Geometric Transformations on Digital Images

Phuc Ngo

hoai-diem-phuc.ngo@loria.fr Université de Lorraine - LORIA

Summer school on **Geometry and data** IRMIA++, Université de Strasbourg

Motivation

Geometric transformations on digital images

Given a **source image S**, we generate a **target image S** depending on the chosen transformation, for example:

- ▶ translation, rotation (and its combination, called rigid motions)
- ▶ affine transformation (scaling, symmetries and rigid motion)
- ▶ projective transformation, . . .

Geometric transformations on digital images

Given a **source image S**, we generate a **target image S** depending on the chosen transformation, for example:

- ▶ translation, rotation (and its combination, called rigid motions)
- ▶ affine transformation (scaling, symmetries and rigid motion)
- ▶ projective transformation, . . .

- ▶ 2D: Image registration, image warping, data augmentation . . .
- ▶ 3D: Medical imagery, deformable models, 3D reconstruction . . .

Image registration on satellite imagery [Sommervold et al., 2023]

- ▶ 2D: Image registration, image warping, data augmentation . . .
- ▶ 3D: Medical imagery, deformable models, 3D reconstruction . . .

Image registration for panorama [Zhang et al., 2022]

- ▶ 2D: Image registration, image warping, data augmentation . . .
- ▶ 3D: Medical imagery, deformable models, 3D reconstruction . . .

Image registration for object detection [Rodríguez et al., 2023]

- ▶ 2D: Image registration, image warping, data augmentation . . .
- ▶ 3D: Medical imagery, deformable models, 3D reconstruction . . .

Image Warping For Face Recognition [Pishchulin et al., 2011]

- ▶ 2D: Image registration, image warping, data augmentation . . .
- ▶ 3D: Medical imagery, deformable models, 3D reconstruction . . .

Image transformation for data augmentation [Shorten and Khoshgoftaar, 2019]

- ▶ 2D: Image registration, image warping, data augmentation . . .
- ▶ 3D: Medical imagery, deformable models, 3D reconstruction . . .

Registration of 3D multi-modal medical images [Islam et al., 2021]

- ▶ 2D: Image registration, image warping, data augmentation . . .
- ▶ 3D: Medical imagery, deformable models, 3D reconstruction . . .

Voxel Free-Form Deformations [Kenwright, 2013]

- ▶ 2D: Image registration, image warping, data augmentation . . .
- ▶ 3D: Medical imagery, deformable models, 3D reconstruction . . .

Point set registration with probablistic model [Kenta-Tanaka et al., 2019]

- ▶ 2D: Image registration, image warping, data augmentation . . .
- ▶ 3D: Medical imagery, deformable models, 3D reconstruction . . .

3D object reconstruction from laser point cloud data [Nguyen et al., 2012]

- ▶ 2D: Image registration, image warping, data augmentation . . .
- ▶ 3D: Medical imagery, deformable models, 3D reconstruction . . .

Content

In this course, we are interested in

- \blacktriangleright Discrete data: Digital images and discrete points of \mathbb{Z}^2 / \mathbb{Z}^3
- ► Classes of transformation: Rigid motion and affine transformation
- ▶ Topic: Geometric and topological properties of such transformations in the discrete space of \mathbb{Z}^2 / \mathbb{Z}^3
- ► Applications: Digital image processing and analysis

Dataset: histological sections

Information loss of digitized rotation on digital images

Discretization of isometries [Guihéneuf, 2016]

All the information of a numerical image will be **lost** by applying many times a naive algorithm of rotation.

Discretization of rotations on a white-pixel image of size 50×50 pixels

Information loss of digitized rotation on digital images

Discretization of isometries [Guihéneuf, 2016]

All the information of a numerical image will be **lost** by applying many times a naive algorithm of rotation.

Successive random rotations on an image of size 50 \times 50 pixels

Contents

- 1. Digitized rigid motion
- 2. Discrete rigid motion graph
- 3. Topological aspect of DRM
- 4. Geometrical aspect of DRM
- 5. Affine transformation

Digitized rigid motion

Definition

A **rigid motion** is a bijection defined for $x \in \mathbb{R}^d \in \mathbb{R}^2$, as

$$\mathfrak{R}: \mathbb{R}^d \longrightarrow \mathbb{R}^d$$
 $x \longmapsto Rx + t$

with R a rotation matrix et $t \in \mathbb{R}^d$ a translation vector.

Rigid motions are isometric, bijective and preserve the orientation and shape of objects, ...

Definition

A **rigid motion** is a bijection defined for $x \in \mathbb{R}^d \in \mathbb{R}^2$, as

$$\begin{array}{cccc} \mathfrak{R} & : & \mathbb{R}^d & \longrightarrow & \mathbb{R}^d \\ & \mathsf{x} & \longmapsto & R\mathsf{x} + t \end{array}$$

with R a rotation matrix et $t \in \mathbb{R}^d$ a translation vector.

Rigid motions are isometric, bijective and preserve the orientation and shape of objects, ...

Definition

A digitized rigid motion $\mathcal{R}: \mathbb{Z}^d \to \mathbb{Z}^d$ is defined as

$$\mathcal{R}=\mathfrak{D}\circ\mathfrak{R}_{|\mathbb{Z}^d}$$

where $\mathfrak D$ is the discretization operator defined as a rounding function:

$$\mathfrak{D}$$
 : \mathbb{R}^d \longrightarrow \mathbb{Z}^d

$$p = (p_1, ..., p_d) \longrightarrow q = (q_1, ..., q_d) = (\lfloor p_1 + \frac{1}{2} \rfloor, ..., \lfloor p_d + \frac{1}{2} \rfloor)$$

Digitized rigid motions are neither isometric nor bijective and do not preserve geometric and topological properties of transformed objects.

Definition

A digitized rigid motion $\mathcal{R}: \mathbb{Z}^d \to \mathbb{Z}^d$ is defined as

$$\mathcal{R}=\mathfrak{D}\circ\mathfrak{R}_{|\mathbb{Z}^d}$$

where $\mathfrak D$ is the discretization operator defined as a rounding function:

$$\mathfrak{D} : \mathbb{R}^d \longrightarrow \mathbb{Z}^d$$

$$\mathsf{p} = (p_1, ..., p_d) \longmapsto \mathsf{q} = (q_1, ..., q_d) = (\lfloor p_1 + \frac{1}{2} \rfloor, ..., \lfloor p_d + \frac{1}{2} \rfloor)$$

Digitized rigid motions are neither isometric nor bijective and do not preserve geometric and topological properties of transformed objects.

Definition

A digitized rigid motion $\mathcal{R}: \mathbb{Z}^d \to \mathbb{Z}^d$ is defined as

$$\mathcal{R}=\mathfrak{D}\circ\mathfrak{R}_{|\mathbb{Z}^d}$$

where \mathfrak{D} is the discretization operator defined as a rounding function:

$$\mathfrak{D}$$
 : \mathbb{R}^d \longrightarrow \mathbb{Z}^d

$$p = (p_1, ..., p_d) \longrightarrow q = (q_1, ..., q_d) = (\lfloor p_1 + \frac{1}{2} \rfloor, ..., \lfloor p_d + \frac{1}{2} \rfloor)$$

Input image

Transformed Image (with interpolation)

Definition

A digitized rigid motion $\mathcal{R}: \mathbb{Z}^d \to \mathbb{Z}^d$ is defined as

$$\mathcal{R}=\mathfrak{D}\circ\mathfrak{R}_{|\mathbb{Z}^d}$$

where $\mathfrak D$ is the discretization operator defined as a rounding function:

$$\mathfrak{D}$$
 : \mathbb{R}^d \longrightarrow \mathbb{Z}^d

$$p = (p_1, ..., p_d) \longmapsto q = (q_1, ..., q_d) = (\lfloor p_1 + \frac{1}{2} \rfloor, ..., \lfloor p_d + \frac{1}{2} \rfloor)$$

Input image Transformed Image (with interpolation)

Definition

A digitized rigid motion $\mathcal{R}: \mathbb{Z}^d \to \mathbb{Z}^d$ is defined as

$$\mathcal{R}=\mathfrak{D}\circ\mathfrak{R}_{|\mathbb{Z}^d}$$

where $\mathfrak D$ is the discretization operator defined as a rounding function:

$$\mathfrak{D}$$
 : \mathbb{R}^d \longrightarrow \mathbb{Z}^d

$$p = (p_1, ..., p_d) \longmapsto q = (q_1, ..., q_d) = (\lfloor p_1 + \frac{1}{2} \rfloor, ..., \lfloor p_d + \frac{1}{2} \rfloor)$$

Input image

Transformed Image (with interpolation)

Definition

A digitized rigid motion $\mathcal{R}: \mathbb{Z}^d \to \mathbb{Z}^d$ is defined as

$$\mathcal{R}=\mathfrak{D}\circ\mathfrak{R}_{|\mathbb{Z}^d}$$

where $\mathfrak D$ is the discretization operator defined as a rounding function:

$$\mathfrak{D}$$
 : \mathbb{R}^d \longrightarrow \mathbb{Z}^d

$$p = (p_1, ..., p_d) \longmapsto q = (q_1, ..., q_d) = (\lfloor p_1 + \frac{1}{2} \rfloor, ..., \lfloor p_d + \frac{1}{2} \rfloor)$$

Input image Transformed Image (with interpolation)

Definition

A digitized rigid motion $\mathcal{R}: \mathbb{Z}^d \to \mathbb{Z}^d$ is defined as

$$\mathcal{R}=\mathfrak{D}\circ\mathfrak{R}_{|\mathbb{Z}^d}$$

where $\mathfrak D$ is the discretization operator defined as a rounding function:

$$\mathfrak{D}$$
 : \mathbb{R}^d \longrightarrow \mathbb{Z}^d

$$p = (p_1, ..., p_d) \longrightarrow q = (q_1, ..., q_d) = (\lfloor p_1 + \frac{1}{2} \rfloor, ..., \lfloor p_d + \frac{1}{2} \rfloor)$$

Input image

Transformed Image (with interpolation)

Definition

A digitized rigid motion $\mathcal{R}: \mathbb{Z}^d \to \mathbb{Z}^d$ is defined as

$$\mathcal{R}=\mathfrak{D}\circ\mathfrak{R}_{|\mathbb{Z}^d}$$

where $\mathfrak D$ is the discretization operator defined as a rounding function:

$$\mathfrak{D}$$
 : \mathbb{R}^d \longrightarrow \mathbb{Z}^d

$$p = (p_1, ..., p_d) \longrightarrow q = (q_1, ..., q_d) = (\lfloor p_1 + \frac{1}{2} \rfloor, ..., \lfloor p_d + \frac{1}{2} \rfloor)$$

Input image Transformed I

Transformed Image (with interpolation)

Definition

A digitized rigid motion $\mathcal{R}: \mathbb{Z}^d \to \mathbb{Z}^d$ is defined as

$$\mathcal{R}=\mathfrak{D}\circ\mathfrak{R}_{|\mathbb{Z}^d}$$

where \mathfrak{D} is the discretization operator defined as a rounding function:

$$\mathfrak{D} : \mathbb{R}^d \longrightarrow \mathbb{Z}^d$$

$$p = (p_1, ..., p_d) \longrightarrow q = (q_1, ..., q_d) = (\lfloor p_1 + \frac{1}{2} \rfloor, ..., \lfloor p_d + \frac{1}{2} \rfloor)$$

3D binary image

Transformed image by \mathcal{R}

Definition

A digitized rigid motion $\mathcal{R}: \mathbb{Z}^d \to \mathbb{Z}^d$ is defined as

$$\mathcal{R}=\mathfrak{D}\circ\mathfrak{R}_{|\mathbb{Z}^d}$$

where \mathfrak{D} is the discretization operator defined as a rounding function:

$$\mathfrak{D} : \mathbb{R}^d \longrightarrow \mathbb{Z}^d$$

$$\mathsf{p} = (p_1, ..., p_d) \longmapsto \mathsf{q} = (q_1, ..., q_d) = (\lfloor p_1 + \frac{1}{2} \rfloor, ..., \lfloor p_d + \frac{1}{2} \rfloor)$$

Transformed plane by ${\cal R}$

Original image

Issues

- ► Interpolation techniques
 - Generating new contents in the transformed image
- ► Continuous transformation methods (e.g. Fourier transform)
 - \hookrightarrow Precision/approximation, blurs, distortions, . . .
- ightharpoonup Digital transformation $\mathcal{R} = \mathfrak{D} \circ \mathfrak{R}$

Original image

Issues

- ► Interpolation techniques
 - Generating new contents in the transformed image
 - \hookrightarrow Visual artifacts: distortions, blurs, ...
- ► Continuous transformation methods (e.g. Fourier transform)
 - \hookrightarrow Precision/approximation, blurs, distortions, ...
- ightharpoonup Digital transformation $\mathcal{R} = \mathfrak{D} \circ \mathfrak{R}$

- 1. Combinatorial structure of rigid motions on \mathbb{Z}^2
- 2. Topological characterization of digital images under rigid motions
 - → Notion of regularity and image regularization methods
- 3. Geometric characterization of continuous objects by Gauss discretization
 - \hookrightarrow Notion of quasi-regularity and verification of quasi-regular polygons
- 4. New models for geometric transformations on $\mathbb{Z}^2 / \mathbb{Z}^3$:
 - → Polygon/polyhedron-based models for shape preservation of objects
 - \hookrightarrow Geometric transformations on \mathbb{Z}^2 as an **optimization scheme**

- 1. Combinatorial structure of rigid motions on \mathbb{Z}^2
 - Graph of discrete rigid motions
 neighbouring relationships
- 2. Topological characterization of digital images under rigid motions
 - → Notion of regularity and image regularization methods
- 3. Geometric characterization of continuous objects by Gauss discretization
 - \hookrightarrow Notion of quasi-regularity and verification of quasi-regular polygons
- 4. New models for geometric transformations on $\mathbb{Z}^2 / \mathbb{Z}^3$:
 - → Polygon/polyhedron-based models for shape preservation of objects
 - \hookrightarrow Geometric transformations on \mathbb{Z}^2 as an **optimization scheme**

- 1. Combinatorial structure of rigid motions on \mathbb{Z}^2
 - Graph of discrete rigid motions → neighbouring relationships
- 2. Topological characterization of digital images under rigid motions
 - → Notion of regularity and image regularization methods
- 3. Geometric characterization of continuous objects by Gauss discretization
 - \hookrightarrow Notion of quasi-regularity and verification of quasi-regular polygons
- 4. New models for geometric transformations on $\mathbb{Z}^2 / \mathbb{Z}^3$:
 - → Polygon/polyhedron-based models for shape preservation of objects
 - \hookrightarrow Geometric transformations on \mathbb{Z}^2 as an **optimization scheme**

- 1. Combinatorial structure of rigid motions on \mathbb{Z}^2
- 2. Topological characterization of digital images under rigid motions
 - → Notion of regularity and image regularization methods
- 3. Geometric characterization of continuous objects by Gauss discretization
 - \hookrightarrow Notion of quasi-regularity and verification of quasi-regular polygons
- 4. New models for geometric transformations on \mathbb{Z}^2 / \mathbb{Z}^3 :
 - → Polygon/polyhedron-based models for shape preservation of objects
 - \hookrightarrow Geometric transformations on \mathbb{Z}^2 as an **optimization scheme**

Discrete rigid motion graph

Rigid motion on \mathbb{R}^2

Definition

A rigid motion is a bijection defined for any $x = (x, y) \in \mathbb{R}^2$ as

$$\mathfrak{R}_{ab\theta}(\mathbf{x}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$

with $a, b \in \mathbb{R}$ and $\theta \in [0, 2\pi[$.

Rigid motion on \mathbb{Z}^2

Definition

A digitized rigid motion on \mathbb{Z}^2 is defined for any $p=(p,q)\in\mathbb{Z}^2$ as

$$\mathcal{R}(\mathsf{p}) = \mathfrak{D} \circ \mathfrak{R}(\mathsf{p}) = \left(\begin{array}{c} [p\cos\theta - q\sin\theta + a] \\ [p\sin\theta + q\cos\theta + b] \end{array} \right)$$

where $D: \mathbb{R}^2 \to \mathbb{Z}^2$ is a digitization, $a,b \in \mathbb{R}$ and $\theta \in [0,2\pi[$.

Lagrangian model – Forward transformation : $\mathcal{R} = \mathfrak{D} \circ \mathfrak{R}$

Rigid motion on \mathbb{Z}^2

Definition

A digitized rigid motion on \mathbb{Z}^2 is defined for any $\mathsf{p}=(p,q)\in\mathbb{Z}^2$ as

$$\mathcal{R}(\mathsf{p}) = \mathfrak{D} \circ \mathfrak{R}(\mathsf{p}) = \left(egin{array}{l} [p\cos heta - q\sin heta + a] \ [p\sin heta + q\cos heta + b] \end{array}
ight)$$

where $D: \mathbb{R}^2 \to \mathbb{Z}^2$ is a digitization, $a, b \in \mathbb{R}$ and $\theta \in [0, 2\pi[$.

Eulerian model – Backward transformation: $\mathcal{R}^{-1} = \mathfrak{D} \circ \mathfrak{R}^{-1}$

Distance alterations by digitized rigid motion

Before	After
1	$\sqrt{2}$
1	0
$\sqrt{2}$	1
$\sqrt{2}$	2

Distance alterations by digitized rigid motion

Before	After
1	$\sqrt{2}$
1	0
$\sqrt{2}$	1
$\sqrt{2}$	2

Distance alterations by digitized rigid motion

Before	After
1	$\sqrt{2}$
1	0
$\sqrt{2}$	1
$\sqrt{2}$	2

Distance alterations by digitized rigid motion

Before	After
1	$\sqrt{2}$
1	0
$\sqrt{2}$	1
$\sqrt{2}$	2

Angle alterations by digitized rigid motion

Before	After
90°	135°
180°	0°
45°	90°

Angle alterations by digitized rigid motion

Before	After
90°	135°
180°	0°
45°	90°

Angle alterations by digitized rigid motion

Before	After
90°	135°
180°	0°
45°	90°

Non-bijectivity of rigid motion en \mathbb{Z}^2

Non-bijectivity of rigid motion en \mathbb{Z}^2

Non-bijectivity of rigid motion en \mathbb{Z}^2

P. Ngo

$$\mathcal{R}_{ab heta}(\mathsf{p}) = \mathfrak{D} \circ \mathfrak{R}_{ab heta}(\mathsf{p}) = \left(egin{array}{c} [p\cos heta - q\sin heta + a] \ [p\sin heta + q\cos heta + b] \end{array}
ight)$$

$$\mathcal{R}_{ab\theta}(\mathsf{p}) = \mathfrak{D} \circ \mathfrak{R}_{ab\theta}(\mathsf{p}) = \left(egin{array}{l} [p\cos heta - q\sin heta + a] \ [p\sin heta + q\cos heta + b] \end{array}
ight)$$

This model is also called **point-wise rigid motion** and noted by \mathcal{R}_{Point} .

$$\mathcal{R}_{ab heta}(\mathsf{p}) = \mathfrak{D} \circ \mathfrak{R}_{ab heta}(\mathsf{p}) = \left(egin{array}{c} [p\cos heta - q\sin heta + a] \\ [p\sin heta + q\cos heta + b] \end{array}
ight)$$

This model is also called **point-wise rigid motion** and noted by $\mathcal{R}_{\textit{Point}}$.

$$\mathcal{R}_{ab heta}(\mathsf{p}) = \mathfrak{D} \circ \mathfrak{R}_{ab heta}(\mathsf{p}) = \left(egin{array}{c} [p\cos heta - q\sin heta + a] \\ [p\sin heta + q\cos heta + b] \end{array}
ight)$$

This model is also called **point-wise rigid motion** and noted by $\mathcal{R}_{\textit{Point}}$.

$$\mathcal{R}_{ab\theta}(\mathsf{p}) = \mathfrak{D} \circ \mathfrak{R}_{ab\theta}(\mathsf{p}) = \left(egin{array}{l} [p\cos heta - q\sin heta + a] \ [p\sin heta + q\cos heta + b] \end{array}
ight)$$

This model is also called **point-wise rigid motion** and noted by \mathcal{R}_{Point} .

Definition [Ngo et al., 2013]

A discrete rigid motion (DRM) is the set of all the rigid motions that generate a same image.

The parameter space (a, b, θ) is subdivided into disjoint sets of DRMs.

Critical rigid motions

Definition [Ngo et al., 2013]

A **critical rigid motion** moves at least one point of \mathbb{Z}^2 to a point on the vertical or horizontal half-grid.

The critical transformations correspond to the discontinuities of DRM.

Critical rigid motions

Definition [Ngo et al., 2013]

A **critical rigid motion** moves at least one point of \mathbb{Z}^2 to a point on the vertical or horizontal half-grid.

The critical transformations correspond to the discontinuities of DRM.

Tipping surfaces

Definition [Ngo et al., 2013]

The **tipping surfaces** are the surfaces associated to critical transformations in the parameter space (a, b, θ) .

Each tipping surface

- \blacktriangleright is indexed by a triplet of integers (p, q, k) (resp. (p, q, l)),
- ▶ indicates that the pixel (p,q) in a transformed image changes its value from the one at (k,*) (resp. (*,l)) in the original image to the one at (k+1,*) (resp. (*,l+1)).

Tipping surfaces

Definition [Ngo et al., 2013]

The **tipping surfaces** are the surfaces associated to critical transformations in the parameter space (a, b, θ) .

Each tipping surface

- \blacktriangleright is indexed by a triplet of integers (p, q, k) (resp. (p, q, l)),
- ▶ indicates that the pixel (p, q) in a transformed image changes its value from the one at (k,*) (resp. (*, l)) in the original image to the one at (k+1,*) (resp. (*, l+1)).

Example of tipping surfaces

Vertical surfaces Φ_{pqk} and horizontal ones Ψ_{pql} for $p,q\in[0,2]$ and $k,l\in[0,3]$.

Definition [Ngo et al., 2013]

- ightharpoonup each vertex $v \in V$ corresponds to a DRM
- \blacktriangleright each edge $e \in E$ connects two DRMs sharing a tipping surface

Definition [Ngo et al., 2013]

- ightharpoonup each vertex $v \in V$ corresponds to a DRM
- ightharpoonup each edge $e \in E$ connects two DRMs sharing a tipping surface

Definition [Ngo et al., 2013]

- ightharpoonup each vertex $v \in V$ corresponds to a DRM
- ightharpoonup each edge $e \in E$ connects two DRMs sharing a tipping surface

Definition [Ngo et al., 2013]

- ightharpoonup each vertex $v \in V$ corresponds to a DRM
- ightharpoonup each edge $e \in E$ connects two DRMs sharing a tipping surface

Properties of DRM graphs

Advantages

- ▶ DRMs are computed in a discrete process with exact calculation.
- ▶ Their combinatorial structure is represented by a **DRM graph** G whose complexity is $O(N^9)$ for images of size $N \times N$.
- ▶ G models all the DRMs with the topological information such that
 - \hookrightarrow a vertex corresponds to one transformed image
- ▶ It enables to generate exhaustively & incrementally all transformed images.

Disadvantages

It has **high complexity** to generate the entire structure for large images.

Properties of DRM graphs

Advantages

- ▶ DRMs are computed in a discrete process with exact calculation.
- ▶ Their combinatorial structure is represented by a **DRM graph** G whose complexity is $O(N^9)$ for images of size $N \times N$.
- ▶ G models all the DRMs with the topological information such that
 - \hookrightarrow a vertex corresponds to one transformed image
- ▶ It enables to generate exhaustively & incrementally all transformed images.

Disadvantages

It has **high complexity** to generate the entire structure for large images.

Properties of DRM graphs

Advantages

- ▶ DRMs are computed in a discrete process with exact calculation.
- ▶ Their combinatorial structure is represented by a **DRM graph** G whose complexity is $O(N^9)$ for images of size $N \times N$.
- ► G models all the DRMs with the topological information such that
 - \hookrightarrow a vertex corresponds to one transformed image
- ▶ It enables to generate exhaustively & incrementally all transformed images.

Disadvantages

It has **high complexity** to generate the entire structure for large images.

Properties of DRM graphs

Advantages

- ▶ DRMs are computed in a discrete process with exact calculation.
- ▶ Their combinatorial structure is represented by a **DRM graph** G whose complexity is $O(N^9)$ for images of size $N \times N$.
- ► G models all the DRMs with the topological information such that
 - \hookrightarrow a vertex corresponds to one transformed image
- ▶ It enables to generate exhaustively & incrementally all transformed images.

Disadvantages

It has **high complexity** to generate the entire structure for large images.

Properties of DRM graphs

Advantages

- ▶ DRMs are computed in a discrete process with exact calculation.
- ▶ Their combinatorial structure is represented by a **DRM graph** G whose complexity is $O(N^9)$ for images of size $N \times N$.
- ► G models all the DRMs with the topological information such that
 - \hookrightarrow a vertex corresponds to one transformed image
- ▶ It enables to generate exhaustively & incrementally all transformed images.

Disadvantages

It has **high complexity** to generate the entire structure for large images.

Application: Discrete transition path of transformed images

Application: Discrete rigid motion graph search

Image registration as a combinatorial optimisation problem

Problem formulation

Given two digital images A and B of size $N \times N$, image registration consists of finding a discrete rigid motion (DRM) such that

$$v^* = \arg\min_{v \in V} d(A, \mathcal{R}_v(B))$$

where \mathcal{R}_{v} is the digitized rigid motion of a DRM v, and d is a given distance between two images.

Disadvantage

Exhaustive search on DRM graph costs $O(N^9)$ in complexity.

Advantage

A local search on DRM graph can determine a local optimum.

Image registration as a combinatorial optimisation problem

Problem formulation

Given two digital images A and B of size $N \times N$, image registration consists of finding a discrete rigid motion (DRM) such that

$$v^* = \arg\min_{v \in V} d(A, \mathcal{R}_v(B))$$

where \mathcal{R}_{v} is the digitized rigid motion of a DRM v, and d is a given distance between two images.

Disadvantage

Exhaustive search on DRM graph costs $O(N^9)$ in complexity.

Advantage

A local search on DRM graph can determine a local optimum.

Image registration as a combinatorial optimisation problem

Problem formulation

Given two digital images A and B of size $N \times N$, image registration consists of finding a discrete rigid motion (DRM) such that

$$v^* = \arg\min_{v \in V} d(A, \mathcal{R}_v(B))$$

where \mathcal{R}_{v} is the digitized rigid motion of a DRM v, and d is a given distance between two images.

Disadvantage

Exhaustive search on DRM graph costs $O(N^9)$ in complexity.

Advantage

A local search on DRM graph can determine a local optimum.

Local search

- ▶ Input: A reference image A, a target image B, an initial DRM $v_0 \in V$ and a distance metric d
- ▶ Output: A local optimum $\hat{v} \in V$
- ▶ **Approach:** Gradient descent to find a better solution in neighbours.

- ▶ neighbourhood structure N(v)k-neighbourhood $N^k(v)$: $N^k(v) = N^{k-1}(v) \cup \bigcup_{u \in N^{k-1}(v)} N(u)$
- efficient computation of d
 We use signed distance with linear complexity w.r.t image size [Kimmel et al., 1996]

Local search

- ▶ Input: A reference image A, a target image B, an initial DRM $v_0 \in V$ and a distance metric d
- ▶ **Output:** A local optimum $\hat{v} \in V$
- ▶ **Approach:** Gradient descent to find a better solution in neighbours.

- ▶ neighbourhood structure N(v)k-neighbourhood $N^k(v)$: $N^k(v) = N^{k-1}(v) \cup \bigcup_{u \in N^{k-1}(v)} N(u)$
- efficient computation of d We use signed distance with linear complexity w.r.t image size [Kimmel et al., 1996]

Local search

- ▶ Input: A reference image A, a target image B, an initial DRM $v_0 \in V$ and a distance metric d
- ▶ **Output:** A local optimum $\hat{v} \in V$
- ▶ **Approach:** Gradient descent to find a better solution in neighbours.

- ▶ neighbourhood structure N(v)k-neighbourhood $N^k(v)$: $N^k(v) = N^{k-1}(v) \cup \bigcup_{u \in N^{k-1}(v)} N(u)$
- ► efficient computation of *d*We use signed distance with linear complexity w.r.t image size [Kimmel et al., 1996]

Local search

- ▶ Input: A reference image A, a target image B, an initial DRM $v_0 \in V$ and a distance metric d
- ▶ **Output:** A local optimum $\hat{v} \in V$
- ▶ **Approach:** Gradient descent to find a better solution in neighbours.

- ► neighbourhood structure N(v)k-neighbourhood $N^k(v)$: $N^k(v) = N^{k-1}(v) \cup \bigcup_{u \in N^{k-1}(v)} N(u)$
- efficient computation of d
 We use signed distance with linear complexity w.r.t image size [Kimmel et al., 1996]

Experiment on binary images

Experiment on binary images: distance evolutions

0 144 0.146 0.148 0.15 θ 0 1 1-neighbours 3-neighbours 15-neighbours 1

Experiment on binary images: runtime complexity

Experiment on gray images

Detect and follow the moving objects in a sequence of 3D grain images

X-ray CT image: original and labelled cross-section images

Experiment on gray images

Movements of Schneebeli rolls (Laboratoire 3SR, Grenoble)

Experiment on gray images

Experiment on gray images: distance evolutions

Topological aspect

Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Topological issue of rigid motion on digital images

Transformed image

Input retina image

Motivation Digitized rigid motion Discrete rigid motion graph Topological aspect Geometrical aspect Affine transformation Conclusion References

Topological issue of rigid motion on digital images

Input retina image

Transformed image

Questions

- ▶ Do binary images exist that preserve their topology under any rigid motions?
- ▶ What are conditions for images to preserve their topology?

Definition [Latecki et al., 1995]

Two distinct grid points $p, q \in \mathbb{Z}^d$ are said **k-neighbours** if:

$$||p - q||_{I} < 1$$

- ▶ 2D: 4- and 8-neighbourhood $N_k(p) = \{q \in \mathbb{Z}^2 : ||p-q||_I < 1\}$
- ▶ 3D: 6- and 26-neighbourhood $N_k(p) = \{q \in \mathbb{Z}^3 : ||p-q||_I < 1\}$

4-neighbourhood

8-neighbourhood

Definition [Latecki et al., 1995]

Two distinct grid points $p, q \in \mathbb{Z}^d$ are said **k-neighbours** if:

$$||p - q||_{I} < 1$$

- ▶ 2D: 4- and 8-neighbourhood $N_k(p) = \{q \in \mathbb{Z}^2 : ||p-q||_I < 1\}$
- ▶ 3D: 6- and 26-neighbourhood $N_k(p) = \{q \in \mathbb{Z}^3 : ||p-q||_I < 1\}$

6-neighbourhood

26-neighbourhood

Definition [Latecki et al., 1995]

Two distinct grid points $p, q \in \mathbb{Z}^d$ are said **k-neighbours** if:

$$||p - q||_I < 1$$

- ▶ 2D: 4- and 8-neighbourhood $N_k(p) = \{q \in \mathbb{Z}^2 : ||p-q||_I < 1\}$
- ▶ 3D: 6- and 26-neighbourhood $N_k(p) = \{q \in \mathbb{Z}^3 : ||p-q||_I < 1\}$

4-connected components

Definition [Latecki et al., 1995]

Two distinct grid points $p, q \in \mathbb{Z}^d$ are said **k-neighbours** if:

$$||p - q||_I < 1$$

- ▶ 2D: 4- and 8-neighbourhood $N_k(p) = \{q \in \mathbb{Z}^2 : ||p-q||_I < 1\}$
- ▶ 3D: 6- and 26-neighbourhood $N_k(p) = \{q \in \mathbb{Z}^3 : ||p-q||_I < 1\}$

Definition [Latecki et al., 1995]

A digital set $X \subset \mathbb{Z}^2$ is **well-composed** if each 8-connected component of X and of its complement \overline{X} is also 4-connected.

Definition [Latecki et al., 1995]

A digital set $X \subset \mathbb{Z}^2$ is **well-composed** if each 8-connected component of X and of its complement \overline{X} is also 4-connected.

Non well-composed set

Definition [Latecki et al., 1995]

A digital set $X \subset \mathbb{Z}^2$ is **well-composed** if each 8-connected component of X and of its complement \overline{X} is also 4-connected.

Non well-composed set

Definition [Latecki et al., 1995]

A digital set $X \subset \mathbb{Z}^2$ is **well-composed** if each 8-connected component of X and of its complement \overline{X} is also 4-connected.

Topological preservation of digital image

Définition [Ngo et al., 2014]

Let I be a binary image. We say that I is **topologically invariant** if, for all rigid motions \mathfrak{R} , $l_{\mathfrak{R}} = I \circ \mathfrak{R}$ induces a isomorphism between adjacency trees $\mathfrak{T}(I)$ and $\mathfrak{T}(l_{\mathfrak{R}})$.

Topological preservation of digital image

Définition [Ngo et al., 2014]

Let I be a binary image. We say that I is **topologically invariant** if, for all rigid motions \mathfrak{R} , $I_{\mathfrak{R}} = I \circ \mathfrak{R}$ induces a isomorphism between adjacency trees $\mathfrak{T}(I)$ and $\mathfrak{T}(I_{\mathfrak{R}})$.

Définition [Ngo et al., 2014]

- ▶ well-composed,
- ▶ non singular and
- ▶ squarely regular: $\forall \mathsf{p}, \mathsf{q} \in I^{-1}(\{v\})$ with $v \in \{0,1\}$ and $||\mathsf{p} \mathsf{q}||_1 = 1$, $\exists \boxplus \subseteq I^{-1}(\{v\})$ tel que $\mathsf{p}, \mathsf{q} \in \boxplus$, où $\boxplus = \{x, x+1\} \times \{y, y+1\}$, pour $(x, y) \in \mathbb{Z}^2$.

Non well-composed image

Singular image

Non squarely regular image

Définition [Ngo et al., 2014]

- ▶ well-composed,
- ▶ non singular and
- ▶ squarely regular: $\forall \mathsf{p}, \mathsf{q} \in I^{-1}(\{v\})$ with $v \in \{0,1\}$ and $||\mathsf{p} \mathsf{q}||_1 = 1$, $\exists \boxplus \subseteq I^{-1}(\{v\})$ tel que $\mathsf{p}, \mathsf{q} \in \boxplus$, où $\boxplus = \{x, x+1\} \times \{y, y+1\}$, pour $(x, y) \in \mathbb{Z}^2$.

Non well-composed image

Singular image

Non squarely regular image

Définition [Ngo et al., 2014]

- ▶ well-composed,
- ▶ non singular and
- ▶ squarely regular: $\forall p, q \in I^{-1}(\{v\})$ with $v \in \{0, 1\}$ and $||p-q||_1 = 1$, $\exists \boxplus \subseteq I^{-1}(\{v\})$ tel que $p, q \in \boxplus$, où $\boxplus = \{x, x + 1\} \times \{y, y + 1\}$, pour $(x, y) \in \mathbb{Z}^2$.

Non well-composed image

Singular image

Non squarely regular image

Définition [Ngo et al., 2014]

- ▶ well-composed,
- non singular and
- ightharpoonup squarely regular: $\forall p, q \in I^{-1}(\{v\})$ with $v \in \{0,1\}$ and $||p-q||_1 = 1$, $\exists \boxplus \subseteq I^{-1}(\{v\}) \text{ tel que p, q} \in \boxplus$, où $\mathbb{H} = \{x, x+1\} \times \{y, y+1\}$, pour $(x, y) \in \mathbb{Z}^2$.

Singular image

Regular image

Topological characterization of binary images

Proposition [Ngo et al., 2014]

If a binary image I is regular then it is topologically invariant under any rigid motion.

Prohibited configurations

A binary image *I* is regular iff it does not contain the configurations:

The regularity of / can be verified locally and in linear time !

Extension

Regularity is extended to grayscale and Labelled images.

Topological characterization of binary images

Proposition [Ngo et al., 2014]

If a binary image I is regular then it is topologically invariant under any rigid motion.

Extension

Regularity is extended to grayscale and Labelled images.

Topological characterization of binary images

Proposition [Ngo et al., 2014]

If a binary image I is regular then it is topologically invariant under any rigid motion.

Extension

Regularity is extended to grayscale and Labelled images.

Regularization of images by homotopic transformation

Regularization of images by homotopic transformation

No solution in the cases at the limit of the resolution:

Regularization of images by oversampling

By doubling the resolution, well-composed images become regular:

Some experimental results

Regular image

Thresholded images

Some experimental results

Input image

Regular image

Transformed image

Transformed image

Extending the regularity in 3D

The 3D extension of the regularity would be to consider a **cover of cubes** $2 \times 2 \times 2$ that locally overlap everywhere.

Is such an object in \mathbb{Z}^3 topologically invariant? \to No!

Regular object

Transformed object

Extending the regularity in 3D

The 3D extension of the regularity would be to consider a **cover of cubes** $2 \times 2 \times 2$ that locally overlap everywhere.

Is such an object in \mathbb{Z}^3 topologically invariant? $\to No!$

Regular object

Transformed object

Topological characterizations of digital images

The point-to-point rigid motion model: $\mathcal{R}_{Point} = \mathfrak{D} \circ \mathfrak{R}_{|\mathbb{Z}^d}$

- ✓ Simple and easy to apply on digital images
- ✓ The notion of regularity allows a characterization of 2D images whose topological properties are preserved by $\mathcal R$
 - \hookrightarrow Regularization: homotopic transformation or oversampling

Topological characterizations of digital images

The point-to-point rigid motion model: $\mathcal{R}_{Point} = \mathfrak{D} \circ \mathfrak{R}_{|\mathbb{Z}^d}$

- **X** The notion of regularity reaches its limit of validity by passing to \mathbb{Z}^3
- X Geometric properties are not well preserved in general

Topological characterizations of digital images

The point-to-point rigid motion model: $\mathcal{R}_{\textit{Point}} = \mathfrak{D} \circ \mathfrak{R}_{|\mathbb{Z}^d}$

- $oldsymbol{\mathcal{X}}$ The notion of regularity reaches its limit of validity by passing to \mathbb{Z}^3
- X Geometric properties are not well preserved in general

Ellipse

Transformed ellipse

Geometrical aspect

Geometrical preservation of rigid motion for discrete objects

New solutions for rigid transformations on \mathbb{Z}^2 and \mathbb{Z}^3 :

- \hookrightarrow with **intermediate models** to transform a discrete object
- \hookrightarrow better preserves the shape of the object by the transformation

Polygons to represent the object's shape and used it for the transformation.

Digitalisation process

The transformed object model need to be digitized for a result in \mathbb{Z}^d .

Geometrical preservation of rigid motion for discrete objects

New solutions for rigid transformations on \mathbb{Z}^2 and \mathbb{Z}^3 :

- \hookrightarrow with **intermediate models** to transform a discrete object
- → better preserves the shape of the object by the transformation

Polygons to represent the object's shape and used it for the transformation.

Digitalisation process

The transformed object model need to be digitized for a result in \mathbb{Z}^d .

Geometrical preservation of rigid motion for discrete objects

New solutions for rigid transformations on \mathbb{Z}^2 and \mathbb{Z}^3 :

- \hookrightarrow with **intermediate models** to transform a discrete object
- \hookrightarrow **better preserves the shape** of the object by the transformation

Polygons to represent the object's shape and used it for the transformation.

Digitalisation process

The transformed object model need to be digitized for a result in \mathbb{Z}^d .

Digitization and topology preservation

Definition [Klette and Rosenfeld, 2004]

Given a bounded and connected subset $\mathcal{X} \subset \mathbb{R}^d$, for $d \geq 2$, the **Gauss** digitization of \mathcal{X} is a discrete object X defined as:

$$X = \mathcal{X} \cap \mathbb{Z}^d$$

Digitization and topology preservation

Definition [Klette and Rosenfeld, 2004]

Given a bounded and connected subset $\mathcal{X} \subset \mathbb{R}^d$, for $d \geq 2$, the **Gauss** digitization of \mathcal{X} is a discrete object X defined as:

$$X = \mathcal{X} \cap \mathbb{Z}^d$$

Topology of the object can be altered under the digitization process.

Digitization and topology preservation

Definition [Klette and Rosenfeld, 2004]

Given a bounded and connected subset $\mathcal{X} \subset \mathbb{R}^d$, for $d \geq 2$, the **Gauss** digitization of \mathcal{X} is a discrete object X defined as:

$$X = \mathcal{X} \cap \mathbb{Z}^d$$

Questions

- ► What are conditions for continuous objects to preserve their topology under Gauss digitization?
- ▶ How to verify such conditions for a given continuous object?
- ▶ How to perform shape-preserving rigid motion of discrete objects?

Définition [Pavlidis, 1982]

A finite and connected subset $\mathcal{X} \subset \mathbb{R}^2$ is r-regular if for each boundary point of \mathcal{X} , there exist two tangent open balls of radius r, lying entirely in \mathcal{X} and its complement $\overline{\mathcal{X}}$, respectively.

Définition [Pavlidis, 1982]

A finite and connected subset $\mathcal{X} \subset \mathbb{R}^2$ is r-regular if for each boundary point of \mathcal{X} , there exist two tangent open balls of radius r, lying entirely in \mathcal{X} and its complement $\overline{\mathcal{X}}$, respectively.

Proposition [Latecki et al., 1998]

If $\mathcal{X} \subset \mathbb{R}^2$ is r-regular, for $r \geq \frac{\sqrt{2}}{2}$, then $X = \mathcal{X} \cap \mathbb{Z}^2$ is a well-composed.

Définition [Pavlidis, 1982]

A finite and connected subset $\mathcal{X} \subset \mathbb{R}^2$ is r-regular if for each boundary point of \mathcal{X} , there exist two tangent open balls of radius r, lying entirely in \mathcal{X} and its complement $\overline{\mathcal{X}}$, respectively.

Proposition [Latecki et al., 1998]

If $\mathcal{X} \subset \mathbb{R}^2$ is r-regular, for $r \geq \frac{\sqrt{2}}{2}$, then $X = \mathcal{X} \cap \mathbb{Z}^2$ is a well-composed.

Définition [Pavlidis, 1982]

A finite and connected subset $\mathcal{X} \subset \mathbb{R}^2$ is r-regular if for each boundary point of \mathcal{X} , there exist two tangent open balls of radius r, lying entirely in \mathcal{X} and its complement $\overline{\mathcal{X}}$, respectively.

Object X must have a differentiable boundary.

What about objects with non-differentiable boundary (e.g. polygons)?

Définition [Pavlidis, 1982]

A finite and connected subset $\mathcal{X} \subset \mathbb{R}^2$ is r-regular if for each boundary point of \mathcal{X} , there exist two tangent open balls of radius r, lying entirely in \mathcal{X} and its complement $\overline{\mathcal{X}}$, respectively.

Object \mathcal{X} must have a differentiable boundary. What about objects with non-differentiable boundary (e.g. polygons)?

Mathematical morphology [Serra, 1983]

The basic idea of mathematical morphology is to **compare** the set to be analyzed with a set with a known geometry called **structuring element**.

Structuring element B is a set with the following characteristics:

- ▶ has a known geometry,
- \blacktriangleright has a certain size r > 0,
- ▶ is located by its origin.

Mathematical morphology [Serra, 1983]

The basic idea of mathematical morphology is to **compare** the set to be analyzed with a set with a known geometry called **structuring element**.

Structuring element B is a set with the following characteristics:

- ▶ has a known geometry,
- ▶ has a certain size r > 0,
- ▶ is located by its origin.

Mathematical morphology [Serra, 1983]

The basic idea of mathematical morphology is to **compare** the set to be analyzed with a set with a known geometry called **structuring element**.

Let $\mathcal{X} \subset \mathbb{R}^2$ be a set, and B be a structuring element located by its origin. The **erosion** of \mathcal{X} by B in a space E is

$$\mathcal{E}_B(\mathcal{X}) = \mathcal{X} \ominus B = \{x \in E \mid B_x \subseteq \mathcal{X}\}$$

where B_x is the translation of B by x.

The erosion is a transformation relative to the inclusion.

 $\mathcal{X} \subset \mathbb{R}^2$ $\mathcal{X} \ominus B_r$

Mathematical morphology [Serra, 1983]

The basic idea of mathematical morphology is to **compare** the set to be analyzed with a set with a known geometry called **structuring element**.

Definition [Serra, 1983]

Let $\mathcal{X} \subset \mathbb{R}^2$ be a set, and B be a structuring element located by its origin. The **dilation** of \mathcal{X} by B in a space E is

$$\delta_B(\mathcal{X}) = \mathcal{X} \oplus B = \{x \in E \mid B_x \cap \mathcal{X} \neq \emptyset\}$$

where B_x is the translation of B by x.

The dilation is a transformation relative to the intersection.

Definition [Ngo et al., 2019]

Let $\mathcal{X} \subset \mathbb{R}^2$ be a finite and simply connected set (*i.e.* connected and without hole). \mathcal{X} is **quasi**-r-**regular** with $margin \ r' - r$, if

- $lacksymbol{\mathcal{X}} \ominus B_r$ (resp. $\overline{\mathcal{X}} \ominus B_r$) is non-empty and connected, and
- $\blacktriangleright \ \mathcal{X} \subseteq \mathcal{X} \ominus B_r \oplus B_{r'} \text{ (resp. } \overline{\mathcal{X}} \subseteq \overline{\mathcal{X}} \ominus B_r \oplus B_{r'})$

où \oplus , \ominus are the dilation and erosion operators and $B_r, B_{r'} \subset \mathbb{R}^d$ are respectively the balls of radius r and r', for $r' \geq r > 0$.

Quasi-r-regular object

Non quasi-r-regular objects

Definition [Ngo et al., 2019]

Let $\mathcal{X} \subset \mathbb{R}^2$ be a finite and simply connected set (*i.e.* connected and without hole). \mathcal{X} is **quasi**-r-**regular** with $margin \ r' - r$, if

- $lacksymbol{\mathcal{X}} \ominus B_r$ (resp. $\overline{\mathcal{X}} \ominus B_r$) is non-empty and connected, and
- $\blacktriangleright \ \mathcal{X} \subseteq \mathcal{X} \ominus B_r \oplus B_{r'} \text{ (resp. } \overline{\mathcal{X}} \subseteq \overline{\mathcal{X}} \ominus B_r \oplus B_{r'})$

où \oplus , \ominus are the dilation and erosion operators and $B_r, B_{r'} \subset \mathbb{R}^d$ are respectively the balls of radius r and r', for $r' \geq r > 0$.

Quasi-r-regular polygon

Non quasi-r-regular polygons

Definition [Ngo et al., 2019]

Let $\mathcal{X} \subset \mathbb{R}^2$ be a finite and simply connected set (*i.e.* connected and without hole). \mathcal{X} is **quasi**-r-**regular** with $margin \ r' - r$, if

- lacksquare $\mathcal{X}\ominus\mathcal{B}_r$ (resp. $\overline{\mathcal{X}}\ominus\mathcal{B}_r$) is non-empty and connected, and
- $\blacktriangleright \ \mathcal{X} \subseteq \mathcal{X} \ominus B_r \oplus B_{r'} \ (\text{resp. } \overline{\mathcal{X}} \subseteq \overline{\mathcal{X}} \ominus B_r \oplus B_{r'})$

où \oplus, \ominus are the dilation and erosion operators and $B_r, B_{r'} \subset \mathbb{R}^d$ are respectively the balls of radius r and r', for $r' \geq r > 0$.

Proposition [Ngo et al., 2019]

If \mathcal{X} is quasi-1-regular with margin $\sqrt{2}-1$ (also called **quasi-regular**), then $X=\mathcal{X}\cap\mathbb{Z}^2$ and $\overline{X}=\overline{\mathcal{X}}\cap\mathbb{Z}^2$ are both 4-connected. In particular, X is then well-composed.

Verify the quasi-regularity of polygonal objects? --> Medial axis

Definition [Ngo et al., 2019]

Let $\mathcal{X} \subset \mathbb{R}^2$ be a finite and simply connected set (*i.e.* connected and without hole). \mathcal{X} is **quasi**-r-**regular** with $margin \ r' - r$, if

- lacksquare $\mathcal{X}\ominus\mathcal{B}_r$ (resp. $\overline{\mathcal{X}}\ominus\mathcal{B}_r$) is non-empty and connected, and
- $\blacktriangleright \ \mathcal{X} \subseteq \mathcal{X} \ominus B_r \oplus B_{r'} \ (\text{resp. } \overline{\mathcal{X}} \subseteq \overline{\mathcal{X}} \ominus B_r \oplus B_{r'})$

où \oplus , \ominus are the dilation and erosion operators and $B_r, B_{r'} \subset \mathbb{R}^d$ are respectively the balls of radius r and r', for $r' \geq r > 0$.

Proposition [Ngo et al., 2019]

If $\mathcal X$ is quasi-1-regular with margin $\sqrt{2}-1$ (also called **quasi-regular**), then $X=\mathcal X\cap\mathbb Z^2$ and $\overline X=\overline{\mathcal X}\cap\mathbb Z^2$ are both 4-connected. In particular, X is then well-composed.

Verify the quasi-regularity of polygonal objects? --> Medial axis

Topology and geometry preserving rigid motion on \mathbb{Z}^2

Approach via polygonization

- polygonal representation of discrete objects for rigid motion
- ▶ shape preservation of transformed object by the transformation
- quasi-regularity for topology preservation of object by the digitization

Proposition [Ngo et al., 2019]

If P is quasi-regular, then $\mathfrak{R}(\mathsf{P}) \cap \mathbb{Z}^2$ preserves connectivity.

Topology and geometry preserving rigid motion on \mathbb{Z}^2

Approach via polygonization

- ▶ polygonal representation of discrete objects for rigid motion
- ▶ shape preservation of transformed object by the transformation
- quasi-regularity for topology preservation of object by the digitization

Proposition [Ngo et al., 2019]

If P is quasi-regular, then $\mathfrak{R}(P) \cap \mathbb{Z}^2$ preserves connectivity.

Polygonalization method

Polygonal representation

The properties to satisfy for computing a polygonal representation P(X) of a discrete object $X \subset \mathbb{Z}^2$ are

- ▶ reversibility : $P(X) \cap \mathbb{Z}^2 = X$;
- ▶ vertices with rational coordinates (exact calculation).

For an object $X\subset \mathbb{Z}^2$, different results can be obtained from different polygonalization techniques:

- ▶ Digital convex objects: convex hull + representation by half-planes
- ▶ Non-convex objects: polygonalization using contour of the discrete object (decomposition into convex parts, concavity tree, . . .)

Polygonalization method

Polygonal representation

The properties to satisfy for computing a polygonal representation P(X) of a discrete object $X \subset \mathbb{Z}^2$ are

- ▶ reversibility : $P(X) \cap \mathbb{Z}^2 = X$;
- ▶ vertices with rational coordinates (exact calculation).

For an object $X\subset \mathbb{Z}^2$, different results can be obtained from different polygonalization techniques:

- ▶ Digital convex objects: convex hull + representation by half-planes
- ▶ Non-convex objects: polygonalization using contour of the discrete object (decomposition into convex parts, concavity tree, . . .)

Digital convexity

Definition

An object $\mathcal{X}\subset\mathbb{R}^2$ is said to be **convex** if, for any pair of points $x,y\in\mathcal{X}$, the line segment joining x and y, defined by

$$[\mathtt{x},\mathtt{y}] = \{\lambda\mathtt{x} + (1-\lambda)\mathtt{y} \in \mathbb{R}^2 \mid 0 \le \lambda \le 1\},\$$

is included in \mathcal{X} .

Convex object in $\ensuremath{\mathbb{R}}^2$

Non-convex objet in $\ensuremath{\mathbb{R}}^2$

in \mathbb{Z}^2

Digital convexity

A digital object $X \subset \mathbb{Z}^2$ is **H-convex**, for Conv(X) the convex hull of X $X = Conv(X) \cap \mathbb{Z}^2$

H-convex objects

Digital convexity does not imply the connectivity!

Digital convexity

Definition [Kim, 1981]

A digital object $X\subset \mathbb{Z}^2$ is **H-convex**, for Conv(X) the convex hull of X $X=\text{Conv}(X)\cap \mathbb{Z}^2$

Non H-convex object

H-convex objects

Digital convexity does not imply the connectivity!

Convexity under rigid motion

Proposition [Ngo et al., 2019]

Soit $X\subset \mathbb{Z}^2$ connexe et bien composé et Conv(X) son enveloppe convexe. Si X est convexe (i.e. $X=Conv(X)\cap \mathbb{Z}^2$) et Conv(X) est quasi-régulier, alors $\mathfrak{R}(Conv(X))\cap \mathbb{Z}^2$ est convexe et bien composé.

The half-plane representation \leadsto Gauss discretization in exact calculation!

Convexity under rigid motion

Proposition [Ngo et al., 2019]

Soit $X\subset \mathbb{Z}^2$ connexe et bien composé et Conv(X) son enveloppe convexe. Si X est convexe (i.e. $X=Conv(X)\cap \mathbb{Z}^2$) et Conv(X) est quasi-régulier, alors $\mathfrak{R}(Conv(X))\cap \mathbb{Z}^2$ est convexe et bien composé.

The half-plane representation → Gauss discretization in exact calculation!

Half-plane representation of H-convex object

Let X be a H-convex object and Conv(X) be the convex hull of X. Then,

$$\mathsf{X} = \mathsf{Conv}(\mathsf{X}) \cap \mathbb{Z}^2 = \Big(\bigcap_{\mathsf{H} \in \mathsf{R}(\mathsf{X})} \mathsf{H}\Big) \cap \mathbb{Z}^2 = \bigcap_{\mathsf{H} \in \mathsf{R}(\mathsf{X})} \Big(\mathsf{H} \cap \mathbb{Z}^2\Big)$$

where R(X) is the minimal set of closed half-planes including X. Each half-plane H has coefficients defined by consecutive vertices of Conv(X).

Rigid motion of H-convex objects via convex hull

$$\mathcal{R}_{\mathsf{Conv}}(\mathsf{X}) = \mathfrak{R}(\mathsf{Conv}(\mathsf{X})) \cap \mathbb{Z}^2 = \mathfrak{R}\left(\bigcap_{H \in \mathsf{R}(\mathsf{X})} H\right) \cap \mathbb{Z}^2$$

Property [Ngo et al., 2019]

 $\mathsf{Conv}(\mathcal{R}_{\mathsf{Conv}}(\mathsf{X})) \subseteq \mathfrak{R}(\mathsf{Conv}(\mathsf{X}))$

Rigid motion of H-convex objects via convex hull

$$\mathcal{R}_{\mathsf{Conv}}(\mathsf{X}) = \mathfrak{R}(\mathsf{Conv}(\mathsf{X})) \cap \mathbb{Z}^2 = \mathfrak{R}\left(\bigcap_{H \in \mathsf{R}(\mathsf{X})} H\right) \cap \mathbb{Z}^2$$

Property [Ngo et al., 2019]

$$\mathsf{Conv}(\mathcal{R}_{\mathsf{Conv}}(\mathsf{X})) \subseteq \mathfrak{R}(\mathsf{Conv}(\mathsf{X}))$$

Experimental results

Experimental results

Rigid motion of non-convex objects

$$\mathcal{R}_{\mathsf{Poly}}(\mathsf{X}) = \mathfrak{R}(\mathsf{Poly}(\mathsf{X})) \cap \mathbb{Z}^2$$

Rigid motion of non-convex objects

Marching square method [Maple, 2003]

Generation of iso-contours for 2D scalar field (e.g., gray-scale images)

- Compute a binary image of the 2D field for an isovalue by a threshold
- ► Create contouring cells by 2x2 block of pixels in the binary image
 - Compute the binary code (=ceil index) of each contouring ceil
 - \hookrightarrow Access a pre-built LUT with the cell index for the contour lines
 - → Apply interpolation between the original 2D field to find the exact contour lines

1	1	1	1	1	Threshold with iso-value	0	0	0	0	0	Binary image to cells	• • • •
1	2	3	2	1		0	1	1	1	0		• • • •
1	3	3	3	1		0	1	1	1	0		♦ ♦ ♦ ♦
1	2	3	2	1		0	1	1	1	0		♦ ♦ ♦ ♦
1	1	1	1	1		0	0	0	0	0		• • • •

Marching square method [Maple, 2003]

Generation of iso-contours for 2D scalar field (e.g., gray-scale images)

- Compute a binary image of the 2D field for an isovalue by a threshold
- ► Create contouring cells by 2x2 block of pixels in the binary image
 - \hookrightarrow Compute the binary code (=cell index) of each contouring cell
 - \hookrightarrow Access a pre-built LUT with the cell index for the contour lines
 - → Apply interpolation between the original 2D field to find the exact contour lines

Marching square method [Maple, 2003]

Generation of iso-contours for 2D scalar field (e.g., gray-scale images)

- ► Compute a binary image of the 2D field for an isovalue by a threshold
- ► Create contouring cells by 2x2 block of pixels in the binary image
 - \hookrightarrow Compute the binary code (=cell index) of each contouring cell
 - \hookrightarrow Access a pre-built LUT with the cell index for the contour lines
 - → Apply interpolation between the original 2D field to find the exact contour lines

Extension to 3D: Marching cube method [Maple, 2003]

Extension to 3D: Marching cube method [Maple, 2003]

Marching square/cube method [Maple, 2003]

Advantages

- ► Simple and easy to implement
- ► Linear computation w.r.t image size
- ► Exact computation: polygon vertices with rational coordinates
- ▶ Extension to dimension 3

Disadvantages

- Polygon is composed of small segments
- ▶ It may not optimal/fit to the digital form

Marching square/cube method [Maple, 2003]

Advantages

- ► Simple and easy to implement
- ► Linear computation w.r.t image size
- ► Exact computation: polygon vertices with rational coordinates
- ▶ Extension to dimension 3

Disadvantages

- ▶ Polygon is composed of small segments
- ▶ It may not optimal/fit to the digital form

Concavity tree by Sklansky [Sklansky, 1972]

- \hookrightarrow decompose an object into concavities
- \hookrightarrow encode description of a binary image
- \hookrightarrow possible to process each one separately
- → measure/compare the concavities of digital objects

Concavity tree method [Sklansky, 1972]

Concavity tree structure for a digital object X:

- ▶ The root corresponds to points in the convex hull: Conv(X) $\cap \mathbb{Z}^2$
- ► Each node corresponds to points in the convex hull of a concave part (i.e., a connected component 𝔾) of its parents.

Then, X is represented as follows:

$$\overset{\cdot}{\mathsf{X}} = \left(\mathsf{Conv}(\mathsf{X}) \cap \mathbb{Z}^2\right) \backslash \left(\bigcup_{\mathsf{X}' \in \mathfrak{C}((\mathsf{Conv}(\mathsf{X}) \cap \mathbb{Z}^2) \backslash \mathsf{X})} \mathsf{X}'\right)$$

Input object

Concave parts

Concavity tree

Concavity tree method [Sklansky, 1972]

Concavity tree structure for a digital object X:

- ▶ The root corresponds to points in the convex hull: Conv(X) $\cap \mathbb{Z}^2$
- ► Each node corresponds to points in the convex hull of a concave part (i.e., a connected component 𝔾) of its parents.

Then, X is represented as follows:

$$\mathsf{X} = \left(\mathsf{Conv}(\mathsf{X}) \cap \mathbb{Z}^2\right) \setminus \left(\bigcup_{\mathsf{X}' \in \mathfrak{C}((\mathsf{Conv}(\mathsf{X}) \cap \mathbb{Z}^2) \setminus \mathsf{X})} \mathsf{X}'\right)$$

Transformed concave parts

Reconstructed object

Transformed object

Concavity tree method [Sklansky, 1972]

Advantages

- ► Structural and hierarchical descriptions of 2D shape
- ► H-convex object = convex hull of the shape
- ► Exact computation: polygon vertices with integer coordinates
- ▶ Possible extension to dimension 3

Input object

Concave parts

Concavity tree

Concavity tree method [Sklansky, 1972]

Disadvantages

- ▶ Data structure for the concavity tree
- ▶ Operations performed to reconstruct the digital object
- ▶ Artifacts when applying geometric transformations on the structure

Concavity tree method [Sklansky, 1972]

Disadvantages

- ▶ Data structure for the concavity tree
- ▶ Operations performed to reconstruct the digital object
- ► Artifacts when applying geometric transformations on the structure

Transformed concave parts

Reconstructed object

Transformed object

Contour-based polygonization:

- \hookrightarrow Extract 8-connected contour points C(X) of X
- \hookrightarrow Compute convex hull of C(X) as part of P(X)
- \hookrightarrow Determine the polygon segments of P(X) from the contour points that best fit the concave parts of X

$$X = P(X) \cap \mathbb{Z}^2$$

Input object

8-connected contour

Polygon curve

Contour-based polygonization

- ▶ Extract 8-connected contour C(X) of X and compute Conv(C(X))
- Initialize P(X) with Conv(C(X)) (in CW order), for each segment $[p_i,p_{i+1}] \in P(X)$, select $p \in C(p_i,p_{i+1})$, C(X) between p_i,p_{i+1} , s.t. $p = \underset{q \in C(p_i,p_{i+1}) \setminus P}{arg \max} \left\{ d(p_i,q) \mid (\Delta p_i q r \cap \mathbb{Z}^2) \cap \overline{X} = \emptyset \land r \in C(p_i,q) \right\}$ with d(...) the Euclidean distance, $\Delta p_i q r$ the triangle whose vertices are p_i,q,r .

Convex decomposition of polygons

Convex decomposition [Lien and Amato, 2006]

The method decomposes a simple polygon into convex pieces by iteratively removing the most significant non-convex features.

$$P = \bigcup_{i} P_{i}$$

$$X = P(X) \cap \mathbb{Z}^{2} = \bigcup_{i} (P_{i} \cap \mathbb{Z}^{2}).$$

Extension to 3D

Definition [Ngo et al., 2019]

Let $\mathcal{X} \subset \mathbb{R}^3$ be a bounded, simply connected set. \mathcal{X} is *quasi-r-regular* with *margin* r' - r, for $r' \geq r > 0$, if

- $lacksymbol{\mathcal{X}} \ominus B_r$ (resp. $\overline{\mathcal{X}} \ominus B_r$) is non-empty and connected, and
- $\blacktriangleright \ \mathcal{X} \subseteq \mathcal{X} \ominus B_r \oplus B_{r'} \ (\text{resp. } \overline{\mathcal{X}} \subseteq \overline{\mathcal{X}} \ominus B_r \oplus B_{r'})$

où \oplus, \ominus are the dilation and erosion operators and $B_r, B_{r'} \subset \mathbb{R}^d$ are respectively the balls of radius r and r'.

Proposition [Ngo et al., 2019]

Let $X\subset\mathbb{Z}^3$ be a digital object. If X is quasi-1-regular with margin $\frac{2}{\sqrt{3}}-1$, then $X=\mathcal{X}\cap\mathbb{Z}^3$ and $\overline{X}=\overline{X}\cap\mathbb{Z}^3$ are both 6-connected.

Proposed method of rigid motions on \mathbb{Z}^3

Polyhedrization of voxels

↓ Rigid motion

(Re)digitization

Affine transformation

Affine transformation on \mathbb{R}^2

Definition

An affine transformation $\mathcal{A}:\mathbb{R}^2\to\mathbb{R}^2$ is defined, for any $\mathsf{p}\in\mathbb{R}^2$, by

$$\mathcal{A}(\mathsf{p}) = \mathsf{A} \cdot \mathsf{p} + t = \begin{bmatrix} \mathsf{a}_{11} & \mathsf{a}_{12} \\ \mathsf{a}_{21} & \mathsf{a}_{22} \end{bmatrix} \cdot \begin{bmatrix} \mathsf{p}_{\mathsf{x}} \\ \mathsf{p}_{\mathsf{y}} \end{bmatrix} + \begin{bmatrix} \mathsf{t}_{\mathsf{x}} \\ \mathsf{t}_{\mathsf{y}} \end{bmatrix}$$

where $t = (t_x, t_y)^t \in \mathbb{R}^2$, $A = [a_{i,j}]_{1 \leq i,j \leq 2}$, $\det(A) \neq 0$, and $a_{i,j} \in \mathbb{R}$.

Affine transformation on \mathbb{R}^2

Definition

An affine transformation $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$ is defined, for any $p \in \mathbb{R}^2$, by

$$\mathcal{A}(p) = A \cdot p + t = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} p_x \\ p_y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

where $t = (t_x, t_y)^t \in \mathbb{R}^2$, $A = [a_{i,j}]_{1 \leq i,j \leq 2}$, $\det(A) \neq 0$, and $a_{i,j} \in \mathbb{R}$.

The affine transformations include, in particular:

- ▶ translations $(A = I_2)$; et
- \blacktriangleright when t=0:
 - \hookrightarrow rotations $(a_{11}=a_{22}=\cos\theta, -a_{12}=a_{21}=\sin\theta \text{ pour } \theta\in\mathbb{R})$;
 - \hookrightarrow symmetries $(a_{11} = \pm 1, a_{22} = \pm 1, a_{12} = a_{21} = 0)$;
 - \hookrightarrow scalings $(a_{11} \neq 0, a_{22} \neq 0 \text{ and } a_{12} = a_{21} = 0)$;

and their compositions (e.g. rigid transformation: rotation + translation)

Affine transformation on \mathbb{Z}^2

Definition

A digitized affine transformation $A:\mathbb{Z}^2\to\mathbb{Z}^2$ is defined as

$$\mathsf{A}=\mathfrak{D}\circ\mathcal{A}_{|\mathbb{Z}^2}$$

where \mathfrak{D} is a digitization defined with the rounding operation:

$$\begin{array}{ccc} : & \mathbb{K}^- & \longrightarrow & \mathbb{Z}^- \\ & p = (p_x, p_y) & \longmapsto & q = (q_x, q_y) = ([p_x], [p_y]) \end{array}$$

Digitized transformations can alter the topology of the transformed object.

Affine transformation on \mathbb{Z}^2

Goal

Given a binary object X and A an affine transformation, construct a transformed binary object X_A preserving the homotopy type.

The problem is formulated as an **optimization in the refined space** of the initial and transformed grids, called the *space of cellular complexes*.

Affine transformation on \mathbb{Z}^2

Goal

Given a binary object X and A an affine transformation, construct a transformed binary object X_A preserving the homotopy type.

The problem is formulated as an **optimization in the refined space** of the initial and transformed grids, called the *space of cellular complexes*.

Reaching the most similar $X_{\mathcal{A}} \subset \mathbb{Z}^2$ to $\mathcal{A}(X)$ can be formalized as:

$$X_{\mathcal{A}} = arg_{Y \in 2^{\mathbb{Z}^2}} \min \mathcal{D}_{\mathcal{A}, X}(Y)$$

where $\mathcal{D}_{\mathcal{A},X}(Y)$ is a dissimilarity measure between $\mathcal{A}(X)$ and Y.

Example of dissimilarity measure

Based on Gauss digitization:

$$\mathcal{D}_{\mathcal{A},X}^{\boxdot}(Y) = |\boxdot(\mathcal{A}(\Box(X))) \setminus Y| + |Y \setminus \boxdot(\mathcal{A}(\Box(X)))|$$

Reaching the most similar $X_A \subset \mathbb{Z}^2$ to A(X) can be formalized as:

$$X_{\mathcal{A}} = \operatorname{arg}_{Y \in 2\mathbb{Z}^2} \min \mathcal{D}_{\mathcal{A},X}(Y)$$

where $\mathcal{D}_{\mathcal{A},X}(Y)$ is a dissimilarity measure between $\mathcal{A}(X)$ and Y.

Example of dissimilarity measure

Based on Gauss digitization:

$$\mathcal{D}_{\mathcal{A},X}^{\square}(Y) = |\boxdot \left(\mathcal{A}(\square(X))\right) \setminus Y| + |Y \setminus \boxdot (\mathcal{A}(\square(X)))|$$

- ▶ Continuous analogue of $X \subset \mathbb{R}^2$: $\square(X) = X \oplus \square = X$
 - $\hookrightarrow \oplus$ is the dilation operator and
 - $\hookrightarrow \square$ is the structuring element $\left[\frac{1}{2},\frac{1}{2}\right]^2 \subset \mathbb{R}^2$.
- ▶ Gauss digitization of $X \subset \mathbb{R}^2$: $\boxdot(X) = X \cap \mathbb{Z}^2$.

Reaching the most similar $X_A \subset \mathbb{Z}^2$ to A(X) can be formalized as:

$$X_{\mathcal{A}} = arg_{Y \in 2\mathbb{Z}^2} \min \mathcal{D}_{\mathcal{A},X}(Y)$$

where $\mathcal{D}_{\mathcal{A},X}(Y)$ is a dissimilarity measure between $\mathcal{A}(X)$ and Y.

Example of dissimilarity measure

Based on Gauss digitization:

$$\mathcal{D}_{\mathcal{A},\mathsf{X}}^{\square}(\mathsf{Y}) = |\boxdot(\mathcal{A}(\square(\mathsf{X})))\setminus\mathsf{Y}| + |\mathsf{Y}\setminus\boxdot(\mathcal{A}(\square(\mathsf{X})))|$$

Reaching the most similar $X_A \subset \mathbb{Z}^2$ to A(X) can be formalized as:

$$X_{\mathcal{A}} = arg_{Y \in 2\mathbb{Z}^2} \min \mathcal{D}_{\mathcal{A},X}(Y)$$

where $\mathcal{D}_{A,X}(Y)$ is a dissimilarity measure between $\mathcal{A}(X)$ and Y.

Example of dissimilarity measure

Based on Gauss digitization:

$$\mathcal{D}_{\mathcal{A},X}^{\boxdot}(Y) = |\boxdot\left(\mathcal{A}(\Box(X))\right) \setminus Y| + |Y \setminus \boxdot(\mathcal{A}(\Box(X)))|$$

Topological constraint is missing!

Reaching the most similar $X_A \subset \mathbb{Z}^2$ to A(X) can be formalized as:

$$X_{\mathcal{A}} = arg_{Y \in 2\mathbb{Z}^2} \min \mathcal{D}_{\mathcal{A},X}(Y)$$

where $\mathcal{D}_{\mathcal{A},X}(Y)$ is a dissimilarity measure between $\mathcal{A}(X)$ and Y.

Example of dissimilarity measure

Based on Gauss digitization:

$$\mathcal{D}_{\mathcal{A},X}^{\square}(Y) = |\boxdot(\mathcal{A}(\square(X))) \setminus Y| + |Y \setminus \boxdot(\mathcal{A}(\square(X)))|$$

Solution

Topological preservation via the **optimization in space of cellular complexes** with the notion of collapse on the complexes.

- → Simple cell: Cells that can be removed/added without changing the topological structure

Affine transformation on \mathbb{Z}^2 under topological constraint

Proposed method

The main steps to transform $X \subset \mathbb{Z}^2$ by A:

- 1. Generate **refined cellular space** $\mathbb H$ from $\mathbb F$ and $\mathbb G$
- 2. Compute the complex H in \mathbb{H} from G
- 3. Optimize by a **homotopic transformation** \mathfrak{H} from H to \widehat{H}
- 4. Embed the **digitized complex** \widehat{H} in \mathbb{F} , *i.e.* $\widehat{F} = \Pi_{\mathbb{F}}(\widehat{H}) \subset \mathbb{Z}^2$.

Cellular space \mathbb{F} induced by \mathbb{Z}^2

Definition

Let $\Delta = \mathbb{Z} + \frac{1}{2}$. The induced **cellular complex space** \mathbb{F} is composed of:

- ▶ set of 0-faces $\mathbb{F}_0 = \{ \{d\} \mid d \in \Delta^2 \}$
- ▶ set of 1-faces $\mathbb{F}_1 = \bigcup_{i=1,2} \{]d, d + e_i[\mid d \in \Delta^2 \}$
- ▶ set of 2-faces $\mathbb{F}_2=\{]\mathsf{d},\mathsf{d}+\mathsf{e}_1[\ \times\]\mathsf{d},\mathsf{d}+\mathsf{e}_2[\ |\ \mathsf{d}\in\Delta^2\}$ where $\mathsf{e}_1=(1,0)$ and $\mathsf{e}_2=(0,1).$

Cellular space \mathbb{F} induced by \mathbb{Z}^2

Given a digital object $X \subset \mathbb{Z}^2$, the **associated complex** $F = \Pi_{\mathbb{F}}(\square(X))$ is defined as:

$$F = \bigcup_{x \in X} C(\blacksquare(x))$$

 $F=\bigcup_{x\in X} C(\blacksquare(x))$ where $\blacksquare(p)=p\oplus]-\frac{1}{2},\frac{1}{2}[^2 \text{ for } p\in \mathbb{Z}^2.$

Transformed cellular space $\mathbb G$ induced by $\mathcal A(\mathbb Z^2)$

Definition

The **cellular space** \mathbb{G} induced by an affine transformation \mathcal{A} and \mathbb{Z}^2 is composed of the three sets of d-faces $(0 \le d \le 2)$:

$$\mathbb{G}_d = \mathcal{A}(\mathbb{F}_d) = \{\mathcal{A}(\mathfrak{f}) \mid \mathfrak{f} \in \mathbb{F}_d\}$$

The continuous object X_A is modeled by the complex $G = \Pi_{\mathbb{G}}(X_A)$, which is defined by

$$G = \mathcal{A}(F) = \mathcal{A}(\Pi_{\mathbb{F}}(X)) = {\mathcal{A}(\mathfrak{f}) \mid \mathfrak{f} \in \Pi_{\mathbb{F}}(X)}$$

Cellular space $\mathbb H$ refining $\mathbb F$ and $\mathbb G$

A new cellular space $\mathbb H$ that refines both $\mathbb F$ and $\mathbb G$ is built.

For each 2-face \mathfrak{h}_2 of \mathbb{H} , there exists exactly one 2-face \mathfrak{f}_2 of \mathbb{F} and one 2-face \mathfrak{g}_2 of \mathbb{G} such that $\mathfrak{h}_2 = \mathfrak{f}_2 \cap \mathfrak{g}_2$. We can define

- $ightharpoonup \phi: \mathbb{H}_2 o \mathbb{F}_2$ such that $\phi(\mathfrak{h}_2) = \mathfrak{f}_2$
- $ightharpoonup \gamma: \mathbb{H}_2 o \mathbb{G}_2 \text{ such that } \gamma(\mathfrak{h}_2) = \mathfrak{g}_2.$

and reversely,

- $lackbox{} \Phi: \mathbb{F}_2 \to 2^{\mathbb{H}_2} \text{ such that } \Phi(\mathfrak{f}_2) = \{\mathfrak{h}_2 \in \mathbb{H}_2 \mid \phi(\mathfrak{h}_2) = \mathfrak{f}_2\}$
- $ightharpoonup \Gamma: \mathbb{G}_2 o 2^{\mathbb{H}_2} \text{ such that } \Gamma(\mathfrak{g}_2) = \{\mathfrak{h}_2 \in \mathbb{H}_2 \mid \gamma(\mathfrak{h}_2) = \mathfrak{g}_2\}.$

Cellular space $\mathbb H$ refining $\mathbb F$ and $\mathbb G$

A new cellular space $\mathbb H$ that refines both $\mathbb F$ and $\mathbb G$ is built.

For each 2-face \mathfrak{h}_2 of \mathbb{H} , there exists exactly one 2-face \mathfrak{f}_2 of \mathbb{F} and one 2-face \mathfrak{g}_2 of \mathbb{G} such that $\mathfrak{h}_2=\mathfrak{f}_2\cap\mathfrak{g}_2$. We can define

- $lackbox{} \phi: \mathbb{H}_2 \to \mathbb{F}_2 \text{ such that } \phi(\mathfrak{h}_2) = \mathfrak{f}_2$
- $ightharpoonup \gamma: \mathbb{H}_2 o \mathbb{G}_2 \text{ such that } \gamma(\mathfrak{h}_2) = \mathfrak{g}_2.$

and reversely,

$$lackbox{}\Phi:\mathbb{F}_2 o 2^{\mathbb{H}_2}$$
 such that $\Phi(\mathfrak{f}_2)=\{\mathfrak{h}_2\in\mathbb{H}_2\mid\phi(\mathfrak{h}_2)=\mathfrak{f}_2\}$

$$ightharpoonup \Gamma: \mathbb{G}_2 o 2^{\mathbb{H}_2} \text{ such that } \Gamma(\mathfrak{g}_2) = \{\mathfrak{h}_2 \in \mathbb{H}_2 \mid \gamma(\mathfrak{h}_2) = \mathfrak{g}_2\}.$$

Cellular space $\mathbb H$ refining $\mathbb F$ and $\mathbb G$

A new cellular space $\mathbb H$ that refines both $\mathbb F$ and $\mathbb G$ is built.

For each 2-face \mathfrak{h}_2 of \mathbb{H} , there exists exactly one 2-face \mathfrak{f}_2 of \mathbb{F} and one 2-face \mathfrak{g}_2 of \mathbb{G} such that $\mathfrak{h}_2=\mathfrak{f}_2\cap\mathfrak{g}_2$. We can define

- $ightharpoonup \phi: \mathbb{H}_2 o \mathbb{F}_2$ such that $\phi(\mathfrak{h}_2) = \mathfrak{f}_2$
- $ightharpoonup \gamma: \mathbb{H}_2 o \mathbb{G}_2 \text{ such that } \gamma(\mathfrak{h}_2) = \mathfrak{g}_2.$

and reversely,

- $lackbox{} \Phi: \mathbb{F}_2
 ightarrow 2^{\mathbb{H}_2} \text{ such that } \Phi(\mathfrak{f}_2) = \{\mathfrak{h}_2 \in \mathbb{H}_2 \mid \phi(\mathfrak{h}_2) = \mathfrak{f}_2\}$
- $ightharpoonup \Gamma: \mathbb{G}_2 o 2^{\mathbb{H}_2} \text{ such that } \Gamma(\mathfrak{g}_2) = \{\mathfrak{h}_2 \in \mathbb{H}_2 \mid \gamma(\mathfrak{h}_2) = \mathfrak{g}_2\}.$

Transformation affine sur \mathbb{Z}^2 sous contrainte topologique

Proposed method

The main steps to transform $X \subset \mathbb{Z}^2$ by \mathcal{A} :

- 1. Generate refined cellular space $\mathbb H$ from $\mathbb F$ and $\mathbb G$
- 2. Compute the complex H in \mathbb{H} from G
- 3. Optimize by a homotopic transformation $\mathfrak H$ from H to $\widehat H$
- 4. Embed the digitized complex \widehat{H} in \mathbb{F} , i.e. $\widehat{F} = \Pi_{\mathbb{F}}(\widehat{H}) \subset \mathbb{Z}^2$.

Homotopic transformation $\mathfrak H$ on $\mathbb H$

Homotopic transformation $\mathfrak H$ on $\mathbb H$

A discrete optimization process with topological constraint on $\mathbb H$

- ▶ **Topology**: \mathfrak{H} is a homotopic transformation of H to \widehat{H} \hookrightarrow a sequence of additions/removals of simple 2-cells
- **Digitization**: \widehat{H} can be embedded into \mathbb{F} , *i.e.* $\widehat{F} = \Pi_{\mathbb{F}}(\widehat{H})$
- ▶ **Geometry**: the digital analogue $X_{\mathcal{A}} = \boxdot(\Pi_{\mathbb{R}^2}(\widehat{H})) \subset \mathbb{Z}^2$ of \widehat{H} is as close as possible to the solution of the optimization problem

$$X_{\mathcal{A}} = \operatorname{arg}_{Y \in 2^{\mathbb{Z}^2}} \min \mathcal{D}_{\mathcal{A},X}(Y)$$

Optimization-based affine transformation with constraints

The cost function:

$$C = \underbrace{\mathcal{E}_{\text{topo}}}_{\mathcal{E}_{\text{topo}}(H, \widetilde{H}) = 0} + \underbrace{\mathcal{E}_{\text{digi}}}_{\mathcal{E}_{\text{digi}}(\widetilde{H}) \geq 0} + \underbrace{\mathcal{E}_{\text{geom}}}_{\mathcal{E}_{\text{geom}}(H, \widetilde{H}) \geq 0}$$

With

- ▶ Topological energy: $\mathcal{E}_{\mathrm{topo}}: \mathsf{C}_{\mathbb{H}} \times \mathsf{C}_{\mathbb{H}} \to \mathbb{R}_{+}$ $\hookrightarrow \mathcal{E}_{\mathrm{topo}}(H, \widetilde{H}) = 0$, *i.e.* H and \widetilde{H} have the same topology
- ▶ Digitization energy: $\mathcal{E}_{\mathrm{digi}}: \mathsf{C}_{\mathbb{H}} \to \mathbb{R}_+$ $\hookrightarrow \ \mathcal{E}_{\mathrm{digi}}(\widetilde{H}) = 0 \text{ if there exists } \widetilde{F} \text{ in } \mathsf{C}_{\mathbb{F}} \text{ s.t } \widetilde{F} \equiv \mathsf{\Pi}_{\mathbb{F}}(\widetilde{H})$
- ▶ Geometrical energy: $\mathcal{E}_{\mathrm{geom}}: \mathsf{C}_{\mathbb{H}} \times \mathsf{C}_{\mathbb{H}} \to \mathbb{R}_{+}$ $\hookrightarrow \mathcal{E}_{\mathrm{geom}}(H,\widetilde{H})$ measures the dissimilarity between H and \widetilde{H} $\hookrightarrow \mathcal{E}_{\mathrm{geom}}(H,\widetilde{H}) = 0$, i.e. H and \widetilde{H} are the same.

Optimization-based affine transformation with constraints

The cost function:

$$C = \underbrace{\mathcal{E}_{\text{topo}}}_{\mathcal{E}_{\text{topo}}(H, \widetilde{H}) = 0} + \underbrace{\mathcal{E}_{\text{digi}}}_{\mathcal{E}_{\text{digi}}(\widetilde{H}) \geq 0} + \underbrace{\mathcal{E}_{\text{geom}}}_{\mathcal{E}_{\text{geom}}(H, \widetilde{H}) \geq 0}$$

Conditions and objectives of the optimization process:

- $ightharpoonup \mathcal{E}_{\mathrm{topo}}(H,\widetilde{H}) = 0$ throughout the optimization process
- $lacksymbol{\mathcal{E}}_{\mathrm{digi}}(\widetilde{H})=0$ at the end of the process to have \widetilde{H} embeddable in \widetilde{F}
- \blacktriangleright $\mathcal{E}_{\text{geom}}(H,\widetilde{H})$ is as small as possible at the end of the process.

Optimization-based affine transformation with constraints

The cost function:

$$C = \underbrace{\mathcal{E}_{\text{topo}}}_{\mathcal{E}_{\text{topo}}(H, \widetilde{H}) = 0} + \underbrace{\mathcal{E}_{\text{digi}}}_{\mathcal{E}_{\text{digi}}(\widetilde{H}) \geq 0} + \underbrace{\mathcal{E}_{\text{geom}}}_{\mathcal{E}_{\text{geom}}(H, \widetilde{H}) \geq 0}$$

Let \widetilde{H} be the current solution of the optimization process. At each step:

- ▶ we add/remove a simple 2-face $\mathfrak{h}_2 \in \mathbb{H}$ (*i.e.* $\mathcal{E}_{\text{topo}}(H, \widetilde{H}) = 0$) that minimizes $\mathcal{E}_{\text{digi}}(\widetilde{H})$ and $\mathcal{E}_{\text{geom}}(H, \widetilde{H})$
- \blacktriangleright we are interested in the 2-faces \mathfrak{h}_2 belonging to the boundary of H. This set is defined by

$$\begin{split} \mathbb{B}_{0,1}(\widetilde{H}) &= \{\mathfrak{h}_{0,1} \in \mathbb{H}_0(\widetilde{H}) \cup \mathbb{H}_1(\widetilde{H}) \mid S(\mathfrak{h}_{0,1}) \subsetneq \widetilde{H}\} \\ \mathbb{B}_2(\widetilde{H}) &= \{\mathfrak{h}_2 \in \mathbb{H}_2 \mid C(\mathfrak{h}_2) \cap \mathbb{B}_{0,1}(\widetilde{H}) \neq \emptyset\} \end{split}$$

(They are the 2-faces \mathfrak{h}_2 whose 0- and 1-faces belong to the background)

Dissimilarity measures

We search $X_A \subset \mathbb{Z}^2$ resulting from $X \subset \mathbb{Z}^2$ by the affine transformation A as close as possible to the solution of the optimization problem:

$$X_{\mathcal{A}} = arg_{Y \in 2^{\mathbb{Z}^2}} \min \mathcal{D}_{\mathcal{A}, X}(Y)$$

Examples of $\mathcal{E}_{\mathrm{geom}}$

▶ based on majority vote digitization:

$$\mathcal{D}_{\mathcal{A},X}^\square(Y) = |\mathcal{A}(\square(X)) \setminus \square(Y)| + |\square(Y) \setminus \mathcal{A}(\square(X))|$$

▶ based on Gauss digitization

$$\mathcal{D}_{\mathcal{A},X}^{\square}(Y) = |\boxdot(\mathcal{A}(\square(X))) \setminus Y| + |Y \setminus \boxdot(\mathcal{A}(\square(X)))|$$

P. Ngo

Dissimilarity measures

We search $X_A \subset \mathbb{Z}^2$ resulting from $X \subset \mathbb{Z}^2$ by the affine transformation A as close as possible to the solution of the optimization problem:

$$X_{\mathcal{A}} = arg_{Y \in 2^{\mathbb{Z}^2}} \min \mathcal{D}_{\mathcal{A}, X}(Y)$$

Examples of $\mathcal{E}_{\mathrm{geom}}$

▶ based on majority vote digitization:

$$\mathcal{D}_{\mathcal{A},\mathsf{X}}^{\square}(\mathsf{Y}) = |\mathcal{A}(\square(\mathsf{X})) \setminus \square(\mathsf{Y})| + |\square(\mathsf{Y}) \setminus \mathcal{A}(\square(\mathsf{X}))|$$

▶ based on Gauss digitization:

$$\mathcal{D}_{\mathcal{A},X}^{\boxdot}(Y) = |\boxdot\left(\mathcal{A}(\Box(X))\right) \setminus Y| + |Y \setminus \boxdot(\mathcal{A}(\Box(X)))|$$

 $\mathcal{D}_{\mathcal{A},\mathsf{X}}^{\boxdot}$

General algorithm of homotopic affine transformation on \mathbb{Z}^2

```
Algorithm 1: Construction of \widehat{H} from H by \mathfrak{H}.
     Input
                                 : H ∈ C<sub>ℍ</sub>
     Input : \mathcal{E}_{\mathrm{geom}}:C_{\mathbb{H}}\times C_{\mathbb{H}}\to\mathbb{R}_+
     Output : \widehat{H} \in C_{\mathbb{H}}^H \cap C_{\mathbb{H}}^F
 1 H ← H
2 Build \mathbb{B}_2(\widetilde{H})
 3 while \mathcal{E}_{\mathrm{digi}}(\widetilde{H}) > 0 do
                Choose \mathfrak{h}_2\in\mathbb{B}_2(\widetilde{H}) s.t \widetilde{H}\otimes C(\mathfrak{h}_2)\frown_h\widetilde{H} that minimizes \mathcal{E}_{\mathrm{digi}} and
                                                                           h<sub>2</sub> is a simple 2-face
                   \mathcal{E}_{\text{geom}}(H, \cdot)
 5 \qquad \widetilde{H} \leftarrow \widetilde{H} \odot C(\mathfrak{h}_2) = \left\{ \begin{array}{ll} \widetilde{H} \odot C(\mathfrak{h}_2) & \text{if } \mathfrak{h}_2 \in \widetilde{H} \\ \widetilde{H} \cup C(\mathfrak{h}_2) & \text{if } \mathfrak{h}_2 \notin \widetilde{H} \end{array} \right. 
     Update \mathbb{B}_2(\widetilde{H})
7 \hat{H} \leftarrow \tilde{H}
```

Results of rotation on \mathbb{Z}^2 with/without topological constraint

Original image	Gauss digitization		Majority vote	
	w.o cont. topo	with cont. topo	w.o cont. topo	with cont. topo
	ø	ø	ø	ø
((())	(3)			(C)
(3)	(Z)	3	(Z)	(3)

Results of affine transformation on \mathbb{Z}^2

Original image	Gauss digitization		Majority vote	
	w.o cont. topo	with cont. topo	w.o cont. topo	with cont. topo
•	.#	.#	ø	
©	@	0	@	0
®	(B)	(B)	(B)	(B)

Non-existence of solutions

Conclusion

Take home messages

- ► Topological issues when applying geometric transformations on digital images/digital shapes
- ► Several **solutions exist** for topology-preserving transformations

 - → Multi-grid strategies, continuous techniques,...
- ► Still many open questions, especially in **higher dimensions**
- **geometric properties** of transformed objects . . .
- ▶ and other families of transformations (projective transformations, free deformation, diffeomorphism,...)

Take home messages

- ► Topological issues when applying geometric transformations on digital images/digital shapes
- ► Several **solutions exist** for topology-preserving transformations

 - → Multi-grid strategies, continuous techniques,...
- ► Still many open questions, especially in **higher dimensions**
- ▶ **geometric properties** of transformed objects . . .
- ▶ and other families of transformations (projective transformations, free deformation, diffeomorphism,...)

Y. Kenmochi GREYC

N. Passat CReSTIC

H. Talbot Centrale Supelec

I. Debled-Rennesson LORIA

A. Sugimoto NII, Japon

Phuc Ngo

hoai-diem-phuc.ngo@loria.fr

https://github.com/ngophuc

References

- H. Blum. A transformation for extracting new descriptors of shape. In Models for the Perception of Speech and Visual Form, pages 362–380. 1967.
- P.-A. Guihéneuf. Discretizations of isometries. In *Discrete Geometry for Computer Imagery (DGCI)*, pages 71–92, 2016.
- K. T. Islam, S. Wijewickrema, and S. O'Leary. A deep learning based framework for the registration of three dimensional multi-modal medical images of the head. *Scientific Reports*, 11:1860, 01 2021. doi: 10.1038/s41598-021-81044-7.
- Kenta-Tanaka et al. probreg, 2019. URL https://probreg.readthedocs.io/en/latest/.
- B. Kenwright. Voxel free-form deformations. 2013.
- C. E. Kim. On the cellular convexity of complexes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 3(6):617–625, 1981.
- R. Kimmel, N. Kiryati, and A. M. Bruckstein. Sub-pixel distance maps and weighted distance transforms. J. Math. Imaging Vis., 6(2-3):223–233, 1996. doi: 10.1007/BF00119840. URL https://doi.org/10.1007/BF00119840.

- R. Klette and A. Rosenfeld. Digital Geometry: Geometric Methods for Digital Picture Analysis. Elsevier, 2004.
- L. J. Latecki, U. Eckhardt, and A. Rosenfeld. Well-composed sets. *Computer Vision and Image Understanding*, 61(1):70–83, 1995.
- L. J. Latecki, C. Conrad, and A. Gross. Preserving topology by a digitization process. *Journal of Mathematical Imaging and Vision*, 8(2):131–159, 1998.
- J.-M. Lien and N. M. Amato. Approximate convex decomposition of polygons. Computational Geometry: Theory and Applications, 35(1-2):100-123, 2006. doi: 10.1016/j.comgeo.2005.10.005.
- A. Lieutier. Any open bounded subset of rn has the same homotopy type as its medial axis. Computer-Aided Design, 36(11):1029–1046, 2004. doi: 10.1016/j.cad.2004.01.011.
- C. Maple. Geometric design and space planning using the marching squares and marching cube algorithms. In 2003 International Conference on Geometric Modeling and Graphics, 2003. Proceedings, pages 90–95, 2003. doi: 10.1109/GMAG.2003.1219671.
- P. Ngo, Y. Kenmochi, N. Passat, and H. Talbot. Combinatorial structure of rigid transformations in 2D digital images. *Computer Vision and Image Understanding*, 117(4):393-408, 2013. doi: 10.1016/j.cviu.2012.08.014. URL https://hal.archives-ouvertes.fr/hal-00643734.

- P. Ngo, N. Passat, Y. Kenmochi, and H. Talbot. Topology-preserving rigid transformation of 2D digital images. *IEEE Transactions on Image Processing*, 23 (2):885-897, 2014. doi: 10.1109/TIP.2013.2295751. URL https://hal-upec-upem.archives-ouvertes.fr/hal-00795054.
- P. Ngo, N. Passat, Y. Kenmochi, and I. Debled-Rennesson. Geometric preservation of 2D digital objects under rigid motions. *Journal of Mathematical Imaging and Vision*, 61:204–223, 2019. doi: 10.1007/s10851-018-0842-9.
- P. Ngo, N. Passat, and Y. Kenmochi. Quasi-regularity verification for 2D polygonal objects based on medial axis analysis. In *International Conference on Image Processing (ICIP)*, Anchorage, Alaska, United States, 2021.
- T.-T. Nguyen, X. Liu, Q.-M. Nguyen, and Y.-Z. Yao. 3d object model reconstruction based on laser scanning point cloud data. 10 2012.
- T. Pavlidis. Algorithms for graphics and image processing. Rockville: Computer Science Press, 1982.
- L. Pishchulin, T. Gass, P. Dreuw, and H. Ney. The fast and the flexible: Extended pseudo two-dimensional warping for face recognition. In J. Vitrià, J. M. Sanches, and M. Hernández, editors, *Pattern Recognition and Image Analysis*, pages 49–57. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21257-4.

- M. Rodríguez, G. Facciolo, and J.-M. Morel. Robust Homography Estimation from Local Affine Maps. *Image Processing On Line*, 13:65–89, 2023. https://doi.org/10.5201/ipol.2023.356.
- J. Serra. Image Analysis and Mathematical Morphology. Academic Press, Inc., USA, 1983. ISBN 0126372403.
- C. Shorten and T. Khoshgoftaar. A survey on image data augmentation for deep learning. JBD, 6, 2019.
- J. Sklansky. Measuring concavity on a rectangular mosaic. *IEEE Transactions on Computers*, C-21(12):1355–1364, 1972. doi: 10.1109/T-C.1972.223507.
- O. Sommervold, M. Gazzea, and R. Arghandeh. A survey on sar and optical satellite image registration. Remote Sensing, 15(3), 2023. ISSN 2072-4292. doi: $10.3390/\mathrm{rs}15030850$.
- W. Zhang, Y. Wang, and Y. Liu. Generating high-quality panorama by view synthesis based on optical flow estimation. Sensors, 22(2), 2022. doi: 10.3390/s22020470.

Medial axis

Définition [Blum, 1967]

Let $\mathcal{X} \subset \mathbb{R}^2$ be a closed, bounded set such that the boundary $\partial \mathcal{X}$ of \mathcal{X} is a 1-manifold. The **medial axis of** \mathcal{X} is defined as the locus of the centers of the maximal balls included in \mathcal{X} :

$$\mathcal{M}(\mathcal{X}) = \{ x \in \mathcal{X} \mid \nexists y \in \mathcal{X}, B(x, r(x)) \subset B(y, r(y)) \}$$
 where $B(y, r) \subseteq \mathcal{X}$ is the ball of center y and radius $r \in \mathbb{R}_+$.

Medial axis

Définition [Blum, 1967]

Let $\mathcal{X} \subset \mathbb{R}^2$ be a closed, bounded set such that the boundary $\partial \mathcal{X}$ of \mathcal{X} is a 1-manifold. The **medial axis of** \mathcal{X} is defined as the locus of the centers of the maximal balls included in \mathcal{X} :

$$\mathcal{M}(\mathcal{X}) = \{x \in \mathcal{X} \mid \nexists y \in \mathcal{X}, B(x, r(x)) \subset B(y, r(y))\}$$
 where $B(y, r) \subseteq \mathcal{X}$ is the ball of center y and radius $r \in \mathbb{R}_+$.

By definition, we have
$$\mathcal{M}(\mathcal{X})\subseteq\mathcal{X}$$
 and
$$\mathcal{X}=\bigcup_{x\in\mathcal{M}(\mathcal{X})}B(x,r(x))$$

Medial axis

Définition [Blum, 1967]

Let $\mathcal{X} \subset \mathbb{R}^2$ be a closed, bounded set such that the boundary $\partial \mathcal{X}$ of \mathcal{X} is a 1-manifold. The **medial axis of** \mathcal{X} is defined as the locus of the centers of the maximal balls included in \mathcal{X} :

$$\mathcal{M}(\mathcal{X}) = \{x \in \mathcal{X} \mid \nexists y \in \mathcal{X}, B(x, r(x)) \subset B(y, r(y))\}$$
 where $B(y, r) \subseteq \mathcal{X}$ is the ball of center y and radius $r \in \mathbb{R}_+$.

We define the λ -level medial axis, noted $\mathcal{M}_{\lambda}(\mathcal{X})$, by

$$\mathcal{M}_{\lambda}(\mathcal{X}) = \{ x \in \mathcal{M}(\mathcal{X}) \mid r(x) \ge \lambda \}$$

In particular,
$$\lambda_1 \leq \lambda_2 \Rightarrow \mathcal{M}_{\lambda_2}(\mathcal{X}) \subseteq \mathcal{M}_{\lambda_1}(\mathcal{X})$$
, and $\mathcal{M}_0(\mathcal{X}) = \mathcal{M}(\mathcal{X})$.

We also define

$$\mathcal{M}_{\lambda_1}^{\lambda_2}(\mathcal{X}) = \{ x \in \mathcal{M}(\mathcal{X}) \mid \lambda_1 \le r(x) \le \lambda_2 \}$$

Properties of medial axis

Proposition [Lieutier, 2004]

 $\mathcal X$ and $\mathcal M(\mathcal X)$ have the same homotopy type, and noted $\mathcal X \frown \mathcal M(\mathcal X)$.

Proposition [Serra, 1983]

Let B_{λ} be the ball of center $0_{\mathbb{R}^2}$ and of radius $\lambda \geq 0$. We have

$$\mathcal{X} \ominus B_{\lambda} = \bigcup_{x \in \mathcal{M}_{\lambda}(\mathcal{X})} B(x, r(x) - \lambda)$$
$$\mathcal{X} \oplus B_{\lambda} = \bigcup_{x \in \mathcal{M}(\mathcal{X})} B(x, r(x) + \lambda)$$

We now verify the quasi-regularity of polygon via its medial axis.

Properties of medial axis

Proposition [Lieutier, 2004]

 $\mathcal X$ and $\mathcal M(\mathcal X)$ have the same homotopy type, and noted $\mathcal X \frown \mathcal M(\mathcal X)$.

Proposition [Serra, 1983]

Let B_{λ} be the ball of center $0_{\mathbb{R}^2}$ and of radius $\lambda \geq 0$. We have

$$\mathcal{X} \ominus B_{\lambda} = \bigcup_{x \in \mathcal{M}_{\lambda}(\mathcal{X})} B(x, r(x) - \lambda)$$

$$\mathcal{X} \oplus B_{\lambda} = \bigcup_{x \in \mathcal{M}(\mathcal{X})} B(x, r(x) + \lambda)$$

$$\mathcal{M}(\mathcal{X} \ominus B_{\lambda}) = \mathcal{M}_{\lambda}(\mathcal{X})$$

We now verify the quasi-regularity of polygon via its medial axis.

Properties of medial axis

Proposition [Lieutier, 2004]

 $\mathcal X$ and $\mathcal M(\mathcal X)$ have the same homotopy type, and noted $\mathcal X \frown \mathcal M(\mathcal X)$.

Proposition [Serra, 1983]

Let B_{λ} be the ball of center $0_{\mathbb{R}^2}$ and of radius $\lambda \geq 0$. We have

$$\mathcal{X} \ominus B_{\lambda} = \bigcup_{x \in \mathcal{M}_{\lambda}(\mathcal{X})} B(x, r(x) - \lambda)$$
$$\mathcal{X} \oplus B_{\lambda} = \bigcup_{x \in \mathcal{M}(\mathcal{X})} B(x, r(x) + \lambda)$$
$$\mathcal{M}(\mathcal{X} \ominus B_{\lambda}) = \mathcal{M}_{\lambda}(\mathcal{X})$$

We now verify the quasi-regularity of polygon via its medial axis.

Property [Ngo et al., 2021]

Let $X \subset \mathbb{R}^2$ be a bounded, simply connected polygon. If $\mathcal{M}(\mathcal{X}) \frown \mathcal{M}_1(\mathcal{X})$ and $\mathcal{M}(\overline{\mathcal{X}}) \frown \mathcal{M}_1(\overline{\mathcal{X}})$ then

- (i) $\mathcal{X} \ominus B_1$ is non-empty and connected
- (ii) $\overline{\mathcal{X}} \ominus B_1$ is connected

Property [Ngo et al., 2021]

Let $X \subset \mathbb{R}^2$ be a bounded, simply connected polygon. If $\mathcal{M}(\mathcal{X}) \frown \mathcal{M}_1(\mathcal{X})$ and $\mathcal{M}(\overline{\mathcal{X}}) \frown \mathcal{M}_1(\overline{\mathcal{X}})$ then

- (i) $\mathcal{X} \ominus B_1$ is non-empty and connected
- (ii) $\overline{\mathcal{X}} \ominus B_1$ is connected

Let $Y \in \{\mathcal{X}, \overline{\mathcal{X}}\}$ and $M \subseteq \mathcal{M}_0^1(Y)$ a connected component of $\mathcal{M}_0^1(Y)$. M contains a set of k points, noted z_i $(1 \le i \le k)$, with $r(z_i) = 0$ (they are convex vertices of the polygon Y), and a point y with r(y) = 1.

Let
$$(\mathcal{P})$$
: $\forall 1 \leq i \leq k, \|y - z_i\|_2 \leq \sqrt{2}$. We have $(\mathcal{P}) \Rightarrow \bigcup_{x \in M} B(x, r(x)) \subseteq Y \ominus B_1 \oplus B_{\sqrt{2}}$

Let $Y \in \{\mathcal{X}, \overline{\mathcal{X}}\}$ and $M \subseteq \mathcal{M}_0^1(Y)$ a connected component of $\mathcal{M}_0^1(Y)$. M contains a set of k points, noted z_i $(1 \le i \le k)$, with $r(z_i) = 0$ (they are convex vertices of the polygon Y), and a point y with r(y) = 1.

Let
$$(\mathcal{P})$$
: $\forall 1 \leq i \leq k, \|y - z_i\|_2 \leq \sqrt{2}$. We have $(\mathcal{P}) \Rightarrow \bigcup_{x \in M} B(x, r(x)) \subseteq Y \ominus B_1 \oplus B_{\sqrt{2}}$

Let $Y \in \{\mathcal{X}, \overline{\mathcal{X}}\}$ and $M \subseteq \mathcal{M}_0^1(Y)$ a connected component of $\mathcal{M}_0^1(Y)$. M contains a set of k points, noted z_i $(1 \le i \le k)$, with $r(z_i) = 0$ (they are convex vertices of the polygon Y), and a point y with r(y) = 1.

Let
$$(\mathcal{P})$$
: $\forall 1 \leq i \leq k, \|y - z_i\|_2 \leq \sqrt{2}$. We have $(\mathcal{P}) \Rightarrow \bigcup_{x \in M} B(x, r(x)) \subseteq Y \ominus B_1 \oplus B_{\sqrt{2}}$

Proposition [Ngo et al., 2021]

Let $X \subset \mathbb{R}^2$ be a simply connected polygon. If $\mathcal{M}(\mathcal{X}) \frown \mathcal{M}_1(\mathcal{X})$, $\mathcal{M}(\overline{\mathcal{X}}) \frown \mathcal{M}_1(\overline{\mathcal{X}})$ and, for each connected component of $\mathcal{M}_0^1(X)$ and $\mathcal{M}_0^1(\overline{X})$, the property (\mathcal{P}) holds. Then, X is quasi-regular.

Quasi-regularity verification method

The method consists in verifying the following two conditions:

- (i) $\mathcal{M}(\mathcal{X}) \frown \mathcal{M}_1(\mathcal{X})$ and $\mathcal{M}(\overline{\mathcal{X}}) \frown \mathcal{M}_1(\overline{\mathcal{X}})$
- (ii) (\mathcal{P}) holds for each connected component of $\mathcal{M}_0^1(\mathcal{X})$ and $\mathcal{M}_0^1(\overline{\mathcal{X}})$.

Quasi-regularity verification method

The method consists in verifying the following two conditions:

- (i) $\mathcal{M}(\mathcal{X}) \frown \mathcal{M}_1(\mathcal{X})$ and $\mathcal{M}(\overline{\mathcal{X}}) \frown \mathcal{M}_1(\overline{\mathcal{X}})$
- (ii) (\mathcal{P}) holds for each connected component of $\mathcal{M}_0^1(\mathcal{X})$ and $\mathcal{M}_0^1(\overline{\mathcal{X}})$.

Definition of cellular space

A closed convex polygon P and its partition $\mathcal{F}(P)$

 $\mathcal{F}(P)$ contains:

- ▶ 2-face (interior of P, \mathring{P}),
- ▶ 1-faces (edges of *P*), and
- ▶ 0-faces (vertices of *P*).

A union of closed convex polygons Ω and its partition $\mathbb{K}(\Omega)$

Let $\Omega = \bigcup \mathcal{K}$ where \mathcal{K} is a set of closed, convex polygons such that for any pair $P_1, P_2 \in \mathcal{K}$, $\mathring{P}_1 \cap \mathring{P}_2 = \emptyset$. Then, $\mathbb{K}(\Omega) = \bigcup_{P \in \mathcal{K}} \mathcal{F}(P)$.

Definition of cellular space

A closed convex polygon P and its partition $\mathcal{F}(P)$

 $\mathcal{F}(P)$ contains:

- ▶ 2-face (interior of P, \mathring{P}),
- ▶ 1-faces (edges of P), and
- ▶ 0-faces (vertices of *P*).

A union of closed convex polygons Ω and its partition $\mathbb{K}(\Omega)$

Let $\Omega = \bigcup \mathcal{K}$ where \mathcal{K} is a set of closed, convex polygons such that for any pair $P_1, P_2 \in \mathcal{K}$, $\mathring{P}_1 \cap \mathring{P}_2 = \emptyset$. Then, $\mathbb{K}(\Omega) = \bigcup_{P \in \mathcal{K}} \mathcal{F}(P)$.

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of \mathbb{K}

A complex K of \mathbb{K} is a union of cells of \mathbb{K} .

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of \mathbb{K}

A complex K of \mathbb{K} is a union of cells of \mathbb{K} .

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of \mathbb{K}

A complex K of \mathbb{K} is a union of cells of \mathbb{K} .

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of \mathbb{K}

A complex K of \mathbb{K} is a union of cells of \mathbb{K} .

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Star $S(\mathfrak{f})$

The star $S(\mathfrak{f})$ of \mathfrak{f} is the set of all the faces \mathfrak{f}' such that $\mathfrak{f} \in C(\mathfrak{f}')$.

Complex of \mathbb{K}

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Star $S(\mathfrak{f})$

The star $S(\mathfrak{f})$ of \mathfrak{f} is the set of all the faces \mathfrak{f}' such that $\mathfrak{f} \in C(\mathfrak{f}')$.

Complex of \mathbb{K}

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Star $S(\mathfrak{f})$

The star $S(\mathfrak{f})$ of \mathfrak{f} is the set of all the faces \mathfrak{f}' such that $\mathfrak{f} \in C(\mathfrak{f}')$.

Complex of \mathbb{K}

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Star $S(\mathfrak{f})$

The star $S(\mathfrak{f})$ of \mathfrak{f} is the set of all the faces \mathfrak{f}' such that $\mathfrak{f} \in C(\mathfrak{f}')$.

Complex of \mathbb{K}

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of \mathbb{K}

A complex K of \mathbb{K} is a union of cells of \mathbb{K} .

The embedding of K into \mathbb{R}^2 is defined by $\Pi_{\mathbb{R}^2}(K) = \bigcup K$. If $X = \Pi_{\mathbb{R}^2}(K)$, K is the embedding of X into \mathbb{K} , $K = \Pi_{\mathbb{K}}(X)$.

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of \mathbb{K}

A complex K of \mathbb{K} is a union of cells of \mathbb{K} .

The **embedding of** K **into** \mathbb{R}^2 is defined by $\Pi_{\mathbb{R}^2}(K) = \bigcup K$.

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of \mathbb{K}

A complex K of \mathbb{K} is a union of cells of \mathbb{K} .

The **embedding of** K **into** \mathbb{R}^2 is defined by $\Pi_{\mathbb{R}^2}(K) = \bigcup K$.

Let \mathbb{K} be a cellular space and $\mathfrak{f} \in \mathbb{K}$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of $\ensuremath{\mathbb{K}}$

A complex K of \mathbb{K} is a union of cells of \mathbb{K} .

The **embedding of** K **into** \mathbb{R}^2 is defined by $\Pi_{\mathbb{R}^2}(K) = \bigcup K$.

Let $\mathbb K$ be a cellular space and $\mathfrak f\in\mathbb K$ be a face.

Cell $C(\mathfrak{f})$

The cell $C(\mathfrak{f})$ induced by \mathfrak{f} is the subset of faces of \mathbb{K} such that $\bigcup C(\mathfrak{f})$ is the smallest closed set that includes \mathfrak{f} .

Complex of $\ensuremath{\mathbb{K}}$

A complex K of \mathbb{K} is a union of cells of \mathbb{K} .

The **embedding of** K **into** \mathbb{R}^2 is defined by $\Pi_{\mathbb{R}^2}(K) = \bigcup K$.

Collapse on complexes

Let K be a complex defined in a cellular space \mathbb{K} .

Elementary collapse

Suppose that au and σ are two faces of K such that

$$au\subset\sigma$$
 with $dim(au)=dim(\sigma)-1$ and

 σ is a maximal face of K and no other maximal face of K contains τ , then τ is called a **free face** and the removal of the faces, $K \setminus \{\tau, \sigma\}$, is called an **elementary collapse**.

If there is a sequence of elementary collapses from K to a complex K', we say that K collapses to K'.

Simple cells

Let K be a complex defined in a cellular space \mathbb{K} on \mathbb{R}^2 .

Let \mathfrak{f}_2 be a 2-face of K.

Let $D_d(\mathfrak{f}_2)$, d=0,1, be the subset of $C(\mathfrak{f}_2)$ composed by the d-faces \mathfrak{f} such that $S(\mathfrak{f}) \cap K = S(\mathfrak{f}) \cap C(\mathfrak{f}_2)$.

Simple cells

If $|D_1(\mathfrak{f}_2)| = |D_0(\mathfrak{f}_2)| + 1$, $C(\mathfrak{f}_2)$ is called a **simple** 2-**cell** for K.

Detachment of a simple 2-cell $C(\mathfrak{f}_2)$ from K: collapse operation from K to $K \otimes C(\mathfrak{f}_2) = K \setminus (\{\mathfrak{f}_2\} \cup D_1(\mathfrak{f}_2) \cup D_0(\mathfrak{f}_2))$

Attachment of a simple 2-cell $C(\mathfrak{f}_2)$ for $K \cup C(\mathfrak{f}_2)$ where $\mathfrak{f} \in \mathbb{K} \setminus K$: the inverse collapse operation from K into $K \cup C(\mathfrak{f}_2)$

