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In addition to the homogeneous Lorentz group,
there are the familiar translations
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which commute among themselves
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{T;, Tj} = 0 = {T;, Sa} = {Sa, Sp}

where T; and S, are respectively the generators of the standard
translations and of the pure supertranslations.
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There are intriguing physical features resulting from the structure
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which are somewhat uncomfortable.

These features were first pointed out at null infinity but are
equally present at spatial infinity.
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The fact that the Poisson brackets of the homogeneous Lorentz
generators with the pure supertranslations involve both the pure
supertranslations and the translations implies that the Poincaré
subalgebra is not an ideal.

At the same time, because the pure supertranslations do not form
an ideal on account of the preceding point, they cannot be
meaningfully quotientized out to get the Poincaré algebra as a
quotient algebra.
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of the angular momentum under ordinary translations, but there
one knows how to define an intrinsic angular momentum in
terms of Casimirs of the Poincaré algebra, which amounts to
compute the angular momentum with respect to the center of
mass worldline.

A similar construction for supertranslations appears to be more
intricate for the full BMS algebra.
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the literature on asymptotic symmetries but have not been
systematically studied.

In particular, the algebraic structure of the logarithmic BMS
algebra and the fact that one could rewrite it as a direct sum by
nonlinear redefinitions were not discussed.

Work done in collaboration with Oscar Fuentealba and Cédric
Troessaert, e-Prints 2211.10941 [hep-th] and 2305.05436 [hep-th]
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We shall insist that the boundary conditions make the action :
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o finite
e and invariant under all (asymptotic) Poincaré symmetries, which
are thus canonical transformations.

This puts strong and interesting restrictions.
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group.

The asymptotic symmetry reduces then to the Poincaré group
(and not more).
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One must relax these parity conditions... but not completely if
one wants to maintain finiteness of the action.

e M The idea is to allow a “parity-twisted component” of a specific

form in the leading orders in the asymptotic expansions of the
metric and its conjugate momentum.

This parity-twisted component takes the form of a
diffeomorphism generated by &' (1) diffeomorphisms (rewritten
in Hamiltonian form).
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where V is a function of the angles which can be assumed to be
even.

V¥ is the contribution that twists the strict parity of 7¥ (at leading
order) by a diffeomorphism (written in Hamiltonian form).

The twisting is thus characterized by two functions of the angles,
one odd (U) and one even (V).
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Furthermore, the group of asymptotic symmetries is the full BMS
group (written in a different basis than the familiar null infinity
Ordinary baSiS) .
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There is complete agreement with the null infinity results.

Can one relax even more the boundary conditions in a usuful
way ?

The answer is positive. One can further enlarge the symmetry in
this manner, which then includes in addition “logarithmic
supertranslations” conjugate to supertranslations.
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grow like In r at infinity and which preserve by construction the
new boundary conditions,

They define true symmetries of the action provided some
conditions on the logarithmic diffeomorphisms are imposed.
Logarithmic

supertranslations The (allowed) logarithmic supertranslations are then canonical
transformations with a well-defined, finite charge.

They depend on a single function of the angles, but the £ = 0 and
¢ =1 harmonics define proper gauge transformations : they have
zero charge.

The physical logarithmic supertranslations are thus
parametrized by the same class of functions as the pure
supertranslations. We denote them L.
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with 2 being the abelian algebra of the logarithmic
supertranslations.
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A set {Qa(qg, p)} of conserved charges is a complete set (of
conserved charges)

if any conserved charge is a function f(Q,) of these conserved
charges.

The function f need not be linear.

[If pis a constant of the motion, p? or any function of pis also a

Nonlinear

redefinitions constant of the motion but it is clearly not independent from p
even though not a multiple of p.]
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with coefficients f4 that are phase space functions.

Nonlinear
redefinitions

These phase space functions are not arbitrary, however, but must
depend on the phase space variables through the Q4’s and in

A B
such a way that X is a Hamiltonian vector field, i.e., gf@ = ng.
(fAdQa is exact, “integrability”)
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The Q4’s define a Poisson manifold.

The proper setting for discussing canonical forms of the brackets
{Qa, Qp} is that of Poisson manifolds.

There exist theorems that generalize Darboux theorem.

[If fap in {Q4, Qp} = fap(Q) is invertible, one can go to Darboux
coordinates where fup = 6 4.1
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apply equally well to asymptotic symmetries

provided one has a Hamiltonian description of them.

There are many examples where the Poisson bracket of two
asymptotic symmetry charges is non-linear (extended
supergravity models in 3D, higher spins in 3D, asymptotically flat
spacetimes in higher dimensions).

Nonlinear Even when the Poisson brackets are linear, one can consider
non-linear redefinitions of the charges.
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redetinttons the fact that the central charge in {L%, Sg} is invertible enables

one to rewrite the algebra as the direct sum &2 & (of' &, 98), where
/' is the abelian algebra of pure supertranslations.

The logarithmic supertranslations are canonically conjugate to
the pure supertranslations, and a Darboux-like procedure
enables one to “decouple” them from the other generators.
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Ma = Ma=G,'1PTi-GJ IS, (5.1)
= Ma—LP{My, Sp}. (5.2)
One easily verifies
{Ma, Sa} = {M,, L} =0, (5.3)
redetnidons while the bracket {M,, T;} does not suffer any modification.
One can also check
(Mo, My} = 5, M, Mg, Td =R T;. (5.4)

so that the Poincaré algebra is unchanged.

27/31



Logarithmic BMS, algebra

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

(Université Libre

de Bruxelle
College de
France)

Nonlinear
redefinitions




Logarithmic BMS, algebra

BMS algebra and

supertranslation-

invariant Lorentz
charges

Mare Henneaux Thus we have achieved :

Nonlinear
redefinitions

28/31



Logarithmic BMS, algebra

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux Thus we have achieved :

{Ma»Mb} =fuchc,
Mo, T3 =R ] T},
{Mg,Sa} =0,
(M, L% =0,

{L7, Sp} =65,

Nonlinear
redefinitions

28/31



Logarithmic BMS, algebra

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux Thus we have achieved :

{Ma»Mb} =fuchc,
{Ma Tt =R/ Tj,
{Mg,Sa} =0,
(M, L% =0,

{L7, Sp} =65,

Nonlinear
redefinitions

i.e., LogBMS, = 2 @ (of' &, B)

28/31



Logarithmic BMS, algebra

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

(Université Libre

de Bruxelle
College de
France)

Nonlinear
redefinitions




Logarithmic BMS, algebra

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

The redefinitions of the Lorentz generators

France)

Nonlinear
redefinitions

29/31



Logarithmic BMS, algebra

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

The redefinitions of the Lorentz generators

France)

involve quadratic terms of the forme TL and SL.

Nonlinear
redefinitions

29/31



Logarithmic BMS, algebra

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

The redefinitions of the Lorentz generators

involve quadratic terms of the forme TL and SL.

This means that the new Lorentz transformations will differ from
the old ones by field dependent supertranslations and
logarithmic supertranslations.

Nonlinear
redefinitions

29/31



Logarithmic BMS, algebra

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

The redefinitions of the Lorentz generators

involve quadratic terms of the forme TL and SL.

This means that the new Lorentz transformations will differ from
the old ones by field dependent supertranslations and
logarithmic supertranslations.

Integrability of the charges associated with these field-dependent
transformations is not an issue since we are working with the
Nonlinear generators throughout.
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supertranslations do not commute.

By introducing logarithmic supertranslations,

which are improper gauge symmetries conjugate to the pure
supertranslations,

one can redefine the Lorentz generators so that pure
supertranslations are in the trivial representation of the Lorentz
group.

P —— Setting the logarithmic supertranslations to zero is illegimate
since they are improper gauge symmetries.

comments

30/31



Conclusions and comments

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

Conclusions and
comments




Conclusions and comments

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

: This conclusion is in line with the analysis by Yau et al, Porrati et
B al, Compere et al at null infinity.

Conclusions and
comments

31/31



Conclusions and comments

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

rsité Libre

This conclusion is in line with the analysis by Yau et al, Porrati et
al, Compere et al at null infinity.
The method can be also be applied to electromagnetism

Conclusions and
comments

31/31



Conclusions and comments

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

This conclusion is in line with the analysis by Yau et al, Porrati et
al, Compere et al at null infinity.

The method can be also be applied to electromagnetism

in such a way that the angle-dependent u(1) gauge
transformations commute with the Lorentz transformations,

Conclusions and
comments

31/31



Conclusions and comments

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

This conclusion is in line with the analysis by Yau et al, Porrati et
al, Compere et al at null infinity.

The method can be also be applied to electromagnetism

in such a way that the angle-dependent u(1) gauge
transformations commute with the Lorentz transformations,

avoiding a “angle-dependent u(1) ambiguity” in the definition of
the angular momentum.

Conclusions and
comments

31/31



Conclusions and comments

BMS algebra and

supertranslation-

invariant Lorentz
charges

Marc Henneaux

This conclusion is in line with the analysis by Yau et al, Porrati et
al, Compere et al at null infinity.

The method can be also be applied to electromagnetism

in such a way that the angle-dependent u(1) gauge
transformations commute with the Lorentz transformations,

avoiding a “angle-dependent u(1) ambiguity” in the definition of
the angular momentum.
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