Lie brackets and interpolation for controllability.

Karine Beauchard
ENS Rennes
joint works with Frédéric Marbach and Jérémy Le Borgne

Octobre 2023

Small-time local controllability (STLC)

Let $f_{0}, f_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, real-analytic, with $f_{0}(0)=0$. Consider:

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x) .
$$

Definition

We say that (\star) is STLC when, for every $T, \eta>0$, there exists $\delta>0$ such that, for every $x^{*} \in \mathbb{R}^{n}$ with $\left|x^{*}\right| \leq \delta$, there exists $u \in L^{\infty}((0, T) ; \mathbb{R})$ such that $x(T ; u, 0)=x^{*}$ and $\|u\|_{\infty} \leq \eta$.
$=$ Local surjectivity at $(0,0)$ of the input-output map

$$
\begin{array}{|lrllll}
\mathcal{F}: & \mathbb{R} & \times & L^{\infty} & \rightarrow & \mathbb{R}^{n} \\
& (T & , & u) & \mapsto & x(T ; u, 0)
\end{array}
$$

Goal: Find conditions on f_{0} and f_{1} for (\star) to be STLC or not.

Some examples

Linear theory (Kalman rank condition):

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1}
\end{array}\right.
$$

Quadratic theory (looks bad):

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1}^{2}
\end{array}\right.
$$

Cubic theory (looks good):

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1}^{3}
\end{array}\right.
$$

Why Lie brackets? (\# 1)

Lie brackets measure the lack of commutativity between motions.
For vector fields $f, g \in C^{\omega}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right),[f, g]$ is the vector field

$$
[f, g](x):=D g(x) \cdot f(x)-D f(x) \cdot g(x)
$$

Example: If $\dot{x}=f_{0}(x)+u(t) f_{1}(x), x(0)=0$ and one uses

$$
\begin{cases}u(t)=+\eta & \text { for } t \in(0, \tau) \\ u(t)=-\eta & \text { for } t \in(\tau, 2 \tau)\end{cases}
$$

then

$$
x(2 \tau ; u, 0)=\tau^{2} \eta\left[f_{1}, f_{0}\right](0)+\mathcal{O}\left(\tau^{3}\right)
$$

For all systems, one can move towards both $\pm\left[f_{1}, f_{0}\right](0) \in \mathbb{R}^{n}$. The underlying "abstract" Lie bracket $\left[X_{1}, X_{0}\right]$ is "good".

Algebraic foundations

- Let $X:=\left\{X_{0}, X_{1}\right\}$ be non-commutative indeterminates
- Let $\mathcal{A}(X)$ be the free algebra over X, i.e. the vector space of non-commutative polynomials, e.g. $7 X_{0}^{2}+3 X_{1} X_{0}+2 X_{0} X_{1}$
- Let $\mathcal{L}(X)$ the free Lie algebra over X, i.e. the smallest vector subspace of $\mathcal{A}(X)$ containing X_{0}, X_{1}, and stable by the Lie bracket (commutator) operation $[a, b]:=a b-b a$
- One can "evaluate" (although not injective)

$$
b \in \mathcal{L}(X) \hookrightarrow f_{b} \in C^{\omega}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right) \hookrightarrow f_{b}(0) \in \mathbb{R}^{n}
$$

$$
\left[X_{1}, X_{0}\right]=X_{1} X_{0}-X_{0} X_{1} \rightarrow\left[f_{1}, f_{0}\right]=\left(D f_{0}\right) f_{1}-\left(D f_{1}\right) f_{0} \rightarrow\left[f_{1}, f_{0}\right](0)
$$

The Lie algebra rank condition

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

Theorem (Hermann 1963, Nagano 1966)

If (\star) is STLC, then it satisfies

$$
\begin{equation*}
\operatorname{Lie}\left(f_{0}, f_{1}\right)(0):=\operatorname{span}\left\{f_{b}(0) ; b \in \mathcal{L}(X)\right\}=\mathbb{R}^{n} . \tag{LARC}
\end{equation*}
$$

For non-zero drift $f_{0} \neq 0$, (LARC) is not sufficient.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u, \\
\dot{x}_{2}=x_{1}^{2}
\end{array}\right.
$$

has $f_{X_{1}}(0)=f_{1}(0)=e_{1}$ and $f_{W_{1}}(0)=\left[f_{1},\left[f_{1}, f_{0}\right]\right](0)=2 e_{2}$.
The quadratic Lie bracket $W_{1}:=\left[X_{1},\left[X_{1}, X_{0}\right]\right]$ looks like a "bad" bracket, associated with a signed motion in an oriented direction.

Why Lie brackets? (\#2)

Consider

$$
\begin{aligned}
& \dot{x}=f_{0}(x)+u(t) f_{1}(x) \quad \text { with } \quad f_{0}(0)=0 \\
& \dot{y}=g_{0}(y)+u(t) g_{1}(y) \quad \text { with } \quad g_{0}(0)=0 .
\end{aligned}
$$

Theorem (Krener 1973)

The two systems are diffeomorphic iff same vectorial structure:

$$
\left\{b \in \mathcal{L}(X) ; f_{b}(0)=0\right\}=\left\{b \in \mathcal{L}(X) ; g_{b}(0)=0\right\}
$$

Hence, the vectors $f_{b}(0)$ contain all the information for STLC.

Goal of this talk

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

- Prove sufficient/necessary conditions of STLC formulated in terms of Lie brackets of f_{0} and f_{1} evaluated at 0
- With a new strategy :
- to go further on ODEs
- to prepare the transfer to PDEs

Definition ($m \in \llbracket-1, \infty \llbracket$)

(\star) is $W^{m, \infty}$-STLC when, $\forall T, \eta>0, \exists \delta>0$ st $\forall x^{*} \in \mathbb{R}^{n}$ with $\left|x^{*}\right| \leq \delta, \exists u \in W^{m, \infty}(0, T)$ st $x(T ; u, 0)=x^{*}$ and $\|u\|_{W^{m, \infty}} \leq \eta$.
$\left(W^{m, \infty}\right.$-STLC $) \Rightarrow\left(L^{\infty}-\mathrm{STLC}\right) \Rightarrow\left(W^{-1, \infty}-\mathrm{STLC}\right)=($ small-state STLC $)$

Computing the state using Lie brackets

$$
\begin{equation*}
\dot{x}=f_{0}(x)+u(t) f_{1}(x) \tag{0}
\end{equation*}
$$

Theorem (Beauchard, Le Borgne, Marbach 2020)

$$
x(t ; u)=\sum_{b} \eta_{b}(t, u) f_{b}(0)+O(\text { "remainders") }+o(x(t ; u)) .
$$

The sum

- ranges over elements b of a basis of $\mathcal{L}(X)$
- involves system-dependent vectors $f_{b}(0) \in \mathbb{R}^{n}$
- universal functionals $\eta_{b}(t, u)$ homogeneous:

$$
\eta_{b}(t, \epsilon u)=\epsilon^{n_{1}(b)} \eta_{b}(t, u) \quad \eta_{b}(\epsilon, u(\dot{\bar{\epsilon}}))=\epsilon^{|b|} \eta_{b}(1, u)
$$

Caution: The full sum does not converge, even with analyticity. One has to consider (possibly infinite) truncations (wrt t, or u, or a parameter). And well chosen bases of $\mathcal{L}(X)$. This is not a Taylor expansion, but a csq of a Magnus-type formula.

State-of-the-art about sufficient conditions

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x) .
$$

Known sufficient conditions for STLC share a common structure:

Theorem

Assume (LARC) and that, for every $b \in \mathfrak{B}$,

$$
f_{b}(0) \in \operatorname{span}\left\{f_{g}(0) ; \omega(g)<\omega(b)\right\} .
$$

Then (\star) is STLC.

- $\mathfrak{B} \subset \mathcal{L}(X)$ is a set of "potentially bad" brackets, which you do not know how to use with your current technology
- $\omega: \mathcal{L}(X) \rightarrow \mathbb{R}$ is a "weight" which sorts the brackets according to a small-parameter limit you are considering

Version \#1: Linear test

An example:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u+x_{1}^{3}, \\
\dot{x}_{2}=x_{1}+x_{1}^{2}+x_{3}^{5}, \\
\dot{x}_{3}=x_{2}+x_{2}^{4} .
\end{array}\right.
$$

Version \#1: Linear test

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

Theorem (Kalman 1960, Markus 1965)

The result holds with

- $\mathfrak{B}:=\left\{b \in \mathcal{L}(X) ; n_{1}(b) \geq 2\right\}$
- $\omega(b):=n_{1}(b)$

Indeed, use a control of the form $u(t)=\varepsilon \bar{u}(t)$, then

$$
\begin{aligned}
x(t ; u, 0) & \approx \sum_{b} \varepsilon^{n_{1}(b)} \eta_{b}(t, \bar{u}) f_{b}(0) \\
& \approx \varepsilon \sum_{n_{1}(b)=1} \eta_{b}(t, \bar{u}) f_{b}(0)+\varepsilon^{2} \sum_{n_{1}(b) \geq 2} \ldots
\end{aligned}
$$

When $n_{1}(b)=1, b= \pm \operatorname{ad}_{X_{0}}^{k}\left(X_{1}\right)$ and $f_{b}(0)= \pm\left(D f_{0}(0)\right)^{k} f_{1}(0)$.

Version \#2: Hermes condition

An example:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1}^{3}+x_{1}^{4} \\
\dot{x}_{3}=x_{2}^{5}+x_{1}^{16}
\end{array}\right.
$$

Version \#2: Hermes condition

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

Theorem (Sussmann 1983)

The result holds with

- $\mathfrak{B}:=\left\{b \in \mathcal{L}(X) ; n_{1}(b)\right.$ is even $\}$
- $\omega(b):=n_{1}(b)$

Indeed, use a control of the form $u(t)=\varepsilon \bar{u}(t)$, then

$$
\begin{aligned}
& x(t ; u, 0) \approx \sum_{b} \varepsilon^{n_{1}(b)} \eta_{b}(t, \bar{u}) f_{b}(0) \\
& \quad \approx \sum_{j \geq 0} \varepsilon^{2 j+1}\left(\sum_{n_{1}(b)=2 j+1} \eta_{b}(t, \bar{u}) f_{b}(0)+\varepsilon \sum_{n_{1}(b)=2 j+2} \eta_{b}(t, \bar{u}) f_{b}(0)\right)
\end{aligned}
$$

Key point: Odd terms aren't signed since $\eta_{b}(t,-u)=-\eta_{b}(t, u)$.

Version \#3: $\mathcal{S}(\theta)$ condition

An example (Jakubczyk, Sussmann 1983):

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u, \\
\dot{x}_{2}=x_{1}, \\
\dot{x}_{3}=x_{2}^{2}+x_{1}^{3} .
\end{array}\right.
$$

If u is oscillating (contains high frequencies), then x_{1} and x_{2} also.
Since $x_{1}=\dot{x}_{2}$, one can have $\left|x_{1}^{3}\right| \gg x_{2}^{2}$.
Involves $W_{2}=\operatorname{ad}_{\left[X_{1}, X_{0}\right]}^{2}\left(X_{0}\right)$ and $\operatorname{ad}_{X_{1}}^{3}\left(X_{0}\right)$.
Another (Stefani, 1985):

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u \\
\dot{x}_{2}=x_{1} \\
\dot{x}_{3}=x_{1}^{3} x_{2}
\end{array}\right.
$$

The last one is quartic ... but good!
By time-reversal $\check{u}(t)=u(T-t)$ then $x_{3}(T) \leftarrow-x_{3}(T)$

Version \#3: $\mathcal{S}(\theta)$ condition

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x) .
$$

Theorem (Sussmann 1987)

Let $\theta \in[0,1]$. The result holds with

- $\mathfrak{B}:=\left\{b \in \mathcal{L}(X) ; n_{1}(b)\right.$ is even and $n_{0}(b)$ is odd $\}$
- $\omega(b):=n_{1}(b)+\theta n_{0}(b)$

For controls of the form $u(t)=\varepsilon^{1-\theta} \bar{u}\left(t / \varepsilon^{\theta}\right)$, then

$$
x(t ; u, 0) \approx \sum_{b} \varepsilon^{\omega(b)} \eta_{b}(t, \bar{u}) f_{b}(0)
$$

Key point: Terms with $n_{1}(b)$ even and $n_{0}(b)$ even aren't signed since, by time reversal, $\eta_{b}(t, \check{u}) \approx-\eta_{b}(t, u)$.

Similar \& stronger: Agrachev Gamkrelidze 1993, Krastanov 2009.

Sufficient conditions: conclusion

The brackets of $\mathcal{L}(X) \backslash \mathfrak{B}$ are good: we know how to use them for controllability. If all other brackets vanish, the system is STLC.

What about the brackets of \mathfrak{B} ? Are they bad? Is some kind of compensation condition indeed necessary for STLC?

Necessary \#1

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

Theorem (Sussmann 1983)

If (\star) is $W^{-1, \infty}-S T L C$, then, with $W_{1}:=\left[X_{1},\left[X_{1}, X_{0}\right]\right]$,

$$
f_{W_{1}}(0) \in \operatorname{span}\left\{f_{b}(0) ; n_{1}(b)=1\right\} .
$$

Idea:

$$
\begin{aligned}
x(t ; u, 0) \approx \sum_{n_{1}(b)=1} \eta_{b}(t, u) f_{b}(0) & +\frac{1}{2} \overbrace{\left(\int_{0}^{t} u_{1}^{2}\right)}^{\text {coercive }} f_{W_{1}}(0) \\
& +\mathcal{O}\left(t\left\|u_{1}\right\|_{L^{2}}^{2}+\left\|u_{1}\right\|_{L^{3}}^{3}\right)
\end{aligned}
$$

where $u_{1}(s):=\int_{0}^{s} u$ and $\left\|u_{1}\right\|_{L^{3}}^{3} \leq\left\|u_{1}\right\|_{\infty}\left\|u_{1}\right\|_{L^{2}}^{2}$.

Necessary \#2

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x) .
$$

Theorem (Stefan 1986)

If (\star) is $W^{-1, \infty}-S T L C$, then, for each $\ell \in \mathbb{N}^{*}$,

$$
f_{\mathrm{ad}_{X_{1}}^{2 \ell}\left(X_{0}\right)}(0) \in \operatorname{span}\left\{f_{b}(0) ; n_{1}(b) \leq 2 \ell-1\right\} .
$$

Idea:

$$
\begin{aligned}
x(t ; u, 0) \approx \sum_{n_{1}(b)<2 \ell} \eta_{b}(t, u) f_{b}(0) & +\frac{1}{(2 \ell)!} \overbrace{\left(\int_{0}^{t} u_{1}^{2 \ell}\right)}^{\text {coercive }} f_{\mathrm{ad}_{X_{1}}^{2 \ell}\left(X_{0}\right)}(0) \\
& +\mathcal{O}\left(t\left\|u_{1}\right\|_{L^{2 \ell}}^{2 \ell}+\left\|u_{1}\right\|_{L^{2 \ell+1}}^{2 \ell+1}\right) .
\end{aligned}
$$

Necessary \#3

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

Theorem (Kawski 1987)

If (\star) is L^{∞}-STLC, then, for $W_{2}:=\operatorname{ad}_{\left[X_{1}, X_{0}\right]}^{2}\left(X_{0}\right)$

$$
f_{W_{2}}(0) \in \operatorname{span}\left\{f_{b}(0) ; n_{1}(b) \leq 3^{*}\right\}
$$

Idea:

$x(t ; u, 0) \approx \sum_{n_{1}(b) \leq 3^{*}} \eta_{b}(t, u) f_{b}(0)+\frac{1}{2}\left(\int_{0}^{t} u_{2}^{2}\right) f_{W_{2}}(0)+\mathcal{O}\left(\left\|u_{1}\right\|_{L^{4}}^{4}\right)$.
And the key point: $\left\|u_{1}\right\|_{L^{4}}^{4} \leq\|u\|_{L^{\infty}}^{2}\left\|u_{2}\right\|_{L^{2}}^{2}$.
*: More precisely, one also has to exclude W_{2} itself.

Necessary \#4

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

Theorem (Beauchard, Marbach 2022)

If (\star) is L^{∞}-STLC, then, for each $k \in \mathbb{N}, W_{k}:=\operatorname{ad}_{\operatorname{ad}_{X_{0}}^{k-1}\left(X_{1}\right)}^{2}\left(X_{0}\right)$

$$
f_{W_{k}}(0) \in \operatorname{span}\left\{f_{b}(0) ; n_{1}(b) \leq 2 k-1^{*}\right\} .
$$

Idea:
$x(t ; u, 0) \approx \sum_{n_{1}(b) \leq 2 k-1^{*}} \eta_{b}(t, u) f_{b}(0)+\frac{1}{2}\left(\int_{0}^{t} u_{k}^{2}\right) f_{W_{k}}(0)+\mathcal{O}\left(\left\|u_{1}\right\|_{L^{2 k}}^{2 k}\right)$
where, by Gagliardo-Nirenberg $\left\|u_{1}\right\|_{L^{2 k}}^{2 k} \leq\|u\|_{L^{\infty}}^{2 k-2}\left\|u_{k}\right\|_{L^{2}}^{2}$.

- Kawski had conjectured this in 1986, and proved a weaker version where $n_{1}(b) \leq 2^{k}$.
- We prove an analogue result for $W^{m, \infty}$-STLC, $\forall m \in \llbracket-1, \infty \llbracket$.

Necessary \#5

Theorem (KB FM 2020)

STLC $\Rightarrow f_{W_{j}}(0) \in \mathcal{N}_{j}(f)(0)$ for $j=2,3$, where
$\mathcal{N}_{2}=\left\{M_{\nu}, P_{1,1, \nu} ; \nu \in \mathbb{N}\right\}$ and
$\mathcal{N}_{3}=$
$\left\{M_{\nu}, P_{1, l, \nu}, Q_{1,1,1}, Q_{1,1,2, \nu}, Q_{1,0}^{b}, Q_{1,1}^{\mathrm{b}}, Q_{1,2}^{\mathrm{b}}, R_{1,1,1,1, \nu}, R_{1,1,1, \mu, \nu}^{\sharp} ; l \in\right.$ $\left.\mathbb{N}^{*}, \mu, \nu \in \mathbb{N}\right\}$.
where

$$
\begin{aligned}
& M_{\nu}:=X_{1} 0^{\nu}, \\
& W_{j, \nu}:=\left(M_{j-1}, M_{j}\right) 0^{\nu}, \\
& P_{j, k, \nu}:=\left(M_{k-1}, W_{j, 0}\right) 0^{\nu}, \\
& Q_{j, k, \nu}:=\left(M_{l-1}, P_{j, k, 0}\right) 0^{\nu}, Q_{j, \mu, k, \nu}^{\sharp}:=\left(W_{j, \mu}, W_{k}\right) 0^{\nu}, \\
& Q_{j, \mu, \nu}:=\left(W_{j, \mu}, W_{j, \mu+1}\right) 0^{\nu}, \\
& R_{j, k, l, m, \nu}:=\left(M_{m-1}, Q_{j, k, l, 0}\right) 0^{\nu}, R_{j, k, l, \mu, \nu}^{\sharp}:=\left(W_{l, \mu}, P_{j, k, 0}\right) 0^{\nu}
\end{aligned}
$$

Necessary conditions: conclusion, perspectives

$$
\dot{x}=f_{0}(x)+u(t) f_{1}(x)
$$

We have proposed methodology ingredients to prove NC for STLC:

- approximate formula for the state from the $f_{b}(0)$,
- interpolation inequalities to absorb the remainder by the coercive signed drift and the smallness of the control.

A long-standing problem is to "split" $\mathcal{L}(X)$ between good and bad brackets (for definitions to be found). For example:

- "good": a system involving only good ones should be STLC,
- "bad": if a system is STLC, then no bad one is alone.

A contribution: a new Hall basis \mathcal{B}^{\star} of $\mathcal{L}(X)$, specifically designed for this purpose.

New interpolation inequalities are needed, for instance

$$
\left\|D^{j} \varphi\right\|_{L^{p}}^{p} \leq\left\|D^{j+1} \varphi\right\|_{L^{\infty}}^{q} \int_{\mathbb{R}}\left|D^{j_{1}} \varphi\right|^{p_{1}}\left|D^{j_{2}} \varphi\right|^{p_{2}} \ldots\left|D^{j_{k}} \varphi\right|^{p_{k}}
$$

Example of transfer to Schrödinger PDE

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u(t) \mu(x) \psi
$$

$$
\psi(t, 0)=\psi(t, 1)=0
$$

Ground state:

$$
\psi_{1}(t, x):=\sqrt{2} \sin (\pi x) e^{-i \pi^{2} t}
$$

Depending on the assumption on μ :

- linear test + smoothing effect [KB-Laurent 2010]
- 1 direction lost on the linearized syst and [Bournissou 2022]
- quadratic obstruction in some regimes
- STLC in other regimes : $A_{3} \int_{0}^{T} u_{3}^{2} d t+C \int_{0}^{T} u_{1}^{2} u_{2}$

This is the first positive STLC result for a PDE with a nonlinear competition.

Perspectives: Does it work for KdV?
How behave the high order terms for multi-input syst? [Gherdaoui]

Part 2: Schrödinger PDE

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-u(t) \mu(x) \psi \quad \psi(t, 0)=\psi(t, 1)=0
$$

Ground state:

$$
\psi_{1}(t, x):=\sqrt{2} \sin (\pi x) e^{-i \pi^{2} t}
$$

Qu: Small-time local controllability around the ground state?

1. What can be proved with the linear test?
2. When the linearized system around the ground state is not controllable:

- quadratic obstructions to STLC
- STLC with nonlinear competitions

Schrödinger: local exact control around the ground state

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi-\left.u(t) \mu(x) \psi \quad \psi(t, .)\right|_{\{0,1\}}=0
$$

Theorem (KB-Laurent 2010)

Let $\mu \in H^{3}((0,1), \mathbb{R})$ such that

$$
\exists c>0, \forall j \in \mathbb{N}^{*} \quad \frac{c}{j^{3}} \leqslant\left|\left\langle\mu \varphi_{1}, \varphi_{j}\right\rangle\right|=\left|\int_{0}^{1} \mu(x) \sin (\pi x) \sin (j \pi x) d x\right| .
$$

The Schrödinger equation is STLC in $H_{(0)}^{3}(0,1)$ with controls in L^{2} : $\forall T>0, \exists \eta>0$ st $\forall \psi_{f} \in \mathcal{S} \cap H_{(0)}^{3}(0,1)$ with $\left\|\psi_{f}-\psi_{1}(T)\right\|_{H^{3}}<\eta$, $\exists u \in L^{2}((0, T), \mathbb{R})$ st $\psi\left(T ; u, \varphi_{1}\right)=\psi_{f}$ and $\|u\|_{L^{2}} \leq\left\|\psi_{f}-\psi_{1}(T)\right\|_{H^{3}}$
$\mathbf{R k}:\left\langle\mu \varphi_{1}, \varphi_{j}\right\rangle=\frac{ \pm \mu^{\prime}(1)-\mu^{\prime}(0)}{j^{3}}+o\left(\frac{1}{j^{3}}\right)$

Proof: linear test + smoothing effect, flexible

[Bournissou 2021]: When the first p odd derivatives of μ vanish on $\{0,1\}$ and $\forall j \in J, \frac{c}{j^{2 p+3}} \leq\left|\left\langle\mu \varphi_{1}, \varphi_{j}\right\rangle\right|$ then the projection on $\operatorname{Span}\left\{\varphi_{j} ; j \in J\right\}$ is STLC in $H_{(0)}^{2(p+k)+3}(0,1)$ with controls in $H_{0}^{k}(0, T)$ and $\forall m \in\{-k, \ldots, k\},\|u\|_{H_{0}^{m}(0, T)} \leq C\left\|\psi_{f}-\mathbb{P}_{J} \psi_{1}(T)\right\|_{H_{(0)}^{2(p+m)+3}}$.

Schrödinger: quadratic obstructions

$$
i \partial_{t} \psi=\left(-\partial_{x}^{2}-u(t) \mu(x)\right) \psi \quad \psi(t, 0)=\psi(t, 1)=0
$$

[Coron $2006 /$ KB-Morancey 2014]: no L^{∞} / L^{2}-STLC when $n=1$

Theorem (Bournissou 2021)

Let $n, K \in \mathbb{N}^{*}, \mu \in H^{2 n}(0,1)$ such that

- $\left\langle\mu \varphi_{1}, \varphi_{K}\right\rangle=0$,
:1 lost direction
- the first $(n-1)$ odd derivatives of μ vanish at $x=0,1$,
- n is the minimal value st $A_{n}=\left\langle\left[\operatorname{ad}_{\Delta}^{n-1}(\mu), \operatorname{ad}_{\Delta}^{n}(\mu)\right] \varphi_{1}, \varphi_{K}\right\rangle \neq 0$.

Then, the Schrödinger equation is not $H^{2 n-3}$-STLC
$\left\langle\right.$ Quad $\left.(T), \varphi_{K}\right\rangle \stackrel{I B P}{=} \sum_{p=1}^{n} A_{p} \int_{0}^{T} u_{p}(t)^{2} e^{i\left(\lambda_{K}-\lambda_{1}\right)(T-t)} d t+\ldots \underset{T \rightarrow 0}{\approx} A_{n} \int_{0}^{T} u_{n}^{2}$
$\left\langle\right.$ Order $\left.\geq 3, \varphi_{K}\right\rangle \stackrel{\text { aux }}{=} \mathcal{O}\left(\left\|u_{1}\right\|_{L^{2}}^{3}+\left|u_{1}(T)\right|^{3}\right)$

$$
\begin{gathered}
\left\|u_{1}\right\|_{L^{2}}^{3} \leq C_{T}\|u\|_{H^{2 n-3}}\left\|u_{n}\right\|_{L^{2}}^{2} \\
\pm \Im\left\langle\psi(T), \varphi_{K} e^{-i \lambda_{1} T}\right\rangle \geq\left|A_{n}\right|^{-} \int_{0}^{T} u_{n}(t)^{2} d t-C\left\|\psi(T)-\varphi_{1} e^{-i \lambda_{1} T}\right\|^{2}
\end{gathered}
$$

Schrödinger: STLC recovery thanks to cubic terms

$$
i \partial_{t} \psi=\left(-\partial_{x}^{2}-u(t) \mu(x)\right) \psi \quad \psi(t, 0)=\psi(t, 1)=0
$$

Theorem (Bournissou 2022)

Let $K \geq 2$ and $\mu \in H^{11}(0,1)$ such that

- $\left\langle\mu \varphi_{1}, \varphi_{K}\right\rangle=0$

:1 lost direction

- $\mu^{\prime}=\mu^{(3)}=0$ on $\{0,1\} \quad$ and $\quad \frac{c}{j^{7}} \leq\left|\left\langle\mu \varphi_{1}, \varphi_{j}\right\rangle\right|, \quad \forall j \in \mathbb{N}^{*} \backslash\{K\}$
- $n=3$ is smallest value of $n \in \mathbb{N}^{*}$ for which
:quadratic drift $A_{n}:=\left\langle\left[\operatorname{ad}_{\Delta}^{n-1}(\mu), \operatorname{ad}_{\Delta}^{n}(\mu)\right] \varphi_{1}, \varphi_{K}\right\rangle$ does not vanish
- $C:=\left\langle\left[[\mu, \Delta], \operatorname{ad}_{\mu}^{2}(\Delta)\right] \varphi_{1}, \varphi_{K}\right\rangle \neq 0$.

Then the Schrödinger equation is H_{0}^{2}-STLC with targets in $H_{(0)}^{11}(0,1)$.
Rk: Not H_{0}^{3}-STLC

$$
\left\langle\psi(T)-\varphi_{1} e^{-i \lambda_{1} T}, \varphi_{K}\right\rangle \approx A_{3} \int_{0}^{T} u_{3}^{2} d t+C \int_{0}^{T} u_{1}^{2} u_{2}+\ldots
$$

Schrödinger: quadratic-cubic competition

$$
\left\langle\psi(T)-\varphi_{1} e^{-i \lambda_{1} T}, \varphi_{K}\right\rangle \approx A_{3} \int_{0}^{T} u_{3}^{2} d t+C \int_{0}^{T} u_{1}^{2} u_{2}+\ldots
$$

Proof: For a given target $\psi_{f} \in H_{(0)}^{11}(0,1)$

1. Use oscillating controls for which the cubic term dominates the quadratic one, to get the expected component along φ_{K}.
2. Correct the other components in infinite number, thanks to the local controllability in projection [Bournissou 2021].

Then $\psi\left(T ; u, \varphi_{1}\right)=\psi_{f}+c \varphi_{K}$ with $|c| \ll\left\|\psi_{f}-\psi_{1}(T)\right\|+$ Brouwer.
Key point: The second step does not affect much the component along φ_{K}. Sharp estimates on this correction are needed. They involve the H^{-k}-norms of the control used and are proved in [Bournissou 2021].

Bilinear control of Schrödinger: conclusion, perspectives

- A proof on the bilinear Schrödinger PDE of all the quadratic drifts known in finite dimension.
Other examples of quadratic drifts: Burgers [Marbach 2017], parabolic eqs [KB-Marbach 2020], KdV and St Venant [Coron, Koenig, Nguyen 2020 \& 2022]
- The first positive STLC result for a PDE with a nonlinear competition [Bournissou 2022]
- Does it work for KdV?
- How behave the high order terms for a multi-input Schrödinger PDE? [Gherdaoui]

Thanks!

