BMS algebra and supertranslation-invariant Lorentz charges

Introduction: structure of the BMS_{4} algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic BMS $_{4}$ algebra

Nonlinear redefinitions

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Tours, 16 May 2024

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction:

 structure of the BMS4 algebraOrdinary
supertranslations
Logaritimic
supertranslations
The logarithmic BMS $_{4}$ algebra

Nonlinear redefinitions

Conclusions and comments

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logaritimic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The group of asymptotic symmetries of gravity in the asymptotically flat context

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logaritimic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The group of asymptotic symmetries of gravity in the asymptotically flat context
is infinite-dimensional

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The group of asymptotic symmetries of gravity in the asymptotically flat context
is infinite-dimensional
and was discovered first by Bondi, Metzner and Sachs,

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The group of asymptotic symmetries of gravity in the asymptotically flat context is infinite-dimensional and was discovered first by Bondi, Metzner and Sachs, hence the name "BMS" group

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The group of asymptotic symmetries of gravity in the asymptotically flat context is infinite-dimensional
and was discovered first by Bondi, Metzner and Sachs, hence the name "BMS" group
or " BMS_{4} " group if one wants to emphasize the spacetime dimension.

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction:

 structure of the BMS4 algebraOrdinary
supertranslations
Logaritimic
supertranslations
The logarithmic BMS $_{4}$ algebra

Nonlinear redefinitions

Conclusions and comments

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS4 algebra

Ordinary
supertranslations
Logaritimic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The structure of this group was understood by Sachs.

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logaritimic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The structure of this group was understood by Sachs. In addition to the homogeneous Lorentz group,

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logaritimic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions

Conclusions and comments

The structure of this group was understood by Sachs.
In addition to the homogeneous Lorentz group, there are the familiar translations

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions

Conclusions and comments

The structure of this group was understood by Sachs.
In addition to the homogeneous Lorentz group, there are the familiar translations and the "pure supertranslations",

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The structure of this group was understood by Sachs.
In addition to the homogeneous Lorentz group, there are the familiar translations and the "pure supertranslations", which commute among themselves

The BMS_{4} group

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The structure of this group was understood by Sachs. In addition to the homogeneous Lorentz group, there are the familiar translations and the "pure supertranslations", which commute among themselves and transform in an infinite-dimensional non-trivial representation of the Lorentz group.

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction:

 structure of the BMS_{4} algebraOrdinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear

redefinitions

Conclusions and comments

The BMS_{4} algebra is the semi-direct sum of the Lorentz algebra \mathscr{L} and the infinite-dimensional algebra \mathscr{A} spanned by the supertranslations,

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

The BMS_{4} algebra is the semi-direct sum of the Lorentz algebra \mathscr{L} and the infinite-dimensional algebra \mathscr{A} spanned by the supertranslations,

$$
\mathrm{BMS}_{4}=\mathscr{L} \oplus_{\sigma} \mathscr{A}
$$

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS4 algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions

Conclusions and comments

The BMS_{4} algebra is the semi-direct sum of the Lorentz algebra \mathscr{L} and the infinite-dimensional algebra \mathscr{A} spanned by the supertranslations,

$$
\mathrm{BMS}_{4}=\mathscr{L} \oplus_{\sigma} \mathscr{A}
$$

The supertranslations are parametrized by functions on the sphere,

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The BMS_{4} algebra is the semi-direct sum of the Lorentz algebra \mathscr{L} and the infinite-dimensional algebra \mathscr{A} spanned by the supertranslations,

$$
\mathrm{BMS}_{4}=\mathscr{L} \oplus_{\sigma} \mathscr{A}
$$

The supertranslations are parametrized by functions on the sphere,
which can be expanded in spherical harmonics.

The BMS_{4} algebra

The BMS_{4} algebra is the semi-direct sum of the Lorentz algebra \mathscr{L} and the infinite-dimensional algebra \mathscr{A} spanned by the supertranslations,

$$
\mathrm{BMS}_{4}=\mathscr{L} \oplus_{\sigma} \mathscr{A}
$$

The supertranslations are parametrized by functions on the sphere,
which can be expanded in spherical harmonics.
The $\ell=0$ and $\ell=1$ harmonics correspond to the ordinary translations;

The BMS_{4} algebra

The BMS_{4} algebra is the semi-direct sum of the Lorentz algebra \mathscr{L} and the infinite-dimensional algebra \mathscr{A} spanned by the supertranslations,

$$
\mathrm{BMS}_{4}=\mathscr{L} \oplus_{\sigma} \mathscr{A}
$$

The supertranslations are parametrized by functions on the sphere,
which can be expanded in spherical harmonics.
The $\ell=0$ and $\ell=1$ harmonics correspond to the ordinary translations;
the higher harmonics are the pure supertranslations.

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction:

 structure of the BMS_{4} algebraOrdinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logaritimic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

Schematically, if we denote the generators of the homogeneous
Lorentz group by M_{a},

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logaritimic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

Schematically, if we denote the generators of the homogeneous
Lorentz group by M_{a},
one finds

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

Schematically, if we denote the generators of the homogeneous Lorentz group by M_{a}, one finds

$$
\begin{aligned}
\left\{M_{a}, M_{b}\right\} & =f_{a b}^{c} M_{c}, \\
\left\{M_{a}, T_{i}\right\} & =R_{a i}^{j} T_{j}, \\
\left\{M_{a}, S_{\alpha}\right\} & =G_{a \alpha}{ }^{i} T_{i}+G_{a \alpha}{ }^{\beta} S_{\beta}, \\
\left\{T_{i}, T_{j}\right\} & =0=\left\{T_{i}, S_{\alpha}\right\}=\left\{S_{\alpha}, S_{\beta}\right\}
\end{aligned}
$$

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary supertranslations

Logarithmic supertranslations

The logarithmic BMS $_{4}$ algebra

Nonlinear redefinitions

Schematically, if we denote the generators of the homogeneous Lorentz group by M_{a}, one finds

$$
\begin{aligned}
\left\{M_{a}, M_{b}\right\} & =f_{a b}^{c} M_{c}, \\
\left\{M_{a}, T_{i}\right\} & =R_{a i}^{j} T_{j}, \\
\left\{M_{a}, S_{\alpha}\right\} & =G_{a \alpha}^{i}{ }^{i} T_{i}+G_{a \alpha}{ }^{\beta} S_{\beta}, \\
\left\{T_{i}, T_{j}\right\} & =0=\left\{T_{i}, S_{\alpha}\right\}=\left\{S_{\alpha}, S_{\beta}\right\}
\end{aligned}
$$

where T_{i} and S_{α} are respectively the generators of the standard translations and of the pure supertranslations.

The BMS_{4} algebra

BMS algebra and

 supertranslationinvariant Lorentz chargesMarc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction:

 structure of the BMS4 algebraOrdinary
supertranslations
Logaritimic
supertranslations
The logarithmic BMS $_{4}$ algebra

Nonlinear redefinitions

Conclusions and comments

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The structure constants $R_{a i}{ }^{j}, G_{a \alpha}{ }^{i}$ and $G_{a \alpha}{ }^{\beta}$ are non zero.

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The structure constants $R_{a i}{ }^{j}, G_{a \alpha}{ }^{i}$ and $G_{a \alpha}{ }^{\beta}$ are non zero.
The ordinary translations transform in the 4-dimensional vector representation of the Lorentz group $\left(R_{a i}^{j}\right)$.

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The structure constants $R_{a i}{ }^{j}, G_{a \alpha}{ }^{i}$ and $G_{a \alpha}{ }^{\beta}$ are non zero.
The ordinary translations transform in the 4-dimensional vector representation of the Lorentz group ($R_{a i}^{j}$).
Modulo the ordinary translations, the pure supertranslations transform in an infinite-dimensional representation of the Lorentz group $\left(G_{a \alpha}{ }^{\beta}\right)$.

The BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS 4 algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

Conclusions and comments

The structure constants $R_{a i}{ }^{j}, G_{a \alpha}{ }^{i}$ and $G_{a \alpha}{ }^{\beta}$ are non zero.
The ordinary translations transform in the 4-dimensional vector representation of the Lorentz group ($R_{a i}^{j}$).
Modulo the ordinary translations, the pure supertranslations transform in an infinite-dimensional representation of the Lorentz group ($G_{a \alpha}{ }^{\beta}$).
There are intriguing physical features resulting from the structure of the BMS_{4} algebra

The BMS_{4} algebra

The structure constants $R_{a i}{ }^{j}, G_{a \alpha}{ }^{i}$ and $G_{a \alpha}{ }^{\beta}$ are non zero.
The ordinary translations transform in the 4-dimensional vector representation of the Lorentz group ($R_{a i}^{j}$).
Modulo the ordinary translations, the pure supertranslations transform in an infinite-dimensional representation of the Lorentz group ($G_{a \alpha}{ }^{\beta}$).
There are intriguing physical features resulting from the structure of the BMS_{4} algebra
which are somewhat uncomfortable.

The BMS_{4} algebra

The structure constants $R_{a i}{ }^{j}, G_{a \alpha}{ }^{i}$ and $G_{a \alpha}{ }^{\beta}$ are non zero.
The ordinary translations transform in the 4-dimensional vector representation of the Lorentz group $\left(R_{a i}^{j}\right)$.
Modulo the ordinary translations, the pure supertranslations transform in an infinite-dimensional representation of the Lorentz group ($G_{a \alpha}{ }^{\beta}$).
There are intriguing physical features resulting from the structure of the BMS_{4} algebra
which are somewhat uncomfortable.
These features were first pointed out at null infinity but are equally present at spatial infinity.

No invariant Poincaré subalgebra

Introduction: structure of the BMS4 algebra

Ordinary
supertranslations
Logaritimic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

No invariant Poincaré subalgebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear

redefinitions

Conclusions and comments

The fact that the Poisson brackets of the homogeneous Lorentz generators with the pure supertranslations involve both the pure supertranslations and the translations implies that the Poincaré subalgebra is not an ideal.

No invariant Poincaré subalgebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

The fact that the Poisson brackets of the homogeneous Lorentz generators with the pure supertranslations involve both the pure supertranslations and the translations implies that the Poincaré subalgebra is not an ideal.
At the same time, because the pure supertranslations do not form an ideal on account of the preceding point, they cannot be meaningfully quotientized out to get the Poincaré algebra as a quotient algebra.

Angular momentum ambiguity

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS4 algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions

Conclusions and comments

Angular momentum ambiguity

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logaritimic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

It follows from the non-vanishing of the bracket of the pure supertranslations with the homogeneous Lorentz
transformations that the angular momentum transforms under pure supertranslations.

Angular momentum ambiguity

It follows from the non-vanishing of the bracket of the pure supertranslations with the homogeneous Lorentz transformations that the angular momentum transforms under pure supertranslations.
This non-invariance comes on top of the familiar non-invariance of the angular momentum under ordinary translations, but there one knows how to define an intrinsic angular momentum in terms of Casimirs of the Poincaré algebra, which amounts to compute the angular momentum with respect to the center of mass worldline.

Angular momentum ambiguity

It follows from the non-vanishing of the bracket of the pure supertranslations with the homogeneous Lorentz transformations that the angular momentum transforms under pure supertranslations.
This non-invariance comes on top of the familiar non-invariance of the angular momentum under ordinary translations, but there one knows how to define an intrinsic angular momentum in terms of Casimirs of the Poincaré algebra, which amounts to compute the angular momentum with respect to the center of mass worldline.
A similar construction for supertranslations appears to be more intricate for the full BMS algebra.

Purpose of talk

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction:

 structure of the BMS4 algebraOrdinary
supertranslations
Logaritimic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

Purpose of talk

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The purpose of this talk is to show that these difficulties disappear if one enlarges the BMS symmetry

Purpose of talk

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The purpose of this talk is to show that these difficulties disappear if one enlarges the BMS symmetry
by including logarithmic supertranslations, which are algebraically conjugate to the pure supertranslations.

Purpose of talk

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS 4 algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The purpose of this talk is to show that these difficulties disappear if one enlarges the BMS symmetry
by including logarithmic supertranslations, which are algebraically conjugate to the pure supertranslations.
Logarithmic supertranslations have appeared here and then in the literature on asymptotic symmetries but have not been systematically studied.

Purpose of talk

The purpose of this talk is to show that these difficulties disappear if one enlarges the BMS symmetry
by including logarithmic supertranslations, which are algebraically conjugate to the pure supertranslations.
Logarithmic supertranslations have appeared here and then in the literature on asymptotic symmetries but have not been systematically studied.
In particular, the algebraic structure of the logarithmic BMS algebra and the fact that one could rewrite it as a direct sum by nonlinear redefinitions were not discussed.

Purpose of talk

The purpose of this talk is to show that these difficulties disappear if one enlarges the BMS symmetry
by including logarithmic supertranslations, which are algebraically conjugate to the pure supertranslations.
Logarithmic supertranslations have appeared here and then in the literature on asymptotic symmetries but have not been systematically studied.
In particular, the algebraic structure of the logarithmic BMS algebra and the fact that one could rewrite it as a direct sum by nonlinear redefinitions were not discussed.

Work done in collaboration with Oscar Fuentealba and Cédric Troessaert, e-Prints 2211.10941 [hep-th] and 2305.05436 [hep-th]

ADM action

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

How does the BMS algebra appear at spatial infinity?

ADM action

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

How does the BMS algebra appear at spatial infinity?
A central role in the analysis is played by the gravitational action

ADM action

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

How does the BMS algebra appear at spatial infinity?
A central role in the analysis is played by the gravitational action which reads, in Hamiltonian form,

ADM action

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear

redefinitions

Conclusions and comments

How does the BMS algebra appear at spatial infinity?
A central role in the analysis is played by the gravitational action which reads, in Hamiltonian form,

$$
S\left[g_{i j}, \pi^{i j}, N, N^{i}\right]=\int d t\left\{\int d^{3} x\left(\pi^{i j} \partial_{t} g_{i j}-N^{i} \mathscr{H}_{i}^{g r a v}-N \mathscr{H}^{g r a v}\right)-B_{\infty}\right\}
$$

ADM action

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear

redefinitions

Conclusions and comments

How does the BMS algebra appear at spatial infinity?
A central role in the analysis is played by the gravitational action which reads, in Hamiltonian form,
$S\left[g_{i j}, \pi^{i j}, N, N^{i}\right]=\int d t\left\{\int d^{3} x\left(\pi^{i j} \partial_{t} g_{i j}-N^{i} \mathscr{H}_{i}^{\text {grav }}-N \mathscr{H}^{g r a v}\right)-B_{\infty}\right\}$
where B_{∞} is a boundary term at infinity and where

ADM action

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonifnear

redefinitions

Conclusions and comments

How does the BMS algebra appear at spatial infinity?
A central role in the analysis is played by the gravitational action which reads, in Hamiltonian form,

$$
S\left[g_{i j}, \pi^{i j}, N, N^{i}\right]=\int d t\left\{\int d^{3} x\left(\pi^{i j} \partial_{t} g_{i j}-N^{i} \not \mathscr{H}_{i}^{\text {grav }}-N \not \mathscr{H}^{g r a v}\right)-B_{\infty}\right\}
$$

where B_{∞} is a boundary term at infinity and where

$$
\mathscr{H}^{\text {grav }}=-\sqrt{g} R+\frac{1}{\sqrt{g}}\left(\pi^{i j} \pi_{i j}-\frac{1}{2} \pi^{2}\right) \approx 0, \quad \mathscr{H}_{i}^{g r a v}=-2 \nabla_{j} \pi_{i}^{j} \approx 0
$$

ADM action

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic BMS_{4} algebra
Nonlinear redefinitions

Conclusions and comments

How does the BMS algebra appear at spatial infinity?
A central role in the analysis is played by the gravitational action which reads, in Hamiltonian form,

$$
S\left[g_{i j}, \pi^{i j}, N, N^{i}\right]=\int d t\left\{\int d^{3} x\left(\pi^{i j} \partial_{t} g_{i j}-N^{i} \mathscr{H}_{i}^{\text {grav }}-N \mathscr{H}^{\text {grav }}\right)-B_{\infty}\right\}
$$

where B_{∞} is a boundary term at infinity and where

$$
\mathscr{H}^{\text {grav }}=-\sqrt{g} R+\frac{1}{\sqrt{g}}\left(\pi^{i j} \pi_{i j}-\frac{1}{2} \pi^{2}\right) \approx 0, \quad \mathscr{H}_{i}^{g r a v}=-2 \nabla_{j} \pi_{i}^{j} \approx 0
$$

(Dirac, Arnowitt-Deser-Misner, Regge-Teitelboim)

Boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges
Marc Henneaux
(Université Libre de Bruxelles and Collège de France)
Introduction : structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

Boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS4 $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions

Conclusions and comments

The definition of the phase space of general relativity must be completed by boundary conditions on the canonical variables,

Boundary conditions

BMS algebra and supertranslation invariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The definition of the phase space of general relativity must be completed by boundary conditions on the canonical variables, which are $g_{i j}$ and $\pi^{i j}$.

Boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear

redefinitions

Conclusions and comments

The definition of the phase space of general relativity must be completed by boundary conditions on the canonical variables, which are $g_{i j}$ and $\pi^{i j}$.
We shall insist that the boundary conditions make the action :

- finite

Boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The definition of the phase space of general relativity must be completed by boundary conditions on the canonical variables, which are $g_{i j}$ and $\pi^{i j}$.
We shall insist that the boundary conditions make the action :

- finite
- and invariant under all (asymptotic) Poincaré symmetries, which are thus canonical transformations.

Boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear
redefinitions
Conclusions and comments

The definition of the phase space of general relativity must be completed by boundary conditions on the canonical variables, which are $g_{i j}$ and $\pi^{i j}$.
We shall insist that the boundary conditions make the action :

- finite
- and invariant under all (asymptotic) Poincaré symmetries, which are thus canonical transformations.
This puts strong and interesting restrictions.

Boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges
Marc Henneaux
(Université Libre de Bruxelles and Collège de France)
Introduction : structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

Boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The usually assumed fall-off is (in cartesian coordinates)

Boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The usually assumed fall-off is (in cartesian coordinates)

$$
g_{i j}=\delta_{i j}+O\left(r^{-1}\right), \quad \pi^{i j}=O\left(r^{-2}\right) .
$$

Boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The usually assumed fall-off is (in cartesian coordinates)

$$
g_{i j}=\delta_{i j}+O\left(r^{-1}\right), \quad \pi^{i j}=O\left(r^{-2}\right) .
$$

Without additional requirement, this fall-off is too slow because it generically leads to a logarithmic divergence in the symplectic structure (kinetic term)

Boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

Conclusions and comments

The usually assumed fall-off is (in cartesian coordinates)

$$
g_{i j}=\delta_{i j}+O\left(r^{-1}\right), \quad \pi^{i j}=O\left(r^{-2}\right) .
$$

Without additional requirement, this fall-off is too slow because it generically leads to a logarithmic divergence in the symplectic structure (kinetic term)

$$
\int d^{3} x \pi^{i j} \dot{g}_{i j} \sim \ln r .
$$

Parity conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear
redefinitions
Conclusions and comments

Parity conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonilinear

redefinitions

Conclusions and comments

One way to cure this problem would be to impose that the leading terms of the metric and its conjugate momentum have opposite parity properties under the antipodal map,

Parity conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear

redefinitions

One way to cure this problem would be to impose that the leading terms of the metric and its conjugate momentum have opposite parity properties under the antipodal map,

$$
h_{i j} \equiv g_{i j}-\delta_{i j}=\frac{\bar{h}_{i j}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad \bar{h}_{i j}\left(-\mathbf{n}^{k}\right)=\bar{h}_{i j}\left(\mathbf{n}^{k}\right)
$$

and

$$
\pi^{i j}=\frac{\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)}{r^{2}}+O\left(\frac{1}{r^{3}}\right), \quad \bar{\pi}^{i j}\left(-\mathbf{n}^{k}\right)=-\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)
$$

Parity conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear redefinitions

One way to cure this problem would be to impose that the leading terms of the metric and its conjugate momentum have opposite parity properties under the antipodal map,

$$
h_{i j} \equiv g_{i j}-\delta_{i j}=\frac{\bar{h}_{i j}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad \bar{h}_{i j}\left(-\mathbf{n}^{k}\right)=\bar{h}_{i j}\left(\mathbf{n}^{k}\right)
$$

and

$$
\pi^{i j}=\frac{\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)}{r^{2}}+O\left(\frac{1}{r^{3}}\right), \quad \bar{\pi}^{i j}\left(-\mathbf{n}^{k}\right)=-\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)
$$

But these strict parity conditions leave no room for the BMS group.

Parity conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear

redefinitions

One way to cure this problem would be to impose that the leading terms of the metric and its conjugate momentum have opposite parity properties under the antipodal map,

$$
h_{i j} \equiv g_{i j}-\delta_{i j}=\frac{\bar{h}_{i j}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad \bar{h}_{i j}\left(-\mathbf{n}^{k}\right)=\bar{h}_{i j}\left(\mathbf{n}^{k}\right)
$$

and

$$
\pi^{i j}=\frac{\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)}{r^{2}}+O\left(\frac{1}{r^{3}}\right), \quad \bar{\pi}^{i j}\left(-\mathbf{n}^{k}\right)=-\bar{\pi}^{i j}\left(\mathbf{n}^{k}\right)
$$

But these strict parity conditions leave no room for the BMS group.
The asymptotic symmetry reduces then to the Poincaré group (and not more).

Parity-twisted boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions

Conclusions and comments

Parity-twisted boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS4 algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The strict parity conditions are too strong and kill the pure supertranslations.

Parity-twisted boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear
redefinitions
Conclusions and comments

The strict parity conditions are too strong and kill the pure supertranslations.
One must relax these parity conditions... but not completely if one wants to maintain finiteness of the action.

Parity-twisted boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

The strict parity conditions are too strong and kill the pure supertranslations.
One must relax these parity conditions... but not completely if one wants to maintain finiteness of the action.

The idea is to allow a "parity-twisted component" of a specific form in the leading orders in the asymptotic expansions of the metric and its conjugate momentum.

Parity-twisted boundary conditions

The strict parity conditions are too strong and kill the pure supertranslations.
One must relax these parity conditions... but not completely if one wants to maintain finiteness of the action.

The idea is to allow a "parity-twisted component" of a specific form in the leading orders in the asymptotic expansions of the metric and its conjugate momentum.
This parity-twisted component takes the form of a diffeomorphism generated by $\mathscr{O}(1)$ diffeomorphisms (rewritten in Hamiltonian form).

Parity conditions twisted by a diffeomorphism

Parity conditions twisted by a diffeomorphism

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear
redefinitions
Conclusions and comments

Specifically, one takes for the metric

Parity conditions twisted by a diffeomorphism

 chargesMarc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear

redefinitions

Conclusions and comments

Specifically, one takes for the metric

$$
\begin{aligned}
& h_{i j} \equiv g_{i j}-\delta_{i j}=U_{i j}+j_{i j}, \\
& U_{i j}=\partial_{i} \zeta_{j}+\partial_{j} \zeta_{i}=O\left(\frac{1}{r}\right), \quad \zeta^{i}=\zeta^{i}\left(\mathbf{n}^{k}\right)=O(1), \quad \zeta^{i}\left(-\mathbf{n}^{k}\right)=\zeta^{i}\left(\mathbf{n}^{k}\right), \\
& j_{i j}=\frac{\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad\left(\bar{h}_{i j}\right)^{\text {even }}\left(-\mathbf{n}^{k}\right)=\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)
\end{aligned}
$$

Parity conditions twisted by a diffeomorphism

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear

redefinitions

Specifically, one takes for the metric

$$
\begin{aligned}
& h_{i j} \equiv g_{i j}-\delta_{i j}=U_{i j}+j_{i j}, \\
& U_{i j}=\partial_{i} \zeta_{j}+\partial_{j} \zeta_{i}=O\left(\frac{1}{r}\right), \quad \zeta^{i}=\zeta^{i}\left(\mathbf{n}^{k}\right)=O(1), \quad \zeta^{i}\left(-\mathbf{n}^{k}\right)=\zeta^{i}\left(\mathbf{n}^{k}\right), \\
& j_{i j}=\frac{\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad\left(\bar{h}_{i j}\right)^{\text {even }}\left(-\mathbf{n}^{k}\right)=\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)
\end{aligned}
$$

$U_{i j}$ is the contribution that twists the strict parity condition on the metric by an $\mathscr{O}(1)$-diffeomorphism (to leading order) and can be assumed to be odd (ζ_{i} even).

Parity conditions twisted by a diffeomorphism

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and

Collège de
France)

Introduction : structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic BMS_{4} algebra

Nonlinear redefinitions

Specifically, one takes for the metric

$$
\begin{aligned}
& h_{i j} \equiv g_{i j}-\delta_{i j}=U_{i j}+j_{i j}, \\
& U_{i j}=\partial_{i} \zeta_{j}+\partial_{j} \zeta_{i}=O\left(\frac{1}{r}\right), \quad \zeta^{i}=\zeta^{i}\left(\mathbf{n}^{k}\right)=O(1), \quad \zeta^{i}\left(-\mathbf{n}^{k}\right)=\zeta^{i}\left(\mathbf{n}^{k}\right) \\
& j_{i j}=\frac{\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad\left(\bar{h}_{i j}\right)^{\text {even }}\left(-\mathbf{n}^{k}\right)=\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)
\end{aligned}
$$

$U_{i j}$ is the contribution that twists the strict parity condition on the metric by an $\mathscr{O}(1)$-diffeomorphism (to leading order) and can be assumed to be odd (ζ_{i} even).
It turns out that in order for the boosts to preserve the symplectic form and hence define canonical transformations,

Parity conditions twisted by a diffeomorphism

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and

Collège de
France)

Introduction : structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic BMS_{4} algebra

Nonlinear

Specifically, one takes for the metric

$$
\begin{aligned}
& h_{i j} \equiv g_{i j}-\delta_{i j}=U_{i j}+j_{i j}, \\
& U_{i j}=\partial_{i} \zeta_{j}+\partial_{j} \zeta_{i}=O\left(\frac{1}{r}\right), \quad \zeta^{i}=\zeta^{i}\left(\mathbf{n}^{k}\right)=O(1), \quad \zeta^{i}\left(-\mathbf{n}^{k}\right)=\zeta^{i}\left(\mathbf{n}^{k}\right) \\
& j_{i j}=\frac{\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad\left(\bar{h}_{i j}\right)^{\text {even }}\left(-\mathbf{n}^{k}\right)=\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)
\end{aligned}
$$

$U_{i j}$ is the contribution that twists the strict parity condition on the metric by an $\mathscr{O}(1)$-diffeomorphism (to leading order) and can be assumed to be odd (ζ_{i} even).
It turns out that in order for the boosts to preserve the symplectic form and hence define canonical transformations, ζ_{i} must takes the specific form

Parity conditions twisted by a diffeomorphism

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and

Collège de
France)

Introduction :
structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic BMS_{4} algebra

Nonlinear redefinitions

Specifically, one takes for the metric

$$
\begin{aligned}
& h_{i j} \equiv g_{i j}-\delta_{i j}=U_{i j}+j_{i j}, \\
& U_{i j}=\partial_{i} \zeta_{j}+\partial_{j} \zeta_{i}=O\left(\frac{1}{r}\right), \quad \zeta^{i}=\zeta^{i}\left(\mathbf{n}^{k}\right)=O(1), \quad \zeta^{i}\left(-\mathbf{n}^{k}\right)=\zeta^{i}\left(\mathbf{n}^{k}\right), \\
& j_{i j}=\frac{\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad\left(\bar{h}_{i j}\right)^{\text {even }}\left(-\mathbf{n}^{k}\right)=\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)
\end{aligned}
$$

$U_{i j}$ is the contribution that twists the strict parity condition on the metric by an $\mathscr{O}(1)$-diffeomorphism (to leading order) and can be assumed to be odd (ζ_{i} even).
It turns out that in order for the boosts to preserve the symplectic form and hence define canonical transformations, ζ_{i} must takes the specific form

$$
\zeta_{i}=\partial_{i}(r U) \quad \bar{U}\left(\mathbf{n}^{k}\right)=O(1)=-U\left(-\mathbf{n}^{k}\right) .
$$

Parity conditions twisted by a diffeomorphism

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and

Collège de
France)

Introduction : structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic BMS_{4} algebra

Nonlinear redefinitions comments

Specifically, one takes for the metric

$$
\begin{aligned}
& h_{i j} \equiv g_{i j}-\delta_{i j}=U_{i j}+j_{i j}, \\
& U_{i j}=\partial_{i} \zeta_{j}+\partial_{j} \zeta_{i}=O\left(\frac{1}{r}\right), \quad \zeta^{i}=\zeta^{i}\left(\mathbf{n}^{k}\right)=O(1), \quad \zeta^{i}\left(-\mathbf{n}^{k}\right)=\zeta^{i}\left(\mathbf{n}^{k}\right), \\
& j_{i j}=\frac{\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)}{r}+O\left(\frac{1}{r^{2}}\right), \quad\left(\bar{h}_{i j}\right)^{\text {even }}\left(-\mathbf{n}^{k}\right)=\left(\bar{h}_{i j}\right)^{\text {even }}\left(\mathbf{n}^{k}\right)
\end{aligned}
$$

$U_{i j}$ is the contribution that twists the strict parity condition on the metric by an $\mathscr{O}(1)$-diffeomorphism (to leading order) and can be assumed to be odd (ζ_{i} even).
It turns out that in order for the boosts to preserve the symplectic form and hence define canonical transformations, ζ_{i} must takes the specific form

$$
\zeta_{i}=\partial_{i}(r U) \quad \bar{U}\left(\mathbf{n}^{k}\right)=O(1)=-U\left(-\mathbf{n}^{k}\right)
$$

and so

$$
U_{i j}=2 \partial_{i} \partial_{j}(r U)
$$

Parity conditions twisted by a diffeomorphism

Parity conditions twisted by a diffeomorphism

 chargesMarc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear
redefinitions
Conclusions and comments

For the conjugate momenta, one takes

Parity conditions twisted by a diffeomorphism

 chargesMarc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear

redefinitions

Conclusions and comments

For the conjugate momenta, one takes

$$
\begin{aligned}
& \pi^{i j}=V^{i j}+p^{i j} \\
& V^{i j}=\partial^{i} \partial^{j} V-\delta^{i j} \triangle V, \quad V=V\left(\mathbf{n}^{k}\right)=O(1), \quad V\left(-\mathbf{n}^{k}\right)=V\left(\mathbf{n}^{k}\right) \\
& p^{i j}=\frac{\left(\bar{\pi}^{i j}\right)^{o d d}\left(\mathbf{n}^{k}\right)}{r^{2}}+O\left(\frac{1}{r^{3}}\right), \quad\left(\bar{\pi}^{i j}\right)^{o d d}\left(-\mathbf{n}^{k}\right)=-\left(\bar{\pi}^{i j}\right)^{o d d}\left(\mathbf{n}^{k}\right)
\end{aligned}
$$

Parity conditions twisted by a diffeomorphism

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary

supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear

redefinitions

Conclusions and comments

For the conjugate momenta, one takes

$$
\begin{aligned}
& \pi^{i j}=V^{i j}+p^{i j} \\
& V^{i j}=\partial^{i} \partial^{j} V-\delta^{i j} \triangle V, \quad V=V\left(\mathbf{n}^{k}\right)=O(1), \quad V\left(-\mathbf{n}^{k}\right)=V\left(\mathbf{n}^{k}\right) \\
& p^{i j}=\frac{\left(\bar{\pi}^{i j}\right)^{o d d}\left(\mathbf{n}^{k}\right)}{r^{2}}+O\left(\frac{1}{r^{3}}\right), \quad\left(\bar{\pi}^{i j}\right)^{\text {odd }}\left(-\mathbf{n}^{k}\right)=-\left(\bar{\pi}^{i j}\right)^{\text {odd }}\left(\mathbf{n}^{k}\right)
\end{aligned}
$$

where V is a function of the angles which can be assumed to be even.

Parity conditions twisted by a diffeomorphism

For the conjugate momenta, one takes

$$
\begin{aligned}
& \pi^{i j}=V^{i j}+p^{i j} \\
& V^{i j}=\partial^{i} \partial^{j} V-\delta^{i j} \triangle V, \quad V=V\left(\mathbf{n}^{k}\right)=O(1), \quad V\left(-\mathbf{n}^{k}\right)=V\left(\mathbf{n}^{k}\right) \\
& p^{i j}=\frac{\left(\bar{\pi}^{i j}\right)^{o d d}\left(\mathbf{n}^{k}\right)}{r^{2}}+O\left(\frac{1}{r^{3}}\right), \quad\left(\bar{\pi}^{i j}\right)^{o d d}\left(-\mathbf{n}^{k}\right)=-\left(\bar{\pi}^{i j}\right)^{o d d}\left(\mathbf{n}^{k}\right)
\end{aligned}
$$

where V is a function of the angles which can be assumed to be even.
$V^{i j}$ is the contribution that twists the strict parity of $\pi^{i j}$ (at leading order) by a diffeomorphism (written in Hamiltonian form).

Parity conditions twisted by a diffeomorphism

For the conjugate momenta, one takes

$$
\begin{aligned}
& \pi^{i j}=V^{i j}+p^{i j} \\
& V^{i j}=\partial^{i} \partial^{j} V-\delta^{i j} \triangle V, \quad V=V\left(\mathbf{n}^{k}\right)=O(1), \quad V\left(-\mathbf{n}^{k}\right)=V\left(\mathbf{n}^{k}\right) \\
& p^{i j}=\frac{\left(\bar{\pi}^{i j}\right)^{o d d}\left(\mathbf{n}^{k}\right)}{r^{2}}+O\left(\frac{1}{r^{3}}\right), \quad\left(\bar{\pi}^{i j}\right)^{\text {odd }}\left(-\mathbf{n}^{k}\right)=-\left(\bar{\pi}^{i j}\right)^{\text {odd }}\left(\mathbf{n}^{k}\right)
\end{aligned}
$$

where V is a function of the angles which can be assumed to be even.
$V^{i j}$ is the contribution that twists the strict parity of $\pi^{i j}$ (at leading order) by a diffeomorphism (written in Hamiltonian form).
The twisting is thus characterized by two functions of the angles, one odd (U) and one even (V).

Parity-twisted boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions

Conclusions and comments

Parity-twisted boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS4 $_{4}$ algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear
redefinitions
Conclusions and comments

These relaxed parity conditions involving a twist still lead to a consistent dynamical description

Parity-twisted boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear

redefinitions

Conclusions and comments

These relaxed parity conditions involving a twist still lead to a consistent dynamical description
(finite action, finite symplectic form, well-defined generators).

Parity-twisted boundary conditions

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear
redefinitions
Conclusions and comments

These relaxed parity conditions involving a twist still lead to a consistent dynamical description
(finite action, finite symplectic form, well-defined generators).
Furthermore, the group of asymptotic symmetries is the full BMS group (written in a different basis than the familiar null infinity basis).

Parity-twisted boundary conditions

These relaxed parity conditions involving a twist still lead to a consistent dynamical description
(finite action, finite symplectic form, well-defined generators).
Furthermore, the group of asymptotic symmetries is the full BMS group (written in a different basis than the familiar null infinity basis).
There is complete agreement with the null infinity results.

Parity-twisted boundary conditions

These relaxed parity conditions involving a twist still lead to a consistent dynamical description
(finite action, finite symplectic form, well-defined generators).
Furthermore, the group of asymptotic symmetries is the full BMS group (written in a different basis than the familiar null infinity basis).
There is complete agreement with the null infinity results.

Parity-twisted boundary conditions

These relaxed parity conditions involving a twist still lead to a consistent dynamical description
(finite action, finite symplectic form, well-defined generators).
Furthermore, the group of asymptotic symmetries is the full BMS group (written in a different basis than the familiar null infinity basis).

There is complete agreement with the null infinity results.

Can one relax even more the boundary conditions in a usuful way?

Parity-twisted boundary conditions

These relaxed parity conditions involving a twist still lead to a consistent dynamical description
(finite action, finite symplectic form, well-defined generators).
Furthermore, the group of asymptotic symmetries is the full BMS group (written in a different basis than the familiar null infinity basis).

There is complete agreement with the null infinity results.

Can one relax even more the boundary conditions in a usuful way?
The answer is positive. One can further enlarge the symmetry in this manner, which then includes in addition "logarithmic supertranslations" conjugate to supertranslations.

Logarithmic supertranslations - Idea

 chargesMarc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations

Logarithmic

supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear
redefinitions
Conclusions and comments

Logarithmic supertranslations - Idea

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic supertranslations

The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions

Conclusions and comments

To exhibit the logarithmic supertranslations, one must allow terms in the canonical variables that result from diffeomorphisms that grow like $\ln r$ at infinity.

Logarithmic supertranslations - Idea

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS $_{4}$ algebra
Ordinary
supertranslations
Logarithmic supertranslations

The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

To exhibit the logarithmic supertranslations, one must allow terms in the canonical variables that result from diffeomorphisms that grow like $\ln r$ at infinity. The logarithmic supertranslations are diffeomorphisms that grow like $\ln r$ at infinity and which preserve by construction the new boundary conditions,

Logarithmic supertranslations - Idea

To exhibit the logarithmic supertranslations, one must allow terms in the canonical variables that result from diffeomorphisms that grow like $\ln r$ at infinity. The logarithmic supertranslations are diffeomorphisms that grow like $\ln r$ at infinity and which preserve by construction the new boundary conditions,
They define true symmetries of the action provided some conditions on the logarithmic diffeomorphisms are imposed.

Logarithmic supertranslations - Idea

To exhibit the logarithmic supertranslations, one must allow terms in the canonical variables that result from diffeomorphisms that grow like $\ln r$ at infinity. The logarithmic supertranslations are diffeomorphisms that grow like $\ln r$ at infinity and which preserve by construction the new boundary conditions,
They define true symmetries of the action provided some conditions on the logarithmic diffeomorphisms are imposed.
The (allowed) logarithmic supertranslations are then canonical transformations with a well-defined, finite charge.

Logarithmic supertranslations - Idea

To exhibit the logarithmic supertranslations, one must allow terms in the canonical variables that result from diffeomorphisms that grow like $\ln r$ at infinity.
The logarithmic supertranslations are diffeomorphisms that grow like $\ln r$ at infinity and which preserve by construction the new boundary conditions,
They define true symmetries of the action provided some conditions on the logarithmic diffeomorphisms are imposed.
The (allowed) logarithmic supertranslations are then canonical transformations with a well-defined, finite charge.
They depend on a single function of the angles, but the $\ell=0$ and $\ell=1$ harmonics define proper gauge transformations : they have zero charge.

Logarithmic supertranslations - Idea

To exhibit the logarithmic supertranslations, one must allow terms in the canonical variables that result from diffeomorphisms that grow like $\ln r$ at infinity.
The logarithmic supertranslations are diffeomorphisms that grow like $\ln r$ at infinity and which preserve by construction the new boundary conditions,
They define true symmetries of the action provided some conditions on the logarithmic diffeomorphisms are imposed.
The (allowed) logarithmic supertranslations are then canonical transformations with a well-defined, finite charge.
They depend on a single function of the angles, but the $\ell=0$ and $\ell=1$ harmonics define proper gauge transformations : they have zero charge.
The physical logarithmic supertranslations are thus parametrized by the same class of functions as the pure supertranslations. We denote them L_{α}.

Structure of the logarithmic BMS_{4} algebra

 chargesMarc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic BMS $_{4}$ algebra

Nonlinear
redefinitions
Conclusions and comments

Structure of the logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction:
structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic BMS $_{4}$ algebra

Nonlinear

redefinitions

Conclusions and comments

One can compute the Poisson brackets of the logarithmic supertranslation generators with themselves and with the generators of the BMS_{4} algebra.

Structure of the logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic supertranslations

The logarithmic BMS $_{4}$ algebra

Nonlinear

redefinitions

One can compute the Poisson brackets of the logarithmic supertranslation generators with themselves and with the generators of the BMS_{4} algebra.
The computation is direct and follows standard canonical methods.

Structure of the logarithmic BMS_{4} algebra

One can compute the Poisson brackets of the logarithmic supertranslation generators with themselves and with the generators of the BMS_{4} algebra.
The computation is direct and follows standard canonical methods.

One finds that the generators L^{α} of the logarithmic supertranslations commute among themselves,

Structure of the logarithmic BMS_{4} algebra

One can compute the Poisson brackets of the logarithmic supertranslation generators with themselves and with the generators of the BMS_{4} algebra.
The computation is direct and follows standard canonical methods.
One finds that the generators L^{α} of the logarithmic supertranslations commute among themselves,

$$
\left\{L^{\alpha}, L^{\beta}\right\}=0,
$$

Structure of the logarithmic BMS_{4} algebra

One can compute the Poisson brackets of the logarithmic supertranslation generators with themselves and with the generators of the BMS_{4} algebra.
The computation is direct and follows standard canonical methods.

One finds that the generators L^{α} of the logarithmic supertranslations commute among themselves,

$$
\left\{L^{\alpha}, L^{\beta}\right\}=0
$$

and transform in the same representation of the Lorentz group as the pure supertranslations,

Structure of the logarithmic BMS_{4} algebra

One can compute the Poisson brackets of the logarithmic supertranslation generators with themselves and with the generators of the BMS_{4} algebra.
The computation is direct and follows standard canonical methods.

One finds that the generators L^{α} of the logarithmic supertranslations commute among themselves,

$$
\left\{L^{\alpha}, L^{\beta}\right\}=0
$$

and transform in the same representation of the Lorentz group as the pure supertranslations,

$$
\left\{M_{a}, L^{\alpha}\right\}=-G_{a \beta}^{\alpha} L^{\beta}
$$

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic BMS $_{4}$ algebra

Nonlinear
redefinitions
Conclusions and comments

三

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations

The logarithmic BMS $_{4}$ algebra

Nonlinear redefinitions

Conclusions and comments

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic BMS_{4} algebra

Nonlinear
redefinitions
Conclusions and comments

Putting everything together, one thus gets as non-zero brackets

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic

supertranslations

The logarithmic BMS $_{4}$ algebra

Nonlinear

redefinitions

Conclusions and comments

Putting everything together, one thus gets as non-zero brackets

$$
\begin{aligned}
\left\{M_{a}, M_{b}\right\} & =f_{a b}^{c} M_{c} \\
\left\{M_{a}, T_{i}\right\} & =R_{a i}^{j} T_{j}, \\
\left\{M_{a}, S_{\alpha}\right\} & =G_{a \alpha}^{i} T_{i}+G_{a \alpha}^{\beta} S_{\beta}, \\
\left\{M_{a}, L^{\alpha}\right\} & =-G_{a \beta}^{\alpha} L^{\beta}, \\
\left\{L^{\alpha}, S_{\beta}\right\} & =\delta_{\beta}^{\alpha},
\end{aligned}
$$

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic

supertranslations

The logarithmic BMS $_{4}$ algebra

Nonlinear

redefinitions

Putting everything together, one thus gets as non-zero brackets

$$
\begin{aligned}
\left\{M_{a}, M_{b}\right\} & =f_{a b}^{c} M_{c}, \\
\left\{M_{a}, T_{i}\right\} & =R_{a i}^{j} T_{j}, \\
\left\{M_{a}, S_{\alpha}\right\} & =G_{a \alpha}^{i} T_{i}+G_{a \alpha}^{\beta} S_{\beta}, \\
\left\{M_{a}, L^{\alpha}\right\} & =-G_{a \beta}^{\alpha} L^{\beta}, \\
\left\{L^{\alpha}, S_{\beta}\right\} & =\delta_{\beta}^{\alpha},
\end{aligned}
$$

i.e., $\operatorname{LogBMS}_{4}=\mathscr{L} \oplus_{\sigma}\left(\mathscr{A} \oplus_{c} \mathscr{B}\right)$

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic

supertranslations

The logarithmic BMS $_{4}$ algebra

Nonlinear
redefinitions
Conclusions and comments

Putting everything together, one thus gets as non-zero brackets

$$
\begin{aligned}
\left\{M_{a}, M_{b}\right\} & =f_{a b}^{c} M_{c}, \\
\left\{M_{a}, T_{i}\right\} & =R_{a i}^{j} T_{j}, \\
\left\{M_{a}, S_{\alpha}\right\} & =G_{a \alpha}^{i} T_{i}+G_{a \alpha}^{\beta} S_{\beta}, \\
\left\{M_{a}, L^{\alpha}\right\} & =-G_{a \beta}^{\alpha} L^{\beta}, \\
\left\{L^{\alpha}, S_{\beta}\right\} & =\delta_{\beta}^{\alpha},
\end{aligned}
$$

i.e., $\operatorname{LogBMS}_{4}=\mathscr{L} \oplus_{\sigma}\left(\mathscr{A} \oplus_{c} \mathscr{B}\right)$
with \mathscr{B} being the abelian algebra of the logarithmic supertranslations.

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS4 $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

Conclusions and comments

Classical mechanics reminder

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

comments

Classical mechanics reminder
The bracket of two conserved charges is a conserved charge.

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre
de Bruxelles and
Collège de
France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

redefinitions
Conclusions and
comments

Classical mechanics reminder

The bracket of two conserved charges is a conserved charge. A set $\left\{Q_{A}(q, p)\right\}$ of conserved charges is a complete set (of conserved charges)

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear redefinitions

Classical mechanics reminder

The bracket of two conserved charges is a conserved charge. A set $\left\{Q_{A}(q, p)\right\}$ of conserved charges is a complete set (of conserved charges)
if any conserved charge is a function $f\left(Q_{A}\right)$ of these conserved charges.

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Classical mechanics reminder

The bracket of two conserved charges is a conserved charge. A set $\left\{Q_{A}(q, p)\right\}$ of conserved charges is a complete set (of conserved charges)
if any conserved charge is a function $f\left(Q_{A}\right)$ of these conserved charges.
The function f need not be linear.

General considerations

Classical mechanics reminder
The bracket of two conserved charges is a conserved charge.
A set $\left\{Q_{A}(q, p)\right\}$ of conserved charges is a complete set (of conserved charges)
if any conserved charge is a function $f\left(Q_{A}\right)$ of these conserved charges.
The function f need not be linear.
[If p is a constant of the motion, p^{2} or any function of p is also a constant of the motion but it is clearly not independent from p even though not a multiple of p.]

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 comments
General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS4 $_{4}$ algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

redefinitions

Conclusions and

 commentsIf we denote by X_{A} the Hamiltonian vector field corresponding to
Q_{A}, i.e. $X_{A} F=\left\{F, Q_{A}\right\}$,

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction:
structure of the BMS $_{4}$ algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra

Nonlinear

redefinitions

Conclusions and

 commentsIf we denote by X_{A} the Hamiltonian vector field corresponding to Q_{A}, i.e. $X_{A} F=\left\{F, Q_{A}\right\}$,
then the Hamiltonian vector field X associated with $f(Q)$ is given by

$$
X=\frac{\partial f}{\partial Q^{A}} X_{A}
$$

since $X F=\{F, f(Q)\}=\frac{\partial f}{\partial Q_{A}}\left\{F, Q_{A}\right\}$.

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction:
structure of the BMS $_{4}$ algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

redefinitions

If we denote by X_{A} the Hamiltonian vector field corresponding to Q_{A}, i.e. $X_{A} F=\left\{F, Q_{A}\right\}$,
then the Hamiltonian vector field X associated with $f(Q)$ is given by

$$
X=\frac{\partial f}{\partial Q^{A}} X_{A}
$$

since $X F=\{F, f(Q)\}=\frac{\partial f}{\partial Q_{A}}\left\{F, Q_{A}\right\}$.
It is a linear combination $f^{A} X_{A}$ of the vector fields X_{A} of the complete set,

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction:
structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra

Nonlinear

redefinitions

If we denote by X_{A} the Hamiltonian vector field corresponding to Q_{A}, i.e. $X_{A} F=\left\{F, Q_{A}\right\}$,
then the Hamiltonian vector field X associated with $f(Q)$ is given by

$$
X=\frac{\partial f}{\partial Q^{A}} X_{A}
$$

since $X F=\{F, f(Q)\}=\frac{\partial f}{\partial Q_{A}}\left\{F, Q_{A}\right\}$.
It is a linear combination $f^{A} X_{A}$ of the vector fields X_{A} of the complete set,
with coefficients f^{A} that are phase space functions.

General considerations

If we denote by X_{A} the Hamiltonian vector field corresponding to Q_{A}, i.e. $X_{A} F=\left\{F, Q_{A}\right\}$,
then the Hamiltonian vector field X associated with $f(Q)$ is given by

$$
X=\frac{\partial f}{\partial Q^{A}} X_{A}
$$

since $X F=\{F, f(Q)\}=\frac{\partial f}{\partial Q_{A}}\left\{F, Q_{A}\right\}$.
It is a linear combination $f^{A} X_{A}$ of the vector fields X_{A} of the complete set,
with coefficients f^{A} that are phase space functions.
These phase space functions are not arbitrary, however, but must depend on the phase space variables through the Q_{A} 's and in such a way that X is a Hamiltonian vector field, i.e., $\frac{\partial f^{A}}{\partial Q_{B}}=\frac{\partial f^{B}}{\partial Q_{A}}$.

General considerations

If we denote by X_{A} the Hamiltonian vector field corresponding to Q_{A}, i.e. $X_{A} F=\left\{F, Q_{A}\right\}$,
then the Hamiltonian vector field X associated with $f(Q)$ is given by

$$
X=\frac{\partial f}{\partial Q^{A}} X_{A}
$$

since $X F=\{F, f(Q)\}=\frac{\partial f}{\partial Q_{A}}\left\{F, Q_{A}\right\}$.
It is a linear combination $f^{A} X_{A}$ of the vector fields X_{A} of the complete set,
with coefficients f^{A} that are phase space functions.
These phase space functions are not arbitrary, however, but must depend on the phase space variables through the Q_{A} 's and in such a way that X is a Hamiltonian vector field, i.e., $\frac{\partial f^{A}}{\partial Q_{B}}=\frac{\partial f^{B}}{\partial Q_{A}}$. ($f^{A} d Q_{A}$ is exact, "integrability")

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 comments
General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra

Nonlinear

redefinitions

Conclusions and

 commentsThe brackets of two elements of a complete set is a function of the Q_{A} 's which might be non-linear,

General considerations

BMS algebra and

 supertranslationinvariant Lorentz chargesMarc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
$B M S_{4}$ algebra

Nonlinear

 redefinitionsConclusions and comments

The brackets of two elements of a complete set is a function of the Q_{A} 's which might be non-linear,

$$
\left\{Q_{A}, Q_{B}\right\}=f_{A B}(Q) .
$$

General considerations

BMS algebra and

 supertranslationinvariant Lorentz chargesMarc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

redefinitions

Conclusions and

 commentsThe brackets of two elements of a complete set is a function of the Q_{A} 's which might be non-linear,

$$
\left\{Q_{A}, Q_{B}\right\}=f_{A B}(Q) .
$$

When the functions $f_{A B}$ are linear, $f_{A B}(Q)=f_{A B}^{C} Q_{C}$, the X_{A} 's form a Lie algebra.

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitionsThe brackets of two elements of a complete set is a function of the Q_{A} 's which might be non-linear,

$$
\left\{Q_{A}, Q_{B}\right\}=f_{A B}(Q) .
$$

When the functions $f_{A B}$ are linear, $f_{A B}(Q)=f_{A B}^{C} Q_{C}$, the X_{A} 's form a Lie algebra.
In general,

$$
\left[X_{A}, X_{B}\right]=-\frac{\partial f_{A B}}{\partial Q_{C}} X_{C} .
$$

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS4 4 algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra

Nonlinear

 redefinitionsThe brackets of two elements of a complete set is a function of the Q_{A} 's which might be non-linear,

$$
\left\{Q_{A}, Q_{B}\right\}=f_{A B}(Q) .
$$

When the functions $f_{A B}$ are linear, $f_{A B}(Q)=f_{A B}^{C} Q_{C}$, the X_{A} 's form a Lie algebra.
In general,

$$
\left[X_{A}, X_{B}\right]=-\frac{\partial f_{A B}}{\partial Q_{C}} X_{C} .
$$

Complete set of conserved charges can be non-linearly redefined,

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic supertranslations

The logarithmic
BMS_{4} algebra

Nonlinear

redefinitions
Conclusions and comments

The brackets of two elements of a complete set is a function of the Q_{A} 's which might be non-linear,

$$
\left\{Q_{A}, Q_{B}\right\}=f_{A B}(Q) .
$$

When the functions $f_{A B}$ are linear, $f_{A B}(Q)=f_{A B}^{C} Q_{C}$, the X_{A} 's form a Lie algebra.
In general,

$$
\left[X_{A}, X_{B}\right]=-\frac{\partial f_{A B}}{\partial Q_{C}} X_{C} .
$$

Complete set of conserved charges can be non-linearly redefined,

$$
Q_{A} \rightarrow \bar{Q}_{A}=\bar{Q}_{A}(Q), \quad \operatorname{det}\left(\frac{\partial \bar{Q}_{A}}{\partial Q_{B}}\right) \neq 0 .
$$

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 comments
General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

Conclusions and

 comments
The Q_{A} 's define a Poisson manifold.

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

Conclusions and

 commentsThe Q_{A} 's define a Poisson manifold.
The proper setting for discussing canonical forms of the brackets $\left\{Q_{A}, Q_{B}\right\}$ is that of Poisson manifolds.

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitionsThe Q_{A} 's define a Poisson manifold.
The proper setting for discussing canonical forms of the brackets $\left\{Q_{A}, Q_{B}\right\}$ is that of Poisson manifolds.
There exist theorems that generalize Darboux theorem.

General considerations

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitionsThe Q_{A} 's define a Poisson manifold.
The proper setting for discussing canonical forms of the brackets $\left\{Q_{A}, Q_{B}\right\}$ is that of Poisson manifolds.
There exist theorems that generalize Darboux theorem.
[If $f_{A B}$ in $\left\{Q_{A}, Q_{B}\right\}=f_{A B}(Q)$ is invertible, one can go to Darboux coordinates where $f_{A B}=\delta_{A B}$.]

Asymptotic symmetries

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 comments
Asymptotic symmetries

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

Conclusions and

 commentsThe above well-known properties of Hamiltonian systems,

Asymptotic symmetries

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

Conclusions and

 commentsThe above well-known properties of Hamiltonian systems, apply equally well to asymptotic symmetries

Asymptotic symmetries

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

redefinitions

Conclusions and

 commentsThe above well-known properties of Hamiltonian systems, apply equally well to asymptotic symmetries provided one has a Hamiltonian description of them.

Asymptotic symmetries

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra

Nonlinear

 redefinitionsThe above well-known properties of Hamiltonian systems, apply equally well to asymptotic symmetries provided one has a Hamiltonian description of them. There are many examples where the Poisson bracket of two asymptotic symmetry charges is non-linear (extended supergravity models in 3D, higher spins in 3D, asymptotically flat spacetimes in higher dimensions).

Asymptotic symmetries

The above well-known properties of Hamiltonian systems, apply equally well to asymptotic symmetries provided one has a Hamiltonian description of them. There are many examples where the Poisson bracket of two asymptotic symmetry charges is non-linear (extended supergravity models in 3D, higher spins in 3D, asymptotically flat spacetimes in higher dimensions).
Even when the Poisson brackets are linear, one can consider non-linear redefinitions of the charges.

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 comments
Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra

Nonlinear

redefinitions

Conclusions and

 comments
Coming back to the logarithmic BMS_{4} algebra, which has the structure

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

redefinitions

Conclusions and

 commentsComing back to the logarithmic BMS_{4} algebra, which has the structure

$$
\begin{aligned}
\left\{M_{a}, M_{b}\right\} & =f_{a b}^{c} M_{c} \\
\left\{M_{a}, T_{i}\right\} & =R_{a i}^{j} T_{j} \\
\left\{M_{a}, S_{\alpha}\right\} & =G_{a \alpha}^{i} T_{i}+G_{a \alpha}^{\beta} S_{\beta} \\
\left\{M_{a}, L^{\alpha}\right\} & =-G_{a \beta}^{\alpha} L^{\beta}, \\
\left\{L^{\alpha}, S_{\beta}\right\} & =\delta_{\beta}^{\alpha}
\end{aligned}
$$

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS_{4} algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic BMS_{4} algebra

Nonlinear

redefinitions

Coming back to the logarithmic BMS_{4} algebra, which has the structure

$$
\begin{aligned}
\left\{M_{a}, M_{b}\right\} & =f_{a b}^{c} M_{c}, \\
\left\{M_{a}, T_{i}\right\} & =R_{a i}^{j} T_{j}, \\
\left\{M_{a}, S_{\alpha}\right\} & =G_{a \alpha}{ }^{i} T_{i}+G_{a \alpha}^{\beta} S_{\beta}, \\
\left\{M_{a}, L^{\alpha}\right\} & =-G_{a \beta}^{\alpha} L^{\beta}, \\
\left\{L^{\alpha}, S_{\beta}\right\} & =\delta_{\beta}^{\alpha},
\end{aligned}
$$

the fact that the central charge in $\left\{L^{\alpha}, S_{\beta}\right\}$ is invertible enables one to rewrite the algebra as the direct sum $\mathscr{P} \oplus\left(\mathscr{A}^{\prime} \oplus_{c} \mathscr{B}\right)$, where \mathscr{A}^{\prime} is the abelian algebra of pure supertranslations.

Logarithmic BMS_{4} algebra

Coming back to the logarithmic BMS_{4} algebra, which has the structure

$$
\begin{aligned}
\left\{M_{a}, M_{b}\right\} & =f_{a b}^{c} M_{c}, \\
\left\{M_{a}, T_{i}\right\} & =R_{a i}^{j} T_{j}, \\
\left\{M_{a}, S_{\alpha}\right\} & =G_{a \alpha}{ }^{i} T_{i}+G_{a \alpha}^{\beta} S_{\beta}, \\
\left\{M_{a}, L^{\alpha}\right\} & =-G_{a \beta}^{\alpha} L^{\beta}, \\
\left\{L^{\alpha}, S_{\beta}\right\} & =\delta_{\beta}^{\alpha},
\end{aligned}
$$

the fact that the central charge in $\left\{L^{\alpha}, S_{\beta}\right\}$ is invertible enables one to rewrite the algebra as the direct sum $\mathscr{P} \oplus\left(\mathscr{A}^{\prime} \oplus_{c} \mathscr{B}\right)$, where \mathscr{A}^{\prime} is the abelian algebra of pure supertranslations. The logarithmic supertranslations are canonically conjugate to the pure supertranslations, and a Darboux-like procedure enables one to "decouple" them from the other generators.

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 comments
Logarithmic BMS_{4} algebra

BMS algebra and

 supertranslationinvariant Lorentz chargesMarc Henneaux
(Université Libre de Bruxelles and Coliège de France)

Introduction: structure of the BMS4 algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
$B M S_{4}$ algebra
Nonlinear redefinitions

Conclusions and comments

The only generators that need to be redefined are actually the Lorentz generators, as follows,

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitionsThe only generators that need to be redefined are actually the Lorentz generators, as follows,

$$
\begin{align*}
\tilde{M}_{a} & =M_{a}-G_{a \beta}{ }^{i} L^{\beta} T_{i}-G_{a \beta}{ }^{\gamma} L^{\beta} S_{\gamma} \tag{5.1}\\
& =M_{a}-L^{\beta}\left\{M_{a}, S_{\beta}\right\} . \tag{5.2}
\end{align*}
$$

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

redefinitions

Conclusions and

 commentsThe only generators that need to be redefined are actually the Lorentz generators, as follows,

$$
\begin{align*}
\tilde{M}_{a} & =M_{a}-G_{a \beta}{ }^{i} L^{\beta} T_{i}-G_{a \beta}{ }^{\gamma} L^{\beta} S_{\gamma} \tag{5.1}\\
& =M_{a}-L^{\beta}\left\{M_{a}, S_{\beta}\right\} . \tag{5.2}
\end{align*}
$$

One easily verifies

$$
\begin{equation*}
\left\{\tilde{M}_{a}, S_{\alpha}\right\}=\left\{\tilde{M}_{a}, L^{\alpha}\right\}=0, \tag{5.3}
\end{equation*}
$$

while the bracket $\left\{\tilde{M}_{a}, T_{i}\right\}$ does not suffer any modification.

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS $_{4}$ algebra

Ordinary

supertranslations

Logarithmic supertranslations

The logarithmic BMS_{4} algebra

Nonlinear

redefinitions

The only generators that need to be redefined are actually the Lorentz generators, as follows,

$$
\begin{align*}
\tilde{M}_{a} & =M_{a}-G_{a \beta}^{i} L^{\beta} T_{i}-G_{a \beta}^{\gamma} L^{\beta} S_{\gamma} \tag{5.1}\\
& =M_{a}-L^{\beta}\left\{M_{a}, S_{\beta}\right\} \tag{5.2}
\end{align*}
$$

One easily verifies

$$
\begin{equation*}
\left\{\tilde{M}_{a}, S_{\alpha}\right\}=\left\{\tilde{M}_{a}, L^{\alpha}\right\}=0 \tag{5.3}
\end{equation*}
$$

while the bracket $\left\{\tilde{M}_{a}, T_{i}\right\}$ does not suffer any modification.
One can also check

$$
\begin{equation*}
\left\{\tilde{M}_{a}, \tilde{M}_{b}\right\}=f_{a b}^{c} \tilde{M}_{c} \quad, \quad\left\{\tilde{M}_{a}, T_{i}\right\}=R_{a i}^{j} T_{j} \tag{5.4}
\end{equation*}
$$

so that the Poincaré algebra is unchanged.

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 comments
Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra

Nonlinear

redefinitions
Conclusions and comments

Thus we have achieved :

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de
France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 commentsThus we have achieved :

$$
\begin{aligned}
\left\{\tilde{M}_{a}, \tilde{M}_{b}\right\} & =f_{a b}^{c} \tilde{M}_{c}, \\
\left\{\tilde{M}_{a}, T_{i}\right\} & =R_{a i}^{j} T_{j}, \\
\left\{\tilde{M}_{a}, S_{\alpha}\right\} & =0, \\
\left\{\tilde{M}_{a}, L^{\alpha}\right\} & =0, \\
\left\{L^{\alpha}, S_{\beta}\right\} & =\delta_{\beta}^{\alpha},
\end{aligned}
$$

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de
France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 commentsThus we have achieved :

$$
\begin{aligned}
\left\{\tilde{M}_{a}, \tilde{M}_{b}\right\} & =f_{a b}^{c} \tilde{M}_{c}, \\
\left\{\tilde{M}_{a}, T_{i}\right\} & =R_{a i}^{j} T_{j}, \\
\left\{\tilde{M}_{a}, S_{\alpha}\right\} & =0, \\
\left\{\tilde{M}_{a}, L^{\alpha}\right\} & =0, \\
\left\{L^{\alpha}, S_{\beta}\right\} & =\delta_{\beta}^{\alpha},
\end{aligned}
$$

i.e., $\mathrm{LogBMS}_{4}=\mathscr{P} \oplus\left(\mathscr{A}^{\prime} \oplus_{C} \mathscr{B}\right)$

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 comments
Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 commentsThe redefinitions of the Lorentz generators

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra

Nonlinear

 redefinitions
Conclusions and

 commentsThe redefinitions of the Lorentz generators
involve quadratic terms of the forme $T L$ and $S L$.

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra

Nonlinear

redefinitions

The redefinitions of the Lorentz generators
involve quadratic terms of the forme $T L$ and $S L$.
This means that the new Lorentz transformations will differ from the old ones by field dependent supertranslations and logarithmic supertranslations.

Logarithmic BMS_{4} algebra

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic supertranslations

The logarithmic BMS_{4} algebra

Nonlinear redefinitions

The redefinitions of the Lorentz generators
involve quadratic terms of the forme $T L$ and $S L$.
This means that the new Lorentz transformations will differ from the old ones by field dependent supertranslations and logarithmic supertranslations.
Integrability of the charges associated with these field-dependent transformations is not an issue since we are working with the generators throughout.

Conclusions and comments

Conclusions and comments

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux
(Université Libre de Bruxelles and Collège de France)

Introduction : structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The BMS_{4} algebra leads to a number of puzzles,

Conclusions and comments

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS4 algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear
redefinitions
Conclusions and comments

The BMS_{4} algebra leads to a number of puzzles, related to the fact that Lorentz transformations and pure supertranslations do not commute.

Conclusions and comments

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

The BMS_{4} algebra leads to a number of puzzles, related to the fact that Lorentz transformations and pure supertranslations do not commute.
By introducing logarithmic supertranslations,

Conclusions and comments

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS_{4} algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

Conclusions and comments

The BMS_{4} algebra leads to a number of puzzles, related to the fact that Lorentz transformations and pure supertranslations do not commute.
By introducing logarithmic supertranslations, which are improper gauge symmetries conjugate to the pure supertranslations,

Conclusions and comments

 chargesMarc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary supertranslations

Logarithmic
supertranslations
The logarithmic BMS $_{4}$ algebra

Nonlinear
redefinitions
Conclusions and comments

The BMS_{4} algebra leads to a number of puzzles, related to the fact that Lorentz transformations and pure supertranslations do not commute.
By introducing logarithmic supertranslations, which are improper gauge symmetries conjugate to the pure supertranslations,
one can redefine the Lorentz generators so that pure supertranslations are in the trivial representation of the Lorentz group.

Conclusions and comments

The BMS_{4} algebra leads to a number of puzzles, related to the fact that Lorentz transformations and pure supertranslations do not commute.
By introducing logarithmic supertranslations, which are improper gauge symmetries conjugate to the pure supertranslations,
one can redefine the Lorentz generators so that pure supertranslations are in the trivial representation of the Lorentz group.
Setting the logarithmic supertranslations to zero is illegimate since they are improper gauge symmetries.

Conclusions and comments

Conclusions and comments

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

This conclusion is in line with the analysis by Yau et al, Porrati et al, Compère et al at null infinity.

Conclusions and comments

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra
Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS_{4} algebra
Nonlinear

redefinitions

Conclusions and comments

This conclusion is in line with the analysis by Yau et al, Porrati et al, Compère et al at null infinity.
The method can be also be applied to electromagnetism

Conclusions and comments

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear
redefinitions
Conclusions and comments

This conclusion is in line with the analysis by Yau et al, Porrati et al , Compère et al at null infinity.
The method can be also be applied to electromagnetism in such a way that the angle-dependent $u(1)$ gauge transformations commute with the Lorentz transformations,

Conclusions and comments

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS 4 algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic BMS $_{4}$ algebra

Nonlinear

redefinitions

Conclusions and comments

This conclusion is in line with the analysis by Yau et al, Porrati et al , Compère et al at null infinity.
The method can be also be applied to electromagnetism in such a way that the angle-dependent $u(1)$ gauge transformations commute with the Lorentz transformations, avoiding a "angle-dependent $u(1)$ ambiguity" in the definition of the angular momentum.

Conclusions and comments

BMS algebra and supertranslationinvariant Lorentz charges

Marc Henneaux (Université Libre de Bruxelles and Collège de
France)

Introduction: structure of the BMS $_{4}$ algebra

Ordinary
supertranslations
Logarithmic
supertranslations
The logarithmic
BMS $_{4}$ algebra
Nonlinear redefinitions

Conclusions and comments

This conclusion is in line with the analysis by Yau et al, Porrati et al , Compère et al at null infinity.
The method can be also be applied to electromagnetism in such a way that the angle-dependent $u(1)$ gauge transformations commute with the Lorentz transformations, avoiding a "angle-dependent $u(1)$ ambiguity" in the definition of the angular momentum.

THANK YOU !

