Topological (& geometrical) methods)for astrophysical data

Lecture 1: Minkowski functionals ‘o 2
" Complete characterisation of the LSS of the Universe”

Observatoire = astronomique

cnrs

‘ ‘ de Strasbourg | ObAS ‘
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o Lecture 1: Minkowski functionals
— robust morphological characterisation of the large-scale structure of the Universe

@ Motivation

— cosmic web
— characterisation of the multi-scale Universe

@ Mathematical background
— global Minkowski functionals
— local Minkowski functionals

@ Applications

— point processes (Poisson process, Galaxy distribution)
— continuous fields (Hydrodynamic, N-body simulations)

Useful reading:

— Mecke, Buchert & Wagner 1994 arXiv:astro-ph /9312028

— Schmalzing & Buchert 1997 arXiv:astro-ph /9702130

— Schmalzing, Kerscher & Buchert 1995 arXiv:astro-ph /9508154

Katarina Kraljic


https://arxiv.org/abs/astro-ph/9312028
https://arxiv.org/abs/astro-ph/9702130
https://arxiv.org/abs/astro-ph/9508154

Outline Motivation ical background Application

e Lecture 2: Discrete persistent structures extractor (DisPerSE)
— coherent identification of persistent topological features within sampled distributions

@ Motivation

— characterisation of the web-like matter distribution in the Universe
— cosmic web <+ Morse theory

@ Morse theory

— smooth Morse theory
— discrete Morse theory

@ Theory of persistence

@ DisPerSE

— applications

Useful reading:

— Sousbie 2011 arXiv:astro-ph/1009.4015

— Sousbie, Pichon, Kawahara 2011 arXiv:astro-ph/1009.4014
— DisPerSE

Katarina Kraljic


https://arxiv.org/abs/1009.4015
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The Multi-scale Universe o

The Cosmic web
from observations ...

de Lapparent et al. 1986
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The Multi-scale Universe

The Cosmic web
from observations ...

de Lapparent et al. 1986
Colless et al. 2003
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Motivation Mathematical ba ound Applications

he MUIt cale Unlverse [e]e) 0000000000000 00000000

The Cosmic web
from observations ...

de Lapparent et al. 1986
Colless et al. 2003
Adelman-McCarthy et al. 2008
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x ..

The Cosmic web
...to theory

Klypin & Shandarin 1993
Bond, Kofman & Pogosyan 1996

Sergei Shandarin
Zel'dovich 1970
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Sergei Shandarin
Zel'dovich 1970
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The Multi-scale Universe

¥

Marenostrum e Yepes et al. 2007

Motivation Mathematical background Applications
00000 000000000000000 00000000

The Cosmic web
...to theory

Klypin & Shandarin 1993
Bond, Kofman & Pogosyan 1996
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The Multi-scale Universe

Sergei Shandarin
Zel'dovich 1970
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Motivation Mathematical background Applications
00000 000000000000000 00000000

The Cosmic web
...to theory

Klypin & Shandarin 1993
Bond, Kofman & Pogosyan 1996

GN e Dubois et al. 2014
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The Multi-scale Universe
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Motivation Mathematical background Applications

[e]e] Ie]e} 000000000000000 00000000

The Cosmic web
...to theory

Klypin & Shandarin 1993
Bond, Kofman & Pogosyan 1996
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Mathematical ba ound Applications
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1D cosmological models

- Gaussian random field (standard model)
vs primordial non-Gaussianities

- massive neutrinos

- dark energy models ...

2 galaxy formation models

- gravitational clustering
- baryonic physics (scale-coupling) ...
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1D cosmological models

- Gaussian random field (standard model)
vs primordial non-Gaussianities

- massive neutrinos

- dark energy models ...

2 galaxy formation models

- gravitational clustering
- baryonic physics (scale-coupling) ...

1 statistical measures

- two-point correlation function
- higher-order correlations
- topological /geometrical descriptors ...

2 observables

- galaxies
- galaxy clusters
- CMB .

Katarina Kraljic 6
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[e]e]e]e] ]

Characterisation of Large-scale structure

2-point correlation function
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The Multi-scale Universe Motivation : ‘ Application

[e]e]e]e] ]

Characterisation of Large-scale structure

Genus topology

2-point correlation function (# of holes - # of isolated regions)
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@000

» K9 - d-dimensional Euclidean space
with
G - group of motions operating on it:
G=R&®T
R - subgroup of rotations

T - subgroup of translations
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00O

» E? - d-dimensional Euclidean space
with
G - group of motions operating on it:
G=RQT
R - subgroup of rotations

T - subgroup of translations

convex non-convex

> K - set of all compact and convex sets

R - convex ring of all finite unions of convex bodies
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Hadwiger's theorem i Mathematical background Applications

00O

» E? - d-dimensional Euclidean space
with
G - group of motions operating on it:
G=RQT
R - subgroup of rotations

T - subgroup of translations

convex non-convex

> K - set of all compact and convex sets

R - convex ring of all finite unions of convex bodies

P> To characterise the topological and geometrical properties of a body A from this

convex ring, we wish to find functionals M satisfying:

@ additivity
@ motion-invariance

©® conditional continuity

Katarina Kraljic



Hadwiger’s theorem tion Mathematical background Applicatior
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0 Additivity: M(Al U Ag) = M(Al) + M(AQ) = M(Al n AQ) VA1,A2 € R

A1 UA2 AlﬁAQ
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0 Additivity: M(Al U Ag) = M(Al) + M(AQ) = M(Al n Ag) VA1,A2 € R

A1 UA2 AlﬁAQ

e Motion invariance: M (gA) = M(A) V g€ G,AER
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Hadwiger’s theorem tion l(\)/l.athematical background Applicatior

0 Additivity: M(Al @] Ag) = M(Al) + M(AQ) = M(Al n Ag) VA1,A2 € R

A1 UA2 AlﬁAQ

e Motion invariance: M (gA) = M(A) V g€ G,AER

e Conditional continuity: M(K;) — M(K) as K, — K for K; K€K

OOEO—O
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[e]e] o) ) O

» In d dimensions only d + 1 functionals are independent. All remaining ones can be
represented as linear combinations of them (Hadwiger 1957):
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Hadwiger’s theorem Motivation Mathematical background Appl

» In d dimensions only d 4+ 1 functionals are independent. All remaining ones can be
represented as linear combinations of them (Hadwiger 1957):

Let R be the convex ring in d-dimensional space. Then there 3 d + 1 functionals
My; p = 0,1,...,d on R such that any additive, motion invariant and conditionally
continuous functional M is a linear combination of them:

d
M=>"c,M, with c,€R

Hugo Hadwiger
(1908 - 1981)

Katarina Kraljic 10/30



Steiner’s theorem ‘Vé/loti\‘/:‘tion ‘Iglit‘hemaf‘lcal back‘ round {:\pplicatwon

DO@0000

» K € K - convex body
K € K - parallel body of K

Ke={x € R|ry(x) < e}

with 73 = miny e [|x — y||

Katarina Kraljic 11/30



Motivation Mathematical background Applications

Steiner’s theorem

» K € K - convex body

K¢ € K - parallel body of K
] d Ke e
Ke = {x € RY | rg(x) < ¢}

with 73 = miny e [|x — y||

Steiner’s theorem

Volume V(K.) of the parallel body K. of a convex body K is a polynomial in ¢ of
degree d:

d ,
V(K) =" ( :f )II’,,(K)&"’

v=0

Jacob Steiner
(1796 - 1863)
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Motivation Mathematical background Applications

Steiner’s theorem

» K € K - convex body

K¢ € K - parallel body of K
] d Ke e
Ke = {x € RY | rg(x) < ¢}

with 73 = miny e [|x — y||

Steiner’s theorem

Volume V(K.) of the parallel body K. of a convex body K is a polynomial in ¢ of
degree d:

d
V(K) =" ( :f )uy (K)e¥

v=0

Jacob Steiner
(1796 - 1863)

W, (K) - depend only on the particular body K
- define a family of d + 1 functionals on the convex ring
- termed Quermassintegrals or Minkowski functionals

(Minkowski 1903)

Hermann Minkowski
(1864 - 1909)

11/30
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Inclusion-exclusion principle

P> The continuation from the set K of convex bodies to the whole convex ring R:
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ODO0O®000 s

Inclusion-exclusion principle
P> The continuation from the set K of convex bodies to the whole convex ring R:

For a body A € R given as the union of N convex bodies K;,7 € Z with |Z| = N

A= U K;
1€T

any additive functional M is calculated as:

M@A)= ¥ (DVITTM(N Kj) 1)
0£JCT i€eJ

Katarina Kraljic 12/30



Steiner’s theorem

Inclusion-exclusion principle
P> The continuation from the set K of convex bodies to the whole convex ring R:

For a body A € R given as the union of N convex bodies K;,7 € Z with |Z| = N

A= U K;
1€T

any additive functional M is calculated as:

M@A)= ¥ (DVITTM(N Kj) 1)
0£JCT i€eJ

mm Functional M is completely determined on R if we know its values on K.
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Steiner’s theorem

Inclusion-exclusion principle
P> The continuation from the set K of convex bodies to the whole convex ring R:

For a body A € R given as the union of N convex bodies K;,7 € Z with |Z| = N

A= U K;
1€T

any additive functional M is calculated as:

MA) = ¥ (HYImtM(N K;j) (1)
0 JET

JCT

mm Functional M is completely determined on R if we know its values on K.

P For a union set of 2 bodies, Z={1,2}, we recover the additivity relation:

M(Kl UKQ) = M(Kl) +M(K2) = M(K1 ﬂKQ)

Katarina Kraljic 12/30
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Steiner’s theorem

Application of Steiner’s theorem

» K € K - smooth convex body in 3D
— topologically equivalent to a ball

— Gaussian transformation - mapping between the two
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Steiner’s theorem

Application of Steiner’s theorem
» K € K - smooth convex body in 3D
— topologically equivalent to a ball
— Gaussian transformation - mapping between the two
» dA - surface element of K

— in terms of the surface element dw of the unit shpere S? via the
curvature radii Ry, Ro: dA = Ry Rodw

Katarina Kraljic 13/30



Steiner’s theorem otivation Mathematical background

Application of Steiner’s theorem
» K € K - smooth convex body in 3D
— topologically equivalent to a ball
— Gaussian transformation - mapping between the two
» dA - surface element of K
— in terms of the surface element dw of the unit shpere S? via the

curvature radii Ry, Ro: dA = Ry Rodw

» dAj; - surface element of parallel body of K under Asdo

K.
Minkowski addition of a ball of radius §: /\

dA5 = (Rl + 5)(R2 + 6)dw
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Steiner’s theorem tion Mathematical background

(o] JoJ

Application of Steiner’s theorem
» K € K - smooth convex body in 3D
— topologically equivalent to a ball

— Gaussian transformation - mapping between the two

» dA - surface element of K

— in terms of the surface element dw of the unit shpere S? via the
curvature radii Ry, Ro: dA = Ry Rodw

» dAj; - surface element of parallel body of K under Asdo

K.
Minkowski addition of a ball of radius §: /\

dA5 = (Rl + 5)(R2 + 6)dw
> As - surface of the parallel body for radius §:

As = [(R1+0)(R2 +6)dw = [ RiRodw+6 [(R1+ Ra)dw + 6% [ dw =
S2 S2 S2 S2

— 1 1 1 _
7a{<dA+5a{< dA(leJFRi)JF‘SQa{(dARlRZ =

= A + 2HS + 47y 62
surface integral mean Euler
area curvature characteristic

Katarina Kraljic 13/30



Steiner’s theorem otivation Mathematical background

Application of Steiner’s theorem
» K € K - smooth convex body in 3D
Ajs - surface of the parallel body for radius é: As = A+ 2HE + 4mwx 5?2

Asdd

e

Katarina Kraljic 13/30



Steiner’s theorem i Mathematlcal background Applicatior

(o] JoJ

Application of Steiner’s theorem
» K € K - smooth convex body in 3D
Ajs - surface of the parallel body for radius é: As = A+ 2HE + 4mwx 5?2

Ve - parallel volume under Minkowski addition of a ball of radius e

Asdd

e

Vo=V + [ Asds =
0

=V + [Ads+ [d62HS + [ db4nxs? =
0 0 0

=V + Aec + He? + 4mwyxed

Katarina Kraljic 13/30



Steiner’s theorem i Mathematlcal background Applicatior

(o] JoJ

Application of Steiner’s theorem
» K € K - smooth convex body in 3D

Ajs - surface of the parallel body for radius é: As = A+ 2HE + 4mwx 5?2

Ve - parallel volume under Minkowski addition of a ball of radius e

%:V—l—ngd&: A‘sdde
0
D

€ € €

=V + [Ads+ [d62HS + [ db4nxs? =
0 0 0

=V + Aec + He? + 4mwyxed

P> Steiner's formula in 3D:

Ve= 3:0 ( i )Wu€"=W0+3W16+3W262+W363

Katarina Kraljic
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Steiner’s theorem i Mathematlcal background Applicatior

(o] JoJ

Application of Steiner’s theorem
» K € K - smooth convex body in 3D

Ajs - surface of the parallel body for radius é: As = A+ 2HE + 4mwx 5?2

Ve - parallel volume under Minkowski addition of a ball of radius e

%:V—l—ngd&: A‘sdde
0
D

€ € €

=V + [Ads+ [d62HS + [ db4nxs? =
0 0 0

=V + Aec + He? + 4mwyxed

P> Steiner's formula in 3D:

Ve= 3:0 ( 3 )Wu€"=W0+3W16+3W262+W363

v
mmP \inkowski functionals ... geometric quantity:
Wo=V ...volume V'
leéA ...surface A
Wy = %H ... mean curvature H
4 L
Wz =4x ... Euler characteristic x

Katarina Kraljic
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. y i
Steiner’s theorem ooe

Minkowski functionals

> geometric interpretation in 3-dimensional space:

The most common notations for Minkowski functionals.

geometric quantity w M, \ W, Wy,
V' volume 0 14 14 14 1 Vi = %M“
A surface 1 A/8 A/6 A/3 2 W= 2490 g
H mean curvature 2 | H/2x? | H/37 H/2 T =
x  Euler characteristic | 3 3x/Am X 47x /3 47 /3

/2

* wy, - volume of p-dimensional unit ball: w, =

T(14 p/2)

Katarina Kraljic
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Mathematical background Applications

(e]o] ]

Minkowski functionals

> geometric interpretation in 3-dimensional space:

The most common notations for Minkowski functionals.

geometric quantity w M, \ W, Wy,
V' volume 0 v 14 14 1 Vi = %M“
A surface 1 A/8 A/6 A/3 2 W= 2490 g
H mean curvature 2 | H/2x? | H/37 H/2 ™ o=
x  Euler characteristic | 3 3x/Am X 47x /3 47 /3
* wyy - volume of p-dimensional unit ball: w, = i
T(14 p/2)

H - information about shape
X - purely topological quantity
- related to genus g: x =1—g
X = # of components - # of tunnels + # of cavities

SIS

x=0 x=-1

Katarina Kraljic



Principal kinematical formula Motivation Mathematical background Application
Motivation: calculate mean values over positions of bodies

dg - measure to perform integration on G
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Motivation: calculate mean values over positions of bodies

dg - measure to perform integration on G

® } = Haar measure

motion invariance of the measure
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Motivation: calculate mean values over positions of bodies

dg - measure to perform integration on G

@ } = Haar measure

motion invariance of the measure

— unique (up to a multiplicative constant) for compact topological groups

— G in E? - translations restricted to ) region of space

— normalisation: [dg= [ drdt=|V|
g RRT
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Principal kinematical formula Motivation Mathematical background Applications

00000000

Motivation: calculate mean values over positions of bodies

dg - measure to perform integration on G

@ } = Haar measure

motion invariance of the measure

— unique (up to a multiplicative constant) for compact topological groups

— G in E? - translations restricted to ) region of space

— normalisation: [dg= [ drdt=|V|
g RRT

Principal kinematical formula

Consider A,B € R, and fix A, while allowing B to move through transformations
g € G. Intersection AN gB € R with Minkowski functionals M, (A N gB). With the
Haar measure, integration of this quantity gives a factorisation into functionals of A
and B:

o

/ dg Mu(ANgB) =Y

bl v=0

( f‘ ) M, (A) M,,_,(B)

Katarina Kraljic 15/30
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Motivation

P Steiner's theorem — elegant way of calculating the MFs of convex bodies
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Motivation
P Steiner's theorem — elegant way of calculating the MFs of convex bodies
P Inclusion-exclusion principle — MFs of any set A from the convex ring R

— impractical even for small N
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Motivation

P Steiner's theorem — elegant way of calculating the MFs of convex bodies
» Inclusion-exclusion principle — MFs of any set A from the convex ring R

— impractical even for small N

» Idea: extend the integration formulae for smooth convex bodies
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000000
Motivation

P Steiner's theorem — elegant way of calculating the MFs of convex bodies

» Inclusion-exclusion principle — MFs of any set A from the convex ring R
— impractical even for small N

» ldea: extend the integration formulae for smooth convex bodies

— MFs of a smooth body with principal surface curvatures k1, k2 (M, normalisation):

Mi(A) = § [ dA, My(A) =3ty [dA®ER2 My(A) = 125 [ dAkike
dA dA dA
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Motivation

P Steiner's theorem — elegant way of calculating the MFs of convex bodies
P Inclusion-exclusion principle — MFs of any set A from the convex ring R

— impractical even for small N
» Idea: extend the integration formulae for smooth convex bodies

— MFs of a smooth body with principal surface curvatures k1, k2 (Mu normalisation):

My (A) = %5{1 dA, My(A) = ﬁaa dAmLER2 - Mg (A) =

16 — f dAK1K2

— consider x € A, we can think of integrands

Ml(Avx) = é' MQ(A,X) - 212 R1+H2 M3(A,X) = 16%5152

as local contributions of x to the global MF:

M, (A) = a£ dAM,, (A, x)
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)@ 000000
Motivation

P Steiner's theorem — elegant way of calculating the MFs of convex bodies
P Inclusion-exclusion principle — MFs of any set A from the convex ring R

— impractical even for small N
» Idea: extend the integration formulae for smooth convex bodies

— MFs of a smooth body with principal surface curvatures k1, k2 (M, normalisation):

Mi(A) = § [ dA, My(A) =3ty [dA®ER2 My(A) = 125 [ dAkike
8A 8A 8A
— consider x € A, we can think of integrands

Mi(A,x) = 5, Ma(A,x) = 5y 51552 M3(A,x) = 2y rik2

as local contributions of x to the global MF:

M, (A) = a£ dAM,, (A, x)

» Problem: applies only to smooth bodies (no singularities/edges, corners)

Katarina Kraljic 16/30



Partition formula Motivation Mathematlcal background

@000000
Motivation

P Steiner's theorem — elegant way of calculating the MFs of convex bodies
P Inclusion-exclusion principle — MFs of any set A from the convex ring R

— impractical even for small N
» Idea: extend the integration formulae for smooth convex bodies

— MFs of a smooth body with principal surface curvatures k1, k2 (Mu normalisation):

My (A) = §0{1 dA, My(A) = ﬁa& dAmLER2 - Mg (A) =

16 — f dAk1 K2

— consider x € A, we can think of integrands

Ml(Avx) = %' MQ(A7X) - 212 R1+R2 M3(A,X) = 16%51&2

as local contributions of x to the global MF:

M, (A) = [ dAM,(A,x)
84 (2
» Problem: applies only to smooth bodies (no singularities/edges, corners)
» Solution: @ generalised boundary
@ Federer's local curvature measures mmp partition formula
© suitable measure of integration analogous to (2)
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0 Generalised boundaries
» K € K in d dimensions
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e Generalised boundaries
» K € K in d dimensions

— if K is a smooth body = each point of its surface 9K supports a unique normal vector
— if 3 singularities at 0K = each singular point supports a normal cone
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e Generalised boundaries
» K € K in d dimensions

— if K is a smooth body = each point of its surface 9K supports a unique normal vector
— if 3 singularities at 0K = each singular point supports a normal cone

P metric projection pg (x) of a point x onto K is defined as the point of K whose distance
from x is minimal

Katarina Kraljic 17/30
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e Generalised boundaries
» K € K in d dimensions

— if K is a smooth body = each point of its surface 9K supports a unique normal vector
— if 3 singularities at 0K = each singular point supports a normal cone

P metric projection pg (x) of a point x onto K is defined as the point of K whose distance
from x is minimal

> normal cone Nk (x) of a point x € dK: N (x) +x = pg(x)~!
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(o] Je]e]e]e]e]
e Generalised boundaries
» K € K in d dimensions

— if K is a smooth body = each point of its surface 9K supports a unique normal vector
— if 3 singularities at 0K = each singular point supports a normal cone

P metric projection pg (x) of a point x onto K is defined as the point of K whose distance
from x is minimal
> normal cone Nk (x) of a point x € dK: N (x) +x = pg(x)~!

> Let x € OA, A € R in d dimensions.

We call x regular if the normal in x is unique, with the normal cone Nk (x) degenerated
into a line. A is called smooth if all x € A are regular.
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Partition formula
e Generalised boundaries
» K € K in d dimensions

000000

— if K is a smooth body = each point of its surface 9K supports a unique normal vector
— if 3 singularities at 0K = each singular point supports a normal cone

P metric projection pg (x) of a point x onto K is defined as the point of K whose distance
from x is minimal

> normal cone Nk (x) of a point x € dK: N (x) +x = pg(x)~!

> Let x € A, A € R in d dimensions.
We call x regular if the normal in x is unique, with the normal cone Nk (x) degenerated
into a line. A is called smooth if all x € A are regular.
x is called r-singular < dimNg (x) > d — r. The set of all r-singular points is called
generalised boundary 0¥ A of order v =d — r:

YA = {x € 0A|dimN(x > v)}

Katarina Kraljic 17/30
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e Generalised boundaries
>

>

>
>

K € K in d dimensions

— if K is a smooth body = each point of its surface 9K supports a unique normal vector
— if 3 singularities at 0K = each singular point supports a normal cone

metric projection pg (x) of a point x onto K is defined as the point of K whose distance
from x is minimal

normal cone N (x) of a point x € 9K: N (x) +x = pg(x)~!

Let x € 9A, A € R in d dimensions.

We call x regular if the normal in x is unique, with the normal cone Nk (x) degenerated
into a line. A is called smooth if all x € A are regular.

x is called r-singular < dimNg (x) > d — r. The set of all r-singular points is called
generalised boundary 0¥ A of order v =d — r:

-
YA = {x € OA|dimN4 (x > v)} ‘ x

— in 3D: 93 A - corners, 9% A - corners and edges,

[ 3

O A - ordinary boundary
— for A € R given as the union of smooth bodies:
OVA = {X e 8A|E|‘7 CT: |‘7‘ =v,XE ﬂjejaKj}

0¥ A - (d — v)-dimensional manifold composed of all intersection points of v or more

boundaries of smooth convex parts
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e Local Minkowski functionals (MFs)

> local curvature measures (H. Federer, 1959) — localise MFs to Borel sets 3 C E¢
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e Local Minkowski functionals (MFs)
> local curvature measures (H. Federer, 1959) — localise MFs to Borel sets 3 C E¢

> Given a convex body K, a borel set 8 C E% and € € R~q, we define the
local parallel set K(83):

K (B) = {x € R%pk(x) € 8,0 < rx(x) < e}
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e Local Minkowski functionals (MFs)

> local curvature measures (H. Federer, 1959) — localise MFs to Borel sets 3 C E¢

> Given a convex body K, a borel set 8 C E% and € € R~q, we define the
local parallel set K(83):

K (B) = {x € R%pk(x) € 8,0 < rx(x) < e}

> Ve(K,B) =V (Ke(B)) - volume of the parallel set is a polynomial in € of degree d:

d
v p) =3 () L0l e

n=0 &
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Partition formula otivation Mathematical background Application

jeje]o] Je]e]e]e] O

e Local Minkowski functionals (MFs)

> local curvature measures (H. Federer, 1959) — localise MFs to Borel sets 3 C E¢
> Given a convex body K, a borel set 8 C E% and € € R~q, we define the
local parallel set K(83):
Ke(B) = {x € RYpx(x) € 8,0 <7k (x) < ¢}

> Ve(K,B) =V (Ke(B)) - volume of the parallel set is a polynomial in € of degree d:

d
‘/;(Kaﬁ) = Z ( d ) écdfu(KwB)eu

i
n=0
Cgq_u (K, ) - functionals on the set of Borel sets B¢ for each convex body K
- body’s curvature measures as defined by Federer (1959)

- depend only on BN OK ‘ 31,
- if B = OK — local parallel set is equal to the complete parallel \
set, and the curvature measure is equal to the global MF: d@
1 Herbert Federer
Wu(K) = 3Ca—pu(K,0K) (1920 - 2010)
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Partition formula
e Local Minkowski functionals (MFs)

> local curvature measures (H. Federer, 1959) — localise MFs to Borel sets 3 C E¢
> Given a convex body K, a borel set 8 C E% and € € R~q, we define the
local parallel set K(83):
K (B) = {x € R%pk(x) € 8,0 < rx(x) < e}

> Ve(K,B) =V (Ke(B)) - volume of the parallel set is a polynomial in € of degree d:

d
‘/;(Kaﬁ) = Z ( d ) écdfu(KwB)eu

m
pn=0
Cgq_u (K, ) - functionals on the set of Borel sets B¢ for each convex body K
- body’s curvature measures as defined by Federer (1959)
- depend only on B NOK
- if B = OK — local parallel set is equal to the complete parallel
set, and the curvature measure is equal to the global MF: dﬁ

Wy (K) = 1Ca_ (K, 0K) o o,

» additivity on disjoint partition of K into 8¥ K & partition of each 8” K into N(*) disjoint

Borel sets ,BJ(.V): 4 NG

U k=4 W 8"

v=1 j=1
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e Local Minkowski functionals (MFs)

» representation of MF:

(V)
Hoq p N
WM(K):Zng_M(K,a”K) > Z o, w(E, ) =
v=1 v=1 j=1
uw N®) C K, (v)
= Z Vv (d— V)(B(”))Li)) 3)
v=1 j=1 V(d 1/)(6] )
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e Local Minkowski functionals (MFs)

» representation of MF:

m N(V)
W Z Cd ,u(K aVK) Z Z Cd ,u, ’BJ(V)) =
v= 1 v=1 j=1

1Ca_u(K,8)

RO 3)

(v)
(1 1% v
= g E ) 5] )

Vv (d=v)(.) - (d — v)-dimensional volume appropriate for the v-th generalised boundary
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000000

e Local Minkowski functionals (MFs)
» representation of MF:

yn N(V)

1 v
, 04K, K) = >3 L Cu (K, ) =

v=1 j=1

WM(K) =

I Mt ﬁM:

N (v)
Z V(d-) () 2 3Ca—u(K, B;"") 3)

T v

Vv (@=¥)(.) - (d — v)-dimensional volume appropriate for the v-th generalised boundary
- for a finer and finer partitions of the generalises boundaries
N®) — 00, max V@) 90 (4)
1<GENG) !
N

Ve @)= [ dran
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)OO0 @000

e Local Minkowski functionals (MFs)
» representation of MF:

n N(V)

1 v
 L0u 0710 = 35 5% A8 =

v=1 j=1

WM(K) =

I Mt ﬁM:

N - 3(¥)
Z v a0 aCa—u(K:8;") 3)

Vv (d—v) (BE ))

Vv (d=¥)(.) - (d — v)-dimensional volume appropriate for the v-th generalised boundary
- for a finer and finer partitions of the generalises boundaries
N®) — 00, max V@) 90 (4)
1<GENG) !
N

Ve @)= [ dran

3C (5,85

Gy -can be used to define local MFs with the limit (3)
v (5
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e Local Minkowski functionals (MFs)

> Let K be a convex body and x € 9K a point on its boundary belonging
to the v-th, but not the (v + 1)-th generalised boundary, x € ¥ K \ 8”1 K. Consider a
sequence (Bn)nen of Borel sets with

Bn €K, VUE@=)(8,)>0 and lim B, = {x}.
n—oo
Then the local Minkowski functional W, (K, x) of K in the point x is well-defined by

_ 3Ca—u(K, Bn)
Wiu(K,x) = lim < )
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)OO0000000 O

e Local Minkowski functionals (MFs)

> Let K be a convex body and x € 9K a point on its boundary belonging
to the v-th, but not the (v + 1)-th generalised boundary, x € ¥ K \ 8”1 K. Consider a
sequence (Bn)nen of Borel sets with

Bn €K, VUE@=)(8,)>0 and lim B, = {x}.
n—oo
Then the local Minkowski functional W, (K, x) of K in the point x is well-defined by

ey (K,
W, (K,x) = lim dd+(’3n)

> With these definitions & limit (4) in (3), replacing 3 by [:

M
W (K) =" /BVKdAd,V(x)WM(K, x)
v=1
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000000

e Local Minkowski functionals (MFs)

> Let K be a convex body and x € 0K a point on its boundary belonging
to the v-th, but not the (v + 1)-th generalised boundary, x € ¥ K \ 8”1 K. Consider a
sequence (Bn)nen of Borel sets with

Bn €K, VUE@=)(8,)>0 and lim B, = {x}.
n—oo
Then the local Minkowski functional W, (K, x) of K in the point x is well-defined by

1oy (K,
W, (K,x) = lim dd+(’8n)

> With these definitions & limit (4) in (3), replacing 3 by [:
"
Wu(K) = Z/a dAg—, (X)W, (K, x)
v=1 YK

P The local Minkowski functionals in a point x € A, with A € R (using the intersection of
convex parts of A meeting in x):

Wi (A, x) = (=)W, (K, x)

giving the global functional W, (A) when integrated over 9¥ A with Lebesgue measures:
o
W (A) = Z/ dAg—, (X)W, (A, x)
v=1 oA
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) OO000000

e Partition formula

» u-th Minkowski functional can be re-written:

Myu(A) = / deUMu(“ x)xv (A, x) partition formula

with generalised characteristic function of the v-th generalised boundary defined as:
Xv (Av X) = f@uA dAd—u(y)a(x - y)

<= (d — v)-dim. volume V(4=%) of the v-th generalised boundary 8” A is calculated by
integrating with the (d — v)-dim. Lebesgue measure d\g—, (-):

V(d_'/) = faVA d)\dfu(y) = faVA dAdfu(Y) f]Rd dd:lj(s(x - Y) =

= f]Rd ddz f@uA dAd—u(y)5(x - Y)

> simplification: for union of smooth convex bodies A = |J K; — the generalised boundary

1€T
of v-th order is the set of all points of 9A where v convex parts meet*:
i
M, (A) = Z =1 Z / da M, ( m 7> X)X ( ﬂ X(0A, x)
v=1 JCT JjET i€eJ

|T|=v

*w inclusion-exclusion principle
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e Partition formula

P The partition formula in 2D for 2 intersecting bodies:

D CID

— the MFs of the union set: 3 boundary contributions - M, 1, M, 12, M 2
(2 for single surfaces: M, 1, M, 2, 1 for intersection points M, 12)
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e Partition formula

P The partition formula in 2D for 2 intersecting bodies:

(0D

— the MFs of the union set: 3 boundary contributions - M, 1, M, 12, M 2
(2 for single surfaces: M, 1, M, 2, 1 for intersection points M, 12)

P The partition formula in 3D for 3 intersecting bodies:

Mu(A) =" My A)+ ZMHW(A)'*‘* D Muiji(4)

€L i,J€T i,j,k€T
surfaces of single intersection lines intersection points where
partial bodies 3 partial bodies meet
3 faces
2 triple points 3 faces
3 intersection lines 3 intersection lines
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[ JoJe]e]

Germ grain model

P> {x;}i=1...N - single realisation of a point process in a region V of space
— decorate each point with a ball K;(R) of radius R
— content, shape and connectivity of the union set

N
AR) = | Ki(R)
i=1

reflect the structure of the point process on a scale of the order of R

— A(R) € R (convex ring) = M, (A(R)) - quantitative measures of its morphology

Katarina Kraljic
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Point processes

Germ grain model

» {x;}i=1...~v - single realisation of a point process in a region V of space
— decorate each point with a ball K;(R) of radius R
— content, shape and connectivity of the union set

N
AR) = | Ki(R)
=il

reflect the structure of the point process on a scale of the order of R
— A(R) € R (convex ring) = M, (A(R)) - quantitative measures of its morphology
— union's set morphology changes with variation of R — diagnostic parameter
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The Poisson process

> principal kinematical formula ) the Haar measure:
— independent distribution of N bodies K; corresponds to applying N motions g; to single
body and weighting with a product measure of the individual Haar measures:

N N
An = UgiKi, dun :Hﬁ with ‘/gN duny =1
p=il d=1
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[o] Je]e]

The Poisson process

> principal kinematical formula ) the Haar measure:
— independent distribution of N bodies K; corresponds to applying N motions g; to single
body and weighting with a product measure of the individual Haar measures:

N N oo
An = U 9: K, dun = H with /N duny =1
i=1 i=1 g

9i
VI
— MFs (per volume) averaged over all possible motions of the individual bodies of the union
set A for arbitrary bodies K;:

o AMu(AN))
Tl
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[o] Je]e]

The Poisson process

> principal kinematical formula ) the Haar measure:
— independent distribution of N bodies K; corresponds to applying N motions g; to single
body and weighting with a product measure of the individual Haar measures:

N N
An = U 9: K, dun = H |Vz‘ with ‘/gN duny =1
p=il d=1

— MFs (per volume) averaged over all possible motions of the individual bodies of the union
set A for arbitrary bodies K;:

_ (Mu(AN))
my = ————
V|
» N identical bodies in 3D with MFs Mg ... M3 — volume densities my ... m3 of MFs:
mog =1—e Mo,
my1 = e "Mon My,
mgo = e~ "Mo(nM, — n2M3),

ms = e~ Mo (nM3 — 3n2 My Mz + n3Mf’),

(Mecke & Wagner 1991)

with n = N/|V| and Minkowski functionals M, of balls of radius R:
Mo =4R% M;=ZR?, My;=2R, Mz=2
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The Poisson process

Vo - volume Vi - area
LT L s LTI ) o )
[ e 3 Vo - grows monotonically with increasing
0.8 [ /A 73 1
r ] . /A radius 7 until complete filling
0.6 /’l - . L .
F ] % - Vi1 - increases with increasing r
0.4 - . v . .
0.5 A - increase slows down and finally turns
0.2 - 5 R . q 2
F ] r/ A around < intersecting neighbours
(U e P | 0/‘ . P P
0 01 02 0 01 02
radius radius
V5 - mean curv. V3 - Euler char.
) E 100 . .
61 Ay 3 V4 - positive maximum
i 4 E = - negative minimum <> formation of
2 Y - tunnels and networks
o[/ \ ) 0 V3 - small r = nb. of isolated points
R kY /{ : - tunnels at intermediate » — negative
£ | =50

o o1 02 0 01 02 cavities at large » — 2nd maximum

radius

Schmalzing et al. 1996
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SDSS: galaxy distribution

Minkowski functionals

1.0 - 0.014
— Poisson

ostl * spss 0.012
o " f[—_LDSim 0.010
_§ 0.6 5 0008
g 0.4 0006
s . ® 0004
: 0.002

0.0! 0.000 d

0 20 40 60 80 0 20 40 60 80

diameter 2R in h~*Mpc diameter 2R in h~*Mpc
0.0006 0.00008
£ 0.0004 SICC0CO
s S 000004
g 00002 2 0.00002
£ 0.0000 & 0
—0.00002
-0.0002
0 20 40 60 80 0 20 40 60 80
diameter 2R in h~"Mpc diameter 2R in h~"Mpc

Wiegand et al. 2014
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[e]e]e]e] ]

SDSS: galaxy distribution

Differences
0.006 0.0001
g e 2 0.00005
'fé’ 0.002 s
% 0.000 g 0.0000
z 7
;000 5 =0.00005
—-0.004
—-0.006 —0.0001
0 20 40 60 80 0 20 40 60 80
diameter 2R in h~"Mpc diameter 2R in h~"Mpc
6.x107°
E 4.x10°° £ 5.x107
7 . ]
E 2.x10 -§
S 0 S 0
g 5
E‘ -2.x107¢ =
T ?
§-4.x10"° 2-5.x1077
-6.x107°
0 20 40 60 80 0 20 40 60 80
diameter 2R in h~*Mpc diameter 2R in h~*Mpc

Wiegand et al. 2014
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Koendrink invariants

» random field v(x) on a d-dimensional support D C R¢
— F,, - excursion set for a given threshold v
F, ={x € Dly(x) > v}
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. . ivati i round Applications
Continuous fields 000

Koendrink invariants

» random field v(x) on a d-dimensional support D C R¢
— F,, - excursion set for a given threshold v
F, ={x € Dly(x) > v}

— Minkowski functionals (per unit volume) for d = 3:
vo(v) = ﬁ/‘ 3z 0V —v(x)]
D
_ 1 2 (loc)
v (V) = =7 d“A(x)v v, X
W)= by [ A0 w0
with vgloc)(u, X) = é
(loc) _ 1 1 1
w00 = & (7 + 79

(loc) _
v (1Y) = T mwm®
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a . otivation Mathematical background Applications
Continuous fields 2 o

Koendrink invariants

» random field v(x) on a d-dimensional support D C R¢
— F,, - excursion set for a given threshold v
F, ={x € Dly(x) > v}

— Minkowski functionals (per unit volume) for d = 3:

vo(v) = ﬁ /:D 3z 0V —v(x)]

o) = by /6 A 2% (1, %)

with vgloc)(u, X) = é

(loc) _ 1
05°9 (v,x) = & (Rf<x> + W))

(loc) _
v (1Y) = T mwm®

» transform the surface integrals into volume integrals:
1
(V) = hr /D B8 v — v(x)] Ve (v, x)

(loc)
k

with v (v,x) - in terms of Koendrink invariants (Konedrink 1984) formed from the 1st

and 2nd derivatives of the field (e.g. Schmalzing & Buchert 1997)
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a . Motivation ical background Applications
Continuous fields 2 o

Koendrink invariants
» density field u(x) sampled at the grid points of a cubic lattice
— F,, - excursion set for a given threshold v
F, = {x € DJu(x) > v}

— Minkowski functionals (per unit volume):
= 3
I/)—W/ d°z O [u — v]
01(v) = ﬁ/ d’s = 5(U*V)(u,iu,i)1/2
3 €ijmEklmU,iU, jk U,
= ‘D‘/ d’z U —v)

2u nU,n

_ 1 3. L o €ijk€lmnU iU U jmU kn
D\/ d’z 6(u v) (i) /2

with w ;, u ;; 1st and 2nd field's derivatives
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Continuous fields

Gas distribution

cosmic evolution
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ind Applications
000

Continuous fields

Gas distribution

cosmic evolution

Temperature

z=0

Fiducial NoX NolJet NoAGN NoFeedback

Stellar feedback v v v v %
AGN winds v v v :
Jets v v E
X-ray heating v é

@

Summary of main ingredients of different SIMBA runs.
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Hydrodynamic simulation: baryonic physics

Excursion sets
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Hydrodynamic simulation: baryonic physics

Excursion sets
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Motivation

Continuous fields

Hydrodynamic simulation: baryonic physics

X — ray heating

0 vl V2
1.0 temperature 5
4
0.5 { g
b\ Nl | 254
18 o ' / 2 &
0.0F | ! £ 15 &
0.10 & 2 !
a>F ﬁ 0.5
06 = 0.00 == ?
. o L 1 0
4 6 4 6
log(7'[K]) log(T'[K])
Other properties: density, HI, Ha, pressure, metallicity, . . .
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Continuous fields ' Mipiemeid s

Hydrodynamic simulation: baryonic physics

w0 ol X — ray heating 2
1.0 temperature
0.5
&£
Z|
=
0.0F =

0.10

0.00

! e -
0.00 == w/ —>
L L
y 3

1.0f= :
4
_ 3
0.5
25&
2 2
0.0 N 15 &
5.00 1
0.50 - . 0 7
“ 0.00 - - 0= < 05
0 N | \/ | -5.00 L | 50k LN ®
! G 1 6 1 6 ! 6
log(TK]) log(T[K]) log(T'[K]) log(T[K])

Other properties: density, HI, Ha, pressure, metallicity, . . .
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Continuous fields

N-body simulations: primordial non-Gaussianity

density contrast

Stahl et al. 2023
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N-body simulations: primordial non-Gaussianity

Matter distribution

Gaussian

+
%)
©
o

=
c
o
o

&
@
c
()

©

particle mass

Stahl et al. 2023
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Continuous fields

N-body simulations: primordial non-Gaussianity

z=9
v0 vl v2 v3
S0F
440 —c L ° 1000
— NGI- 0
05F — NG2+ oF ¢
— NG2- 1000
—50F 2000
0.0 = T ().b T /\x\ T L I I
AN 10f Ao
a0 00 ( /Mm/\/; 0 4\
W 0.5 X 500 WW
—0.05 L I T ) il I T (1)) I T ) il I L
iz -5 0 5 -5 0 5 = 0 5 -5 0 5
v v v v
z=0
v0 vl v2 v3
L0 — G 3F
NG1+ 500F
_ — NGI 2F 201
0.5 — NG2+ 0
— NG2- 1F
\ 0
—500-
0%8 ! o = 1 1 - ! !
g 0.5 10 250F
< 0.2» ] 0.0 0 0 N\ ]
St ) | | —0.5E 1 | | | | » | |
0 2 4 0 2 4 2 4 ] 0 2 4
14 14 v 14
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