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Why optimal transport?

Need for a « meaningtul » measure ot distance between probability measures

Continuous probability distributions
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Why optimal transport?

Probability measures are ubiquitous in data science
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. OT as a loss for classification
Optimal Transport ) oss for dlass

Lots of applications!

Wasserstein style transfer
[I\/Iroueh 2020]

Flickr : street, parade, dragon Flickr : water, boat, ref ection, sun-shine
Eskimo dog Prediction : people, protest, parade Prediction : water, river, lake, summer;

Wasserstein AE
[Tolstikhin 2018]

Wasserstein GAN
[Arjovsky 2017]

Shape interpolation
[Solomon, 2015]
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1. History and basics of optimal transport
2. Wasserstein distances

3. Computational OT
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4. Variants of OT : unbalanced OT and Gromov-Wasserstein

5. Some applications ot OT in machine learning



Optimal Transport in a nutshell
The origins of OT

{3 1781: How to move dirt from one place ( ) to another (remblais)

0 while minimizing the total effort?
Assumption: there is an effort for moving dirt, function ot the quantity of

Monge dirt and of the cost for transporting one shipment of dirt from < to y

A \\C(gy)




Optimal Transport in a nutshell
The origins of OT

{-, 1781: How to move dirt from one place ( ) to another (remblais)

0 while minimizing the total effort?

Assumption: there is an effort for moving dirt, function ot the quantity of
Monge dirt and of the cost for transporting one shipment of dirt from < to y

Among all the possible
solutions, there is one, called

A N ) optimal transport, which is of

minimal cost




Optimal Transport in a nutshell
The origins of OT

source distribution Minimize the overall transportation cost

target distribution /v » . ]
cost of moving from xtoy c(7,y) T#m:M/C( L)) () dz

Monge

7' is the transport map

131 is the push forward operator
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Optimal Transport in a nutshell
The origins of OT

source distribution Minimize the overall transportation cost

target distribution /v |
. c( (1)dx
cost of moving from x toy ¢(, ) @
x Ls transported to T (x)

7' is the transport map

-

Monge

131 is the push forward operator

A \. " Y) Constraint:

I'#. = e, i.e. NO Mass creation
nor destruction



Optimal Transport in a nutshell
The origins of OT

source distribution /7.,
target distribution /v
cost of moving from x toy ¢(, )

Monge

Minimize the overall transportation cost

inf /c(m, T () e (r)dx

TH =Lt
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Optimal Transport in a nutshell
The origins of OT

source distribution
target distribution /v
cost of moving from x toy ¢(, )

Find a permutation such that

L1 mlﬂ Z Yo (i)

+ same mass

Minimize the overall transportation cost

inf /c( () s () da
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Optimal Transport in a nutshell
The origins of OT

source distribution
target distribution /v
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Optimal Transport in a nutshell
The origins of OT

source distribution
target distribution /v
cost of moving from x toy ¢(, )

Find a permutation such that

L1 mm Z ,yg(z)

+ same mass

Minimize the overall transportation cost

inf /c( () s () da

TH 10 =put

Existence of the map?
Unicity of the solution?
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Optimal Transport in a nutshell

Kantorovich relaxation

Same problem, different tformulation

Two discrete measures px = Z Og; and py = Zgjéyj
i=1 j=1

7' is a probabilistic coupling (or OT plan), with marginal constraints
IT( ,g)::{T’EHEf”ﬂiﬂmzzz ﬁFTln::g}.

Kantorovich

11
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Optimal Transport in a nutshell

Kantorovich relaxation

Same problem, different tformulation

The Kantorovitch relaxation aims to solve

OT(h,g)= min (C,T)= min E:C',]Th7

Tel(h,g) Tell(h,g)

Kantorovich  with the constraint TI(/, g) = {T e R™™|T1,, = h,T"1, = g} |

Yir Y2 Y3 T matrix

® Y3 3
T4 L4

€T
s 2 | O

— T3 | W — O —
2 2
T1 \ g W ® T
(L
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Optimal Transport in a nutshell

Kantorovich relaxation

Same problem, different tformulation

Kantorovich

®y3

min (C,7T)

Tell(h,g)

Yi Y2 Y3

B
]

C matrix

T™ matrix

min
TEH( ,g)

The Kantorovitch relaxation aims to solve

OT( 79) —

ZCJTJ

with the constraint II(/:,g) = {T e RY*™|T'1,, =

. /Oys

X3

y—o

L2

,TTln:g}.

The coupling matrix 7
always exists as soon
as 11(7,9) is not empty
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Optimal Transport in a nutshell

Different scenarios for Kantorovitch

Kantorovich

Co o 0 o

Discrete Semidiscrete Continuous

Figure 2.5: Schematic viewed of input measures («, 3) and couplings U(«a, 3) encountered in the three
main scenarios for Kantorovich OT. Chapter 5 is dedicated to the semidiscrete setup.

llustration from [Peyré and Cuturi, 2019]
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Outline

1. History and basics of optimal transport
2. Wasserstein distances

3. Computational OT

4. Variants of OT : unbalanced OT and Gromov-Wasserstein

5. Some applications ot OT in machine learning
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Wasserstein distances

Discrete measures

{T1m=h,TT1,=g}

1/p
W, (5, g) = min (Z d(;, yj)pTi,j)
1,

Continuous measures

W, (oo, p1) = min
e TCy)dy=po (@), fo T'(ry)de=pi (y) }

( / /R 2 d(w,y)pdT(w,y)>1/p

15



Wasserstein distances

Discrete measures

Wp(h7g) —

1/p
min pT@',j
— T —
{T1m=h,TT1,=g} »

must be a distance

Continuous measures

Wp(p07 pl) —

1/p
min (// d(r,y)Pdl (o, y))
{fR T (ry)dy=po(x), [5 T'(r,y)dr=p: (y)} R2

15



Wasserstein distances

Discrete measures

W, (h,g) = {Tlm:g?;nnn:g} ,

5

deﬁweol as the p-wasserstein distance
(sometimes to the power of p Wp )

wu/cst be a distance

Continuous measures

W, (oo, p1) = min
e TCy)dy=po (@), fo T'(ry)de=pi (y) }

( / /R 2 d(w,y)pdT(w,y)>1/p

15



Wasserstein distances

Discrete measures

Wy (1, 9) = HlinT i’j defined a? the p-wWasserstein distance
{T1m=rTT1n=g} \ = (sometimes to the power of p W]f)

must be a distance

Continuous measures

1/p
W, (po, p1) = N1k (// d(w,y)pdT(w,y)>
{R T(ryy)dy=po(x f]R T'(r,y)drz=p1( } R2

marg unal constratnts

15



Wasserstein distances

Discrete measures @
I,

Wp( ,g) = minT ; e{lweol af the p-Wasserstein distance
{T1m=rTT1n=g} \ = (sometimes to the power of p Wg)

must be a distance

Continuous measures

1/p
Wy (po,p1) = N1k (// d(r,y)PdT( ,y))
e 7o dy=p0 (@ fp T y)de=p1 () } R?

marginal constraints

When (7, 9) is a general cost, we recover the Kantorovitch formulation

15



Wasserstein distances

Some properties

s a distance when p > 1

Also known as the Earth Mover Distance when p = 1 [Rubner 2000]
Admits a dual formulation

s a linear problem with linear constraints: O(n?) complexity

16



Wasserstein distances

Sparsity of the transport plan

Otherwise, there are at most n + m + 1 non-null values

Source and target distributions

Source samples
X  Target samples

Cost matrix C

OT matrix GO

1/n
O
O \/a!es -

OT plan with samples

Source samples

X  Target samples

17



|
= o = N w +H w o
1 1 1 1 1 1 1 1

Wasserstein distances

Sparsity of the transport plan

Otherwise, there are at most n + m + 1 non-null values

OT plan with samples OT plan with samples OT plan with samples

Source samples Source samples Source samples

X  Target samples

Z

|
= o [ N w - wm [«)]
1 1 1 1 1 1 1 1
|
L o = N w RS W ()}
1 1 1 1 1 1 L 1

2 3 5

Cost = 28.3 Cost = 26.8

2 3 5 -l 0 2 3 4 5 -1 0

Cost=2/.8

OT cost = minimal cost of coupling

OT plan with samples

Source samples
X  Target samples

Cost =25.8

18



Wasserstein distances

Sparsity of the transport plan

Otherwise, there are at most n + m + 1 non-null values

Source and target distributions

Cost matrix C

Source samples
X  Target samples
XX
-1 1 2 3 - 5 6

OT matrix GO

OT plan with samples

Source samples

X  Target samples

19



Wasserstein distances

Sparsity of the transport plan

Source and target distributions

X

XX

Source samples
X  Target samples

Cost matrix C

7

Otherwise, there are at most n + m + 1 non-null values

OT matrix GO

6_
7— - -
0 1 2 3 4 5 6 7

J OT plan with samples

0' 4
1_

Source samples
X  Target samples

In this case, the Monge and Kantorovitch solutions are equivalent

19



Wasserstein distances

Sparsity of the transport plan

tn =mand g, = h; = —, then there are exactly n non-null values for the coupling

Source and target distributions Cost matrix C OT matrix GO OT plan with samples
Source samples X Source samples
X  Target samples xX X  Target samples
X
b e X
X
-4 -2 0 2 - 6 -2 0 2 6

20




Wasserstein distances

Sparsity of the transport plan

tn =mand g, = h; = —, then there are exactly n non-null values for the coupling

n
MLASS spLLttiwg

Source and target distributions Cost matrix C OT matrix GO k OT plan with samples
Source samples X . Souyce samples
X  Target samples x X X  Target samples
X
X
b e X
X
X
X
-2 0 2 - 6 -2 0 2

In this case, the Monge problem may have no solution



Wasserstein distances

Wasserstein Geometry

(Geodesics [Ambrosio 2005]

Geodesics are shortest curves that link two distributions ((1 — #)id + ¢T')

H

The space of probability distributions with a Wasserstein metric defines a geodesic space

Wasserstein geodesics

6 1 Source samples
+ Target samples
5 t=0.2
t=0.4
1l © t=0.6
® t=0.8

21



Wasserstein distances

Wasserstein Geometry

(Geodesics [Ambrosio 2005]

Geodesics are shortest curves that link two distributions ((1 — #)id + ¢T')

H

The space of probability distributions with a Wasserstein metric defines a geodesic space

Wasserstein geodesics

6 1 Source samples
+ Target samples
5 t=0.2
t=0.4
2] © t=06
® t=0.8 " . + N
> e ° © T = Y
o
2 @)
o
.- o ® o
o o ’
.. * constant speed geodeste
o
. X; that maps x to T(x)

-1 0 1 2 3 4 5

21



Wasserstein distances

Wasserstein Geometry

Barycenters [Agueh 2011]

Wasserstein Barycenter

| (Empirical) Wasserstein Fréechet mean

arg mbin AWP(1:,D)

0.04 -

0.02 A

0.00 -

0 20 40 60 80 100

where A. are the weights associated () 1. = 1)

l

0.06

0.04

0.02 T

0.00 A

0 20 40 60 80 100



Wasserstein distances

Wasserstein Geometry

0.08 -
0.06 A
0.04 -
0.02 A

0.00 -

0.08 T
0.06
0.04
0.02 T

0.00 1

Wasserstein Barycenter

20 40 60 80 100

20 40 60 80 100

Barycenters [Agueh 2011]

(Empirical) Wasserstein Fréechet mean

arg mbin AWP(1:,D)

where A. are the weights associated () 1. = 1)

Barycenters with free support (fixed weights)

arg ?11% AW (1005 10)

such that ;1 = Z hiOa.

22



Outline

1. History and basics of optimal transport
2. Wasserstein distances

3. Computational OT

4. Variants of OT : unbalanced OT and Gromov-Wasserstein

5. Some applications ot OT in machine learning
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Computational OT

Outline

OT — ‘ C.TY = '
(,9) = min (C,T)=  wmin

Z Cijlij = n x m variables, n +m constraints, O(n®)
]

24



Computational OT

Outline

OT(h,g) :TEIIITI%H,Q) (C,T) Tel%l%ﬂg) ZCw i.J = n x m variables, n + m constraints, O(n°)

Easier in some special cases (e.g. 1d or Gaussian distributions)

Need for solvers that provide approximate solutions! See [Peyré et Cuturi 2019]

1. Sliced Wasserstein

2. Reqularized OT min (C,7T) + A1)

Tell(h,g)

24



Computational OT

OT is a linear problem

OT(/2, ) :Te%lzﬂ’g) (C,T) Te%l%ﬂg) ZCZJ LJ — n x m variables, n + m constraints, O(n°)

We can rewrite the OT problem in a vectorial form

min F(t) = c't
t>0 S~
vectorized OT cost
such that
Ht = |h, g]T

with H a (n+m) x nm
matrix that encodes the constraints

25



Computational OT

OT is a linear problem

OT(/2, ) :Té%l%ﬂm (C,T) Teflgl%ﬂg) ZC@J LJ — n x m variables, n + m constraints, O(n°)

We can rewrite the OT problem in a vectorial form

min F(t) = c't
t>0 S~
vectorized OT cost
such that
Ht = |h, g]T

" @ N gmbuwatww of wlev\,’cucg matriees
(n+m) X nm
Wi o matrices of ones

matrix that encodes t e constraints




Computational OT

OT is a linear problem

OT (1, g) = Te%l%ﬂ,g) (C,T) TEI%II%H 9) ZC”&J 7 = n x mvariables, n +m constraints, O(n?)
We can rewrite the OT problem in a vectorial form Dual formulation
-
: (1) — T4 max D(t)=|h,g| h
1%12161 (1) .c h>0
vectorized OT cost such that
such that -
H h<c
Ht=[hg]"
with H a (n+m) X nm with h a (n+ m)
matrix that encodes the constraints vector

26



Computational OT

OT is a linear problem

OT(h,g) = min (C,T) min ZC” 7 = n x mvariables, n +m constraints, O(n?)

Tell(h,g) T€H( Ny

We can rewrite the OT problem in a vectorial form

min F(t) = c't
t>0 S~
vectorized OT cost
such that
Ht = |h, g]T

with H a (n+m) x nm
matrix that encodes the constraints

Dual formulation

_ T
max  D(t) = [h,g] h

such that

hlz:n]+hln+1L:m] Scij

with h a (n +m)
vector

26



Computational OT

Wasserstein on the line

When ¢(,y) is a strictly convex function (e.g. quadratic cost), and when .,y € R, there
exists a closed form

1
vp = 1, Wy ,uy)zf F=H ) = F () Pdu
0

where F~'is the quantile function.

27



Computational OT

Wasserstein on the line

When ¢(,y) is a strictly convex function (e.g. quadratic cost), and when .,y € R, there
exists a closed form

1
vp = 1, Wy ,uy):/ F=H ) = F () Pdu
0

where F~'is the quantile function.

For empirical distributions, it comes down to sorting the 2 distributions

O(nlogn) algorithm
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Computational OT

Wasserstein on the line

When ¢(,y) is a strictly convex function (e.g. quadratic cost), and when .,y € R, there
exists a closed form

1
vp = 1, Wy ,uy):/ F=H ) = F () Pdu
0

where F~'is the quantile function.

For empirical distributions, it comes down to sorting the 2 distributions

/N N \._ O(nlogn) algorithm

27



Computational OT

Wasserstein between Gaussians

When /1, = N(m,,2,;) and i, = N(m,,%,), there also exists a closed form

WQQ(  Hy) = ||y — myH2 + B(X, Ey)Q
with
B(X.,%,)? = trace(Z, + X, — 2(8L/2%, n1/2)1/2)

28



Computational OT

Sliced Wasserstein

Assume that n = m and f; = g; = — (not compulsory)
n
1 A /
N a A A A Iy
A A AA A m‘Ad‘A A
& 2

()~ A

We look for a (fast) approximation SWs(u,, Hy)




Computational OT

Sliced Wasserstein

Assume that n = m and f; = g; = — (not compulsory)
n
150 o P(z) = (@, ¢), ¢~ Unif(S*™)
. Pt v
e e AT WP ( P?#11,) has a closed form (O(n log n))
() - (.1‘;)1 TR AR A as s,

30



Computational OT

Sliced Wasserstein

Assume that n = m and f; = g; = — (not compulsory)
n

P?(x) = (z,¢), ¢ ~ Unif(S%1)

WE( P74#u,) has a closed form (O(n log n))

04 P1

31



Computational OT

Sliced Wasserstein

Assume that n = m and f; = g; = — (not compulsory)
n

P?(z) = (z,¢), ¢ ~Unif(S* ") the unit sphere

WE( P74#u,) has a closed form (O(n log n))

0{ P1

The sliced Wasserstein distance is defined as

SWp nuy pr apm#ﬂy)

32



Computational OT

Sliced Wasserstein

Assume that n = m and f; = g; = — (not compulsory)
n

The sliced Wasserstein distance is detined as [Rabin 201 2]

SWp sy ) ZWP 7P¢£#Ny)

Properties
1. Itis a distance

2. Similar topological properties than Wasserstein

3. Computation in O(Lnlogn)

Sliced Wasserstein Distance with 95% confidence interval

|

— SWD

10°

10! 102

Number of projections

Source: POT

103
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Computational OT

Sliced Wasserstein

Assume that n = m and f; = g; = — (not compulsory)
n

The sliced Wasserstein distance is detined as [Rabin 201 2]

SWE(11., 1) ZWp , PP,

Properties But

1. Itis a distance - Does not provide the transport plan
2. Similar topological properties than Wasserstein - Can not be optimized

3. Computation in O(Lnlog n) - Issues when d is large

34



Computational OT

Sliced Wasserstein

The sliced Wasserstein distance is defined as

SWp nuy ZWP 7P¢£#,uy)

Several variants exists
1. In different geometric spaces (sphere, hyperbolic spaces)

2. With projections onto curves, different samplings of the line

An example: sliced Wasserstein Generalized Geodesic (SWGQ) [Mahey 2023]

qudl

min —SWGG%( ,,Uy — min ( Z || T & (4) y7’¢(7;) g)

35



Computational OT

Regularized OT

(h, g) Te%%2,9>< , 1) S

Z Ci;T:; = n x m variables, n + m constraints, O(n?)

2,] "

36



Computational OT
Reqularized OT

(7, 9) Te%l%ﬂ’m( ) TEIIITI%H’Q) Z jlij = n xm variables, n +m constraints, O(n°)

iaj ||

Regularization of OT  min (C,7T") + AQ(7')
Tell(h,g)

Why?
- define fast algorithms for solving the problem
- better defined problem

- encode prior knowledge on the data
(e.g. group sparsity constraint)

36



Computational OT
Reqularized OT

(7, 9) Te%lzﬂ’g)< ) Té%l%ﬂ,g) Z jli; = n x mvariables, n +m constraints, O(n”)

i)j , -,
Regularization of OT  min (C,7") + AQ(1') "
Tell(h,g)
>
Entropic regularization [Cuturi 2013] r o] p
Q)= T.,(logT, —1 = :
(1= X7 o T, -1 P -
A controls the « smoothing » of the solution A |
A — 0: we recover the unconstrained solution /Z
9 A e
A — 00: T = Tcg ,/7/ ~ A/.
Z 4 -
= .




Computational OT
Reqularized OT

OT(h,g)= min (C,T)= min » C,;7,; = nxm variables, n+m constraints, O(n?)

Regularization of OT  min (C,7") + AQ(1')
Tell(h,g)

Entropic regularization [Cuturi 207 3]
Q1) =Y T,;(logT;; —1)
i,

lterative algorithm with deterministic updates

C
T&kﬂ) = diag (u(k>> exp <_X> diag (v(k))

Sinkhorn theorem: «*) and »*) exist and are unique

e

38



Computational OT
Reqularized OT

Entropic reqularization of OT 7, = ’ C.TY+ XY T..(logT: —1
P 9 A TEI%[l%n,g)< , 1) + sz: i(log 77, )

Pro

- Complexity O(n”)

- Smoothes the coupling

- Amenable to optimization, GPU friendly

Cons
- Smoothes the coupling

- Parameter to tune, lots of iterations for small A

- Is not a distance: OT\(/, /) = (C,Ty) #0 = Sinkhorn divergencel[Feydy 2019]1
Sx(/,9) = OTx(/,9) — §OT/\( 1) — §OT/\(979)

39



Some challenges of OT

Scalability of the algorithms The Kantorovitch relaxation aims to solve
Unstable, not robust to outliers (7,9) TEN(h.g) ¢ T) TEN(h.g)

Needs a common metric space with the constraint TI(/,g) = {T e RY*™|T'1,, =

40



Some challenges of OT

The Kantorovitch relaxation aims to solve

" OT 9 — . C T C@ TZ
Unstable, not robust to outliers ng)= 2o ¢ = A Z gl

Needs a common metric space | Wwith the constraint TI(/,g) = {T e R T, =h,T'1, = g} .

Linear problem with n x m variables, n + m constraints
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Some challenges of OT

Scalability of the algorithms The Kantorovitch relaxation aims to solve

OT(h,g) = min (C,7T)= min

Tel(h,g) Tell(h,g)

Needs a common metric space with the constraint TI(/,g) = {T e RY*™|T'1,, =

Global optimization problem with
constraints 1'1,, = ,TTln =g

42



Some challenges of OT

Scalability of the algorithms The Kantorovitch relaxation aims to solve

. OT(h,g) = ' C,T)= min
Unstable, not robust to outliers (7,9) Terﬁl%n,g>< ) TEM(h,g)

with the constraint TI(/,g) = {T c RT*™|T1,, =

Cost C( , y)
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Outline

1. History and basics of optimal transport
2. Wasserstein distances

3. Computational OT

4. Variants of OT : unbalanced OT and Gromov-Wasserstein

5. Some applications ot OT in machine learning
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POT toolbox

A POT Python Optimal Transport

=0
@l
GOl
Pl
C ]
=9

POT: Python Optimal Transport
Quick start guide

API and modules

Examples gallery

Releases

Contributors

Contributing to POT

Code of conduct

& Python Optimal Transport

Versions: Release Development Code

@& / POT: Python Optimal Transport View page source

POT: Python Optimal Transport . .
https://pythonot.github.io/

O o @ oc@
ON (O O
Contents

e POT: Python Optimal Transport
e Quick start guide
APl and modules

Examples gallery
Releases

Contributors
Contributing to POT
Code of conduct

POT: Python Optimal Transport

pypi package '0.9.1 | Anaconda.org 0.9.1 el Downloads
ﬂiti\)iiﬁ:ﬁ‘i%a license MIT

This open source Python library provide several solvers for optimization problems related to
Optimal Transport for signal, image processing and machine learning.
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Outline

1. History and basics of optimal transport
2. Wasserstein distances

3. Computational OT

4. Variants of OT: unbalanced OT and Gromov-Wasserstein

5. Some applications ot OT in data science / machine learning
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Recall

Aim of OT: tfind a « meaningful » measure of distance between probability measures
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Recall

Aim of OT: tfind a « meaningful » measure of distance between probability measures

Minimize the overall transportation cost

| T is the transport map (may wot exiLst)
in / " ()da
Monge T3 =it
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Recall

Aim of OT: tfind a « meaningful » measure of distance between probability measures

Minimize the overall transportation cost

| T is the transport map (may wot exiLst)
in / " ()da
Monge T3 =it
OT(/,g) = mi ' Ci i T
(-9) TEm(hg) < TEN(ig) Z S

, , tJ , ,
T s an OT plaw or coupling matrix (alwa as exitsts)
1 _

with the constraint II(/,g) = {T e RV*™T1,, =h,T 1, = g}

Kantorovich
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Recall

Aim of OT: tfind a « meaningful » measure of distance between probability measures

- Minimize the overall transportation cost

. T is the transport map (may not exiLst)
in / " ()da
Monge T =pe

¢

OT(/,g) = min ¢ min ZO@JTM "

Tell(h,g) Tell(h,g)

T is an OT plan or coupling matrix (aLwa as exists) M
with the constraint TI(/,g) = {T e RV T, =h,T"'1, = g}

" Kantorovich

Linear problem with linear constraints: O(n?) complexity

Entropic-regularized OT, min (C,T) + AQ(7T) with Q(7 ZT@J (log 77, — 1), O(n*) complexity

Tell(h,g) 1,] 47



Unbalanced Optimal Transport

Relaxing the set of constraints

I(/, g) = {T € R™| T, = h, T 1, = g} .
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Unbalanced Optimal Transport

Relaxing the set of constraints
II(/,g) = {T cR"™|T1,, =h,T'1, = g} .

How to work with unnormalized histograms?

Source distribution
- Target distribution

Transported source
0 Transported target

OT, cost = 0.20 Unbalanced OT, cost = 0.14

How to deal with outliers or noisy samples ?
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Unbalanced Optimal Transport

Relaxing the set of constraints
I(/, g) = {T e RV™|T1,, = h, T 1, = g} .

How to work with unnormalized histograms?

— Regqularize or relax the set of constraints

Source distribution
- Target distribution

| Janeponied source Unbalanced optimal transport [Benamou 2003]

with D, a divergence

OT, cost = 0.20 Unbalanced OT, cost = 0.14

How to deal with outliers or noisy samples ?
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Unbalanced Optimal Transport

Relaxing the set of constraints

How to work with unnormalized histograms?

— Regqularize or relax the set of constraints

Source distribution
- Target distribution
Femnurtum Unbalanced optimal transport [Benamou 2003]
UOT(7, 9) =<C, )+ A (Dp(T1n, 1) + Do (T 14, 9))
with D, a divergence

OT, cost = 0.20 Unbalanced OT, cost = 0.14

How to deal with outliers or noisy samples ?
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Unbalanced Optimal Transport

Relaxing the set of constraints
I(/, g) = {T e RV™|T1,, = h, T 1, = g} .

How to work with unnormalized histograms?

— Regqularize or relax the set of constraints

Source distribution
- Target distribution

| Janeponied source Unbalanced optimal transport [Benamou 2003]

with D, a divergence

OT, cost = 0.20 Unbalanced OT, cost = 0.14

How to deal with outliers or noisy samples ?
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Unbalanced Optimal Transport

Relaxing the set of constraints

I1(/,g) = {T S R"lxm

How to work with unnormalized histograms?

— Regqularize or relax the set of constraints

Source distribution
- Target distribution
Femnurtum Unbalanced optimal transport [Benamou 2003]
T — min (C,T) + A (T 5 )
\¥ UOT5(1,9) = min (€. T) + X (BT 1w DO 13D

with D, a divergence

OT, cost = 0.20 Unbalanced OT, cost = 0.14

How to deal with outliers or noisy samples ?
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Unbalanced Optimal Transport

Relaxing the set of constraints

UOT(,g) = min (C, T) + X (Dgp(Tlm, )+ Dw(TTln,g)) QT

When A = 0, no mass is transported
and 1 — o0, we recover the balanced OT problem (when||/|l1 = ||g]|1)

L oa I a

- "

J-L |__'I

-

Balanced OT Unbalanced OT



Unbalanced Optimal Transport

Relaxing the set of constraints

(Dgp(Tlm, )+ Dw(TTln,g))

UOT (", g) = min (C,T) + A

T>0

When A = 0, no mass is transported
and 1 — o0, we recover the balanced OT problem (when||/|l1 = ||g]|1)

L oa I a

J-L |__'I

"

-

Balanced OT

Unbalanced OT

ewtropic pena LLzatlon
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Unbalanced Optimal Transport

Relaxing the set of constraints

(Dgp(Tlm, )+ Dw(TTln,g))

UOT (", g) = min (C,T) + A

T>0

When A = 0, no mass is transported

ewtropic pena LLzatlon

and 1 — o0, we recover the balanced OT problem (when||/|l1 = ||g]|1)

L oa L oa N oa

J-L |__'I

"

-

Balanced OT

Unbalanced OT

Un

=

palanced + entropic reg. OT
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Unbalanced Optimal Transport

Relaxing the set of constraints

UOT(,g) = min (C, T) + X (Dgp(Tlm, )+ Dw(TTln,g)) QT

When A = 0, no mass is transported

and 4 — oo, we recover the balanced OT problem (when||x||; = ||g||1)
We will consider several cases:

- D, is L1: Partial OT problem
-D,,is L2
- D, is KL




Unbalanced Optimal Transport
Partial Optimal Transport (D,, is L1)

Fix the amount of mass s to be transported

I1%(/, g) = {T € R™™|T1,, < h,T71, < g,1]1T1,, = s}.

Unbalanced OT with L1 divergence  UOT\(/,g) = min (C,T) +

T>0

(171 = 2| +1T 71, - g])

ST



Unbalanced Optimal Transport
Partial Optimal Transport (D,, is L1)

Fix the amount of mass s to be transported

Unbalanced OT with L1 divergence  UOT\(/,g) = min (C,T) +

T>0

(171 = 2| +1T 71, - g])

ST



Unbalanced Optimal Transport
Partial Optimal Transport (D, is L1)

Fix the amount of mass s to be transported

Unbalanced OT with L1 divergence UOT,(/,g) = I%li% (C,T) + X\ (\Tlm —h|4+|T"1, - gl)

Q\I?O%O 06030 //% %fo W/ (?? 6
%3
. ° K :




Unbalanced Optimal Transport
Partial Optimal Transport (D,, is L1)

Fix the amount of mass s to be transported

Unbalanced OT with L1 divergence  UOT\(/,g) = min (C,T) +

(171 = 2| +1T 71, - g])

T>0
— add dummy points with mass = |lg|l, —s and g,,.1 = |||, — s with null cost [Chapel 2020]
0. .05 .09
OOM%O ° ?? o Solving an exact OT problem.
V =sparsity of the solution
"\\,& .

ST



Unbalanced Optimal Transport
D, is KL - MM algorithm

When the divergence is Kullback-Leibler

UOTy\(h,g) = %n;% (C,T) + A (KL(Tlm, ) + KL(TTln,g))

52



Unbalanced Optimal Transport

D, is KL - MM algorithm

KL(x,y) =
When the divergence is Kullback-Leibler

2

l

X
x;log——x;+y,
Yj

—_— 3 —|_
UOTy\(/,q) = min (C,T) + A@"lm, h) @ 1n79))
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Unbalanced Optimal Transport
D,is KL

|gorithm

KL(x,y) =

When the divergence is Kullback-Leibler

2

l

X-

x;log — — x; + y,

Yj

-
UOT\ (1, g —1%1;% (C,T) +>\@"1m, @ 1n79))

Majorizatiow—miwimisatlow

define a surrogate of the olo\j>

< optimize the surrogate

52



Unbalanced Optimal Transport

D |S KI_ ‘gOﬂthm KL-penalized UOT
! Ai "
KL(x,y) = inlog— -x+y o L
When the divergence is Kullback-Leibler , Vi IR =
UOT)\< gl = min <C17 T> —+ A@‘lma ) @T 1n’g)) i:1()1_% /,m
o o el by
lterative glgorithm that resembles the Sinkhorn algorithm [Chapel 2021] o

Majorizatﬁow—miwimlsatiow

KL UOT with AY =0.1

define a surrogate of the o) -
OfO%O O%O)o
optimize the surrogate °% 3
e o }“.

(k1) _ 4. g\ ([ B
T = diag (T(k)1m> (T @exp(

KL UOT with AY =1

) aos ()

%o 80@

/Wf" e
- 3

N

KL UOT with AY =10
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Unbalanced Optimal Transport

D |S KI_ ‘gOﬂthm | KL-penalized UOT
! A .
KL(x,y) = inlog— -x;+y 0 L
When the divergence is Kullback-Leibler i Vi IR =
UOT)\< gl = min <C17 T> —+ A@‘lma ) @T 1n’g)) i:1()1_% /,m
o o el by
lterative glgorithm that resembles the Sinkhorn algorithm [Chapel 2021] o

N

(h+1) _ g 9\ (7 SV a
T = diag (T(k)1m> (T @exp( 2)\>>d1ag (T(k)T1n>

Majorizatﬁow—miwimlsatiow

, KL UOT with AY=0.1 KL UOT with AY =1 KL UOT with AY =10
define a surrogate of the obj
60 8@ 60 8@
o OOOO Og)o o Og)o
j © $ Swmoothes the OT pLaw
. S Amenable to GPU
optimize the surrogate °%® g °% ¢ comutatio
74V,
© e }!& © 0 }!\. P
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Unbalanced Optimal Transport
D, is L2 - MM algorithm

We can also define an iterative algorithm for a L2 divergence

UOTA(1,g) = min (C, 1)+ A (I 1 = 1l + |77 1, — g13)

(another ) lterative algorithm with deterministic updates [Chapel 2021]

with Og — 1512_

L2 UOT with A* =20

L2 UOT with A* =35

8
© 000%0 0%’0 /\}%%0 80%)0 806 ?
I (@) (@)
% ; e g |
%o R 0o R ° Q
o © e © o ©
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Unbalanced Optimal Transport
D, is L2 - MM algorithm

We can also define an iterative algorithm for a L2 divergence

UOTA(1,g) = min (C, 1)+ A (I 1 = 1l + |77 1, — g13)

(another ) lterative algorithm with deterministic updates [Chapel 2021]

with Og — 1g12_

L2 UOT with \* =20 L2 UOT with \* =35 L2 UOT with A\* =50
o, 8o o, 8o 8o Swoothes the OT plan (but
o Oooo Odc)o o o0 Odo)o (@) 7)
I N W . less than KLI)
%3 %3 | Also amewabLe, to GPU
Ve R °e R °e & computation
o © e © o ©




Unbalanced Optimal Transport

D, is L2 - regularization path

We can rewrite the UOT problem in a vectorial form

: T B _ . B 2 T
min - ¢ L+ D,(Ht —y) min MHE—yll;+c ' t
OT cost

deviation of the marginals
. _ T
with ¥y = |/, 9]
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Unbalanced Optimal Transport

D, is L2 - regularization path

We can rewrite the UOT problem in a vectorial form

: T B o
min ¢ L +A D,(Ht —y) min
OT cost

deviation of the marginals

with ¥ = [/, g] "

Combination of 'wlewtitg matrices
and matrices of ones

2
M —yll; + Tt

54



Unbalanced Optimal Transport

D, is L2 - regularization path

We can rewrite the UOT problem in a vectorial form

Combination of 'wlewtitg matrices
and matrices of ones

. T B L . B 2 T
min ¢ t +X  D,(Ht—1y) = min )\@ yll; +c't
OT cost _I

deviation of the marginals

with ¥ = [/, g] "

(Least square problem)
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Unbalanced Optimal Transport
D, is L2 - regularization path

Combination of 'Lolewtitg matrices

We can rewrite the UOT problem in a vectorial form ,
and matrices of ones

: T B _ . B 2 T
min - t +X  D,(Ht—y) min )\@ ylls +c't
OT cost — 1

deviation of the marginals

with ¥ = | ,g]T (Least square problem)

— Classical linear regression with positivity constraints, a sparse design matrix H and a

weighted L1 (Lasso) regularization %cTt = %ch\tk\ [Chapel 2021]
k



Unbalanced Optimal Transport
D, is L2 - regularization path

Combination of 'Ldewtltgﬁ matrices

We can rewrite the UOT problem in a vectorial form ,
and matrices of ones

: T . 2 T
min - ¢ t +X  D,(Ht—1y) = min )\@—y\\2+c t
OT cost deviation of the marginals
, (Least square problem)
with y = [, 9]’ AEEP

— Classical linear regression with positivity constraints, a sparse design matrix H and a

weighted L1 (Lasso) regularization %cTt — %ch\tk\ [Chapel 2021]
k

— Borrow the tools from a large literature on solving those problems
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Unbalanced Optimal Transport

D, is L2 - regularization path

£ UOT y=0.316
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Unbalanced Optimal Transport

D, is L2 -(fegularization path

£ UOT y=0.316

stmilarly to the LARS algorithm
find the set of ALL solutions
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Unbalanced Optimal Transport

D, is L2 -(fegularization path similarly to the LARS algorithm
fund the set of ALL solutions

Evolution of the OT plan values with A
Cost matrix OT plan 0.5 - —

T3 (qu}
P 191" _— ) —
/ | 74\%?’
by =02 by=05 by=03 o2 L/ N = 7 @ = 000D S
)\1 )\2 )\3 )\4 )\5 )\6 )\7 o0
(log scale)
f; UOT y=0.316 ].
6- With quadratic divergence, solutions are piecewise linear with v = 5
4 -
2 1. start with A =0
0- 2. increase A until there is a change on the support of ¢ O(nm)
nr
2 3. update t (incremental resolution of linear equations)
"I T T T T 4. repeat until A = o0
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Unbalanced Optimal Transport

D, is L2 -(fegularization path similarly to the LARS algorithm
fund the set of ALL solutions

Evolution of the OT plan values with A
Cost matrix OT plan 0.5 - —

T3 (qu}
P 191" _— ) —
/ | 74\%?’
by =02 by=05 by=03 o2 L/ N = 7 @ = 000D S
)\1 )\2 )\3 )\4 )\5 )\6 )\7 o0
(log scale)
f; UOT y=0.316 ].
6- With quadratic divergence, solutions are piecewise linear with v = 5
4 -
2 1. start with A =0
0- 2. increase A until there is a change on the support of ¢ O(nm)
nr
2 3. update t (incremental resolution of linear equations)
"I T T T T 4. repeat until A = o0
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Unbalanced Optimal Transport

The problem has been formalized, and there exists some (efficient) algorithms

Some open guestions (among others!)
- how choosing the right regularization parameter?
- does it really deal with outliers? which guarantees on the solution?

56



Some challenges ot OT

Scalability of the algorithms
Unstable, not robust to outliers

: Gromov-Wasserstein distance on stage [Memoli 2011]

GW(Cx,C — in (L(Cy,C T.T) = ' L(dx(x;, ), dy (y..y N, T
(Cx,Cy.hg) = min (L(Cx,Cy)&T,T) Téﬁt“,m};l (Ax (s, i), dy (Y y)) T T
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Some challenges ot OT

Scalability of the algorithms
Unstable, not robust to outliers

: Gromov-Wasserstein distance on stage [Memoli 2011]

GW(CXcha 79) = min <L(CX70Y) ®T7T> min Z L dX(wivwk)vdy(ijyl»Tiakaal

Tell(h,g) TeIl( g)”kl

Usetul tfor comparing graphs (FGW [Vayer 2019]) or for shape registration [Peyrée 2016]

Histon ) o yﬁd )
2

d(a b]) ) Source T
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Gromov-Wasserstein

Unregistered spaces

c Oy, 1y €€,

Related but not registered objects
e.g. same object observed by

different modalities
59



Gromov-Wasserstein

Unregistered spaces

—

I LE Ml ST 5 "

MODIS (36 bands) Landsat8 (11 bands)
2 ® /iy
5 ; Cost C( : y) ?
|
0 - 3
1 -
L I
2 0 2

€ Oy, [y € $y

Related but not registered objects
e.g. same object observed by
different modalities



Gromov-Wasserstein

Unregistered spaces

I LE Ml ST 5 "

MQODIS (36 bands) Landsat8 (11 bands)
2 - ® i
- ; Cost c(7,1)?
!
. | X X
“ ) €RY 6 (g, ) €RTET
o c, c,
_9 F . = § U = 3 ol I
M ;
[(]—l;l I:II ;:- l(]-? l::ll -;-
69567 ILLyEQy 15 o -1 I:ZIEI 15 {m : I:l.l
20 4 O ‘ a'e 20 1"y .
. . i u . u
Related but not registered objects 251
e.g. same object observed by R S

different modalities
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Gromov-Wasserstein

GW(CX7 CY7 h7g) — TEIIEIli(% g)<L(CX7 CY) & T7 T> —

. L(d 79 7d 9 TZ L
Te%%%,g)ijzkl e
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Gromov-Wasserstein

coupling matrix

GW(CX,CY (CX,C'y)® min

marginal constraints

> Ldx(zi @), dy (y;.9,)) T T
.7,k
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Gromov-Wasserstein

GW(CX7 CY7 h7g) — TEIIEIli(% g)<L(CX7 CY) & T7 T> —

. L(d 79 7d 9 TZ L
Te%%%,g)ijzkl e
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Gromov-Wasserstein

40d-tensor

GW(CX7 CY, h7 g) — TEIIEII%% g TEIIE}%% g)

Z7j7k7l

guadratic problem

> Ldx(zi @), dy (y;.9,)) T T
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Gromov-Wasserstein

GW(C)(, Cy, h,g) —

min
Tell(h,g

40-tensor
2 . L(d is . d s A5
Gl ORI, g, 32 Hxlanal b 00T T
guadratic problem

L(dx (xi, xr),dy (Y;,y;)) = |dx (@i, xr) — dy (Y, y,)|?
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Gromov-Wasserstein

40-tensor
GW(Cx,Cy,h,g) = ' 5) ' L(d i ,d .y 15 51
(©x.Cv i) =, min (Ox COFTTVD, amin | 3 Lldx () v w)) T T
guadratic problem

L(dx (xi, xr),dy (Y;,y;)) = |dx (@i, xr) — dy (Y, y,)|?

Search for an OT plan that preserve the pairwise relationships between samples
—avoid couplings when |dx(z;, x;) — dyv(y;.y,)|" is large
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Gromov-Wasserstein

GW(C)(, Cy, h,g) —

min
Tell(h,g

40-tensor
2 . L(d is . d s A5
Gl ORI, g, 32 Hxlanal b 00T T
guadratic problem

L(dx (xi, xr),dy (Y;,y;)) = |dx (@i, xr) — dy (Y, y,)|?

60



Gromov-Wasserstein

40-tensor
WiCx,Or.10) = ain (FOx CRFTTD, in | 5 Lls(equldy 0,00V T
guadratic problem

L(dx (xi, xr),dy (Y;,y;)) = |dx (@i, xr) — dy (Y, y,)|?

,\3%1 1 /l m N/ )
T T
i o 5 m T* matrix h i ;
— 2
%, xz)\}/ " = \ ¢ ® "’;1 T[
> T4 H BN ® o 3
A .y3 L(Cx, Cy) e ® o — A 3
Cyv Y1 Y2 Y3 o 0
Y yi| = = / Y

1 0/&1@v Yys | ® 1 l




Gromov-Wasserstein

Gromov-Wasserstein

GW(Cx, Cy, ,g) —

min
Tell(h,g)

(L(Cx,Cy)QT,T) = min

Tell(h,g)

GW is a quadratic problem: complexity O(n*)
and is not a convex problem

> Ldx(zi @), dy (y;.9,)) T T

Z7j7k7l

Invariant to isometries such that rotations and translations

® Source
® Target

GW(CX,CXR, ] ):
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Gromov-Wasserstein

Solving the problem

GW(Cy.C —  min (L(Cx.Cy)®T,T) = mi L(dx (. zp). dy (y.. y\)VTi i T
(Cx,Cvy,h,g) TEII%H’Q)< (Cx,Cy)QT,T) Teﬁiﬂjg)i;l (dx (2, k), dy (Y5, Y1) T3, Tk i

Optimization algorithms

Local solutions can be obtained with a Frank-Wolfe algorithm [Vayer 2018]
lterative algorithm, which solves at each step an OT problem

For the entropic version, local solutions can be obtained with a KL mirror descent
[Peyre 2016}
lterative algorithm, which solves at each step a Sinkhorn problem
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Gromov-Wasserstein

Solving the problem

GW(Cy,C — min (L(Cx,Cy)®T,T)= mi L(dx (xi. ), dy (v, y VT T
(Cx,Cvy,h,g) TEIII%%H’Q)< (Cx,Cy)QT,T) TEIIITI%H,Q)MZ;Z (dx (2, k), dy (Y5, Y1) T3, Tk i

Optimization algorithms

Local solutions can be obtained with a Frank-Wolfe algorithm [Vayer 2018]

terative algorithm, which solves at each step an OT problem =°W¢ 55‘/5V§‘L iterations of
a O(n )prabLem

For the entropic version, local solutions can be obtained with a KL mirror descent
[Peyre 2016} Solve several iterations of

terative algorithm, which solves at each step a Sinkhorn problem a O(n*) problem
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Gromov-Wasserstein

Solving the problem

GW(Cy.C — min (L(Cx,Cy)®T,T)= mi Lidx (. 21). dy (.. y )T, T
(Cx,Cvy,h,g) TEIII%%H’Q)< (Cx,Cy)QT,T) TE%%H’Q)MZ;; (dx (2, k), dy (Y5, Y1) T3, Tk i

Optimization algorithms

Local solutions can be obtained with a Frank-Wolfe algorithm [Vayer 2018] ’
terative algorithm, which solves at each step an OT problem =°W¢ 58"”;“ Lterations of
a O(n )prabLem

For the entropic version, local solutions can be obtained with a KL mirror descent
[Peyre 2016} Solve several iterations of

terative algorithm, which solves at each step a Sinkhorn problem a O(n*) problem

Diffieult (won convex) and costly problem to solve

Approximations exist, but still an open problem
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Unbalanced Gromov-Wasserstein

Partial Gromov-Wasserstein (D, is L1)

min (L(Cox,Cy) @ T, 1) + A (Dy(Tl, 1) + Dy (T 1, 9))

Partial OT: fix the amount of mass s that has to be transported

Exact partial-GW can be computed by solving Frank Wolfe iterations with partial-W [Chapel 2020]
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Unbalanced Gromov-Wasserstein

Partial Gromov-Wasserstein (D, is L1)

min
T>0

| | same penalization as for the UOT problem
Partial OT: fix the amount of mass s that has to be transported

Exact partial-GW can be computed by solving Frank Wolfe iterations with partial-W [Chapel 2020]
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Unbalanced Gromov-Wasserstein

Partial Gromov-Wasserstein (D, is L1)

min
T>0

| | same penalization as for the UOT problem
Partial OT: fix the amount of mass s that has to be transported

Exact partial-GW can be computed by solving Frank Wolfe iterations with partial-W [Chapel 2020]
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min
T>0

| | same penalization as for the UOT problem
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Unbalanced Gromov-Wasserstein

Unbalanced Gromov-Wasserstein (D, is KL)

Can also consider quadratic penalties [Sejourne 2021], relying on Sinkhorn algorithm

pr;% (L(C'x,Cy)T,T) + X (Dgp(Tlm Ty, h®@h)+D,(T'1, T "'1,,9® g))
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Unbalanced Gromov-Wasserstein

Unbalanced Gromov-Wasserstein (D, is KL)

Can also consider quadratic penalties [Sejourne 2021], relying on Sinkhorn algorithm

uadratie probleme: guadratie
a P A
peNa ltLes

64



Unbalanced Gromov-Wasserstein

Unbalanced Gromov-Wasserstein (D, is KL)

Can also consider quadratic penalties [Sejourne 2021, relying on Sinkhorn algorithm

wadratie problema: gquadratie
q P A
peNa ltLes

Source X

Target Y
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Fused Gromov-Wasserstein
Labeled Graphs as probability distributions

coce . Nodes are weighted by their mass £,

eoe * soce
LR N

r\i\:’t 1= Zz hi(s(wiaai)
@

L Features a; can be compared through a
e— | N v pHA = 2ihida, common metric

‘> Hx = zh'&6$z .
@ 22k . 2 No common metric between the structure

x; of two graphs
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Fused Gromov-Wasserstein
Labeled Graphs as probability distributions

Two distributions /. = » /.0 and /1, = ¥ i0(y, b,)

The fused Gromov-Wasserstein distance is defined as

FGW, (Cx,Cy h,g)= min Y ((1—a)|o —biP+ aldx(zixp) — dy (y,.y)P) 1015

Tell(h,g) Py
- ® (14, D4)
(Q;Nl, a4) (yy\//
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Fused Gromov-Wasserstein
Labeled Graphs as probability distributions

Two distributions /. = » /.0 and /1, = ¥ i0(y, b,)

The fused Gromov-Wasserstein distance is defined as

FGWS’q,a(Cx, Cy,h,g)= TEIII'Ili(n,g) Z ((1 — Oz

Compares features Compares structures

17kl

@
(xw, ay4) (yy\//

@ @ S/ &
(302, az) (563, ('/:3) (y:z, 52) (y3, b3

® (Y4, 04)

)
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Fused Gromov-Wasserstein
Labeled Graphs as probability distributions

Two distributions /. = » /.0 and /1, = ¥ i0(y, b,)

The fused Gromov-Wasserstein distance is defined as

FGW]I (Cx,Cy,h,g :Te%l%ﬂg)z- — ;P 4‘){ Ti, ) — dy( y]ayz)|p) Lk

a € |0,]1]
. ® (Y4, b4)
(xm, ay4) (yy\//

66



Fused Gromov-Wasserstein
Labeled Graphs as probability distributions

Two distributions /. = » /.0 and /1, = ¥ i0(y, b,)

The fused Gromov-Wasserstein distance is defined as

FGW]I (Cx,Cy,h,g :Te%l%ﬂg)z- —b;|P 4‘){ Ti, ) — dy( yjayz)|p) Lk

a € |0,]1]
® ® (Y4, bs) Same features 0T (h,g) =0
(1, 01) (x4, 04) (y1, 1) // same structure gW(h,g) =0
. . . v but different structure AND features

(22, as) (23, a3) (ya, bo) (y3, bs) Faw (h,g)Fo
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Fused Gromov-Wasserstein

FGW properties and barycenters

Interpolates between W (o = 0) and GW (a = 1)

't is a distance forp =1
Constant speed geodesics can be definea

6/



Outline

1. History and basics of optimal transport
2. Wasserstein distances

3. Computational OT

4. Variants of OT : unbalanced OT and Gromov-Wasserstein

5. Some applications of OT in data analysis / machine learning
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Some applications of OT

2 different aspects:
- transporting with OT (the plan is sought)

- using the divergence between (empirical) distributions

69



Some applications of OT
Transporting with OT

OT for shape registration [Bonneel 2019]

SWqg nearest

'terative Closest Point (ICP) for aligning point clouds

Detines a one-to-one correspondance, computes a
rigid transtormation (e.g rotation), moves the
samples and iterates until convergence

j QX —t)=Y3
arg | min 00X 1) = Y

/0
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SWqg nearest

'terative Closest Point (ICP) for aligning point clouds

Detines a one-to-one correspondance, computes a
rigid transtormation (e.g rotation), moves the
samples and iterates until convergence
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Some applications of OT
Transporting with OT

AAAAA

‘ . g OT for domain adaptation [courty et al. 2016]

Two different (yet related domains)

g
)
Q

N n N
L 1,
Feature extraction l

TR
/s

Feature extraction

l Classitfication problem, labels available on the
‘ domain but not on the target domain

Probability Distribution Functions over the domains

/1



Some applications of OT

Transporting with OT

Dataset
‘‘‘‘‘ 4+ -
+ + i Qt - OO
000
+‘"-~-:.~.:,~: _________________________________
+

++ Class 1

O O O Class 2

)

.......

------

-
-----

Optimal transport

-
‘‘‘‘‘‘‘

OT for domain adaptation [courty et al. 2016]

step 1: compute tr

step 2: transport tr

step 3: classify the transported source samples based on the classification rule

e OT coupl

e Source or

to the target domain

computed on the target domain

Classification on transported samples

---------
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Some applications of OT
Transporting with OT

Source dataset (X,Y), |C| temporal (DTW)
shape (n X T X q) coupling matrices 7 , 7!

OT for domain adaptation for time

- series [Painblanc 2023]

1 " eMapx. X, ) Realigned tser it yersatility of OT thanks to the
T}?I‘get(d?tasf;, (X ')), 1 ) associated classes

shape (n' X X q

Samples (OT)  — definition of the cost function:

coupling matrix . . .
— example with time series, where the
costis DITW

73



Some applications of OT
Transporting with OT

Color transfer

Source Image Colorized Image Target Image

Source Image Target Image

We aim to transport the color of one source image onto a target image

Input distributions: histograms of colors

When one distribution is supported on a line, there exists a closed form [Mahey2023]
The OT coupling is used to transfer the colors
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Some applications of OT

Use of the divergence between empirical distributions

Template based Graph Neural Network with Optimal Transport Distances [Vincent-
Cuaz 2022]

TFGW layer
.............................. ) C ,F ‘H
: me= | earnable : o o 1)
02\ R
h (0'2) FGW,, |[——
y . 4 X
(4 : A ,"b
o o (Cg,Fa,hy) A4
C, »(Ci, ¢u(F;), h;)---t-----»| FGW,, g R - U;
v A .
¢ : MLP
— Al FGW, >
' — 4 K
FZ = % Templates : R
GNN L (6 <y FI\’: HI\")

Compute the FGW distance of a graph to several graph templates
New feature representation of the graph: vector ot distances
This vector is then feed into a MLP to predict the class of the graph



Some applications of OT

Use of the divergence between empirical distributions

Template based Graph Neural Network with Optimal Transport Distances [Vincent-
Cuaz 2022]

TFGW layer
(61 ) .Fl ) H1 )

e Py

MLP

Compute the FGW distance of a graph to several graph templates
New feature representation of the graph: vector ot distances
This vector is then feed into a MLP to predict the class of the graph

Guves better classification results than GNNs or kRernel-based algorithms



Some applications of OT

Use of the divergence between empirical distributions

Wasserstein Generative Adversarial Networks [Arjovski 2017]

m&n max Egmpg log D(x) + E,on(0,1) log(1l — D(G(2)))

Learn a Generator G that outputs realistic samples from data

Learn a Discriminator

D able to discriminate generated and true samples
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Some applications of OT

Use of the divergence between empirical distributions

Wasserstein Generative Adversarial Networks [Arjovski 2017]

e, A

0

m&n max Egmpg log D(x) + E,on(0,1) log(1l — D(G(2)))

Learn a Generator G that outputs realistic samples from data
Learn a Discriminator D able to discriminate generated and true samples

Hard to train because of the vanishing gradients
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Some applications of OT

Use of the divergence between empirical distributions

Wasserstein Generative Adversarial Networks

1.0

\ | — Dens:?ty of relal

| g St | Wasserstein GAN minimizes the Wasserstein distance
0.6 | i . 1

- min W} (G, )

i e with the target distribution being a Gaussian N(0,1)
et e /| Qives better results in practice (and is easier to optimize)

: : Vanishing gradients

in reqular GAN

-8 —6 -4 -2 0 2 4 6 8



Some applications of OT

Use of the divergence between empirical distributions
Missing data imputation [Muzellec 2020]

Data imputation: fills missing entries with plausible values

Prigs o ot R o %;‘sw;*;i% ) : .
o, 5 | ey | e Assomption: two batches extracted randomly from the

Uiy AL i“!» F 4% §% same dataset should share the same distribution
- : :i‘ * “ " x w.x“ * ) '?i ‘ ’«.',} x -:'5:'
NPT B PRI I WHSan Suppose that values on some of the features are

missing for one distribution

)I(nin SD(ppm X iy b X 1)
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Some applications of OT

Use of the divergence between empirical distributions
Missing data imputation [Muzellec 2020]

Data imputation: fills missing entries with plausible values

L= ’ﬁ"“% X ok * “n;w:} L. g “ﬁ;?’f*'i”i x "
i N I i T P Assomption: two batches extracted randomly from the
A AT A R A A ST
G EXUE L8 L Fd4% gy same dataset should share the same distribution
R, el 3 Ty TRmaal BT a%’:‘:&rf i
ST B WG MR e WHT, Suppose that values on some of the features are

missing for one distribution

min » S D(um@ um@)

complete contaLns missing
values
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Summary

OT is a theoretically grounded way for comparing distributions

Different formulations: Monge (defines a map) or Kantorovitch (defines a plan)

Ground metric provides some geometry of the space (geodesics, barycenters)

Several variants: Unbalanced OT and Gromov-Wasserstein tor unregistered distributions

OT is not robust to outliers: Unbalanced/partial OT relaxes the marginal constraints.
Solving OT is a linear program, GW is a quadratic problem

Reference for Computational OT [Peyre et Cuturi, 2019] or OT for applied
mathematicians [Santambrogio 20715]

Regularizing the problem helps in reducing the complexity

There exist some tools for OT, for instance o—e_ o

o9
Q@
Q@

Q@

o9

,,H
]
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