(Practical and Computational) introduction to Optimal Transport

Laetitia Chapel (IRISA, Obelix team - Institut Agro Rennes-Angers)

Need for a « meaningful » measure of distance between probability measures

Continuous probability distributions

$$\mu_x$$
 and $\mu_y \in \mathscr{P}(\mathbb{R})$

$$\mu_{x}(S) = \int_{S} \rho_{x}(x) dx$$

with ρ_x assigning a proba density to every point

2d densities

$$egin{align} \mu_X &= \sum_{i \equiv 1}^n h_i \delta_{m{x}_i} \ \mu_Y &= \sum_{j=1}^n g_j \delta_{m{y}_j} \end{aligned}$$

Need for a « meaningful » measure of distance between probability measures

Continuous probability distributions

$$\mu_x$$
 and $\mu_y \in \mathscr{P}(\mathbb{R})$

$$\mu_{x}(S) = \int_{S} \rho_{x}(x) dx$$

with ρ_x assigning a proba density to every point

2d densities

$$\mu_X = \sum_{i \equiv 1}^n h_i \delta_{m{x}_i}$$
 $\mu_Y = \sum_{i = 1}^n g_i \delta_{m{y}_j}$

Need for a « meaningful » measure of distance between probability measures

Continuous probability distributions

$$\mu_x$$
 and $\mu_y \in \mathscr{P}(\mathbb{R})$

$$\mu_{x}(S) = \int_{S} \rho_{x}(x) dx$$

with ρ_x assigning a proba density to every point

2d densities

$$egin{align} \mu_X &= \sum_{i \equiv 1}^n h_i \delta_{m{x}_i} \ \mu_Y &= \sum_{j=1}^n g_j \delta_{m{y}_j} \end{aligned}$$

Need for a « meaningful » measure of distance between probability measures

Continuous probability distributions

$$\mu_x$$
 and $\mu_y \in \mathscr{P}(\mathbb{R})$

$$\mu_{x}(S) = \int_{S} \rho_{x}(x) dx$$

with ρ_x assigning a proba density to every point

2d densities

Need for a « meaningful » measure of distance between probability measures

source distribution function ρ_x target distribution function ρ_y

$$d_{L_1}(\rho_x, \rho_y) = \int_{\mathbb{R}} |\rho_x(x) - \rho_y(x)| dx$$

$$d_{L_2}(\rho_x, \rho_y) = \int_{\mathbb{R}} ||\rho_x(x) - \rho_y(x)||_2 dx$$

$$d_{KL}(\rho_x, \rho_y) = \int_{\mathbb{R}} \rho_x(x) \log\left(\frac{\rho_x(x)}{\rho_y(x)}\right) dx$$

Need for a « meaningful » measure of distance between probability measures

source distribution function ρ_x target distribution function ρ_y

$$d_{L_1}(\rho_x, \rho_y) = \int_{\mathbb{R}} |\rho_x(x) - \rho_y(x)| dx$$

$$d_{L_2}(\rho_x, \rho_y) = \int_{\mathbb{R}} ||\rho_x(x) - \rho_y(x)||_2 dx$$

$$d_{KL}(\rho_x, \rho_y) = \int_{\mathbb{R}} \rho_x(x) \log\left(\frac{\rho_x(x)}{\rho_y(x)}\right) dx$$

Probability measures are ubiquitous in data science

Bag of features [Kusner 2015]

Generative models [Rout 2022]

Optimal Transport

Lots of applications!

Wasserstein style transfer [Mroueh, 2020]

OT as a loss for classification [Frogner, 2015]

Siberian husky

Eskimo dog

Flickr: street, parade, dragon Prediction: people, protest, parade

Flickr: water, boat, ref ection, sun-shine Prediction: water, river, lake, summer;

Wasserstein GAN [Arjovsky 2017]

Wasserstein AE [Tolstikhin 2018]

Shape interpolation [Solomon, 2015]

Outline

- 1. History and basics of optimal transport
- 2. Wasserstein distances
- 3. Computational OT

Practical session (with POT toolbox)

- 4. Variants of OT: unbalanced OT and Gromov-Wasserstein
- 5. Some applications of OT in machine learning

The origins of OT

Monge

1781: How to move dirt from one place (déblais) to another (remblais) while minimizing the total effort?

Assumption: there is an effort for moving dirt, function of the quantity of dirt and of the cost for transporting one shipment of dirt from x to y

The origins of OT

Monge

1781: How to move dirt from one place (déblais) to another (remblais) while minimizing the total effort?

Assumption: there is an effort for moving dirt, function of the quantity of dirt and of the cost for transporting one shipment of dirt from x to y

Among all the possible solutions, there is one, called **optimal transport**, which is of minimal cost

The origins of OT

Monge

source distribution μ_x target distribution μ_y cost of moving from x to y c(x,y)

Minimize the overall transportation cost

$$\inf_{T \neq \mu_s = \mu_t} \int c(x, T(x)) \mu_s(x) dx$$

T is the transport **map** $T\#\mu$ is the push forward operator

The origins of OT

Monge

source distribution μ_x target distribution μ_y cost of moving from x to y c(x,y)

Minimize the overall transportation cost

$$\inf_{T \# \mu_s = \mu_t} \int c(x(T(x))\mu_s(x) dx$$
 x is transported to T(x)

T is the transport \mathbf{map} $T\#\mu$ is the push forward operator

The origins of OT

Monge

source distribution μ_x target distribution μ_y cost of moving from x to y c(x,y)

Minimize the overall transportation cost

T is the transport \mathbf{map} $T\#\mu$ is the push forward operator

Constraint:

 $T\#\mu_s=\mu_t$, i.e. no mass creation nor destruction

The origins of OT

Monge

source distribution μ_x target distribution μ_y cost of moving from x to y c(x,y)

Minimize the overall transportation cost

$$\inf_{T \neq \mu_s = \mu_t} \int c(x, T(x)) \mu_s(x) dx$$

The origins of OT

Monge

source distribution μ_x target distribution μ_y cost of moving from x to y c(x,y)

Minimize the overall transportation cost

$$\inf_{T \neq \mu_s = \mu_t} \int c(x, T(x)) \mu_s(x) dx$$

Find a permutation such that

$$\min_{\sigma} \sum_{i} c(x_i, y_{\sigma(i)})$$

+ same mass

The origins of OT

Monge

source distribution μ_x target distribution μ_y cost of moving from x to y c(x,y)

Minimize the overall transportation cost

$$\inf_{T \# \mu_s = \mu_t} \int c(\mathbf{x}, T(\mathbf{x})) \mu_s(\mathbf{x}) dx$$

Find a permutation such that

$$\min_{\sigma} \sum_{i} c(x_i, y_{\sigma(i)})$$

+ same mass

$$T(\mathbf{x_1}) = y_1, T(\mathbf{x_2}) = y_2, T(\mathbf{x_3}) = y_2, T(\mathbf{x_4}) = y_3$$

 $\sigma(1) = 1, \sigma(2) = 2, \sigma(3) = 2, \sigma(4) = 3$

The origins of OT

Monge

source distribution μ_x target distribution μ_y cost of moving from x to y c(x,y)

Minimize the overall transportation cost

$$\inf_{T \neq \mu_s = \mu_t} \int c(x, T(x)) \mu_s(x) dx$$

Find a permutation such that

$$\min_{\sigma} \sum_{i} c(x_i, y_{\sigma(i)})$$

+ same mass

The origins of OT

Monge

source distribution μ_x target distribution μ_y cost of moving from x to y c(x,y)

Minimize the overall transportation cost

$$\inf_{T \neq \mu_s = \mu_t} \int c(\mathbf{x}, T(\mathbf{x})) \mu_s(\mathbf{x}) dx$$

Find a permutation such that

$$\min_{\sigma} \sum_{i} c(x_i, y_{\sigma(i)})$$

+ same mass

Existence of the map? Unicity of the solution?

Kantorovich relaxation

Same problem, different formulation

Two discrete measures
$$\mu_X = \sum_{i=1}^n h_i \delta_{{m x}_i}$$
 and $\mu_Y = \sum_{j=1}^m g_j \delta_{{m y}_j}$

T is a probabilistic **coupling** (or OT **plan**), with **marginal** constraints $\Pi(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_{+}^{n \times m} | \mathbf{T} 1_m = \mathbf{h}, \mathbf{T}^{\top} 1_n = \mathbf{g} \right\}.$

Kantorovich relaxation

Same problem, different formulation

Two discrete measures
$$\mu_X = \sum_{i=1}^n h_i \delta_{\boldsymbol{x}_i}$$
 and $\mu_Y = \sum_{j=1}^m g_j \delta_{\boldsymbol{y}_j}$

T is a probabilistic **coupling** (or OT **plan**), with **marginal** constraints $\Pi(h, g) = \left\{ T \in \mathbb{R}_+^{n \times m} \middle| T \right\}_m = h, T^\top 1_n = g \right\}.$ It is now a matrix, or OT plan

Kantorovich relaxation

Same problem, different formulation

Two discrete measures
$$\mu_X = \sum_{i=1}^n h_i \delta_{m{x}_i}$$
 and $\mu_Y = \sum_{j=1}^m g_j \delta_{m{y}_j}$

T is a probabilistic **coupling** (or OT **plan**), with **marginal** constraints $\Pi(h, g) = \left\{ T \in \mathbb{R}_+^{n \times m} \middle| T \middle|_m = h, T^\top \middle|_n = g \right\}.$ It is now a matrix, or OT plan

$$oldsymbol{\Pi(oldsymbol{h},oldsymbol{g})} = \left\{oldsymbol{T} \in \mathbb{R}_+^{n imes m} | oldsymbol{T} 1_m = oldsymbol{h}, oldsymbol{T}^ op 1_m = oldsymbol{g}
ight\}$$

	<i>1</i>	1110			
_	$\frac{1}{4}$	0	0	$\left \frac{1}{4} \right $	_
	0	$\frac{1}{4}$	0	$\frac{1}{4}$	$\sum T_{ij} = h$
	0	$\frac{1}{4}$	0	$\begin{bmatrix} \frac{1}{4} \\ 1 \end{bmatrix}$	j
	0	0	$\frac{1}{4}$	$\frac{1}{4}$	
\boldsymbol{g}	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$		
•		T_{ij}	=g	η_j	

Kantorovich relaxation

Same problem, different formulation

Two discrete measures
$$\mu_X = \sum_{i=1}^n h_i \delta_{{m x}_i}$$
 and $\mu_Y = \sum_{j=1}^m g_j \delta_{{m y}_j}$

T is a probabilistic **coupling** (or OT **plan**), with **marginal** constraints $\Pi(\mathbf{h}, \mathbf{g}) = \{\mathbf{T} \in \mathbb{R}_+^{n \times m} | \mathbf{T} \mathbf{1}_m = \mathbf{h}, \mathbf{T}^\top \mathbf{1}_n = \mathbf{g} \}$. It is now a matrix, or OT plan

$$oldsymbol{\Pi(oldsymbol{h},oldsymbol{g})} = \left\{oldsymbol{T} \in \mathbb{R}_+^{n imes m} | oldsymbol{T} 1_m = oldsymbol{h}, oldsymbol{T}^ op 1_m = oldsymbol{g}
ight\}$$

	$I^{\dagger *}$	ma	trix	h
_	$\frac{1}{4}$	0	0	$\left[\begin{array}{c} \frac{1}{4} \end{array}\right]$
	0	$\frac{1}{4}$	0	$\left rac{1}{4} \right \sum T_{ij} = h_i$
-	0	$\frac{1}{4}$	0	$\frac{1}{4}$ j
	0	0	$\frac{1}{4}$	$\frac{4}{\frac{1}{4}}$ no mass creation, nor destruction
3	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	

Kantorovich relaxation

Same problem, different formulation

The Kantorovitch relaxation aims to solve

$$OT(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j}$$

with the constraint
$$\Pi(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_+^{n \times m} | \mathbf{T} 1_m = \mathbf{h}, \mathbf{T}^\top 1_n = \mathbf{g} \right\}.$$

Kantorovich relaxation

Same problem, different formulation

The Kantorovitch relaxation aims to solve

$$\mathrm{OT}(m{h}, m{g}) = \min_{m{T} \in \Pi(m{h}, m{g})} \left\langle m{C}, m{T} \right\rangle = \min_{m{T} \in \Pi(m{h}, m{g})} \ \sum_{i,j} C_{i,j} T_{i,j}$$

with the constraint
$$\Pi(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_+^{n \times m} | \mathbf{T} 1_m = \mathbf{h}, \mathbf{T}^\top 1_n = \mathbf{g} \right\}.$$

The coupling matrix T always exists as soon as $\Pi(h,g)$ is not empty

Different scenarios for Kantorovitch

Figure 2.5: Schematic viewed of input measures (α, β) and couplings $\mathcal{U}(\alpha, \beta)$ encountered in the three main scenarios for Kantorovich OT. Chapter 5 is dedicated to the semidiscrete setup.

Illustration from [Peyré and Cuturi, 2019]

Outline

- 1. History and basics of optimal transport
- 2. Wasserstein distances
- 3. Computational OT

Practical session (with POT toolbox)

- 4. Variants of OT: unbalanced OT and Gromov-Wasserstein
- 5. Some applications of OT in machine learning

Discrete measures

$$\mathrm{W}_p(extbf{ extit{h}}, extbf{ extit{g}}) = \min_{\left\{ extbf{ extit{T}} 1_m = extbf{ extit{h}}
ight\}} \left(\sum_{i,j} d(extbf{ extit{x}}_i, extbf{ extit{y}}_j)^p T_{i,j}
ight)^{1/p}$$

$$W_p(\boldsymbol{\rho_0}, \boldsymbol{\rho_1}) = \min_{\left\{ \int_{\mathbb{R}} T(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = \boldsymbol{\rho_0}(\boldsymbol{x}), \int_{\mathbb{R}} T(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} = \boldsymbol{\rho_1}(\boldsymbol{y}) \right\}} \left(\int \int_{\mathbb{R}^2} d(\boldsymbol{x}, \boldsymbol{y})^p dT(\boldsymbol{x}, \boldsymbol{y}) \right)^{1/p}$$

Discrete measures

$$\mathbf{W}_p(m{h},m{g}) = \min_{\left\{m{T} \mathbf{1}_m = m{h}, m{T}^ op \mathbf{1}_n = m{g}
ight\}} \left(\sum_{i,j} m{d}(m{x}_i, y_j)^p m{T}_{i,j}
ight)^{1/p}$$
 must be a distance

$$W_p(\boldsymbol{\rho_0}, \boldsymbol{\rho_1}) = \min_{\left\{\int_{\mathbb{R}} T(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = \boldsymbol{\rho_0}(\boldsymbol{x}), \int_{\mathbb{R}} T(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} = \boldsymbol{\rho_1}(\boldsymbol{y})\right\}} \left(\int \int_{\mathbb{R}^2} d(\boldsymbol{x}, \boldsymbol{y})^p dT(\boldsymbol{x}, \boldsymbol{y})\right)^{1/p}$$

Discrete measures

$$W_p(\textbf{h}, \textbf{g}) = \min_{\left\{ \textbf{T} 1_m = \textbf{h}, \textbf{T}^\top 1_n = \textbf{g} \right\}} \left(\sum_{i,j} d(x_i, y_i)^p \Gamma_{i,j} \right)^{defined as the p-wasserstein distance} \text{(sometimes to the power of p } W_p^p \text{)}$$
 must be a distance

$$W_p(\boldsymbol{\rho_0}, \boldsymbol{\rho_1}) = \min_{\left\{ \int_{\mathbb{R}} T(\boldsymbol{x}, \boldsymbol{y}) dy = \boldsymbol{\rho_0}(\boldsymbol{x}), \int_{\mathbb{R}} T(\boldsymbol{x}, \boldsymbol{y}) dx = \boldsymbol{\rho_1}(\boldsymbol{y}) \right\}} \left(\int \int_{\mathbb{R}^2} d(\boldsymbol{x}, \boldsymbol{y})^p dT(\boldsymbol{x}, \boldsymbol{y}) \right)^{1/p}$$

Discrete measures $W_p(\textbf{h},\textbf{g}) = \min_{\left\{T1_m = \textbf{h}, T^\top 1_n = \textbf{g}\right\}} \left(\sum_{i,j} d(x_i,y_i)^p \Gamma_{i,j}\right)^{1/p} \text{ defined as the p-wasserstein distance (sometimes to the power of p} W_p^p)$ must be a distance

$$W_p(
ho_0,
ho_1) = \min_{\left\{\prod_{\mathbb{R}} T(x,y) dy =
ho_0(x) \bigcap_{\mathbb{R}} T(x,y) dx =
ho_1(y)\right\}} \left(\int \int_{\mathbb{R}^2} d(x,y)^p dT(x,y) \right)^{1/p}$$
 marginal constraints

Discrete measures $W_p(\textbf{h},\textbf{g}) = \min_{\left\{T1_m = \textbf{h}, T^\top 1_n = \textbf{g}\right\}} \left(\sum_{i,j} d(x_i,y_i)^p \Gamma_{i,j}\right)^{defined as the p-wasserstein distance} \text{(sometimes to the power of p } W_p^p\text{)}$ must be a distance

Continuous measures

$$W_p(
ho_0,
ho_1) = \min_{\left\{\left(\mathbb{R}\,T(x,y)dy=
ho_0(x)\right)\int_{\mathbb{R}}T(x,y)dx=
ho_1(y)
ight\}} \left(\int\int_{\mathbb{R}^2}d(x,y)^pdT(x,y)
ight)^{1/p}$$
 marginal constraints

When d(x,y) is a general cost, we recover the Kantorovitch formulation

$$\mathrm{W}_p(extbf{ extit{h}}, extbf{ extit{g}}) = \min_{\left\{ extbf{ extit{T}} 1_m = extbf{ extit{h}}
ight\}} \left(\sum_{i,j} d(extbf{ extit{x}}_i, extbf{ extit{y}}_j)^p T_{ extbf{ extit{i}}, extbf{ extit{j}}}
ight)^{1/p}$$

Some properties

Is a distance when $p \ge 1$

Also known as the Earth Mover Distance when $p=1\,$ [Rubner 2000]

Admits a dual formulation

Is a linear problem with linear constraints: $O(n^3)$ complexity

Sparsity of the transport plan

If n=m and $g_i=h_j=\frac{1}{n}$, then there are exactly n non-null values for the coupling

Otherwise, there are at most n+m+1 non-null values

Sparsity of the transport plan

If n=m and $g_i=h_j=\frac{1}{n}$, then there are exactly n non-null values for the coupling

Otherwise, there are at most n+m+1 non-null values

OT cost = minimal cost of coupling

Sparsity of the transport plan

If n=m and $g_i=h_j=\frac{1}{n}$, then there are exactly n non-null values for the coupling

Otherwise, there are at most n+m+1 non-null values

Sparsity of the transport plan

If n = m and $g_i = h_j = \frac{1}{n}$, then there are exactly n non-null values for the coupling

Otherwise, there are at most n+m+1 non-null values

In this case, the Monge and Kantorovitch solutions are equivalent

Sparsity of the transport plan

If n=m and $g_i=h_j=\frac{1}{n}$, then there are exactly n non-null values for the coupling Otherwise, there are at most n+m+1 non-null values

Sparsity of the transport plan

If n = m and $g_i = h_j = \frac{1}{n}$, then there are exactly n non-null values for the coupling mass splitting

Otherwise, there are at most n+m+1 non-null values

In this case, the Monge problem may have no solution

Wasserstein Geometry

Geodesics [Ambrosio 2005]

Geodesics are shortest curves that link two distributions $((1-t)id + tT)#\mu$

The space of probability distributions with a Wasserstein metric defines a geodesic space

Wasserstein Geometry

Geodesics [Ambrosio 2005]

Geodesics are shortest curves that link two distributions $((1-t)id + tT)#\mu$

The space of probability distributions with a Wasserstein metric defines a geodesic space

Wasserstein Geometry

Barycenters [Agueh 2011]

(Empirical) Wasserstein Fréchet mean

$$\operatorname{arg\,min}_{\boldsymbol{b}} \lambda_i W_p^p(\boldsymbol{h_i}, \boldsymbol{b})$$

where λ_i are the weights associated ($\sum \lambda_i = 1$)

Wasserstein Geometry

Barycenters [Agueh 2011]

(Empirical) Wasserstein Fréchet mean

$$\operatorname{arg\,min}_{\boldsymbol{b}} \lambda_i W_p^p(\boldsymbol{h_i}, \boldsymbol{b})$$

where λ_i are the weights associated ($\sum \lambda_i = 1$)

Barycenters with free support (fixed weights)

$$\arg\min_{\{\boldsymbol{x_i}\}} \lambda_i W_p^p(\mu_i, \mu)$$

such that
$$\mu = \sum_{i}^{n} h_{i} \delta_{\boldsymbol{x_{i}}}$$

Outline

- 1. History and basics of optimal transport
- 2. Wasserstein distances

3. Computational OT

Practical session (with POT toolbox)

- 4. Variants of OT: unbalanced OT and Gromov-Wasserstein
- 5. Some applications of OT in machine learning

Outline

$$OT(\mathbf{h}, \mathbf{g}) = \min_{\mathbf{T} \in \Pi(\mathbf{h}, \mathbf{g})} \langle \mathbf{C}, \mathbf{T} \rangle = \min_{\mathbf{T} \in \Pi(\mathbf{h}, \mathbf{g})} \sum_{i,j} C_{i,j} T_{i,j} \rightarrow n \times m \text{ variables, } n + m \text{ constraints, } O(n^3)$$

Outline

$$OT(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j} \rightarrow n \times m \text{ variables, } n+m \text{ constraints, } O(n^3)$$

Easier in some special cases (e.g. 1d or Gaussian distributions)

Need for solvers that provide approximate solutions! See [Peyré et Cuturi 2019]

- 1. Sliced Wasserstein
- 2. Regularized OT $\min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \Omega(\boldsymbol{T})$

OT is a linear problem

$$OT(\mathbf{h}, \mathbf{g}) = \min_{\mathbf{T} \in \Pi(\mathbf{h}, \mathbf{g})} \langle \mathbf{C}, \mathbf{T} \rangle = \min_{\mathbf{T} \in \Pi(\mathbf{h}, \mathbf{g})} \sum_{i,j} C_{i,j} T_{i,j} \rightarrow n \times m \text{ variables, } n + m \text{ constraints, } O(n^3)$$

We can rewrite the OT problem in a vectorial form

$$\min_{oldsymbol{t} \geq 0} F(oldsymbol{t}) = \underbrace{oldsymbol{c}^{ op} oldsymbol{t}}_{ ext{vectorized OT cost}}^{ op} \ ext{such that}$$
 $oldsymbol{Ht} = [oldsymbol{h}, oldsymbol{g}]^{ op}$

with \boldsymbol{H} a $(n+m)\times nm$ matrix that encodes the constraints

OT is a linear problem

$$OT(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j} \rightarrow n \times m \text{ variables, } n+m \text{ constraints, } O(n^3)$$

We can rewrite the OT problem in a vectorial form

$$\min_{oldsymbol{t} \geq 0} F(oldsymbol{t}) = \underbrace{oldsymbol{c}^{ op} oldsymbol{t}}_{ ext{vectorized OT cost}}$$
 $\operatorname{such that}$
 $oldsymbol{Ht} = [oldsymbol{h}, oldsymbol{g}]^{ op}$

with H a $(n+m)\times nm$ and matrices of ones matrix that encodes the constraints

OT is a linear problem

$$OT(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j} \rightarrow n \times m \text{ variables, } n+m \text{ constraints, } O(n^3)$$

We can rewrite the OT problem in a vectorial form

$$\min_{oldsymbol{t} \geq 0} F(oldsymbol{t}) = \underbrace{oldsymbol{c}^{ op} oldsymbol{t}}_{ ext{vectorized OT cost}}$$
 $\operatorname{such that}$
 $oldsymbol{H} oldsymbol{t} = [oldsymbol{h}, oldsymbol{g}]^{ op}$

with
$$\boldsymbol{H}$$
 a $(n+m)\times nm$ matrix that encodes the constraints

Dual formulation

$$egin{array}{ll} \max_{m{h} \geq 0} & D(m{t}) = [m{h}, m{g}]^{ op} m{h} \ & ext{such that} \ & m{H}^{ op} m{h} \leq m{c} \end{array}$$

with \boldsymbol{h} a (n+m)vector

OT is a linear problem

$$OT(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j} \rightarrow n \times m \text{ variables, } n+m \text{ constraints, } O(n^3)$$

We can rewrite the OT problem in a vectorial form

$$egin{array}{ll} \min_{oldsymbol{t} \geq 0} & F(oldsymbol{t}) = & oldsymbol{c}^ op oldsymbol{t} \ & ext{vectorized OT cost} \ & ext{such that} \ & oldsymbol{H} oldsymbol{t} = [oldsymbol{h}, oldsymbol{g}]^ op \end{array}$$

with \boldsymbol{H} a $(n+m)\times nm$ matrix that encodes the constraints

Dual formulation

$$\max_{\boldsymbol{h} \geq 0} \quad D(\boldsymbol{t}) = [\boldsymbol{h}, \boldsymbol{g}]^{\top} \boldsymbol{h}$$
 such that
$$\boldsymbol{H}^{\top} \boldsymbol{h} \leq \boldsymbol{c}$$

 $h[1:n]+h[n+1:m] \leq c_{ii}$

with h a (n+m) vector

Wasserstein on the line

When c(x, y) is a strictly convex function (e.g. quadratic cost), and when $x, y \in \mathbb{R}$, there exists a closed form

$$\forall p \ge 1, W_p^p(\mu_x, \mu_y) = \int_0^1 |F^{-1}(\mu_x) - F^{-1}(\mu_y)|^p du$$

where F^{-1} is the quantile function.

Wasserstein on the line

When c(x, y) is a strictly convex function (e.g. quadratic cost), and when $x, y \in \mathbb{R}$, there exists a closed form

$$\forall p \ge 1, W_p^p(\mu_x, \mu_y) = \int_0^1 |F^{-1}(\mu_x) - F^{-1}(\mu_y)|^p du$$

where F^{-1} is the quantile function.

For empirical distributions, it comes down to sorting the 2 distributions

 $O(n \log n)$ algorithm

Wasserstein on the line

When c(x, y) is a strictly convex function (e.g. quadratic cost), and when $x, y \in \mathbb{R}$, there exists a closed form

$$\forall p \ge 1, W_p^p(\mu_x, \mu_y) = \int_0^1 |F^{-1}(\mu_x) - F^{-1}(\mu_y)|^p du$$

where F^{-1} is the quantile function.

For empirical distributions, it comes down to sorting the 2 distributions

 $O(n \log n)$ algorithm

Wasserstein between Gaussians

When $\mu_x = \mathcal{N}(m_x, \Sigma_x)$ and $\mu_y = \mathcal{N}(m_y, \Sigma_y)$, there also exists a closed form

$$W_2^2(\mu_x, \mu_y) = ||m_x - m_y||^2 + \mathcal{B}(\Sigma_x, \Sigma_y)^2$$
 with

$$\mathcal{B}(\Sigma_x, \Sigma_y)^2 = \operatorname{trace}(\Sigma_x + \Sigma_y - 2(\Sigma_x^{1/2} \Sigma_y \Sigma_x^{1/2})^{1/2})$$

Sliced Wasserstein

Assume that
$$n = m$$
 and $f_i = g_j = \frac{1}{n}$ (not compulsory)

$$W_2^2(\mu_x, \mu_y)$$
?

We look for a (fast) approximation $SW_2^2(\mu_{\rm X},\mu_{\rm Y})$

Sliced Wasserstein

Assume that
$$n = m$$
 and $f_i = g_j = \frac{1}{n}$ (not compulsory)

$$P^{\phi}(x) = \langle x, \phi \rangle, \ \phi \sim Unif(S^{d-1})$$

 $W_p^p(P^{\phi_1}\#\mu_x,P^{\phi_1}\#\mu_y)$ has a closed form (O(n log n))

Sliced Wasserstein

Assume that
$$n = m$$
 and $f_i = g_j = \frac{1}{n}$ (not compulsory)

$$P^{\phi}(x) = \langle x, \phi \rangle, \ \phi \sim Unif(S^{d-1})$$

 $W_p^p(P^{\phi_1}\#\mu_x,P^{\phi_1}\#\mu_y)$ has a closed form (O(n log n))

Sliced Wasserstein

Assume that
$$n = m$$
 and $f_i = g_j = \frac{1}{n}$ (not compulsory)

$$P^{\phi}(x) = \langle x, \phi \rangle, \ \phi \sim Unif(S^{d-1})$$
 the unit sphere

$$W_p^p(P^{\phi_1}\#\mu_x,P^{\phi_1}\#\mu_y)$$
 has a closed form (O(n log n))

The sliced Wasserstein distance is defined as

$$SW_p^p(\mu_x, \mu_y) = \frac{1}{L} \sum_{\ell=1}^L W_p^p(P^{\phi_\ell} \# \mu_x, P^{\phi_\ell} \# \mu_y)$$

Sliced Wasserstein

Assume that
$$n = m$$
 and $f_i = g_j = \frac{1}{n}$ (not compulsory)

The sliced Wasserstein distance is defined as [Rabin 2012]

$$SW_p^p(\mu_x, \mu_y) = \frac{1}{L} \sum_{\ell=1}^L W_p^p(P^{\phi_\ell} \# \mu_x, P^{\phi_\ell} \# \mu_y)$$

Properties

- 1. It is a distance
- 2. Similar topological properties than Wasserstein
- 3. Computation in $O(Ln \log n)$

Source: POT

Sliced Wasserstein

Assume that
$$n=m$$
 and $f_i=g_j=\frac{1}{n}$ (not compulsory)

The sliced Wasserstein distance is defined as [Rabin 2012]

$$SW_p^p(\mu_x, \mu_y) = \frac{1}{L} \sum_{\ell=1}^L W_p^p(P^{\phi_\ell} \# \mu_x, P^{\phi_\ell} \# \mu_y)$$

Properties

- 1. It is a distance
- 2. Similar topological properties than Wasserstein
- 3. Computation in $O(Ln \log n)$

But

- Does not provide the transport plan
- Can not be optimized
- Issues when d is large

Sliced Wasserstein

The sliced Wasserstein distance is defined as

$$SW_p^p(\mu_x, \mu_y) = \frac{1}{L} \sum_{\ell=1}^L W_p^p(P^{\phi_\ell} \# \mu_x, P^{\phi_\ell} \# \mu_y)$$

Several variants exists

- 1. In different geometric spaces (sphere, hyperbolic spaces)
- 2. With projections onto curves, different samplings of the line

An example: sliced Wasserstein Generalized Geodesic (SWGG) [Mahey 2023]

$$\min -SWGG_2^2(\mu_x, \mu_y) = \min_{\phi \in S^{d-1}} \left(\frac{1}{n} \sum_{i=1}^n \| \mathbf{x}_{\sigma_{\phi(i)}} - \mathbf{y}_{\tau_{\phi(i)}} \|_2^2 \right)$$

Regularized OT

$$OT(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j} \rightarrow n \times m \text{ variables, } n+m \text{ constraints, } O(n^3)$$

Regularized OT

$$OT(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j} \rightarrow n \times m \text{ variables, } n+m \text{ constraints, } O(n^3)$$

Regularization of OT $\min_{m{T}\in\Pi(m{h},m{g})} \langle m{C},m{T} \rangle + \lambda \Omega(m{T})$

Why?

- define fast algorithms for solving the problem
- better defined problem
- encode prior knowledge on the data (e.g. group sparsity constraint)

Regularized OT

$$OT(\mathbf{h}, \mathbf{g}) = \min_{\mathbf{T} \in \Pi(\mathbf{h}, \mathbf{g})} \langle \mathbf{C}, \mathbf{T} \rangle = \min_{\mathbf{T} \in \Pi(\mathbf{h}, \mathbf{g})} \sum_{i,j} C_{i,j} T_{i,j} \rightarrow n \times m \text{ variables, } n + m \text{ constraints, } O(n^3)$$

Regularization of OT $\min_{m{T}\in\Pi(m{h},m{g})} \langle m{C},m{T} \rangle + \lambda \Omega(m{T})$

Entropic regularization [Cuturi 2013]

$$\Omega(T) = \sum_{i,j} T_{ij} (\log T_{ij} - 1)$$

 λ controls the « smoothing » of the solution

 $\lambda \to 0$: we recover the unconstrained solution

$$\lambda \to \infty$$
: $T = h^T Cg$

Regularized OT

$$OT(\mathbf{h}, \mathbf{g}) = \min_{\mathbf{T} \in \Pi(\mathbf{h}, \mathbf{g})} \langle \mathbf{C}, \mathbf{T} \rangle = \min_{\mathbf{T} \in \Pi(\mathbf{h}, \mathbf{g})} \sum_{i,j} C_{i,j} T_{i,j} \rightarrow n \times m \text{ variables, } n + m \text{ constraints, } O(n^3)$$

Regularization of OT $\min_{m{T}\in\Pi(m{h},m{g})} \langle m{C},m{T} \rangle + \lambda \Omega(m{T})$

Entropic regularization [Cuturi 2013]

$$\Omega(T) = \sum_{i,j} T_{ij} (\log T_{ij} - 1)$$

Iterative algorithm with deterministic updates

$$m{T}_{\lambda}^{(k+1)} = \mathrm{diag}\left(m{u}^{(k)}
ight) \exp\left(-rac{m{C}}{\lambda}
ight) \mathrm{diag}\left(m{v}^{(k)}
ight)$$

Sinkhorn theorem: $u^{(k)}$ and $v^{(k)}$ exist and are unique

 λ

Regularized OT

Entropic regularization of OT $T_{\lambda} = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \sum_{i,j} T_{ij} (\log T_{ij} - 1)$

Pro

- Complexity $O(n^2)$
- Smoothes the coupling
- Amenable to optimization, GPU friendly

Cons

- Smoothes the coupling
- Parameter to tune, lots of iterations for small λ
- Is not a distance: $\mathrm{OT}_{\lambda}(h,h) = \langle \pmb{C},\pmb{T}_{\pmb{\lambda}}\rangle \neq 0 \Rightarrow \mathsf{Sinkhorn} \; \mathsf{divergence} \; [\mathsf{Feydy} \; \mathsf{2019}]$ $S_{\lambda}(h,g) = \mathrm{OT}_{\lambda}(h,g) \frac{1}{2}\mathrm{OT}_{\lambda}(h,h) \frac{1}{2}\mathrm{OT}_{\lambda}(g,g)$

Scalability of the algorithms

Unstable, not robust to outliers

Needs a common metric space

The Kantorovitch relaxation aims to solve

$$\mathrm{OT}(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j}$$

with the constraint
$$\Pi(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_+^{n \times m} | \mathbf{T} 1_m = \mathbf{h}, \mathbf{T}^\top 1_n = \mathbf{g} \right\}.$$

Scalability of the algorithms

Unstable, not robust to outliers

Needs a common metric space

The Kantorovitch relaxation aims to solve

$$OT(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j}$$

with the constraint
$$\Pi(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_+^{n \times m} | \mathbf{T} 1_m = \mathbf{h}, \mathbf{T}^\top 1_n = \mathbf{g} \right\}.$$

Linear problem with $n \times m$ variables, n + m constraints

Scalability of the algorithms

Unstable, not robust to outliers

Needs a common metric space

The Kantorovitch relaxation aims to solve

$$OT(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j}$$

with the constraint
$$\Pi(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_+^{n \times m} | \mathbf{T} 1_m = \mathbf{h}, \mathbf{T}^\top 1_n = \mathbf{g} \right\}.$$

Global optimization problem with constraints $\mathbf{T}1_m = \mathbf{h}, \mathbf{T}^{\top}1_n = \mathbf{g}$

Scalability of the algorithms

Unstable, not robust to outliers

Needs a common metric space

The Kantorovitch relaxation aims to solve

$$OT(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j}$$

with the constraint
$$\Pi(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_+^{n \times m} | \mathbf{T} 1_m = \mathbf{h}, \mathbf{T}^\top 1_n = \mathbf{g} \right\}.$$

Cost
$$c(x, y)$$

Outline

- 1. History and basics of optimal transport
- 2. Wasserstein distances
- 3. Computational OT

Practical session (with POT toolbox)

- 4. Variants of OT: unbalanced OT and Gromov-Wasserstein
- 5. Some applications of OT in machine learning

POT toolbox

POT: Python Optimal Transport

Quick start guide
API and modules
Examples gallery
Releases
Contributors
Contributing to POT
Code of conduct

Python Optimal Transport

Versions: Release Development Code

https://pythonot.github.io/

Outline

- 1. History and basics of optimal transport
- 2. Wasserstein distances
- 3. Computational OT

Practical session (with POT toolbox)

- 4. Variants of OT: unbalanced OT and Gromov-Wasserstein
- 5. Some applications of OT in data science / machine learning

Aim of OT: find a « meaningful » measure of distance between probability measures

Aim of OT: find a « meaningful » measure of distance between probability measures

Monge

Minimize the overall transportation cost

$$\inf_{T\#\mu_s=\mu_t}\int c(x,T(x)) u_s(x) dx$$

Aim of OT: find a « meaningful » measure of distance between probability measures

Minimize the overall transportation cost

$$\inf_{T\#\mu_s=\mu_t}\int c(x,T(x))u_s(x)dx$$

$$OT(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \langle \boldsymbol{G}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j}$$

 $\mathrm{OT}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \langle \boldsymbol{U},\boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j}$ Tis an OT plan or coupling matrix (always exists) with the constraint $\Pi(\boldsymbol{h},\boldsymbol{g}) = \left\{ \boldsymbol{T} \in \mathbb{R}_+^{n \times m} | \boldsymbol{T} \boldsymbol{1}_m = \boldsymbol{h}, \boldsymbol{T}^{\top} \boldsymbol{1}_n = \boldsymbol{g} \right\}$. Kantorovich

Aim of OT: find a « meaningful » measure of distance between probability measures

Minimize the overall transportation cost

$$\inf_{T\#\mu_s=\mu_t}\int c(x,T(x))u_s(x)dx$$

$$OT(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \langle \boldsymbol{G}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \sum_{i \neq j} C_{i,j} T_{i,j}$$

 $\mathrm{OT}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \langle \boldsymbol{G}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h},\boldsymbol{g})} \sum_{i,j} C_{i,j} T_{i,j}$ Tis an OT plan or coupling matrix (always exists) with the constraint $\Pi(\boldsymbol{h},\boldsymbol{g}) = \left\{ \boldsymbol{T} \in \mathbb{R}_+^{n \times m} | \boldsymbol{T} \boldsymbol{1}_m = \boldsymbol{h}, \boldsymbol{T}^{\top} \boldsymbol{1}_n = \boldsymbol{g} \right\}$. Kantorovich

Linear problem with linear constraints: $O(n^3)$ complexity

Entropic-regularized OT, $\min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}, \boldsymbol{g})} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \Omega(\boldsymbol{T})$ with $\Omega(\boldsymbol{T}) = \sum_{i,j} T_{ij} (\log T_{ij} - 1)$, $O(n^2)$ complexity

Relaxing the set of constraints

$$oldsymbol{\Pi}(oldsymbol{h},oldsymbol{g}) = \left\{ oldsymbol{T} \in \mathbb{R}_+^{n imes m} | oldsymbol{T} 1_m = oldsymbol{h}, oldsymbol{T}^ op 1_n = oldsymbol{g}
ight\}.$$

Relaxing the set of constraints

$$\mathbf{\Pi}(\boldsymbol{h},\boldsymbol{g}) = \left\{ \boldsymbol{T} \in \mathbb{R}_+^{n \times m} | \boldsymbol{T} 1_m = \boldsymbol{h}, \boldsymbol{T}^{\top} 1_n = \boldsymbol{g} \right\}.$$

How to work with unnormalized histograms?

How to deal with outliers or noisy samples?

Relaxing the set of constraints

$$\mathbf{\Pi}(\boldsymbol{h},\boldsymbol{g}) = \left\{ \boldsymbol{T} \in \mathbb{R}_{+}^{n \times m} | \boldsymbol{T} 1_{m} = \boldsymbol{h}, \boldsymbol{T}^{\top} 1_{n} = \boldsymbol{g} \right\}.$$

How to work with unnormalized histograms?

→ Regularize or relax the set of constraints

Unbalanced optimal transport [Benamou 2003]

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(D_{\varphi}(\boldsymbol{T} 1_{m}, \boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top} 1_{n}, \boldsymbol{g}) \right)$$

Relaxing the set of constraints

$$oldsymbol{\Pi}(oldsymbol{h},oldsymbol{g}) = \left\{ oldsymbol{T} \in \mathbb{R}_+^{n imes m} oldsymbol{T} 1_m = oldsymbol{h}, oldsymbol{T}^ op 1_n = oldsymbol{g}
ight\}.$$

How to work with unnormalized histograms?

→ Regularize or relax the set of constraints

Unbalanced optimal transport [Benamou 2003]

$$UOT_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(D_{\varphi}(\boldsymbol{T}1_{m},\boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top}1_{n},\boldsymbol{g}) \right)$$

Relaxing the set of constraints

$$\mathbf{\Pi}(\boldsymbol{h},\boldsymbol{g}) = \left\{ \boldsymbol{T} \in \mathbb{R}_{+}^{n \times m} | \boldsymbol{T} 1_{m} = \boldsymbol{h}, \boldsymbol{T}^{\top} 1_{n} = \boldsymbol{g} \right\}.$$

How to work with unnormalized histograms?

→ Regularize or relax the set of constraints

Unbalanced optimal transport [Benamou 2003]

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(D_{\varphi}(\boldsymbol{T} 1_{m}, \boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top} 1_{n}, \boldsymbol{g}) \right)$$

Relaxing the set of constraints

$$oldsymbol{\Pi}(oldsymbol{h},oldsymbol{g}) = \left\{ oldsymbol{T} \in \mathbb{R}_+^{n imes m} oldsymbol{T} 1_m = oldsymbol{h}, oldsymbol{T}^ op 1_n = oldsymbol{g}
ight\}$$

How to work with unnormalized histograms?

→ Regularize or relax the set of constraints

Unbalanced optimal transport [Benamou 2003]

$$ext{UOT}_{\lambda}(oldsymbol{h},oldsymbol{g}) = \min_{oldsymbol{T} \geq 0} \left\langle oldsymbol{C},oldsymbol{T}
ight
angle + \lambda \left(oldsymbol{D}_{arphi}(oldsymbol{T} \mathbf{1}_m,oldsymbol{h}) + oldsymbol{D}_{arphi}(oldsymbol{T}^{ op} \mathbf{1}_n,oldsymbol{g})
ight)$$

Relaxing the set of constraints

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(D_{\varphi}(\boldsymbol{T}1_{m},\boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top}1_{n},\boldsymbol{g}) \right) + \lambda_{\epsilon}\Omega(\boldsymbol{T})$$

When $\lambda = 0$, no mass is transported and $\lambda \to \infty$, we recover the *balanced* OT problem (when $\|h\|_1 = \|g\|_1$)

Relaxing the set of constraints

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \left\langle \boldsymbol{C}, \boldsymbol{T} \right\rangle + \lambda \left(D_{\varphi}(\boldsymbol{T}1_{m},\boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top}1_{n},\boldsymbol{g}) \right) + \lambda_{\epsilon}\Omega(\boldsymbol{T})$$

entropic penalization

When $\lambda = 0$, no mass is transported and $\lambda \to \infty$, we recover the *balanced* OT problem (when $\|h\|_1 = \|g\|_1$)

Relaxing the set of constraints

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \left\langle \boldsymbol{C}, \boldsymbol{T} \right\rangle + \lambda \left(D_{\varphi}(\boldsymbol{T}1_{m},\boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top}1_{n},\boldsymbol{g}) \right) + \lambda_{\epsilon}\Omega(\boldsymbol{T})$$

entropic penalization

When $\lambda = 0$, no mass is transported and $\lambda \to \infty$, we recover the *balanced* OT problem (when $\|h\|_1 = \|g\|_1$)

Relaxing the set of constraints

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(D_{\varphi}(\boldsymbol{T} 1_{m}, \boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top} 1_{n}, \boldsymbol{g}) \right) + \lambda_{\epsilon} \Omega(\boldsymbol{T})$$

When $\lambda = 0$, no mass is transported and $\lambda \to \infty$, we recover the *balanced* OT problem (when $\|h\|_1 = \|g\|_1$) We will consider several cases:

- D_{φ} is L1: Partial OT problem
- D_{ω} is L2
- D_{arphi} is KL

Partial Optimal Transport (D_{φ} is L1)

Fix the amount of mass s to be transported

$$\mathbf{\Pi}^{u}(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_{+}^{n \times m} | \mathbf{T} \mathbf{1}_{m} \leq \mathbf{h}, \mathbf{T}^{\top} \mathbf{1}_{n} \leq \mathbf{g}, \mathbf{1}_{n}^{\top} \mathbf{T} \mathbf{1}_{m} = s \right\}.$$

Unbalanced OT with L1 divergence $\mathrm{UOT}_{\lambda}(\mathbf{h}, \mathbf{g}) = \min_{\mathbf{T} \geq 0} \langle \mathbf{C}, \mathbf{T} \rangle + \lambda \left(|\mathbf{T}1_m - \mathbf{h}| + |\mathbf{T}^{\top}1_n - \mathbf{g}| \right)$

Partial Optimal Transport (D_{φ} is L1)

Fix the amount of mass s to be transported

$$\mathbf{\Pi}^{u}(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_{+}^{n \times m} | \mathbf{T} 1_{m} \leq \mathbf{h}, \mathbf{T}^{\top} 1_{n} \leq \mathbf{g}, 1_{n}^{\top} \mathbf{T} 1_{m} = s \right\}$$

Unbalanced OT with L1 divergence $\mathrm{UOT}_{\lambda}(\mathbf{h}, \mathbf{g}) = \min_{\mathbf{T} > 0} \langle \mathbf{C}, \mathbf{T} \rangle + \lambda \left(|\mathbf{T}1_m - \mathbf{h}| + |\mathbf{T}^{\top}1_n - \mathbf{g}| \right)$

Partial Optimal Transport (D_{ω} is L1)

Fix the amount of mass s to be transported

$$\mathbf{\Pi}^{u}(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_{+}^{n \times m} | \mathbf{T} 1_{m} \leq \mathbf{h}, \mathbf{T}^{\top} 1_{n} \leq \mathbf{g}, 1_{n}^{\top} \mathbf{T} 1_{m} = s \right\}$$

Unbalanced OT with L1 divergence
$$\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(|\boldsymbol{T}1_m - \boldsymbol{h}| + |\boldsymbol{T}^{\top}1_n - \boldsymbol{g}| \right)$$

Partial Optimal Transport (D_{φ} is L1)

Fix the amount of mass s to be transported

$$\mathbf{\Pi}^{u}(\mathbf{h}, \mathbf{g}) = \left\{ \mathbf{T} \in \mathbb{R}_{+}^{n \times m} | \mathbf{T} 1_{m} \leq \mathbf{h}, \mathbf{T}^{\top} 1_{n} \leq \mathbf{g}, 1_{n}^{\top} \mathbf{T} 1_{m} = s \right\}$$

Unbalanced OT with L1 divergence $\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(|\boldsymbol{T}1_m - \boldsymbol{h}| + |\boldsymbol{T}^{\top}1_n - \boldsymbol{g}| \right)$

 \rightarrow add dummy points with mass $h_{n+1} = \|\mathbf{g}\|_1 - s$ and $g_{m+1} = \|\mathbf{h}\|_1 - s$ with null cost [Chapel 2020]

Solving an exact OT problem

⇒sparsity of the solution

 D_{φ} is KL - MM algorithm

When the divergence is Kullback-Leibler

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \left\langle \boldsymbol{C}, \boldsymbol{T} \right\rangle + \lambda \left(\mathrm{KL}(\boldsymbol{T}1_m,\boldsymbol{h}) + \mathrm{KL}(\boldsymbol{T}^{\top}1_n,\boldsymbol{g}) \right)$$

 D_{ω} is KL - MM algorithm

$$KL(x,y) = \sum_{i} x_{i} \log \frac{x_{i}}{y_{j}} - x_{i} + y_{i}$$
 When the divergence is Kullback-Leibler

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(\mathrm{KL}(\boldsymbol{T}1_m, \boldsymbol{h}) + \mathrm{KL}(\boldsymbol{T}^\top 1_n, \boldsymbol{g}) \right)$$

$$D_{\varphi}$$
 is KL - MM algorithm

 $KL(x,y) = \sum_{i} x_{i} \log \frac{x_{i}}{y_{j}} - x_{i} + y_{i}$ When the divergence is Kullback-Leibler

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(\mathrm{KL}(\boldsymbol{T}1_m,\boldsymbol{h}) + \mathrm{KL}(\boldsymbol{T}^{\top}1_n,\boldsymbol{g}) \right)$$

Majorization-minimisation

define a surrogate of the obj.

optimize the surrogate

 D_{φ} is KL - MM algorithm

$$D_{\varphi} \text{ is KL - MM algorithm}$$

$$KL(x,y) = \sum_{i} x_{i} \log \frac{x_{i}}{y_{j}} - x_{i} + y_{i} \log \frac{x_{i}}{y_{j}}$$

$$When the divergence is Kullback-Leibler$$

$$UOT_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T}>0} \langle \boldsymbol{C},\boldsymbol{T}\rangle + \lambda \left(KL(\boldsymbol{T}1_{m},\boldsymbol{h}) + KL(\boldsymbol{T}T_{n},\boldsymbol{g})\right)$$

 $\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(\mathrm{KL}(\boldsymbol{T}1_m,\boldsymbol{h}) + \mathrm{KL}(\boldsymbol{T}^{\top}1_n,\boldsymbol{g}) \right)$

 10^{-1} 10^{0}

KL-penalized UOT

Iterative algorithm that resembles the Sinkhorn algorithm [Chapel 2021]

$$m{T}^{(k+1)} = \operatorname{diag}\left(rac{m{g}}{m{T}^{(k)} 1_m}
ight)^{rac{1}{2}} \left(m{T}^{(k)} \odot \exp\left(-rac{m{C}}{2\lambda}
ight)
ight) \operatorname{diag}\left(rac{m{h}}{m{T}^{(k) op} 1_n}
ight)^{rac{1}{2}}$$

Majorization-minimisation

define a surrogate of the obj

optimize the surrogate

 D_{φ} is KL - MM algorithm

 $KL(x,y) = \sum_{i} x_{i} \log \frac{x_{i}}{y_{j}} - x_{i} + y_{i} \log \frac{x_{i}}{y_{j}}$ When the divergence is Kullback-Leibler

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(\mathrm{KL}(\boldsymbol{T}1_m,\boldsymbol{h}) + \mathrm{KL}(\boldsymbol{T}^\top 1_n,\boldsymbol{g}) \right)$$

 10^{-1} 10^{0}

KL-penalized UOT

Iterative algorithm that resembles the Sinkhorn algorithm [Chapel 2021]

$$m{T}^{(k+1)} = \mathrm{diag}\left(rac{m{g}}{m{T}^{(k)} 1_m}
ight)^{rac{1}{2}} \left(m{T}^{(k)} \odot \mathrm{exp}\left(-rac{m{C}}{2\lambda}
ight)
ight) \mathrm{diag}\left(rac{m{h}}{m{T}^{(k) op} 1_n}
ight)^{rac{1}{2}}$$

Majorization-minimisation

define a surrogate of the obj

optimize the surrogate

Smoothes the OT plan Amenable to GPU computation

 D_{φ} is L2 - MM algorithm

We can also define an iterative algorithm for a L2 divergence

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(\| \boldsymbol{T}^{\top} \boldsymbol{1}_{m} - \boldsymbol{h} \|_{2}^{2} + \| \boldsymbol{T}^{\top} \boldsymbol{1}_{n} - \boldsymbol{g} \|_{2}^{2} \right)$$

(another) Iterative algorithm with deterministic updates [Chapel 2021]

$$\boldsymbol{T}^{(k+1)} = \boldsymbol{T}^{(k)} \odot \frac{\max(0, \boldsymbol{g}1_m^\top + 1_n \boldsymbol{h}^\top - \frac{1}{\lambda}\boldsymbol{C})}{\boldsymbol{T}^{(k)}O_m + O_n \boldsymbol{T}^{(k)}} \text{ with } O_\ell = 1_\ell 1_\ell^\top$$

 D_{φ} is L2 - MM algorithm

We can also define an iterative algorithm for a L2 divergence

$$\mathrm{UOT}_{\lambda}(\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \geq 0} \langle \boldsymbol{C}, \boldsymbol{T} \rangle + \lambda \left(\| \boldsymbol{T}^{\top} 1_m - \boldsymbol{h} \|_2^2 + \| \boldsymbol{T}^{\top} 1_n - \boldsymbol{g} \|_2^2 \right)$$

(another) Iterative algorithm with deterministic updates [Chapel 2021]

$$\boldsymbol{T}^{(k+1)} = \boldsymbol{T}^{(k)} \odot \frac{\max(0, \boldsymbol{g}1_m^\top + 1_n \boldsymbol{h}^\top - \frac{1}{\lambda}C)}{\boldsymbol{T}^{(k)}O_m + O_n \boldsymbol{T}^{(k)}} \text{ with } O_\ell = 1_\ell 1_\ell^\top$$

Smoothes the OT plan (but less than KL!)

Also amenable to GPU computation

 D_{φ} is L2 - regularization path

We can rewrite the UOT problem in a vectorial form

$$\min_{t \ge 0} \quad \underbrace{\mathbf{c}^{\top} \mathbf{t}}_{\text{OT cost}} + \lambda \quad \underbrace{D_{\varphi}(\mathbf{H} \mathbf{t} - \mathbf{y})}_{\text{deviation of the marginals}} = \min_{t \ge 0} \quad \lambda \|\mathbf{H} \mathbf{t} - \mathbf{y}\|_{2}^{2} + \mathbf{c}^{\top} \mathbf{t}$$

with $oldsymbol{y} = [oldsymbol{h}, oldsymbol{g}]^ op$

 D_{φ} is L2 - regularization path

We can rewrite the UOT problem in a vectorial form

$$\min_{\boldsymbol{t} \geq 0} \quad \underbrace{\boldsymbol{c}^{\top} \boldsymbol{t}}_{\text{OT cost}} + \lambda \quad \underbrace{D_{\varphi}(\boldsymbol{H} \boldsymbol{t} - \boldsymbol{y})}_{\text{deviation of the marginals}} = \min_{\boldsymbol{t} \geq 0}$$

with
$$oldsymbol{y} = [oldsymbol{h}, oldsymbol{g}]^ op$$

Combination of identity matrices and matrices of ones

$$= \min_{oldsymbol{t} \geq 0} || \lambda (\boldsymbol{H}) - oldsymbol{y} ||_2^2 + oldsymbol{c}^ op oldsymbol{t}$$

 D_{φ} is L2 - regularization path

We can rewrite the UOT problem in a vectorial form

$$\min_{\boldsymbol{t} \geq 0} \quad \underbrace{\boldsymbol{c}^{\top} \boldsymbol{t}}_{\text{OT cost}} + \lambda \quad \underbrace{D_{\varphi}(\boldsymbol{H} \boldsymbol{t} - \boldsymbol{y})}_{\text{deviation of the marginals}} = \min_{\boldsymbol{t} \geq 0}$$

with $oldsymbol{y} = [oldsymbol{h}, oldsymbol{g}]^ op$

Combination of identity matrices and matrices of ones

$$\lambda \| oldsymbol{H} - oldsymbol{y} \|_2^2 + oldsymbol{c}^ op oldsymbol{t}$$

(least square problem)

 D_{φ} is L2 - regularization path

We can rewrite the UOT problem in a vectorial form

$$\min_{\boldsymbol{t} \geq 0} \quad \underbrace{\boldsymbol{c}^{\top} \boldsymbol{t}}_{\text{OT cost}} + \lambda \quad \underbrace{D_{\varphi}(\boldsymbol{H} \boldsymbol{t} - \boldsymbol{y})}_{\text{deviation of the marginals}} = \min_{\boldsymbol{t} \geq 0} \quad \lambda (\boldsymbol{H}) - \boldsymbol{y} \|_{2}^{2} + \boldsymbol{c}^{\top} \boldsymbol{t}$$

Combination of identity matrices and matrices of ones

$$\lambda \| oldsymbol{H} - oldsymbol{y} \|_2^2 + oldsymbol{c}^ op oldsymbol{t}$$

with $\boldsymbol{y} = [\boldsymbol{h}, \boldsymbol{g}]^{\top}$

ightharpoonup Classical linear regression with positivity constraints, a sparse design matrix H and a weighted L1 (Lasso) regularization $\frac{1}{\lambda} c^{\top} t = \frac{1}{\lambda} \sum_{l} c_{k} |t_{k}|$ [Chapel 2021]

(least square problem)

 D_{φ} is L2 - regularization path

We can rewrite the UOT problem in a vectorial form

$$\min_{t \ge 0} \quad \underbrace{\boldsymbol{c}^{\top} t}_{\text{OT cost}} + \lambda \quad \underbrace{D_{\varphi}(\boldsymbol{H} t - \boldsymbol{y})}_{\text{deviation of the marginals}} = \min_{t \ge 0} \quad \lambda (\boldsymbol{H}) - \boldsymbol{y}|_{2}^{2} + \boldsymbol{c}^{\top} t$$

and matrices of ones $\lambda(H) - y\|_2^2 + c^{\top}t$

combination of identity matrices

(least square problem)

with $oldsymbol{y} = [oldsymbol{h}, oldsymbol{g}]^ op$

- ightarrow Classical linear regression with positivity constraints, a sparse design matrix H and a weighted L1 (Lasso) regularization $\frac{1}{\lambda} c^{\top} t = \frac{1}{\lambda} \sum_k c_k |t_k|$ [Chapel 2021]
- → Borrow the tools from a large literature on solving those problems

 D_{φ} is L2 - regularization path

 D_{φ} is L2 -regularization path)

similarly to the LARS algorithm find the set of ALL solutions

 D_{φ} is L2 -regularization path

similarly to the LARS algorithm find the set of ALL solutions

With quadratic divergence, solutions are piecewise linear with $\gamma = \frac{1}{\lambda}$

- 1. start with $\lambda = 0$
- 2. increase λ until there is a change on the support of t
- 3. update t (incremental resolution of linear equations)
- 4. repeat until $\lambda = +\infty$

 D_{φ} is L2 -regularization path

similarly to the LARS algorithm find the set of ALL solutions

With quadratic divergence, solutions are piecewise linear with $\gamma = \frac{1}{\lambda}$

- 1. start with $\lambda = 0$
- 2. increase λ until there is a change on the support of t
- 3. update t (incremental resolution of linear equations)
- 4. repeat until $\lambda = +\infty$

Unbalanced Optimal Transport

The problem has been formalized, and there exists some (efficient) algorithms

Some open questions (among others!)

- how choosing the *right* regularization parameter?
- does it really deal with outliers? which guarantees on the solution?

Some challenges of OT

Scalability of the algorithms

Unstable, not robust to outliers

Needs a common metric space: Gromov-Wasserstein distance on stage [Memoli 2011]

$$GW(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}, \boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \langle L(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j,k,l} L(d_{X}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}), d_{Y}(\boldsymbol{y}_{j}, \boldsymbol{y}_{l})) T_{i,j} T_{k,l}$$

Some challenges of OT

Scalability of the algorithms

Unstable, not robust to outliers

Needs a common metric space: Gromov-Wasserstein distance on stage [Memoli 2011]

$$GW(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}, \boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \langle L(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j,k,l} L(d_{X}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}), d_{Y}(\boldsymbol{y}_{j}, \boldsymbol{y}_{l})) T_{i,j} T_{k,l}$$

Useful for comparing graphs (FGW [Vayer 2019])

or for shape registration [Peyré 2016]

Unregistered spaces

Cost
$$c(x, y)$$
?

$$\mu_x \in \Omega_x, \ \mu_y \in \Omega_y$$

Related but not registered objects e.g. same object observed by different modalities

Unregistered spaces

MODIS (36 bands)

Landsat8 (11 bands)

Cost c(x, y)?

$$\mu_x \in \Omega_x, \ \mu_y \in \Omega_y$$

Related but not registered objects e.g. same object observed by different modalities

Unregistered spaces

Landsat8 (11 bands)

$$\mu_x \in \Omega_x, \ \mu_y \in \Omega_y$$

Related but not registered objects e.g. same object observed by different modalities

Cost c(x, y)?

$$c_x(x_i, x_k) \in \mathbb{R}^{n \times n}, c_y(y_j, y_l) \in \mathbb{R}^{m \times m}$$

$$GW(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}, \boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \langle L(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \sum_{i, j, k, l} L(d_{X}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}), d_{Y}(\boldsymbol{y}_{j}, \boldsymbol{y}_{l})) T_{i, j} T_{k, l}$$

coupling matrix

$$GW(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}(\boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \langle L(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j,k,l} L(d_{X}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}), d_{Y}(\boldsymbol{y}_{j}, \boldsymbol{y}_{l})) T_{i,j} T_{k,l}$$

marginal constraints

$$GW(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}, \boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \langle L(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \sum_{i, j, k, l} L(d_{X}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}), d_{Y}(\boldsymbol{y}_{j}, \boldsymbol{y}_{l})) T_{i, j} T_{k, l}$$

$$GW(\boldsymbol{C}_{X},\boldsymbol{C}_{Y},\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} \underbrace{L(\boldsymbol{C}_{X},\boldsymbol{C}_{Y}) \otimes \boldsymbol{T},\boldsymbol{T}}_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} \sum_{i,j,k,l} L(d_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k}),d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l}))T_{i,j}T_{k,l}$$
 quadratic problem

$$GW(\boldsymbol{C}_{X},\boldsymbol{C}_{Y},\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} L(\boldsymbol{C}_{X},\boldsymbol{C}_{Y}) \boldsymbol{O}(\boldsymbol{T},\boldsymbol{T}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} \sum_{i,j,k,l} L(d_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k}),d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l}))T_{i,j}T_{k,l}$$
 quadratic problem
$$L(d_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k}),d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l})) = |d_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k})-d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l})|^{p}$$

Search for an OT plan that preserve the pairwise relationships between samples \rightarrow avoid couplings when $|d_X(\mathbf{x}_i, \mathbf{x}_k) - d_Y(\mathbf{y}_j, \mathbf{y}_l)|^p$ is large

$$GW(\boldsymbol{C}_{X},\boldsymbol{C}_{Y},\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} L(\boldsymbol{C}_{X},\boldsymbol{C}_{Y}) \boldsymbol{O}(\boldsymbol{T},\boldsymbol{T}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} \sum_{i,j,k,l} L(d_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k}),d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l}))T_{i,j}T_{k,l}$$
 quadratic problem
$$L(d_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k}),d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l})) = |d_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k})-d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l})|^{p}$$

Gromov-Wasserstein

$$GW(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}, \boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \langle L(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \sum_{i, j, k, l} L(d_{X}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}), d_{Y}(\boldsymbol{y}_{j}, \boldsymbol{y}_{l})) T_{i, j} T_{k, l}$$

GW is a quadratic problem: complexity $O(n^4)$ and is not a convex problem

Invariant to isometries such that rotations and translations

Solving the problem

$$GW(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}, \boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \langle L(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \sum_{i,j,k,l} L(d_{X}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}), d_{Y}(\boldsymbol{y}_{j}, \boldsymbol{y}_{l})) T_{i,j} T_{k,l}$$

Optimization algorithms

Local solutions can be obtained with a Frank-Wolfe algorithm [Vayer 2018] Iterative algorithm, which solves at each step an OT problem

For the entropic version, local solutions can be obtained with a KL mirror descent [Peyré 2016]

Iterative algorithm, which solves at each step a Sinkhorn problem

Solving the problem

$$GW(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}, \boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \langle L(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \sum_{i, j, k, l} L(d_{X}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}), d_{Y}(\boldsymbol{y}_{j}, \boldsymbol{y}_{l})) T_{i, j} T_{k, l}$$

Optimization algorithms

Local solutions can be obtained with a Frank-Wolfe algorithm [Vayer 2018] Solve several iterations of Iterative algorithm, which solves at each step an OT problem a $O(n^3)$ problem

For the entropic version, local solutions can be obtained with a KL mirror descent Solve several iterations of [Peyré 2016]

a $O(n^2)$ problem Iterative algorithm, which solves at each step a Sinkhorn problem

Solving the problem

$$GW(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}, \boldsymbol{h}, \boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \langle L(\boldsymbol{C}_{X}, \boldsymbol{C}_{Y}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h}, \boldsymbol{g})} \sum_{i, j, k, l} L(d_{X}(\boldsymbol{x}_{i}, \boldsymbol{x}_{k}), d_{Y}(\boldsymbol{y}_{j}, \boldsymbol{y}_{l})) T_{i, j} T_{k, l}$$

Optimization algorithms

Local solutions can be obtained with a Frank-Wolfe algorithm [Vayer 2018] Solve several iterations of Iterative algorithm, which solves at each step an OT problem a $O(n^3)$ problem

For the entropic version, local solutions can be obtained with a KL mirror descent Solve several iterations of [Peyré 2016] a $O(n^2)$ problem

Iterative algorithm, which solves at each step a Sinkhorn problem

Difficult (non convex) and costly problem to solve Approximations exist, but still an open problem

Partial Gromov-Wasserstein (D_{φ} is L1)

$$\min_{\boldsymbol{T} \geq \boldsymbol{0}} \quad \langle L(\boldsymbol{C}_{\boldsymbol{X}}, \boldsymbol{C}_{\boldsymbol{Y}}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle + \lambda \left(D_{\varphi}(\boldsymbol{T}1_{m}, \boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top}1_{n}, \boldsymbol{g}) \right)$$

Partial OT: fix the amount of mass s that has to be transported

Partial Gromov-Wasserstein (D_{φ} is L1)

$$\min_{\boldsymbol{T} \geq \boldsymbol{0}} \quad \langle L(\boldsymbol{C}_X, \boldsymbol{C}_Y) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle + \lambda \left(\mathcal{D}_{\varphi}(\boldsymbol{T}1_m, \boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top}1_n, \boldsymbol{g}) \right)$$

Partial OT: fix the amount of mass s that has to be transported

Partial Gromov-Wasserstein (D_{φ} is L1)

$$\min_{\boldsymbol{T} \geq \boldsymbol{0}} \quad \langle L(\boldsymbol{C}_X, \boldsymbol{C}_Y) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle + \lambda \left(D_{\varphi}(\boldsymbol{T} 1_m, \boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top} 1_n, \boldsymbol{g}) \right)$$

Partial OT: fix the amount of mass s that has to be transported

Partial Gromov-Wasserstein (D_{φ} is L1)

$$\min_{\boldsymbol{T} \geq \boldsymbol{0}} \quad \langle L(\boldsymbol{C}_{\boldsymbol{X}}, \boldsymbol{C}_{\boldsymbol{Y}}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle + \lambda \left(\mathcal{D}_{\varphi}(\boldsymbol{T}1_{m}, \boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top}1_{n}, \boldsymbol{g}) \right)$$

Partial OT: fix the amount of mass s that has to be transported

Unbalanced Gromov-Wasserstein (D_{φ} is KL)

Can also consider quadratic penalties [Séjourné 2021], relying on Sinkhorn algorithm

$$\min_{\boldsymbol{T} \geq \boldsymbol{0}} \quad \langle L(\boldsymbol{C}_{\boldsymbol{X}}, \boldsymbol{C}_{\boldsymbol{Y}}) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle + \lambda \left(D_{\varphi}(\boldsymbol{T}1_{m} \otimes \boldsymbol{T}1_{m}, \boldsymbol{h} \otimes \boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top}1_{n} \otimes \boldsymbol{T}^{\top}1_{n}, \boldsymbol{g} \otimes \boldsymbol{g}) \right)$$

Unbalanced Gromov-Wasserstein (D_{φ} is KL)

Can also consider quadratic penalties [Séjourné 2021], relying on Sinkhorn algorithm

$$\min_{\boldsymbol{T} \geq \boldsymbol{0}} \quad \langle L(\boldsymbol{C}_X, \boldsymbol{C}_Y) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle + \lambda \left(D_{\varphi}(\boldsymbol{T} 1_m \otimes \boldsymbol{T} 1_m, \boldsymbol{h} \otimes \boldsymbol{h}) + D_{\varphi}(\boldsymbol{T}^{\top} 1_n \otimes \boldsymbol{T}^{\top} 1_n, \boldsymbol{g} \otimes \boldsymbol{g}) \right)$$

quadratic problem: quadratic penalties

Unbalanced Gromov-Wasserstein (D_{ω} is KL)

Can also consider quadratic penalties [Séjourné 2021], relying on Sinkhorn algorithm

$$\min_{\boldsymbol{T} \geq \boldsymbol{0}} \quad \langle L(\boldsymbol{C}_X, \boldsymbol{C}_Y) \otimes \boldsymbol{T}, \boldsymbol{T} \rangle + \lambda \left(\mathcal{D}_{\varphi}(\boldsymbol{T} 1_m \otimes \boldsymbol{T} 1_m, \boldsymbol{h} \otimes \boldsymbol{h}) + \mathcal{D}_{\varphi}(\boldsymbol{T}^{\top} 1_n \otimes \boldsymbol{T}^{\top} 1_n, \boldsymbol{g} \otimes \boldsymbol{g}) \right)$$

64

penalties

Labeled Graphs as probability distributions

Nodes are weighted by their mass h_i

Features a_i can be compared through a common metric

No common metric between the structure x_i of two graphs

Labeled Graphs as probability distributions

Two distributions
$$\mu_x = \sum_i h_i \delta_{(x_i,a_i)}$$
 and $\mu_y = \sum_i g_i \delta_{(y_i,b_i)}$

$$FGW_{p,q,\alpha}^{q}(\boldsymbol{C}_{X},\boldsymbol{C}_{Y},\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} \sum_{ijkl} \left((1-\alpha)|\boldsymbol{a}_{i} - b_{j}|^{p} + \alpha|d_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k}) - d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l})|^{p} \right)^{q} T_{ik}T_{jl}$$

Labeled Graphs as probability distributions

Two distributions
$$\mu_x = \sum_i h_i \delta_{(x_i,a_i)}$$
 and $\mu_y = \sum_i g_i \delta_{(y_i,b_i)}$

$$FGW_{p,q,\alpha}^{q}(\boldsymbol{C}_{X},\boldsymbol{C}_{Y},\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} \sum_{ijkl} \left((1-\alpha)(a_{i}-b_{j})^{p} + \alpha [d_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k}) - d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l})]^{p} \right)^{q} T_{ik} T_{jl}$$

$$\text{Compares features} \qquad \text{Compares structures}$$

Labeled Graphs as probability distributions

Two distributions
$$\mu_x = \sum_i h_i \delta_{(x_i,a_i)}$$
 and $\mu_y = \sum_i g_i \delta_{(y_i,b_i)}$

$$FGW_{p,q,\alpha}^{q}(\boldsymbol{C}_{X},\boldsymbol{C}_{Y},\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} \sum_{ijkl} \left((1-\alpha)|\boldsymbol{a}_{i} - b_{j}|^{p} + \alpha|d_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k}) - d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l})|^{p} \right)^{q} T_{ik}T_{jl}$$

Labeled Graphs as probability distributions

Two distributions
$$\mu_x = \sum_i h_i \delta_{(x_i,a_i)}$$
 and $\mu_y = \sum_i g_i \delta_{(y_i,b_i)}$

$$FGW_{p,q,\alpha}^{q}(\boldsymbol{C}_{X},\boldsymbol{C}_{Y},\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} \sum_{ijkl} (1-\alpha) a_{i} - b_{j}|^{p} + \alpha |\boldsymbol{J}_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k}) - d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l})|^{p})^{q} T_{ik}T_{jl}$$

$$\alpha \in [0,1]$$

Labeled Graphs as probability distributions

Two distributions
$$\mu_x = \sum_i h_i \delta_{(x_i,a_i)}$$
 and $\mu_y = \sum_i g_i \delta_{(y_i,b_i)}$

The fused Gromov-Wasserstein distance is defined as

$$FGW_{p,q,\alpha}^{q}(\boldsymbol{C}_{X},\boldsymbol{C}_{Y},\boldsymbol{h},\boldsymbol{g}) = \min_{\boldsymbol{T} \in \boldsymbol{\Pi}(\boldsymbol{h},\boldsymbol{g})} \sum_{ijkl} (1-\alpha) a_{i} - b_{j}|^{p} + \alpha |\boldsymbol{J}_{X}(\boldsymbol{x}_{i},\boldsymbol{x}_{k}) - d_{Y}(\boldsymbol{y}_{j},\boldsymbol{y}_{l})|^{p})^{q} T_{ik} T_{jl}$$

$$\alpha \in [0,1]$$

Same features OT(h,g) = 0same structure GW(h,g) = 0but different structure AND features $FGW(h,g) \neq 0$

FGW properties and barycenters

Interpolates between W ($\alpha=0$) and GW ($\alpha=1$) It is a distance for p=1 Constant speed geodesics can be defined

Outline

- 1. History and basics of optimal transport
- 2. Wasserstein distances
- 3. Computational OT

Practical session (with POT toolbox)

- 4. Variants of OT: unbalanced OT and Gromov-Wasserstein
- 5. Some applications of OT in data analysis / machine learning

Some applications of OT

2 different aspects:

- transporting with OT (the plan is sought)
- using the divergence between (empirical) distributions

Some applications of OT

Transporting with OT

OT for shape registration [Bonneel 2019]

Iterative Closest Point (ICP) for aligning point clouds

Defines a one-to-one correspondance, computes a rigid transformation (e.g rotation), moves the samples and iterates until convergence

$$\operatorname{arg} \min_{(\Omega,t)\in O(d) imes \mathbb{R}^d} \|\Omega(\boldsymbol{X}-t)-\boldsymbol{Y}\|_2^2$$

Some applications of OT

Transporting with OT

OT for shape registration [Bonneel 2019]

Iterative Closest Point (ICP) for aligning point clouds

Defines a one-to-one correspondance, computes a rigid transformation (e.g rotation), moves the samples and iterates until convergence

$$\operatorname{arg} \min_{(\Omega,t)\in O(d) imes \mathbb{R}^d} \|\Omega(\boldsymbol{X}-t)-\boldsymbol{Y}\|_2^2$$

Transporting with OT

OT for domain adaptation [courty et al. 2016]

Two different (yet related domains)

Classification problem, labels available on the source domain but not on the target domain

Transporting with OT

OT for domain adaptation [courty et al. 2016]

- step 1: compute the OT coupling between the 2 domains
- step 2: transport the source onto the target domain
- step 3: **classify** the transported source samples based on the classification rule computed on the target domain

Transporting with OT

OT for domain adaptation for time series [Painblanc 2023]

versatility of OT thanks to the definition of the cost function: example with time series, where the cost is DTW

Transporting with OT

Color transfer

We aim to transport the color of one source image onto a target image Input distributions: histograms of colors
When one distribution is supported on a line, there exists a closed form [Mahey2023]
The OT coupling is used to transfer the colors

Use of the divergence between empirical distributions

Template based Graph Neural Network with Optimal Transport Distances [Vincent-

Cuaz 2022]

Compute the FGW distance of a graph to several graph templates New feature representation of the graph: vector of distances This vector is then feed into a MLP to predict the class of the graph

Use of the divergence between empirical distributions

Template based Graph Neural Network with Optimal Transport Distances [Vincent-

Cuaz 2022]

Compute the FGW distance of a graph to several graph templates New feature representation of the graph: vector of distances This vector is then feed into a MLP to predict the class of the graph

Gives better classification results than GNNs or kernel-based algorithms

Use of the divergence between empirical distributions

Wasserstein Generative Adversarial Networks [Arjovski 2017]

$$\min_{G} \max_{D} E_{\boldsymbol{x} \sim \boldsymbol{\mu_d}} \log D(x) + E_{\boldsymbol{z} \sim N(0,1)} \log(1 - D(G(z)))$$

Learn a Generator G that outputs realistic samples from data μ_x Learn a Discriminator D able to discriminate generated and true samples

Use of the divergence between empirical distributions

Wasserstein Generative Adversarial Networks [Arjovski 2017]

$$\min_{G} \max_{D} E_{\boldsymbol{x} \sim \boldsymbol{\mu_d}} \log D(x) + E_{\boldsymbol{z} \sim N(0,1)} \log(1 - D(G(z)))$$

Learn a Generator G that outputs realistic samples from data μ_x Learn a Discriminator D able to discriminate generated and true samples

Use of the divergence between empirical distributions

Wasserstein Generative Adversarial Networks

Wasserstein GAN minimizes the Wasserstein distance $\min_G W_1^1(G\#\mu_t,\mu_s)$

with the target distribution being a Gaussian N(0,1) Gives better results in practice (and is easier to optimize)

Use of the divergence between empirical distributions

Missing data imputation [Muzellec 2020]

Data imputation: fills missing entries with plausible values

Assomption: two batches extracted randomly from the same dataset should share the same distribution Suppose that values on some of the features are missing for one distribution

$$\min_{X^{imp}} \sum SD(\mu_m \boldsymbol{X}_K, \mu_m \boldsymbol{X}_L)$$

Use of the divergence between empirical distributions

Missing data imputation [Muzellec 2020]

Data imputation: fills missing entries with plausible values

Assomption: two batches extracted randomly from the same dataset should share the same distribution Suppose that values on some of the features are missing for one distribution

Summary

OT is a theoretically grounded way for comparing distributions Different formulations: Monge (defines a map) or Kantorovitch (defines a plan) Ground metric provides some geometry of the space (geodesics, barycenters) Several variants: Unbalanced OT and Gromov-Wasserstein for unregistered distributions

OT is not robust to outliers: Unbalanced/partial OT relaxes the marginal constraints. Solving OT is a linear program, GW is a quadratic problem Reference for Computational OT [Peyre et Cuturi, 2019] or OT for applied mathematicians [Santambrogio 2015] Regularizing the problem helps in reducing the complexity There exist some tools for OT, for instance

References

[Kusner 2015] Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. From word embeddings to document distances. In IICML 2025 [Rout 2022] Rout, L., Korotin, A., & Burnaev, E. Generative Modeling with Optimal Transport Maps. In ICLR 2022. [Mroueh 2020] Mroueh, Wasserstein Style Transfer, AISTATS, 2020.

[Frogner 2015] Frogner, C., Zhang, C., Mobahi, H., Araya, M., & Poggio, T. A. Learning with a Wasserstein loss. *NeurIPS*, 2015. [Solomon 2015] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. Convolutional wasserstein distances. ACM Transactions on Graphics, 2015

[Arjovsky 2017] Arjovsky, M., Chintala, S., & Bottou, L. Wasserstein generative adversarial networks. ICML, 2017.

[Tolstikhin 2018] Tolstikhin, I., Bousquet, O., Gelly, S., & Schoelkopf, B. Wasserstein Auto-Encoders. ICLR, 2018.

[Monge 1781] Monge, G. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale Sci., 666-704., 1781 [Peyré and Cuturi, 2019] Peyré G. & Cuturi M. (2019). Computational optimal transport: With applications to data science.

Foundations and Trends® in Machine Learning

[Rubner 2000] Rubner, Y., Tomasi, C., & Guibas, L. J. The earth mover's distance as a metric for image retrieval. International journal of computer vision

[Ambrosio 2005] Ambrosio, L., Gigli, N., & Savaré, G. Gradient flows: in metric spaces and in the space of probability measures. Springer, 2005

[Agueh 2011] Agueh, M., & Carlier, G. Barycenters in the Wasserstein space. SIAM Journal on Mathematical Analysis, 2011 [Rabin 2012] Rabin, J., Peyré, G., Delon, J., & Bernot, M. (2012). Wasserstein barycenter and its application to texture mixing. In SSVM 2011

[Mahey 2023] Mahey, G., Chapel, L, Gasso, G., Bonet, C., Courty N. Fast Optimal Transport through Sliced Wasserstein Generalized Geodesics. arXiv 2023.

References

[Cuturi 2013] Cuturi, M.. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems, 2013. [Feydy 2019] Feydy, J., Séjourné, T., Vialard, F. X., Amari, S. I., Trouvé, A., & Peyré, G. Interpolating between optimal transport and mmd using sinkhorn divergences. In The AISTATS 2019

[Benamou 2003] Benamou J.D. Numerical resolution of an "unbalanced" mass transport problem. ESAIM: Mathematical Modelling and Numerical Analysis, 2003.

[Chapel 2020] Chapel, L., Alaya, M. Z., & Gasso, G. Partial optimal transport with applications on positive-unlabeled learning. *NeurIPS*, 2020. [Chapel 2021] Chapel, L., Flamary, R., Wu, H., Févotte, C., & Gasso, G. Unbalanced optimal transport through non-negative penalized linear regression. *NeurIPS*, 2021.

[Memoli 2011] Mémoli. Gromov–Wasserstein distances and the metric approach to object matching. Foundations of computational mathematics, 2011.

[Vayer 2019] Vayer T., Chapel, L., Flamary, R., Tavenard, R. & Courty N.. Optimal transport for structured data with application on graphs. *ICML*, 2019. [Peyré 2016] Peyré, G., Cuturi, M., & Solomon, J. Gromov-wasserstein averaging of kernel and distance matrices. *ICML*, 2016.

[Séjourné 2021] Séjourné, T., Vialard, F. X., & Peyré, G. The unbalanced gromov wasserstein distance: Conic formulation and relaxation. *NeurIPS*, 2021.

[Bonneel 2019] Bonneel, N., & Coeurjolly, D. Spot: sliced partial optimal transport. ACM Transactions on Graphics (TOG), 38(4), 1-13. 2019 [Courty 2016] COurty, N., Flamary, R., Tuia, D., & Rakotomamonjy, A. Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell, 2016.

[Painblanc 2023] Painblanc, F., Chapel, L., Courty, N., Friguet, C., Pelletier, C., & Tavenard, R. Match-And-Deform: Time Series Domain Adaptation through Optimal Transport and Temporal Alignment. In ECML, 2023

[Vincent-Cuaz 2022] Vincent-Cuaz, C., Flamary, R., Corneli, M., Vayer, T., & Courty, N. Template based graph neural network with optimal transport distances. NeurIPS 2022

[Muzellec 2020] Muzellec, B., Josse, J., Boyer, C., & Cuturi, M. Missing data imputation using optimal transport. In ICML 2020 [Santambrogio 2015] Santambrogio, F. Optimal transport for applied mathematicians. *Birkäuser*, 2015.