
Summer school on Geometry and data IRMIA++, Université de Strasbourg

Practical session :
Geometric Transformations on Digital Images

In this session, we will program in Python using the OpenCV library 1(Open Source
Computer Vision Library) for the practice of rigid motions on digital images that has
been seen in class.

The OpenCV is a graphical and open-source library. It has many features for creating
graphical interfaces as well as tools in the field of image and video processing. You will
find complete documentation of the library at https://docs.opencv.org/4.x.

For programming environment, we will use the online Google Colab 2 that does
require an google account but not any installation, and it allows us to realize directly the
exercises in this session.

Here are some useful links for the practicals :
— Github repository (source code with correction)
— Google Colab (source code)
— Google Colab (correction)

Exercice 1 A first program with OpenCV
We start with a simple OpenCV program that loads an image and displays it in a

window. For this, we will use with the following functions :

#Create a window
cv.namedWindow(winname [, flags=WINDOW_AUTOSIZE]) -> None
#Load an image from a file
cv.imread(filename[, flags=IMREAD_COLOR]) -> retval
#Display an image in the specified window.
cv.imshow(winname, mat) -> None
#Save an image to a specified file.
cv.imwrite(filename, img[, params]) -> retval
#Wait for a pressed key.
cv.waitKey([delay]) -> retval
#Destroy all of the opened windows
cv.destroyAllWindows() -> None

You can find a full description of the functions and their parameters on the documen-
tation page of OpenCV library at https://docs.opencv.org/4.x/.

Now using these functions, complete the file exo1.py and run to test it with different
input images in the directory Samples.

1. https://opencv.org
2. https://colab.research.google.com/

1

https://docs.opencv.org/4.x
https://github.com/ngophuc/DigitizedRotation_Tutorials-IRMA2023
https://colab.research.google.com/drive/10g2PevIzVlftpVdIoEXXbgON1fKytJV6
https://colab.research.google.com/drive/1a4pbS9lxdcoNjYjWb02_9B5IppCou2mH
https://docs.opencv.org/4.x/
https://opencv.org
https://colab.research.google.com/

Exercice 2 Image rotation with interpolation
Let do some rotations on digital images using an available function in imutils package

with OpenCV. More precisely, we consider the following function :

#Rotate an image with angle of rotation (in degree)
cv.rotate(src, rotation_angle) -> dst

To make the program more interactive, we will add an trackbar to the window that
allows to control the rotation angle and show the rotated image in the opened window.
For this we need the following functions :

#Create a trackbar and attaches it to the specified window.
cv.createTrackbar(trackbarname, winname, slider_currnet_value,

max_slider_value, slider_callback [, params])
#Define a callback function for the trackbar
def trackbarCallback(angle : int) -> None :

#Function to be executed every time the slider changes position
#Call the defined callback function
trackbarCallback(0)

Now using these functions, complete the file exo2.py and run to test it with different
input images in the directory Samples.

We can easily observe the interpolation effects that appear on the images such as :
circles_1.png, strike.png and Retina_1.png.

Exercice 3 Digitized rotation in Z2

In this exercise, we will do simply rotations of point in the continuous space of R2

and the discrete space of Z2 that have been presented in the course. For this, different
classes of object have been prepared in the file exo3.py, we have :
— Class ImagePoint : for points in Z2

— Class RealPoint : for points in R2

— Class rotation : for a rotation with a rotation angle theta and a rotation center,
in this class there are the following methods :
• getRotationMatrix : get the rotation matrix of the rotation angle theta
• getInverseRotationMatrix : get the inverse rotation matrix which corres-

ponds to the rotation angle -theta
• forwardRotation : realize a forward rotation on a real point
• digitizedForwardRotation : realize a backward rotation on a real point then

digitized the result to obtain a image point
• backwardRotation : realize a forward rotation on a real point
• digitizedBackwardRotation : realize a backward rotation on a real point

then digitized the result to obtain a image point

2

Complete the file exo3.py and run to test the forward and backward rotations on
points in R2 and Z2. You obtain the following result.

RealPoint:(5.2 , 3.5)
ImagePoint:(4 , 5)
ImagePoint:(4 , 5)
RealPoint:(1.2020815280171315 , 6.151828996322964)
ImagePoint:(6 , 1)
ImagePoint:(-1 , 6)

Exercice 4 Digitized rotation of digital images
We will now realize the digitized rotation on digital image using the forward and

backward models from the previous exercise for points in a digital image. To do this,
different functions have prepared in the file exo4.py, we have :
— getPixelValue : get the value of a given pixel in image
— setPixelValue : set a value to a pixel in image
— forwardRotation : realize a forward rotation on a real point
— createBlackImage : create a black image of size width × height
— forwardRotationImage : realize a digitized forward rotation on an input image for

a rotation angle thetha
— backwardRotationImage : realize a digitized backward rotation on an input image

for a rotation angle thetha
Complete the file exo4.py and run to test the forward and backward rotations on

different input images in the directory Samples.
Hereafter, an example of result obtained on church.png for a rotation angle of 45◦.

Forward rotation (Lagrangian model) Backward rotation (Eulerian model)

3

Exercice 5 Well-composed image
We can easily observe the geometrical and topological issues appeared on the trans-

formed images such as : strike.png, circles_wc.png, and Retina_wc.png.
Hereafter, we apply the notion of regularity presented in the course to perform a

topology-preserving rotation on digital images. To this end, we consider 4-connectivity
for both object and background of binary images, namely well-composed images.

Let start with the verification of such images. We recall that, a binary image is well-

composed if it does not contain the forbidden configuration (up to symmetries) :
Complete the file exo5.py and run to test it. Here are the results you must obtain

when running the program for the well-composed verification of the following images.

Image’s filename well-composed
Retina.png 7

Retina_wc.png 3

circles.png 7

circles_wc.png 3

Optional : If you want to display the connected components in a given binary image,
you can use the following function in OpenCV.

#computes the connected components labeled image of binary image.
cv.connectedComponents(image[, labels[, connectivity[, ltype]]])

-> retval, labels

Hereafter, examples of result obtained on running the connected components on two
different images.

circles_wc.png retina_wc.png

You can run the code in exo4.py to rotate the well-composed images and observe
the number of connected components before and after the rotation. Normally, it is not
preserved. To perform a topology-preserving rotation of digital images, we will need the
notion of regularity.

4

Exercice 6 Regularization of well-composed image
As presented in the course, regular images allow to preserve their topology under any

rigid motion and thus rotation. One solution to make a well-composed image I become
a regular image is to upsample I by twice. More precisely, a pixel p ∈ I turns to 2 × 2
pixel in the generated regular image. Note that the method works if and only if I is
well-composed.

A function called createRegularImage is defined in exo6.py to upsample a well-
composed image. Complete this file exo6.py and run to test it.

Optional : If you want to check the topology-preserving rotation, we can use the code
in exo4.py to rotate an image and the cv.connectedComponents of OpenCV to show
the connected component before and after the rotation. Note that, as mentioned in the
course, to avoid the incomplete and ambiguous issues of color in the transformed
image, we consider hereafter the backward rotation to generate the transformed results.
The example code is given in exo7.py.

Here are the results you must obtain when testing the topology-preserving rotations
in exo7.py on different images.

circles_wc.png Backward transformation Transf. on regular image

retina_wc.png Backward transformation Transf. on regular image

5

