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Computational anatomy / morphometry

Morphometry is the study of shape and its variability in anatomical structures.

I find features of interest like volume or length of specific structures and study their
variability within a population, characterize normal vs abnormal shapes or shape
changes during development or aging.

I more generically, find models for encoding all geometrical variations and use
statistical approach like PCA or nonlinear dimensionality reduction to derive
significant markers.



Motivation: why shape analysis ?

I Motivation comes mostly from Computational Anatomy (CA)

I E.g.: the hippocampus is deformed in a characteristic way by Alzheimer’s disease
(before dementia symptoms become apparent)

I Idea: if shape and deformation can be described
we can perform diagnosis from shape

I Goals:
? build templates,
? perform classification on “shape spaces”;
? more generally, do statistics on shapes

I We need to build a distance function between shapes:
(1) mathematically sound, (2) computable, and
(3) relevant for the application in mind



Various types of geometrical data

Modern technology allows very accurate identification and visualization of anatomical
structures:

Landmarks

Sulcal ribbons

Diffusion tensor fields

Mathematically, shapes could be curves in R2 or R3, surfaces in R3, scalar images,
diffusion tensor images, landmark points . . .
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Shape spaces

I shape space idea: shapes are seen as elements of an infinite dimensional manifold,
and compared by finding geodesics for a given riemannian metric that encodes
infinitesimal shape variations.



Shape spaces

I Example : Kendall shape space



Example : local metric for curves : intuitive idea

I Let C ⊂ R2 be a curve, parametrized by γ : [0, L]→ R2 (assumed arc-length).
We consider small variations of the curve:

γ(s) 7→ γ(s) + εη(s)n(s),

with ε << 1, η(s) ∈ R and n(s) ∈ R2 is the normal vector to the curve at γ(s).
η : [0, L]→ R can be thought as an element of the tangent space at C in shape
space.



Example : local metric for curves (see
[Mumford and Michor, 2006, Bauer et al., 2014])

I To define a Riemannian metric, one has to define an inner product between two
elements η, ν of the tangent space at C :
I example 1 :

〈η, ν〉F =

∫ L

0

η(s)ν(s)ds

(bad choice : the metric is degenerate)
I example 2 :

〈η, ν〉F =

∫ L

0

(1 + κ(s))2
η(s)ν(s)ds,

where κ(s) is the curvature of C at γ(s).



Geodesics in the space of curves (with kernel metrics - see later)



Geodesics in the space of curves (with kernel metrics - see later)



Geodesics in the space of curves (with kernel metrics - see later)



Advantages of the shape space framework

I “Shapes” are viewed as points on an (infinite dimensional) curved manifold;
shape deformations are geodesics in this shape space.

I Along geodesics, points are all plausible shapes (geometrically)

I Enables one to employ mathematical notions and algorithms provided by
Riemannian geometry (geodesic shooting, Frechet mean, parallel transport. . . )
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The diffeomorphic framework

I driving idea : changes in biological shapes can be explained via spatial
transformations that act onto them (d’Arcy Thompson 1917, Grenander’s pattern
theory)

I Define a base model for smooth one-to-one mappings φ : Rd → Rd and compare
shapes by finding optimal mappings which will transport one shape to another.



Large Deformation Diffeomorphic Metric Mapping (LDDMM) – Trouvé,
Younes, Miller, Mumford, et. al.

ϕ ∈ Φ

G
id

ϕ
d

Φ

Idea: • Consider a group of diffeomorphisms G, with a global metric defind on it, induced by a local metric defined on vector fields.

Idea: • For two “shapes” S and T find subset of diffeos Φ ⊂ G

Idea: • such that every φ ∈ Φ performs the matching S → T

Idea: • Define

∫
d(S,T ) := inf

ϕ∈Φ
dG(ϕ, id)

Idea: • This induces a Riemannian metric on the shape space



Large Deformation Diffeomorphic Metric Mapping (LDDMM)

I Model spatial transformations φ as flows of velocity fields

φ(x) := φv1 (x)

{
∂φv

t (x)

∂t
= vt(φvt (x)),

φv0 (x) = x
t ∈ [0, 1]

I Quantify the amount of deformation as E(v) =
∫ 1

0 ‖vt‖
2
V dt, where V is a Hilbert

space of regular vector fields (e.g. V = Hs(Rd ))

I ‖ · ‖V is a local metric on the group of diffeomorphisms induced by this model,
and one can define a global right-invariant metric on this group as :{

dG(φ, ψ) := d(id , φ ◦ ψ−1),

dG(id , φ) := inf{
√

E(v), v ∈ L2([0, 1],V ), φv1 = φ}.



Inexact matching : taking noise into account

Very often, exact matching between shapes is not possible ; or it would generate
deformation maps with high local variations, due to noise in the data. This is of
course unwanted, and in most applications we try to solve an inexact matching
problem. This can be formulated as a variational problem:

J(φ) = γdG(id , φ) + A(φ.s, t),

where φ.s is the object s transported via the deformation,
and A(φ.s, t) is a measure of dissimilarity between the matched objects.



Matching several geometric features

In many applications, several geometrical objects of possibly different types may be
extracted from the images, corresponding to anatomical regions of interest. (e.g. in
brain imaging : cortical surfaces, anatomical points, the sulcal curves, etc.)

This can also be formulated as a variational problem:

J(φ) = γd(φ) + A1(φ.s1, t1) + · · ·+ Am(φ.sm, tm),

where s1, . . . , sm and t1, . . . , tm are two lists of geometric features living in the
ambient space. Ω ⊂ Rd



Advantages of LDDMM

I The generated diffeomorphisms can be applied to any geometrical structure in the
ambient space
E.g.: may estimate the deformation for cortical surface of the brain, and then
apply this deformation to inner brain structures.

I Deformations can be estimated from different features
(e.g. the raw images, or from segmented anatomical structures such as landmark
points or surfaces), and compared
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Facial reconstruction for forensic studies [Tilotta et al., 2009, Tilotta et al., 2010]

I Estimation of the surface of the face based on 3D meshes of the skull.



Study of proprioception of Xenopus frogs [Lambert et al., 2009]

I Quantify lidiopathic scoliosis induced by vestibular asymetry (internal ear
ablation).



Co-registration of the brain based on sulcal ribbons :
DISCO [Auzias et al., 2008, Auzias et al., 2009, Auzias et al., 2011]



Shape analysis of the human hippocampus [Cury et al., 2018]



Ear morphometry for audio research
[Zolfaghari et al., 2014a, Zolfaghari et al., 2014b, Zolfaghari et al., 2016]

I Goal : individualization of HRIR transfer functions for spatial sound synthesis :
provide a simple model of the link between the shape of the outer ear (which
filters the incoming sounds) and the HRIR (head-related impulse response)
transfer functions that describe this filtering.
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Some notations and reminders about functional analysis

I Cp
0 (Rd ,Rm) is the space of functions f : Rd → Rm such that f has continuous

partial derivatives up to order p which vanish at infinity, which means that

‖∂ i11 · · · ∂
id
d f (x)‖ → 0 as ‖x‖ → +∞

for every orders ik ≥ 0 such that i1 + · · ·+ id ≤ p. It is a Banach space with the
norm

‖f ‖p,∞ =
∑
ik≥0

i1+···+id≤p

sup
x∈Rd

‖∂ i11 · · · ∂
id
d f (x)‖.

I If (E , ‖ · ‖E ) and (F , ‖ · ‖F ) are two normed spaces with E ⊂ F , E is said to be
continuously embedded in F if the injection ι : E → F is continuous, which
means that there exists a constant C such that for every u ∈ E , ‖u‖F ≤ C‖u‖E .
We write E ↪→ F .



The admissible space V of vector fields

Let V be a Hilbert space of vector fields on Rd , satisfying :

Admissibility condition : V ↪→ C1
0 (Rd ,Rd )

So this means that a vector field v in V has continuous partial derivatives which
vanish at infinity, as well as v itself, and that there exits a constant CV > 0 such that

∀v ∈ V , ‖v‖1,∞ ≤ CV ‖v‖V .

In particular, v and its derivatives are bounded in Rd , so v is also uniformly Lipschitz.



How to define admissible spaces ?

I Sobolev spaces V = Hs(Rd ,Rd ) for s > 0, defined as the set square integrable
functions v : Rd → Rd whose Fourier integral satisfy

‖v‖2
Hs :=

∫
Rd

(1 + ‖ω‖2)s‖v̂(ω)‖2dω <∞.

Sobolev injections : Hs(Rd ,Rd ) ↪→ Cp
0 (Rd ,Rm) if s > p + d/2. So we need

s > 1 + d/2.

I Define V using a differential or pseudo-differential operator L :

‖v‖2
V :=

∫
Rd
〈Lv(x) , v(x)〉 dx .

With L = (Id −∆)s we get the Sobolev space Hs(Rd ,Rd ).

I define V using Reproducing Kernel theory (see later).



Spaces of time-dependent vector fields

L1
V := L1([0, 1],V ) is the space of time-dependent vector fields vt(x), t ∈ [0, 1], each

vt ∈ V , and such that

‖v‖L1
V

:=

∫ 1

0
‖vt‖V dt <∞.

Similarly we define L2
V := L2([0, 1],V ) with the norm

‖v‖L2
V

:=

√∫ 1

0
‖vt‖2

V dt.

in fact L2
V ↪→ L1

V from Cauchy-Schwarz inequality :

‖v‖L1
V

:=

∫ 1

0
‖vt‖V dt ≤

√∫ 1

0
dt

√∫ 1

0
‖vt‖2

V dt = ‖v‖L2
V



Existence and unicity of the flow

Theorem
Let v ∈ L1

V . Then for every x ∈ Rd there is a unique continuous map t 7→ φvt (x) from

[0, 1] to Rd satisfying

φvt (x) = x +

∫ t

0
vs(φvs (x))ds.

This result relies on the fact that each vt is uniformly Lipschitz with a constant Kt

such that
∫ 1

0 Ktdt <∞, because of the admissibility condition.



Control lemmas

Lemma (Gronwall lemma)

Assume

∀t ∈ [0, 1], f (t) ≤ c +

∫ t

0
f (s)g(s)ds

where f , g are non negative functions and c > 0 a constant. Then

∀t ∈ [0, 1], f (t) ≤ c exp

(∫ t

0
g(s)ds

)
.



Control lemmas

Lemma (controls in t, x , v)

For any u, v ∈ L1
V , x , y ∈ Rd , s, t ∈ [0, 1] with s < t,

‖φvt (x)− φvs (x)‖ ≤
∫ t

s
‖vr‖∞dr ,

‖φvt (x)− φvt (y)‖ ≤ ‖x − y‖ exp

(∫ t

0
‖vs‖1,∞ds

)
,

‖φut (x)− φvt (x)‖ ≤
∥∥∥∥∫ t

0
us(φus (x))− vs(φus (x))ds

∥∥∥∥
× exp

(∫ t

0
‖vs‖1,∞ds

)
.



The flow maps

φvt is a continuous map from Rd to Rd .
For s, t ∈ [0, 1], one defines also φvst as the solution to φvst(x) = x +

∫ t
s vr ◦ φvsr (x)dr .

Using unicity of the solution one gets the composition rule :

φvst ◦ φvs = φvt .

In particular φ0s = φs , and φs0 ◦ φs = Id. So each φt is invertible with inverse φt0,
and since all these maps are continuous,

Proposition

For every v ∈ L1
V and t ∈ [0, 1], the map x 7→ φvt (x) is a homeomorphism of Rd .



Regularity and properties of the flow maps

I ∀v ∈ L1
V , φvt is a C1-diffeomorphism such that φvt − id vanishes at infinity, and

Dφvt (x) is solution to the integral equation

Dφvt (x) = id +

∫ t

0
Dvs(φvs (x)).Dφvs (x)ds.

I If V ↪→ Cp
0 (Rd ,Rd ), p ≥ 2, then ∀v ∈ L1

V , ∀t ∈ [0, 1], φvt is a Cp-diffeomorphism
such that φvt − id and its derivatives up to order p − 1 vanish at infinity, and
Dpφvt (x) is solution to

Dpφvt (x) =

∫ t

0
Dp(vs ◦ φvs )(x)ds.



The group of diffeomorphisms GV

I We define GV = {φv1 , v ∈ L1
V }. It is a group of diffeomorphisms and it is

complete for the right-invariant metric defined by

dG(id , φ) := inf{‖v‖L1
V
, v ∈ L1

V , φ
v
1 = φ}.

I In fact one can prove that GV = {φv1 , v ∈ L2
V } and

dG(id , φ) := inf{‖v‖L2
V
, v ∈ L2

V , φ
v
1 = φ},

and that the optimal v ∈ L2
V such that dG(id , φ) = ‖v‖L2

V
= ‖v‖L1

V
exists and is

such that t 7→ ‖vt‖V is constant.



Strong and weak convergence results

I If vn converges strongly to v in L1
V then Dφv

n

t converges uniformly on every
compact set towards Dφvt .

I If vn converges weakly to v in L2
V then φv

n

t converges uniformly on every compact
set and in t towards φvt .

With more regularity we get the following results : if V ↪→ Cp
0 (Rd ,Rd ) then

I If vn converges strongly to v in L1
V then Dpφv

n

t converges uniformly on every
compact set towards Dpφvt .

I If vn converges weakly to v in L2
V then Dp−1φv

n

t converges uniformly on every

compact set and in t towards Dp−1φvt .



Existence of solutions for matching problems

I Let A : GV → R+ and γ > 0. Minimizing over GV the function

J̄(φ) = γdGV (id , φ)2 + A(φ)

is equivalent to minimizing over L2
V

J(v) = γ‖v‖2
L2
V

+ A(φv1 )

If the mapping v 7→ A(φv1 ) is weakly continuous from L2
V to R, then it has a

solution.

So in fact, combined with previous results, we see that A itself needs to be continuous
for the uniform convergence on every compact set.
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Some reminders on Hilbert spaces

I H real Hilbert space : real vector space (possibly infinite dimensional) with an
inner product 〈·, ·〉H , which is a complete metric space for the corresponding
norm ‖ · ‖H .

I A linear form on H is a linear map µ : H → R.

I A linear form µ on H is continuous if it satifies

∃C > 0, ∀u ∈ H, |µ(u)| ≤ C‖u‖H .

I The space of continuous linear forms on H is denoted H∗, the dual space of H.
It is a Hilbert space with the norm

‖µ‖H′ := sup{|µ(u)|, ‖u‖H ≤ 1}.



Some reminders on Hilbert spaces

I Riesz representation theorem : every continuous linear form µ can be written as
a scalar product :

∀µ ∈ H∗, ∃! µ̃ ∈ H, ∀u ∈ H, µ(u) = 〈µ̃, u〉H .

I Conversely for every v ∈ H, the map u 7→ 〈u, v〉H is a continuous linear form on
H.

I The mapping KH : µ 7→ µ̃ is an isometry between H∗ and H : ‖µ‖H′ = ‖µ̃‖H .



Reproducing kernels, the scalar case

I Let H be a Hilbert space whose elements are functions f : X → R. X can be any
set.

I For x ∈ X , denote δx the linear form f 7→ f (x).

Definition

I H is a Reproducing Kernel Hilbert Space (RKHS) if all δx are continuous, i.e.
∀x ∈ X , δx ∈ H∗.

I The reproducing kernel of H is the map KH : X × X → R defined by

∀x ∈ X , KH(·, x) := KHδx .

More concretely it satisfies :

∀x ∈ X , ∀f ∈ H, 〈KH(·, x), f 〉H = f (x).



Reproducing kernels, the scalar case

Properties of reproducing kernels :

I Reproducing property :

∀x , y ∈ X , 〈KH(·, x),KH(·, y)〉H = KH(x , y).

I Symetry : KH(x , y) = KH(y , x).

I KH is a positive definite kernel on X : for every n ∈ N, points x1, . . . , xn in X ,
and real numbers a1, . . . , an,

n∑
i=1

n∑
j=1

aiajKH(xi , xj ) ≥ 0.

In other words, for every n ∈ N, x1, . . . , xn ∈ X , the matrix (KH(xi , xj ))1≤i,j≤n is
a symetric positive matrix.



Reproducing kernels, the vectorial case

I Let H be a Hilbert space whose elements are functions f : X → E , where E is an
euclidean space.

I For x ∈ X , α ∈ E , denote δαx the linear form f 7→ 〈f (x), α〉E .

Definition

I H is a Reproducing Kernel Hilbert Space (RKHS) if all δαx are continuous, i.e.
∀x ∈ X , ∀α ∈ E , δαx ∈ H∗.

I The reproducing kernel of H is the map KH : X × X → End(E) defined by

∀x ∈ X , ∀α ∈ E , KH(·, x)α := KHδ
α
x .

It satisfies :

∀x ∈ X , ∀α ∈ E ∀f ∈ H, 〈KH(·, x)α, f 〉H = 〈f (x), α〉E .



Reproducing kernels, the vectorial case

Properties of reproducing kernels :

I Reproducing property : ∀x , y ∈ X , ∀α, β ∈ E ,

〈KH(·, x)α,KH(·, y)β〉H = 〈α,KH(x , y)β〉E .

I Symetry : KH(y , x) = KH(x , y)∗.

I KH is a positive definite kernel on X : for every n ∈ N, points x1, . . . , xn in X ,
and vectors α1, . . . , αn in E ,

n∑
i=1

n∑
j=1

〈αi ,KH(xi , xj )αj 〉E ≥ 0.

remark : more precisely, a positive definite kernel on X is a function X × X → End(E)
which satisfies the two last properties.



Reproducing kernels, the vectorial case

If we are given an orthonormal basis of E (e.g. the canonical basis for E = Rm), then
KH(x , y) can be considered as a m ×m matrix (where m = dimE). Then the two last
properties can be rephrased as

I KH(y , x) = KH(x , y)T ,

I for every n ∈ N and points x1, . . . , xn in X , the nm × nm matrix with m ×m
blocks KH(xi , xj ) is a symetric positive matrix.



Equivalence between reproducing kernels and positive definite kernels

Theorem
Let X be any set and E an euclidean space. Every positive definite kernel
K : X × X → End(E) is associated to a unique RKHS H of functions f : X → E such
that KH = K.

For the LDDMM framework, this shows that one can start by choosing a kernel
function and build all the theory from it. Examples of commonly used kernels :

I gaussian KV (x , y) = exp(−‖x − y‖2/σ2)Id (σ > 0 is scale parameter)

I Cauchy KV (x , y) = 1/(1 + ‖x − y‖2/σ2)Id

I Sobolev kernels, corresponding to the Sobolev spaces. They are defined using
Bessel functions.



Translation and Rotation Invariant (TRI) kernels
[Micheli and Glaunès, 2014]

I Here X = E = Rd , and K(x , y) ∈Md (R).

I translation and roation invariance means :

‖R−1f (R ·+τ)‖H = ‖f ‖H

I invariance if and only ifK(x , y) = k(x − y) with

k(z) = k‖(‖z‖)Pr‖z + k⊥(‖z‖)Pr⊥z ,

where
I k‖, k⊥ : R+ → R,
I Pr‖z , Pr⊥z orthogonal projections over Vect({z}) and Vect({z})⊥.



Translation and Rotation Invariant (TRI) kernels
[Micheli and Glaunès, 2014]

I Bochner theorem : k function of positive type if and only if k̂ ≥ 0

I Here if k ∈ L1(Rd ,Md (R)),

k̂(ξ) = h‖(‖ξ‖)Pr‖ξ + h⊥(‖ξ‖)Pr⊥ξ

I K positive kernel if and only if h‖, h⊥ has nonnegative values.

I The application (k‖, k⊥) 7→ (h‖, h⊥) is an involution; formula similar to Hankel
transforms.



Divergence-free and curl-free kernels
[Micheli and Glaunès, 2014]

Let K a positive definite TRI kernel, with C1 regularity and such that k and k̂ are in
L1(Rd ,Md (R)). Let H be the Hilbert space generated by K . Then

I ∀u ∈ H, Div(u) = 0 ⇔ h‖ = 0,

I ∀u ∈ H, Curl(u) = 0 ⇔ h⊥ = 0.



Divergence-free and curl-free kernels

In practice : let k be a function of positive type s-admissible, then :

I we get a space of div-free vector fields s − 1-admissible by defining

k‖(r) = d−1
r

k ′(r), k⊥(r) = d−2
r

k ′(r) + k ′′(r)

I we get a space of curl-free vector fields s − 1-admissible by defining

k‖(r) = k ′′(r), k⊥(r) = 1
r
k ′(r)

Scalar kernel Div-free kernel Curl-free kernel

Figure: vector fields x 7→ K(x, y)α with y = (0, 0) and α = (1, 0).



Optimal interpolation in RKHS

Let H be a RKHS of functions f : X → E with strictly positive definite repriducing
kernel, xi ∈ X distinct points and γi ∈ E , 1 ≤ i ≤ n. Consider the problem

(P) Find f ∈ H such that f (xi ) = γi ∀i and ‖f ‖H is minmal.

Proposition

If there exists f ∈ H such that f (xi ) = γi ∀i , then the problem (P) has a unique
solution of the form

f ∗(x) =
n∑

i=1

KH(x , xi )αi

for some vectors αi ∈ E which are the solutions to

n∑
i=1

KH(xj , xi )αi = γj , 1 ≤ j ≤ n.
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Finite dimensional setting for LDDMM

We come back to the LDDMM theory

I In a discrete setting, shapes are often parametrized by a finite number of points
(e.g. for curves or surface meshes : the vertices). So we consider data
attachment terms which depend only on the final positions φv1 (xi ) :

A(φv1 ) = Ã((φv1 (xi ))1≤i≤n)

I Denote qi (t) = φvt (xi ) the trajectories of points xi through the flow. The optimal
vector fields must correspond at each time t to the optimal interpolation of
vector q̇i (t) at positions qi (t).



Finite dimensional setting for LDDMM

I ⇒ at each time step t, the optimal vector fields depends on a finite number of
vectors pi (t) :

vt(x) =
n∑

i=1

KV (x , qi (t))pi (t), with KV (q(t), q(t))p(t) = q̇(t)

We call the pi (t) momentum vectors.

I Moreover, using the reproducing formula, we get

‖vt‖2
V =

n∑
i=1

n∑
j=1

〈
pj (t) , KV (qj (t), qi (t))pi (t)

〉
or with matrix notations : ‖vt‖2

V = p(t)TKV (q(t), q(t))p(t).

I Now since q̇(t) = KV (q(t), q(t))p(t) (flow equation), we get also

‖vt‖2
V = q̇(t)TKV (q(t), q(t))−1q̇(t).

I ⇒
∫ 1

0 ‖vt‖
2
V dt corresponds to the energy E(q) of the path q(t) for the

Riemannian metric given by matrix KV (q(t), q(t))−1.
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The landmark manifold

I Define
Ln(Rd ) = {q = (q1, . . . , qn) ∈ (Rd )n, qi 6= qj , ∀i 6= j}.

I Ln(Rd ) is a manifold as open set of (Rd )n.

I Consider on Ln(Rd ) the Riemannian metric whose matrix in the canonical
coordinates is KV (q, q)−1.

I Optimal solution for matching problems correspond to geodesics in landmark
space.

I We can derive the geodesic equations and use them in algorithms for optimizing
matching problems.



The landmark manifold

I Geodesic equations can be written in Hamiltonian form :{
ṗ = − 1

2
∇q 〈KV (q, q)p , p〉

q̇ = KV (q, q)p.

I Here is an example of solution : initial conditions are
q1(0) = (0, 0), q2(0) = (1, 1), p1(0) = (1, 0), p2(0) = (−1, 0), kernel is
KV (x , y) = exp(−‖x − y‖2/σ2)id with σ = 1.

t = 0 t = 1/3 t = 2/3 t = 1



Goedesic shooting example



Goedesic shooting with TRI kernels

@



Back to the matching functional

I For a matching functional the optimal trajectories must follow geodesics. So the
optimal vector fields vt depend only on the initial momentum vectors p(0). So we
rewrite the functional as

J(p(0)) = γ 〈KV (q(0), q(0))p(0) , p(0)〉+ A(q(1))

where p(t) and q(t) are constrained to follow the geodesic equations.

I The geodesic shooting algorithm wonsists in optimizing this function J. It is done
via gradient descent or more advanced optimization techniques (e.g. LBFGS).

I The gradient of this functional writes

∇J(p(0)) = 2γKV (q(0), q(0))p(0) +

(
∂q(1)

∂p(0)

)T

∇A(q(1))

The only difficult part is of course to compute
(
∂q(1)
∂p(0)

)T
. This requires to

differentiate the geodesic equations.



The adjoint equations

We have that (
∂q(1)

∂p(0)

)T

∇A(q(1)) = βp(0)

where β(t) = (βp(t), βq(t)) ∈ Rdn × Rdn is solution to the following backward adjoint
equations : {

β̇p = ∂q(KV (q, q)p)βp − KV (q, q)βq
β̇q = 1

2
∂2
q 〈KV (q, q)p , p〉βp − (∂q(KV (q, q)p)Tβq .

with initial condition β(1) = (0,∇A(q(1))).

N.B. : with the use of automatic differenciation, for example using Pytorch toolbox
for coding, there is no need to implement these adjoint equations anymore !
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Numerical examples

I Single matching



I Geodesic regression

t=0 t=0.1 t=0.2 t=0.3 t=0.4

t=0.5 t=0.6 t=0.7 t=0.8 t=1



I Template estimation



Surface matching via currents

G



Surface matching with curl-free and div-free kernels

Curl-free kernel Div-free kernel
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