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Who is Souslin?

Luzin’s student (Moscow, 1913–1917), Souslin,
died during the Russian Civil War (1919).

Made major contributions to the fields of
general topology and descriptive set theory.
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Who is Lusin?

Luzin’s student (Moscow, 1913–1917), Souslin,
died during the Russian Civil War (1919).

Luzin’s theorem

Measurable functions on R are nearly continuous.
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Who is Galois?

Luzin’s student (Moscow, 1913–1917), Souslin,
died during the Russian Civil War (age 24).

Comparing to Galois (died at 20)

, Abel (died at 26).
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Who is Abel?

Luzin’s student (Moscow, 1913–1917), Souslin,
died during the Russian Civil War (age 24).

Comparing to Galois (died at 20), Abel (died at 26).
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Who is Lebesgue?

Luzin’s student (Moscow, 1913–1917), Souslin,
died during the Russian Civil War (age 24).

He found an error in Lebesgue’s argument (1905):

the projection of a Borel set of R2 onto the real axis
was also a Borel set.
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Who is Borel?

Luzin’s student (Moscow, 1913–1917), Souslin,
died during the Russian Civil War (age 24).

He found an error in Lebesgue’s argument (1905):

the projection of a Borel set of R2 onto the real axis
was also a Borel set.
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Borel sets

Given a topology space (X, τ), we construct the Borel σ-algebra

B(X) set of Borel sets ⇐= τ set of open sets

through countable union, countable intersection, and relative complement.

Remark (Lebesgue’s error)
Projection mappings preserve open sets, but not Borel sets.

Remark
(X, B(X)) is a measurable space, Borel sets are thus called measurable sets.
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Borel sets

WAIT! That is right, but the projection (x, y) ∈ R2 7→ x ∈ R is a 1-Lipschitz map,
so its image of a Lebesgue measurable set is Lebesgue measurable.

Remark (Lebesgue’s error)
Projection mappings preserve open sets, but not Borel sets.

Remark
(X, B(X)) is a measurable space, Borel sets are thus called measurable sets.
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What are Souslin spaces?

Definition
A set in a Hausdorff space is called Souslin if it is the image of a complete separable
metric space under a continuous mapping.
A Souslin space is a Hausdorff space that is a Souslin set.

Remark
Souslin sets are also called analytic sets.

Remark
A topological space homeomorphic to a complete separable metric space is called
Polish Space.
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What are Souslin spaces?

Definition
A set in a Hausdorff space is called Souslin if it is the image of a Polish space under a
continuous mapping.
A Souslin space is a Hausdorff space that is a Souslin set.

Examples
1. Polish spaces are Souslin spaces: manifolds, Lp spaces with separable base space.
2. Borel subsets of Souslin spaces are Souslin sets.

General structure of Souslin spaces:
⋃

(ni)∈NN

∞⋂
k=0

An0,...,nk
(An0,...,nk are closed sets)

4 / 9



What are Souslin spaces?

Definition
A set in a Hausdorff space is called Souslin if it is the image of a Polish space under a
continuous mapping.
A Souslin space is a Hausdorff space that is a Souslin set.

Examples
1. Polish spaces are Souslin spaces: manifolds, Lp spaces with separable base space.
2. Borel subsets of Souslin spaces are Souslin sets.

General structure of Souslin spaces:
⋃

(ni)∈NN

∞⋂
k=0

An0,...,nk
(An0,...,nk are closed sets)

4 / 9



What are Souslin spaces?

Definition
A set in a Hausdorff space is called Souslin if it is the image of a Polish space under a
continuous mapping.
A Souslin space is a Hausdorff space that is a Souslin set.

Examples
1. Polish spaces are Souslin spaces: manifolds, Lp spaces with separable base space.
2. Borel subsets of Souslin spaces are Souslin sets.

General structure of Souslin spaces:
⋃

(ni)∈NN

∞⋂
k=0

An0,...,nk
(An0,...,nk are closed sets)

4 / 9



Unleash the power of Souslin spaces — step one

Theorem
Every nonempty Polish space is the image of NN under a continuous mapping.
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Unleash the power of Souslin spaces — step one

Theorem
Every nonempty Polish space is the image of NN under a continuous mapping.

Proof ideas
1. Equip NN with a metric so that it has the product topology.
2. Represent a complete and separable metric space X, by induction, as

X =
∞⋃

j=0
E(j), . . . , E(n0, . . . , nk) =

∞⋃
j=0

E(n0, . . . , nk, j),

where E(n0, . . . , nk) is a nonempty closed set with diameter less than 2−k.
3. Map (n0, n1, . . .) to the unique point inside all E(n0, . . . , nk) for k ≥ 0.
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Unleash the power of Souslin spaces — step one

Theorem
Every nonempty Polish space is the image of NN under a continuous mapping.

Corollary
A nonempty Souslin set has the form f(NN) with f continuous, where NN is equipped
with the product topology and is a Polish space.

Remark
It proves the general structure of Souslin sets:

X =
⋃

(ni)∈NN

∞⋂
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Unleash the power of Souslin spaces — step two

Luzin’s Separation Theorem
Disjoint Souslin sets can be separated by Borel sets.

Proof.
Reduce by contradiction to the separation of two points using the structure of NN.
Write X := ∪∞

j=0E(j) and Y := ∪∞
i=0F (k). If X and Y are not separated, then for

some indices i and k, E(j) and F (k) are not separated.
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Unleash the power of Souslin spaces — step two

Luzin’s Separation Theorem
Disjoint Souslin sets can be separated by Borel sets.

Corollary
If A and X \ A are both Souslin sets, then A is a Borel set.

Corollary
Let (X, τ) be a Souslin space. If τ ′ ⊂ τ is another topology on X, then (X, τ) and
(X, τ ′) have the same Borel set.

Proof.
The map Id : (X, τ) → (X, τ ′) is continuous. Apply the previous corollary.
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Borel measures and various topologies

Recall
Let X be a topological space.
A Borel measure is a non-negative and countably additive set function on B(X).

Question
Let µ be a finite Borel measure for (X, τ). Assume that τ ′ is a topology on X.

1. Is µ a Borel measure for (X, τ ′)?
2. Does µ give mass to compact sets with respect to τ or τ ′?

The question is trivial if τ ′ ⊂ τ , which does not need Souslin space theory.
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Borel measures and various topologies

Remark
A finite Borel measure µ on a Souslin spaces is a Radon measure, meaning that

∀A ∈ B(X), µ(A) = sup
{
µ(K) | K ⊂ A, K is compact
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Exemplar usage in my thesis

Background setting
Let X be a Polish space with a Borel measure ν. Denote by A the set of probability
measures on X that are absolutely continuous with respect to ν.
Via the identification f · ν ↔ f , A is identified as the set of density functions{

f ∈ L1(ν)
∣∣ ∫

X
f d ν = 1, f ≥ 0

}
.

Induced topologies on A
1. Elements as measures: weak convergence, set-wise convergence, Wasserstein

convergence, total variation convergence.
2. Elements as functions: weak topology induced by L∞, L1-norm convergence.
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Ending

The following theorem is the motivation for my talk.

Existence of jokes in measure theory [Ma, 2023]

Any Souslin set of Rn is Lebesgue measurable.

Sketch of the proof
We prove this theorem in two steps.

1. Souslin sets of Rn are projections of measurable sets from Rn+1 [Bogachev, 2006].

2. Such projected sets were measurable to Lebesgue (1905).

Remark
The author is hesitant to conjecture the uniqueness.
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