅∧ r ∈ C (pi , q)

}
with d(., .) the Euclidean distance, ∆piqr the triangle whose vertices are pi , q, r .
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Convex decomposition of polygons

Convex decomposition [Lien and Amato, 2006]

The method decomposes a simple polygon into convex pieces by

iteratively removing the most significant non-convex features.

P =
⋃

Pi

X = P(X) ∩ Z2 =
⋃ (

Pi ∩ Z2
)
.
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Experimental results of rigid motions on Z2

X ⊂ Z2 RPoint RPoly
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Experimental results of rigid motions on Z2

X ⊂ Z2 RPoint RPoly
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Extension to 3D

Definition [Ngo et al., 2019]

Let X ⊂ R3 be a bounded, simply connected set. X is quasi-r -regular

with margin r ′ − r , for r ′ ≥ r > 0, if

I X 	 Br (resp. X 	 Br ) is non-empty and connected, and

I X ⊆ X 	 Br ⊕ Br ′ (resp. X ⊆ X 	 Br ⊕ Br ′)

où ⊕,	 are the dilation and erosion operators and Br ,Br ′ ⊂ Rd are

respectively the balls of radius r and r ′.

Proposition [Ngo et al., 2019]

Let X ⊂ Z3 be a digital object. If X is quasi-1-regular with margin
2√
3
− 1, then X = X ∩ Z3 and X = X ∩ Z3 are both 6-connected.
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Proposed method of rigid motions on Z3

Polyhedrization of

voxels

=⇒
Convex

decomposition

⇓ Rigid motion

(Re)digitization

⇐=
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Experimental results of rigid motions on Z3

Input object RPoint RPomy : quasi-regular polyhedron
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Experimental results of rigid motions on Z3
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Affine transformation on R2

Definition

An affine transformation A : R2 → R2 is defined, for any p ∈ R2, by

A(p) = A · p + t =

[
a11 a12

a21 a22

]
·

[
px

py

]
+

[
tx
ty

]
where t = (tx , ty )t ∈ R2, A = [ai,j ]1≤i,j≤2, det(A) 6= 0, and ai,j ∈ R.
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Affine transformation on R2

Definition

An affine transformation A : R2 → R2 is defined, for any p ∈ R2, by

A(p) = A · p + t =

[
a11 a12

a21 a22

]
·

[
px

py

]
+

[
tx
ty

]
where t = (tx , ty )t ∈ R2, A = [ai,j ]1≤i,j≤2, det(A) 6= 0, and ai,j ∈ R.

The affine transformations include, in particular:

I translations (A = I2) ; et

I when t = 0 :

↪→ rotations (a11 = a22 = cos θ, −a12 = a21 = sin θ pour θ ∈ R) ;

↪→ symmetries (a11 = ±1, a22 = ±1, a12 = a21 = 0) ;

↪→ scalings (a11 6= 0, a22 6= 0 and a12 = a21 = 0) ;

and their compositions (e.g. rigid transformation: rotation + translation)
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Affine transformation on Z2

Definition

A digitized affine transformation A : Z2 → Z2 is defined as

A = D ◦ A|Z2

where D is a digitization defined with the rounding operation:
D : R2 −→ Z2

p = (px , py ) 7−→ q = (qx , qy ) = ([px ], [py ])

Digitized transformations can alter the topology of the transformed object.
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Affine transformation on Z2

Goal

Given a binary object X and A an affine transformation, construct a

transformed binary object XA preserving the homotopy type.

The problem is formulated as an optimization in the refined space of

the initial and transformed grids, called the space of cellular complexes.
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Affine transformation on Z2

Goal

Given a binary object X and A an affine transformation, construct a

transformed binary object XA preserving the homotopy type.

The problem is formulated as an optimization in the refined space of

the initial and transformed grids, called the space of cellular complexes.

Advantages

The framework is flexible in higher dimensions as well as other

geometric transformations.
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Problem formulation

Reaching the most similar XA ⊂ Z2 to A(X) can be formalized as:

XA = argY∈2Z2 minDA,X(Y)

where DA,X(Y) is a dissimilarity measure between A(X) and Y.

Example of dissimilarity measure

Based on Gauss digitization:

D�
A,X(Y) = |� (A(�(X))) \ Y|+ |Y \�(A(�(X)))|
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Problem formulation

Reaching the most similar XA ⊂ Z2 to A(X) can be formalized as:

XA = argY∈2Z2 minDA,X(Y)

where DA,X(Y) is a dissimilarity measure between A(X) and Y.

Example of dissimilarity measure

Based on Gauss digitization:

D�
A,X(Y) = |� (A(�(X))) \ Y|+ |Y \�(A(�(X)))|

I Continuous analogue of X ⊂ R2: �(X) = X⊕� = X

↪→ ⊕ is the dilation operator and

↪→ � is the structuring element [ 1
2
, 1

2
]2 ⊂ R2.

I Gauss digitization of X ⊂ R2: �(X) = X ∩ Z2.
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Problem formulation

Reaching the most similar XA ⊂ Z2 to A(X) can be formalized as:

XA = argY∈2Z2 minDA,X(Y)

where DA,X(Y) is a dissimilarity measure between A(X) and Y.

Example of dissimilarity measure

Based on Gauss digitization:

D�
A,X(Y) = |� (A(�(X))) \ Y|+ |Y \�(A(�(X)))|

Topological constraint is missing!
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Problem formulation

Reaching the most similar XA ⊂ Z2 to A(X) can be formalized as:

XA = argY∈2Z2 minDA,X(Y)

where DA,X(Y) is a dissimilarity measure between A(X) and Y.

Example of dissimilarity measure

Based on Gauss digitization:

D�
A,X(Y) = |� (A(�(X))) \ Y|+ |Y \�(A(�(X)))|

Solution

Topological preservation via the optimization in space of cellular

complexes with the notion of collapse on the complexes.

↪→ Simple cell: Cells that can be removed/added without changing the

topological structure

↪→ Collapse operation: Detachment/Attachment of simple cells to the

existing cellular complexes
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Affine transformation on Z2 under topological constraint

Proposed method

The main steps to transform X ⊂ Z2 by A:

1. Generate refined cellular space H from F and G

2. Compute the complex H in H from G

3. Optimize by a homotopic transformation H from H to Ĥ

4. Embed the digitized complex Ĥ in F, i.e. F̂ = ΠF(Ĥ) ⊂ Z2.
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Cellular space F induced by Z2

Definition

Let ∆ = Z + 1
2 .The induced cellular complex space F is composed of:

I set of 0-faces F0 = {{d} | d ∈ ∆2}
I set of 1-faces F1 =

⋃
i=1,2{]d, d + ei [ | d ∈ ∆2}

I set of 2-faces F2 = {]d, d + e1[ × ]d, d + e2[ | d ∈ ∆2}
where e1 = (1, 0) and e2 = (0, 1).
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Cellular space F induced by Z2

Definition

Given a digital object X ⊂ Z2, the associated complex F = ΠF(�(X))

is defined as:

F =
⋃
x∈X

C (�(x))

where �(p) = p ⊕ ]− 1
2 ,

1
2 [2 for p ∈ Z2.
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Transformed cellular space G induced by A(Z2)

Definition

The cellular space G induced by an affine transformation A and Z2 is

composed of the three sets of d-faces (0 ≤ d ≤ 2):

Gd = A(Fd) = {A(f) | f ∈ Fd}

The continuous object XA is modeled by the complex G = ΠG(XA),

which is defined by

G = A(F ) = A(ΠF(X)) = {A(f) | f ∈ ΠF(X )}
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Cellular space H refining F and G

A new cellular space H that refines both F and G is built.

&

For each 2-face h2 of H, there exists exactly one 2-face f2 of F and one

2-face g2 of G such that h2 = f2 ∩ g2. We can define

I φ : H2 → F2 such that φ(h2) = f2

I γ : H2 → G2 such that γ(h2) = g2.

and reversely,

I Φ : F2 → 2H2 such that Φ(f2) = {h2 ∈ H2 | φ(h2) = f2}
I Γ : G2 → 2H2 such that Γ(g2) = {h2 ∈ H2 | γ(h2) = g2}.
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Transformation affine sur Z2 sous contrainte topologique

Proposed method

The main steps to transform X ⊂ Z2 by A :

1. Generate refined cellular space H from F and G

2. Compute the complex H in H from G

3. Optimize by a homotopic transformation H from H to Ĥ

4. Embed the digitized complex Ĥ in F, i.e. F̂ = ΠF(Ĥ) ⊂ Z2.
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Homotopic transformation H on H
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Homotopic transformation H on H

A discrete optimization process with topological constraint on H

I Topology: H is a homotopic transformation of H to Ĥ

↪→ a sequence of additions/removals of simple 2-cells

I Digitization: Ĥ can be embedded into F, i.e. F̂ = ΠF(Ĥ)

I Geometry: the digital analogue XA = �(ΠR2 (Ĥ)) ⊂ Z2 of Ĥ is as

close as possible to the solution of the optimization problem

XA = argY∈2Z2 minDA,X(Y)
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Optimization-based affine transformation with constraints

The cost function:

C = Etopo︸ ︷︷ ︸
Etopo(H,H̃)=0

+ Edigi︸︷︷︸
Edigi(H̃)≥0

+ Egeom︸ ︷︷ ︸
Egeom(H,H̃)≥0

With

I Topological energy: Etopo : CH × CH → R+

↪→ Etopo(H, H̃) = 0, i.e. H and H̃ have the same topology

I Digitization energy: Edigi : CH → R+

↪→ Edigi(H̃) = 0 if there exists F̃ in CF s.t F̃ ≡ ΠF(H̃)

I Geometrical energy: Egeom : CH × CH → R+

↪→ Egeom(H, H̃) measures the dissimilarity between H and H̃

↪→ Egeom(H, H̃) = 0, i.e. H and H̃ are the same.
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Optimization-based affine transformation with constraints

The cost function:

C = Etopo︸ ︷︷ ︸
Etopo(H,H̃)=0

+ Edigi︸︷︷︸
Edigi(H̃)≥0

+ Egeom︸ ︷︷ ︸
Egeom(H,H̃)≥0

Conditions and objectives of the optimization process:

I Etopo(H, H̃) = 0 throughout the optimization process

I Edigi(H̃) = 0 at the end of the process to have H̃ embeddable in F̃

I Egeom(H, H̃) is as small as possible at the end of the process.
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Optimization-based affine transformation with constraints

The cost function:

C = Etopo︸ ︷︷ ︸
Etopo(H,H̃)=0

+ Edigi︸︷︷︸
Edigi(H̃)≥0

+ Egeom︸ ︷︷ ︸
Egeom(H,H̃)≥0

Let H̃ be the current solution of the optimization process. At each step:

I we add/remove a simple 2-face h2 ∈ H (i.e. Etopo(H, H̃) = 0) that

minimizes Edigi(H̃) and Egeom(H, H̃)

I we are interested in the 2-faces h2 belonging to the boundary of H̃.

This set is defined by

B0,1(H̃) = {h0,1 ∈ H0(H̃) ∪H1(H̃) | S(h0,1) ( H̃}

B2(H̃) = {h2 ∈ H2 | C (h2) ∩ B0,1(H̃) 6= ∅}

(They are the 2-faces h2 whose 0- and 1-faces belong to the background)
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Dissimilarity measures

We search XA ⊂ Z2 resulting from X ⊂ Z2 by the affine transformation A as

close as possible to the solution of the optimization problem:

XA = argY∈2Z2 minDA,X(Y)

Examples of Egeom
I based on majority vote digitization:

D�A,X(Y) = |A(�(X)) \�(Y)|+ |�(Y) \ A(�(X))|
I based on Gauss digitization:

D�
A,X(Y) = |� (A(�(X))) \ Y|+ |Y \�(A(�(X)))|

D�A,X D�
A,X
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General algorithm of homotopic affine transformation on Z2

Algorithm 1: Construction of Ĥ from H by H.
Input : H ∈ CH
Input : Egeom : CH × CH → R+

Output : Ĥ ∈ CH
H ∩ CF

H
1 H̃ ← H

2 Build B2(H̃)

3 while Edigi(H̃) > 0 do

4 Choose h2 ∈ B2(H̃) s.t H̃ } C(h2) _h H̃︸ ︷︷ ︸
h2 is a simple 2-face

that minimizes Edigi and

Egeom(H, · )

5 H̃ ← H̃ } C(h2) =

{
H̃ � C(h2) if h2 ∈ H̃

H̃ ∪ C(h2) if h2 /∈ H̃

6 Update B2(H̃)

7 Ĥ ← H̃
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Results of rotation on Z2 with/without topological constraint

Original image
Gauss digitization Majority vote

w.o cont. topo with cont. topo w.o cont. topo with cont. topo
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Results of affine transformation on Z2

Original image
Gauss digitization Majority vote

w.o cont. topo with cont. topo w.o cont. topo with cont. topo
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Non-existence of solutions
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Take home messages

I Topological issues when applying geometric transformations on

digital images/digital shapes

I Several solutions exist for topology-preserving transformations

↪→ Regularity, quasi-regularity, . . .

↪→ Transformation model: complex cellular, intermediate model of

digital object, . . .

↪→ Multi-grid strategies, continuous techniques,. . .

I Still many open questions, especially in higher dimensions

I geometric properties of transformed objects . . .

I and other families of transformations (projective transformations,

free deformation, diffeomorphism,. . . )
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Medial axis

Définition [Blum, 1967]

Let X ⊂ R2 be a closed, bounded set such that the boundary ∂X of X
is a 1-manifold. The medial axis of X is defined as the locus of the

centers of the maximal balls included in X :

M(X ) = {x ∈ X | @y ∈ X ,B(x , r(x)) ⊂ B(y , r(y))}
where B(y , r) ⊆ X is the ball of center y and radius r ∈ R+.
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Let X ⊂ R2 be a closed, bounded set such that the boundary ∂X of X
is a 1-manifold. The medial axis of X is defined as the locus of the

centers of the maximal balls included in X :

M(X ) = {x ∈ X | @y ∈ X ,B(x , r(x)) ⊂ B(y , r(y))}
where B(y , r) ⊆ X is the ball of center y and radius r ∈ R+.

By definition, we have M(X ) ⊆ X and

X =
⋃

x∈M(X )

B(x , r(x))
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Medial axis

Définition [Blum, 1967]

Let X ⊂ R2 be a closed, bounded set such that the boundary ∂X of X
is a 1-manifold. The medial axis of X is defined as the locus of the

centers of the maximal balls included in X :

M(X ) = {x ∈ X | @y ∈ X ,B(x , r(x)) ⊂ B(y , r(y))}
where B(y , r) ⊆ X is the ball of center y and radius r ∈ R+.

We define the λ-level medial axis, noted Mλ(X ), by

Mλ(X ) = {x ∈M(X ) | r(x) ≥ λ}

In particular, λ1 ≤ λ2 ⇒Mλ2 (X ) ⊆Mλ1 (X ), and M0(X ) =M(X ).

We also define

Mλ2

λ1
(X ) = {x ∈M(X ) | λ1 ≤ r(x) ≤ λ2}
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Properties of medial axis

Proposition [Lieutier, 2004]

X and M(X ) have the same homotopy type, and noted X _M(X ).

Proposition [Serra, 1983]

Let Bλ be the ball of center 0R2 and of radius λ ≥ 0. We have

X 	 Bλ =
⋃

x∈Mλ(X )

B(x , r(x)− λ)

X ⊕ Bλ =
⋃

x∈M(X )

B(x , r(x) + λ)

M(X 	 Bλ) =Mλ(X )

We now verify the quasi-regularity of polygon via its medial axis.
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Verification of quasi-regularity

Property [Ngo et al., 2021]

Let X ⊂ R2 be a bounded, simply connected polygon. If

M(X ) _M1(X ) and M(X ) _M1(X ) then

(i) X 	 B1 is non-empty and connected

(ii) X 	 B1 is connected
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Verification of quasi-regularity

Let Y ∈ {X ,X} and M ⊆M1
0(Y ) a connected component of M1

0(Y ).

M contains a set of k points, noted zi (1 ≤ i ≤ k), with r(zi ) = 0 (they

are convex vertices of the polygon Y ), and a point y with r(y) = 1.

Let (P) : ∀1 ≤ i ≤ k , ‖y − zi‖2 ≤
√

2. We have

(P)⇒
⋃
x∈M

B(x , r(x)) ⊆ Y 	 B1 ⊕ B√2
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Verification of quasi-regularity

Let Y ∈ {X ,X} and M ⊆M1
0(Y ) a connected component of M1

0(Y ).

M contains a set of k points, noted zi (1 ≤ i ≤ k), with r(zi ) = 0 (they

are convex vertices of the polygon Y ), and a point y with r(y) = 1.

Let (P) : ∀1 ≤ i ≤ k , ‖y − zi‖2 ≤
√

2. We have

(P)⇒
⋃
x∈M

B(x , r(x)) ⊆ Y 	 B1 ⊕ B√2

Proposition [Ngo et al., 2021]

Let X ⊂ R2 be a simply connected polygon. If M(X ) _M1(X ),

M(X ) _M1(X ) and, for each connected component of M1
0(X ) and

M1
0(X ), the property (P) holds. Then, X is quasi-regular.
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Quasi-regularity verification method

The method consists in verifying the following two conditions:

(i) M(X ) _M1(X ) and M(X ) _M1(X )

(ii) (P) holds for each connected component of M1
0(X ) and M1

0(X ).

Algorithm 2: Quasi-regularity verification.

Input : A simply connected polygonal object X ⊂ R2

Output : A boolean indicating whether X is quasi-regular

1 for Y ∈ {X ,X} do

2 if not M(Y) _M1(Y) then return false

3 foreach connected component M ∈M1
0(Y) do

4 Let y ∈ M such that r(y) = 1

5 foreach zi ∈ M such that r(zi ) = 0 do

6 if ||y − zi ||22 > 2 then return false

7 return true
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Quasi-regularity verification method

The method consists in verifying the following two conditions:

(i) M(X ) _M1(X ) and M(X ) _M1(X )

(ii) (P) holds for each connected component of M1
0(X ) and M1

0(X ).

(1) (2)

(3.1)

(3.2)

(4)
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Definition of cellular space

A closed convex polygon P and its partition F(P)

F(P) contains:

I 2-face (interior of P, P̊),

I 1-faces (edges of P), and

I 0-faces (vertices of P).

A union of closed convex polygons Ω and its partition K(Ω)

Let Ω =
⋃
K where K is a set of closed, convex polygons such that for any

pair P1,P2 ∈ K, P̊1 ∩ P̊2 = ∅. Then, K(Ω) =
⋃

P∈K F(P).
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Definition of cellular complexes

Let K be a cellular space and f ∈ K be a face.

Cell C (f)

The cell C (f) induced by f is the subset of faces of K such that
⋃

C (f)

is the smallest closed set that includes f.

Complex of K
A complex K of K is a union of cells of K.

The embedding of K into R2 is defined by ΠR2 (K ) =
⋃

K .

If X = ΠR2 (K ), K is the embedding of X into K, K = ΠK(X ).
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If X = ΠR2 (K ), K is the embedding of X into K, K = ΠK(X ).



Collapse on complexes

Let K be a complex defined in a cellular space K.

Elementary collapse

Suppose that τ and σ are two faces of K such that

τ ⊂ σ with dim(τ) = dim(σ)− 1 and

σ is a maximal face of K and no other maximal face of K contains τ ,

then τ is called a free face and the removal of the faces, K \ {τ, σ}, is

called an elementary collapse.

If there is a sequence of elementary collapses from K to a complex K ′,

we say that K collapses to K ′.



Simple cells

Let K be a complex defined in a cellular space K on R2.

Let f2 be a 2-face of K .

Let Dd(f2), d = 0, 1, be the subset of C(f2) composed by the d-faces f such

that S(f) ∩ K = S(f) ∩ C(f2).

Simple cells

If |D1(f2)| = |D0(f2)|+ 1, C(f2) is called a simple 2-cell for K .

Detachment of a simple 2-cell C(f2) from K : collapse operation from K

to K � C(f2) = K \ ({f2} ∪ D1(f2) ∪ D0(f2))

Attachment of a simple 2-cell C(f2) for K ∪ C(f2) where f ∈ K \ K : the

inverse collapse operation from K into K ∪ C(f2)
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