WELL-POSEDNESS AND QUASI-ADIABATIC CONTROL OF THE SCHRÖDINGER EQUATION BY DEFORMATIONS OF THE DOMAIN

ALESSANDRO DUCA

IN COLLABORATION WITH ROMAIN JOLY AND DMITRY TURAEV

We consider the Schrödinger equation

(*)
$$i\partial_t u(t) = -\Delta u(t)$$
 on $\Omega(t)$

where $\Omega(t) \subset \mathbb{R}^N$ is a moving domain depending on the time $t \in [0, T]$. We discuss how to provide a meaning to the solutions of such an equation defined on a time-dependent Hilbert space and how to control it.

In the first part of this talk, we ensure the well-posedness of the equation. We assume the existence of a bounded reference domain Ω_0 and a specific family of unitary maps $h^{\sharp}(t) : L^2(\Omega(t), \mathbb{C}) \longrightarrow L^2(\Omega_0, \mathbb{C})$. The conjugation by h^{\sharp} provides a transposed equivalent equation of (*) of the form

(**) $i\partial_t v = h^{\sharp}(t)H(t)h_{\sharp}(t)v \text{ on } \Omega_0$

where $h_{\sharp} = (h^{\sharp})^{-1}$. The Hamiltonian H(t) is a magnetic Laplacian operator:

$$H(t) = -(\operatorname{div}_x + iA) \circ (\nabla_x + iA) - |A|^2$$

where A is an explicit magnetic potential depending on the deformation of the domain $\Omega(t)$. The formulation (**) allows us to ensure the well-posedness of (*) on $\Omega(t)$ endowed with suitable boundary conditions.

The second part of the talk presents the global approximate controllability of the Schrödinger equation (*). The result is obtained by constructing suitable quasi-adiabatic deformations of the domain $\Omega(t)$ such that $\Omega(0) = \Omega(T) = \Omega$. The controllability follows from the Hamiltonian structure of the transposed equation (**).