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The BMS4 group

The structure of this group was understood by Sachs.

In addition to the homogeneous Lorentz group,

there are the familiar translations

and the “pure supertranslations”,

which commute among themselves

and transform in an infinite-dimensional non-trivial
representation of the Lorentz group.
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The BMS4 algebra

The BMS4 algebra is the semi-direct sum of the Lorentz algebra
L and the infinite-dimensional algebra A spanned by the
supertranslations,

BMS4 =L ⊕σA

The supertranslations are parametrized by functions on the
sphere,

which can be expanded in spherical harmonics.

The `= 0 and `= 1 harmonics correspond to the ordinary
translations ;

the higher harmonics are the pure supertranslations.
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The BMS4 algebra

Schematically, if we denote the generators of the homogeneous
Lorentz group by Ma,

one finds

{Ma,Mb} = f c
abMc ,

{Ma,Ti} = R j
ai Tj ,

{Ma,Sα} = G i
aα Ti +G β

aα Sβ ,

{Ti,Tj} = 0 = {Ti,Sα} = {Sα,Sβ}

where Ti and Sα are respectively the generators of the standard
translations and of the pure supertranslations.
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The BMS4 algebra

The structure constants R j
ai , G i

aα and G β
aα are non zero.

The ordinary translations transform in the 4-dimensional vector

representation of the Lorentz group (R j
ai ).

Modulo the ordinary translations, the pure supertranslations
transform in an infinite-dimensional representation of the

Lorentz group (G β
aα ).

There are intriguing physical features resulting from the structure
of the BMS4 algebra

which are somewhat uncomfortable.

These features were first pointed out at null infinity but are
equally present at spatial infinity.
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No invariant Poincaré subalgebra

The fact that the Poisson brackets of the homogeneous Lorentz
generators with the pure supertranslations involve both the pure
supertranslations and the translations implies that the Poincaré
subalgebra is not an ideal.

At the same time, because the pure supertranslations do not form
an ideal on account of the preceding point, they cannot be
meaningfully quotientized out to get the Poincaré algebra as a
quotient algebra.
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Angular momentum ambiguity

It follows from the non-vanishing of the bracket of the pure
supertranslations with the homogeneous Lorentz
transformations that the angular momentum transforms under
pure supertranslations.

This non-invariance comes on top of the familiar non-invariance
of the angular momentum under ordinary translations, but there
one knows how to define an intrinsic angular momentum in
terms of Casimirs of the Poincaré algebra, which amounts to
compute the angular momentum with respect to the center of
mass worldline.

A similar construction for supertranslations appears to be more
intricate for the full BMS algebra.
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one knows how to define an intrinsic angular momentum in
terms of Casimirs of the Poincaré algebra, which amounts to
compute the angular momentum with respect to the center of
mass worldline.

A similar construction for supertranslations appears to be more
intricate for the full BMS algebra.
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Purpose of talk

The purpose of this talk is to show that these difficulties
disappear if one enlarges the BMS symmetry

by including logarithmic supertranslations, which are
algebraically conjugate to the pure supertranslations.

Logarithmic supertranslations have appeared here and then in
the literature on asymptotic symmetries but have not been
systematically studied.

In particular, the algebraic structure of the logarithmic BMS
algebra and the fact that one could rewrite it as a direct sum by
nonlinear redefinitions were not discussed.

Work done in collaboration with Oscar Fuentealba and Cédric
Troessaert, e-Prints 2211.10941 [hep-th] and 2305.05436 [hep-th]
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ADM action

How does the BMS algebra appear at spatial infinity ?

A central role in the analysis is played by the gravitational action

which reads, in Hamiltonian form,

S[gij,π
ij,N ,N i] =

∫
dt

{∫
d3x

(
πij∂t gij −N iH

grav
i −NH grav

)
−B∞

}

where B∞ is a boundary term at infinity and where

H grav =−pgR+ 1p
g

(πijπij − 1

2
π2) ≈ 0, H

grav
i =−2∇jπ

j
i ≈ 0.

(Dirac, Arnowitt-Deser-Misner, Regge-Teitelboim)
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Boundary conditions

The definition of the phase space of general relativity must be
completed by boundary conditions on the canonical variables,

which are gij and πij.

We shall insist that the boundary conditions make the action :

finite
and invariant under all (asymptotic) Poincaré symmetries, which
are thus canonical transformations.

This puts strong and interesting restrictions.
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Boundary conditions

The usually assumed fall-off is (in cartesian coordinates)

gij = δij +O(r−1), πij = O(r−2).

Without additional requirement, this fall-off is too slow because
it generically leads to a logarithmic divergence in the symplectic
structure (kinetic term) ∫

d3xπij ġij ∼ lnr.
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Parity conditions

One way to cure this problem would be to impose that the
leading terms of the metric and its conjugate momentum have
opposite parity properties under the antipodal map,

hij ≡ gij −δij =
hij(nk)

r
+O(

1

r2 ), hij(−nk) = hij(nk)

and

πij = πij(nk)

r2 +O(
1

r3 ), πij(−nk) =−πij(nk).

.

But these strict parity conditions leave no room for the BMS
group.

The asymptotic symmetry reduces then to the Poincaré group
(and not more).

13 / 31
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Parity-twisted boundary conditions

The strict parity conditions are too strong and kill the pure
supertranslations.

One must relax these parity conditions... but not completely if
one wants to maintain finiteness of the action.

The idea is to allow a “parity-twisted component” of a specific
form in the leading orders in the asymptotic expansions of the
metric and its conjugate momentum.

This parity-twisted component takes the form of a
diffeomorphism generated by O (1) diffeomorphisms (rewritten
in Hamiltonian form).
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Parity conditions twisted by a diffeomorphism

Specifically, one takes for the metric

hij ≡ gij −δij = Uij + jij,

Uij = ∂iζj +∂jζi = O(
1

r
), ζi = ζi(nk) = O(1), ζi(−nk) = ζi(nk),

jij =
(hij)even(nk)

r
+O(

1

r2 ), (hij)
even(−nk) = (hij)

even(nk)

Uij is the contribution that twists the strict parity condition on
the metric by an O (1)-diffeomorphism (to leading order) and can
be assumed to be odd (ζi even).
It turns out that in order for the boosts to preserve the symplectic
form and hence define canonical transformations,
ζi must takes the specific form

ζi = ∂i(rU) U(nk) = O(1) =−U(−nk).
and so

Uij = 2∂i∂j(rU).
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Parity conditions twisted by a diffeomorphism

For the conjugate momenta, one takes

πij = V ij +pij

V ij = ∂i∂jV −δij4̊V , V = V (nk) = O(1), V (−nk) = V (nk)

pij = (πij)odd(nk)

r2 +O(
1

r3 ), (πij)odd(−nk) =−(πij)odd(nk)

where V is a function of the angles which can be assumed to be
even.

V ij is the contribution that twists the strict parity of πij (at leading
order) by a diffeomorphism (written in Hamiltonian form).

The twisting is thus characterized by two functions of the angles,
one odd (U) and one even (V ).
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Parity-twisted boundary conditions

These relaxed parity conditions involving a twist still lead to a
consistent dynamical description

(finite action, finite symplectic form, well-defined generators).

Furthermore, the group of asymptotic symmetries is the full BMS
group (written in a different basis than the familiar null infinity
basis).

There is complete agreement with the null infinity results.

Can one relax even more the boundary conditions in a usuful
way ?

The answer is positive. One can further enlarge the symmetry in
this manner, which then includes in addition “logarithmic
supertranslations” conjugate to supertranslations.
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Logarithmic supertranslations – Idea

To exhibit the logarithmic supertranslations, one must allow
terms in the canonical variables that result from
diffeomorphisms that grow like lnr at infinity.

The logarithmic supertranslations are diffeomorphisms that
grow like lnr at infinity and which preserve by construction the
new boundary conditions,

They define true symmetries of the action provided some
conditions on the logarithmic diffeomorphisms are imposed.

The (allowed) logarithmic supertranslations are then canonical
transformations with a well-defined, finite charge.

They depend on a single function of the angles, but the `= 0 and
`= 1 harmonics define proper gauge transformations : they have
zero charge.

The physical logarithmic supertranslations are thus
parametrized by the same class of functions as the pure
supertranslations. We denote them Lα.
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Structure of the logarithmic BMS4 algebra

One can compute the Poisson brackets of the logarithmic
supertranslation generators with themselves and with the
generators of the BMS4 algebra.

The computation is direct and follows standard canonical
methods.

One finds that the generators Lα of the logarithmic
supertranslations commute among themselves,

{Lα,Lβ} = 0,

and transform in the same representation of the Lorentz group as
the pure supertranslations,

{Ma,Lα} =−G α
aβ Lβ
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Furthermore, the generators Lα commute with the ordinary
supertranslantion generators Ti,

{Lα,Ti} = 0.

They also commute with the pure supertranslations, but up to an
invertible central term,

{Lα,Sβ} = δαβ .

[The simplicity in form of the central term results from the
redefinition Lα =σαβLβ.]
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Logarithmic BMS4 algebra

Putting everything together, one thus gets as non-zero brackets

{Ma,Mb} = f c
abMc ,

{Ma,Ti} = R j
ai Tj ,

{Ma,Sα} = G i
aα Ti +G β

aα Sβ ,

{Ma,Lα} =−G α
aβ Lβ ,

{Lα,Sβ} = δαβ ,

i.e., LogBMS4 =L ⊕σ (A ⊕c B)

with B being the abelian algebra of the logarithmic
supertranslations.
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General considerations

Classical mechanics reminder

The bracket of two conserved charges is a conserved charge.

A set {QA(q,p)} of conserved charges is a complete set (of
conserved charges)

if any conserved charge is a function f (QA) of these conserved
charges.

The function f need not be linear.

[If p is a constant of the motion, p2 or any function of p is also a
constant of the motion but it is clearly not independent from p
even though not a multiple of p.]
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General considerations

If we denote by XA the Hamiltonian vector field corresponding to
QA, i.e. XAF = {F ,QA},

then the Hamiltonian vector field X associated with f (Q) is given
by

X = ∂f

∂QA
XA

since XF = {F , f (Q)} = ∂f
∂QA

{F ,QA}.

It is a linear combination f AXA of the vector fields XA of the
complete set,

with coefficients f A that are phase space functions.

These phase space functions are not arbitrary, however, but must
depend on the phase space variables through the QA’s and in

such a way that X is a Hamiltonian vector field, i.e., ∂f A

∂QB
= ∂f B

∂QA
.

(f AdQA is exact, “integrability”)
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the QA’s which might be non-linear,

{QA,QB} = fAB(Q).

When the functions fAB are linear, fAB(Q) = f C
ABQC , the XA’s form a

Lie algebra.

In general,

[XA,XB] =−∂fAB

∂QC
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Complete set of conserved charges can be non-linearly redefined,
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(
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General considerations

The QA’s define a Poisson manifold.

The proper setting for discussing canonical forms of the brackets
{QA,QB} is that of Poisson manifolds.

There exist theorems that generalize Darboux theorem.

[If fAB in {QA,QB} = fAB(Q) is invertible, one can go to Darboux
coordinates where fAB = δAB.]
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Asymptotic symmetries

The above well-known properties of Hamiltonian systems,

apply equally well to asymptotic symmetries

provided one has a Hamiltonian description of them.

There are many examples where the Poisson bracket of two
asymptotic symmetry charges is non-linear (extended
supergravity models in 3D, higher spins in 3D, asymptotically flat
spacetimes in higher dimensions).

Even when the Poisson brackets are linear, one can consider
non-linear redefinitions of the charges.
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Logarithmic BMS4 algebra

Coming back to the logarithmic BMS4 algebra, which has the
structure

{Ma,Mb} = f c
abMc ,

{Ma,Ti} = R j
ai Tj ,

{Ma,Sα} = G i
aα Ti +G β

aα Sβ ,

{Ma,Lα} =−G α
aβ Lβ ,

{Lα,Sβ} = δαβ ,

the fact that the central charge in {Lα,Sβ} is invertible enables
one to rewrite the algebra as the direct sum P ⊕ (A ′⊕c B), where
A ′ is the abelian algebra of pure supertranslations.
The logarithmic supertranslations are canonically conjugate to
the pure supertranslations, and a Darboux-like procedure
enables one to “decouple” them from the other generators.
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Logarithmic BMS4 algebra

The only generators that need to be redefined are actually the
Lorentz generators, as follows,

M̃a = Ma −G i
aβ LβTi −G γ

aβ LβSγ (5.1)

= Ma −Lβ{Ma,Sβ} . (5.2)

One easily verifies

{M̃a,Sα} = {M̃a,Lα} = 0, (5.3)

while the bracket {M̃a,Ti} does not suffer any modification.

One can also check

{M̃a,M̃b} = f c
abM̃c , {M̃a,Ti} = R j

ai Tj . (5.4)

so that the Poincaré algebra is unchanged.
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Logarithmic BMS4 algebra

Thus we have achieved :

{M̃a,M̃b} = f c
abM̃c ,

{M̃a,Ti} = R j
ai Tj ,

{M̃a,Sα} = 0,

{M̃a,Lα} = 0,

{Lα,Sβ} = δαβ ,

i.e., LogBMS4 =P ⊕ (A ′⊕c B)
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Thus we have achieved :

{M̃a,M̃b} = f c
abM̃c ,

{M̃a,Ti} = R j
ai Tj ,

{M̃a,Sα} = 0,

{M̃a,Lα} = 0,

{Lα,Sβ} = δαβ ,
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28 / 31



BMS algebra and
supertranslation-
invariant Lorentz

charges

Marc Henneaux
(Université Libre
de Bruxelles and

Collège de
France)

Introduction :
structure of the
BMS4 algebra

Ordinary
supertranslations

Logarithmic
supertranslations

The logarithmic
BMS4 algebra

Nonlinear
redefinitions

Conclusions and
comments

Logarithmic BMS4 algebra

The redefinitions of the Lorentz generators

involve quadratic terms of the forme TL and SL.

This means that the new Lorentz transformations will differ from
the old ones by field dependent supertranslations and
logarithmic supertranslations.

Integrability of the charges associated with these field-dependent
transformations is not an issue since we are working with the
generators throughout.
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Conclusions and comments

The BMS4 algebra leads to a number of puzzles,

related to the fact that Lorentz transformations and pure
supertranslations do not commute.

By introducing logarithmic supertranslations,

which are improper gauge symmetries conjugate to the pure
supertranslations,

one can redefine the Lorentz generators so that pure
supertranslations are in the trivial representation of the Lorentz
group.

Setting the logarithmic supertranslations to zero is illegimate
since they are improper gauge symmetries.
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Conclusions and comments

This conclusion is in line with the analysis by Yau et al, Porrati et
al, Compère et al at null infinity.

The method can be also be applied to electromagnetism

in such a way that the angle-dependent u(1) gauge
transformations commute with the Lorentz transformations,

avoiding a “angle-dependent u(1) ambiguity” in the definition of
the angular momentum.

THANK YOU !
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