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Matching functional for discrete problems

I For a matching functional the optimal trajectories must follow geodesics. So the
optimal vector fields vt depend only on the initial momentum vectors p(0). So we
rewrite the functional as

J(p(0)) = γ 〈KV (q(0), q(0))p(0) , p(0)〉+ A(q(1))

where p(t) and q(t) are constrained to follow the geodesic equations.

I The geodesic shooting algorithm consists in optimizing this function J. It is done
via gradient descent or more advanced optimization techniques (e.g. LBFGS).



Data attachment terms : landmarks

I Landmark matching : assume correspondences between discretization points
(xi )1≤i≤n and (yi )1≤i≤n of the two shapes are known (each xi must get close to
yi ).

⇒ use A(q(1)) = ‖q(1)− y‖2 =
n∑

i=1

‖qi (1)− yi‖2.



Curves as measure or currents

I Let C be a curve in Ω ⊂ Rd , parametrized by γC : [0, 1]→ Ω. The uniform
measure associated to C is the following linear form, defined by its action on test
functions f : Ω→ R:

µC (f ) =

∫ 1

0
f (γC (s))‖γ′C (s)‖ds.

I The current associated to C is the following linear form, defined by its action on
test 1-forms ω : Ω→ (Rd )∗:

~µC (ω) =

∫ 1

0

〈
ω(γC (s))

∣∣ γ′C (s)
〉
ds.



Submanifolds as currents

Let S be a regular (rectifiable), oriented and bounded m-submanifold in Ω

I The uniform measure µS is defined for every test function f as :

µS (f ) =

∫
S

f (x)dHm(x).

I The current ~µS is defined for every test m-form ω by:

~µS (ω) =

∫
S
〈ω(x) | ~τS (x)〉 dHm(x)

where ~τS (x) is a unit m-vector associated to the tangent space at x of S.



Hilbert norms on measures and currents

I Dual norms. We consider scalar measures µ (resp. currents ~µ) as elements of a
Hilbert space H∗ (resp. W ∗) which is dual to a space H of regular functions
(resp. a space W of regular m-forms) on Rd .

I These dual norms give our measure of dissimilarity between curves:

A(φ(S),T ) = ‖µφ(S) − µT ‖2
H∗ ,

or
A(φ(S),T ) = ‖~µφ(S) − ~µT ‖2

W∗ ,



Data attachment term for discrete measures

I We assume that source and target measures are combinations of Dirac
functionals :

µx =
1

n

n∑
i=1

δxi , µy =
1

m

m∑
j=1

δyj ,

I This allows to match two sets of points (xi )1≤i≤n, (yj )1≤j≤m, without any
knowledge of correspondences between points (as opposed to the landmarks
case), and with possibly different number of points.

I We evaluate the distance between these measures using the dual RKHS norm :

A(q(1)) = ‖µq(1) − µy‖2
H∗ .

Expanding this squared norm and using the reproducing formula, we get

A(q(1)) = ‖µq(1)‖2
H∗ − 2〈µq(1), µy 〉H∗ + ‖µy‖2

H∗

=
1

n2

n∑
i=1

n∑
j=1

KH(qi (1), qj (1))−2
1

nm

n∑
i=1

m∑
j=1

KH(qi (1), yj )+
1

m2

m∑
i=1

m∑
j=1

KH(yi , yj )



Data attachment terms for discrete currents

I Meshes are approximated in the space of currents as sums of vectorial Diracs:

~µS =
n∑

i=1

δ
ηSi
cSi
, ~µT =

m∑
j=1

δ
ηTj

cTj
.

A(q(1)) = ‖~µS − ~µT ‖2
W∗ =

n∑
i=1

n∑
i′=1

〈
ηSi , KW (cSi , c

S
i′ )η

S
i′

〉

−2
n∑

i=1

m∑
j=1

〈
ηSi , KW (cSi , c

T
j )ηTj

〉
+

m∑
j=1

m∑
j′=1

〈
ηTj , KW (cTj , c

T
j′ )η

T
j′

〉



Diffeomorphic matchings via currents
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Diffeomorphic matchings via currents
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Fig. 3 Examples for plane
curve matching. Bone, bird, and
hand examples are respectively
shown in rows. The first column
shows target shapes. The second
and third columns show source
shapes. Blue curves are source
shapes, while green curves are
deformed source shapes

Fig. 4 Panels from the left to
the right depict the sequence of
geodesic mappings connecting
the source hand to the target
hand at time
t = 0,0.2,0.4,0.6,0.8,1. The
source shape and target shape
are respectively represented in
green and red

hand in green and the target hand in red. The last panel illus-
trates how close the deformed source curve (green) are to the
target curve (red) after the curve matching. The middle pan-
els demonstrate the smooth deformation as the source hand
moves to the target hand along the time.

Robustness Against Noise

One application of studying transformations is to classify
objects into different shape groups. In our LDDMM frame-

work, the velocity vectors transform one object to the other
object and give the shortest geodesic path connecting these
two objects. The length of the geodesic path defines a metric
distance given in (2) and feature in classification. As the pur-
pose of classification, the metric distance should be robust
against noise to achieve accurate classification. In this sec-
tion, we claim that the curve matching provides a more accu-
rate metric distance measurement and overcomes noise ef-
fect on matching results compared with the landmark match-
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Measures and currents : properties

I Both models can handle changes in topology between shapes (e.g. one can
compare and match a closed curve to an open one)

I The currents model is a priori more complete since it encodes both location and
tangential information of the curves. One may think about it as a first-order
model, while the measure model is zero-order.

I As a counterpart currents require to define an orientation on each curve, and on
each subpart of the curve when one has to deal with disconnected or branching
curves.

I Due to this orientation sensitivity, specific parts like spikes in curves are filtered
out in the currents model. Depending on the application this can be seen as a
good or bad property.



Some practical issues with currents norms



The varifolds model

I The varifolds model can be seen as an extension of the model of currents.

I We model shapes as linear forms over scalar functions on Rd × Sd−1, then define
a dual Hilbert norm on the varifolds space.

I Associated varifold :

µS (ω) :=

∫
S
ω(x , τS (x))dHm(x)

I dual norm :

‖µS‖2
W∗ =

∫
S

∫
S
ke(x , y)kt(τS (x), τS (y)dHm(y)dHm(x)

I dissimilarity :



Normal cycles : Tube formula and curvature measures

I For a set V ∈ Rd such that M = ∂V is smooth, the volume of the ε-offset Vε is
a polynomial in ε which coefficients give integrals of curvatures of M = ∂V when
∂V is smooth.
I ex: in R3,

Vol(Vε) = Vol(V ) + Area(M)ε + H(M)
ε2

2
+ G(M)

ε3

3
,

where H(M) and G(M) are the integrals of mean and Gauss curvatures.



Normal cycles : Tube formula and curvature measures

I This formula can be localized so that we get integrals of curvatures restricted to
any Borel subset.

I If V is only assumed to be of positive reach, Vol(Vε) (and its localized version) is
still a polynomial in ε; hence its coefficients define curvature measures in this
general setting.

Ref for this part : P. Roussillon, J. Glaunès : Kernel Metrics on Normal Cycles and Application to

Curve Matching. SIAM Journal on Imaging Sciences. 2016



Definitions

I ε-offset around a compact set C ⊂ Rd : Cε = {x ∈ Rd , d(x ,C) ≤ ε}.

I Normal cone at x ∈ C :

N̂ (C , x) = {u ∈ Rd , ∃ε > 0, ∀y ∈ C ∩ B(x , ε), 〈x − y , u〉 ≤ 0}.

I Unit normal vectors at x ∈ C : N (C , x) = N̂ (C , x) ∩ Sd−1.



Definitions

I Unit Normal bundle associated to a set:

N (C) = {(x , ξ) ∈ C × Sd−1, ξ ∈ N (C , x)}.

I Formally, we can see N (C) as the ”derivative” of Cε at ε = 0.

I N (C) is a closed sub-manifold of dimension d − 1 in Rd × Sd−1.

I The normal cycle associated to C is the current ~µN (C) associated to N (C)
(which is canonically oriented).



The addition formula

I For any subsets C1, C2, whenever it has sense,

~µN (C1∪C2) = ~µN (C1) + ~µN (C2) − ~µN (C1∩C2).

I This allows to extend the definition of normal cycles to any finite union of
smooth curves (in fact to any finite union of sets of ”positive reach”)

I We can even define the normal cycle of a curve deprived of its end-points by
simply substracting the normal cycles associated to them - which correspond to
circles.



Properties

I The normal cycle is a second-order model; it encodes curvature information of the
set. By computing specific integrals of the normal cycle over a small area, one
gets the exact integrated values of the curvature of C on this area.

I The normal cycle does not depend on any choice of orientation on the curve, and
there is no need to specify any,

I Since ”spikes” are parts of high curvature; they get highly weighted in the model.

I Normal cycles are in fact a model for subsets of Rd and not for

submanifolds of a specific dimension. Hence one
can think about comparing a curve with a sur-
face, or to model ”hybrid” objects.



Designing Hilbert norms for normal cycles

I Since ~µN (C) is a current in the product space Rd × Sd−1, we need to define a

kernel in Rd × Sd−1. This can be done by considering a product of two kernels:

k(x, y) = k((x , u), (y , v)) = kp(x , y)kn(u, v),

where kp(x , y) is a reproducing kernel in Rd (e.g. kp(x , y) = 1
1+‖x−y‖2/σ2 ), and

kn(u, v) is a reproducing kernel in Sd−1 (e.g. the kernel given by a Sobolev
metric on Sd−1)

I Let T (x) = τ1(x) ∧ · · · ∧ τd−1(x), where (τi (x))1≤i≤d−1 is an orthonormal basis
of the tangent space TxN (C) for any x ∈ N (C). Then we have

‖~µN (C)‖2
W∗ =

∫
N (C)

∫
N (C)

k(x, y) 〈T (x) , T (y)〉 dσN (C)(x) dσN (C)(y),

where dσN (C)(x) is the volume element on the submanifold N (C)(x)



Implementation for piecewise linear curves

I Let C be a piecewise linear curve, which we look at as a collection of segments
which may be connected at their end-points.

I We can further decompose C as the disjoint union of open segments Si and
points Pj . The additive property for normal cycles then writes

~µN (C) =
∑
i

~µN (Si )
+
∑
j

~µN (Pj )
.

I We decompose further again into space and angular components by writing each
~µN (Si )

as a sum of three terms. The tangent spaces of these space and angular
components are orthogonal.



Implementation for piecewise linear curves

I Hence the whole squared dual norm of ~µN (C) can be computed as a sum of two
parts, one involving only scalar products between ”space” elements (located on
edges) and the other involving only scalar products between ”angular” elements
(located on vertices).

I The ”space” part of the metric is very similar to the usual metric on currents,
except that it is an orientation-free representation of curves. In fact it
corresponds exactly to the varifolds model (Charon et al, 2013). To compute the
scalar product between two such elements we use the same approximation by
vector-valued Dirac located at the center of each edge.

I For the angular part we need to compute double integrals of kn over half-spheres
in Sd−1; which can be computed either analytically (for d = 2) or via
pre-computing look-up tables.



Experiments : currents metric



Experiment : normal cycle metric



Experiment : currents metric



Experiment : normal cycle metric



Experiments



Experiment : normal cycles metric



Other experiments

courants varifolds cycles normaux

varifolds cycles normaux



The varifolds model

varifolds cycles normaux
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