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Small-time local controllability (STLC)
Let f0, f1 : Rn → Rn, real-analytic, with f0(0) = 0. Consider:

ẋ = f0(x) + u(t)f1(x). (?)

Definition
We say that (?) is STLC when, for every T, η > 0, there exists
δ > 0 such that, for every x∗ ∈ Rn with |x∗| ≤ δ, there exists
u ∈ L∞((0, T );R) such that x(T ;u, 0) = x∗ and ‖u‖∞ ≤ η.

= Local surjectivity at (0, 0) of the input-output map

F : R × L∞ → Rn
(T , u) 7→ x(T ;u, 0)

Goal: Find conditions on f0 and f1 for (?) to be STLC or not.
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Some examples

Linear theory (Kalman rank condition):{
ẋ1 = u,

ẋ2 = x1,

Quadratic theory (looks bad):{
ẋ1 = u,

ẋ2 = x2
1.

Cubic theory (looks good):{
ẋ1 = u,

ẋ2 = x3
1.
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Why Lie brackets? (# 1)

Lie brackets measure the lack of commutativity between motions.
For vector fields f, g ∈ Cω(Rn;Rn), [f, g] is the vector field

[f, g](x) := Dg(x) · f(x)−Df(x) · g(x).

Example: If ẋ = f0(x) + u(t)f1(x), x(0) = 0 and one uses{
u(t) = +η for t ∈ (0, τ),
u(t) = −η for t ∈ (τ, 2τ),

then
x(2τ ;u, 0) = τ2η[f1, f0](0) +O(τ3).

For all systems, one can move towards both ±[f1, f0](0) ∈ Rn.
The underlying “abstract” Lie bracket [X1, X0] is “good”.
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Algebraic foundations

I Let X := {X0, X1} be non-commutative indeterminates
I Let A(X) be the free algebra over X, i.e. the vector space of

non-commutative polynomials, e.g. 7X2
0 + 3X1X0 + 2X0X1

I Let L(X) the free Lie algebra over X, i.e. the smallest
vector subspace of A(X) containing X0, X1, and stable by
the Lie bracket (commutator) operation [a, b] := ab− ba

I One can “evaluate” (although not injective)

b ∈ L(X) ↪→ fb ∈ Cω(Rn;Rn) ↪→ fb(0) ∈ Rn

[X1, X0] = X1X0−X0X1 → [f1, f0] = (Df0)f1 − (Df1)f0 → [f1, f0](0)
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The Lie algebra rank condition

ẋ = f0(x) + u(t)f1(x). (?)

Theorem (Hermann 1963, Nagano 1966)
If (?) is STLC, then it satisfies

Lie(f0, f1)(0) := span
{
fb(0); b ∈ L(X)

}
= Rn. (LARC)

For non-zero drift f0 6= 0, (LARC) is not sufficient.{
ẋ1 = u,

ẋ2 = x2
1,

has fX1(0) = f1(0) = e1 and fW1(0) = [f1, [f1, f0]](0) = 2e2.

The quadratic Lie bracket W1 := [X1, [X1, X0]] looks like a “bad”
bracket, associated with a signed motion in an oriented direction.
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Why Lie brackets? (#2)

Consider

ẋ = f0(x) + u(t)f1(x) with f0(0) = 0

ẏ = g0(y) + u(t)g1(y) with g0(0) = 0.

Theorem (Krener 1973)
The two systems are diffeomorphic iff same vectorial structure:

{b ∈ L(X); fb(0) = 0} = {b ∈ L(X); gb(0) = 0}.

Hence, the vectors fb(0) contain all the information for STLC.
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Goal of this talk

ẋ = f0(x) + u(t)f1(x) (?)

I Prove sufficient/necessary conditions of STLC formulated in
terms of Lie brackets of f0 and f1 evaluated at 0

I With a new strategy :
I to go further on ODEs
I to prepare the transfer to PDEs

Definition (m ∈ J−1,∞J)
(?) is Wm,∞-STLC when, ∀T, η > 0, ∃δ > 0 st ∀x∗ ∈ Rn with
|x∗| ≤ δ, ∃u ∈Wm,∞(0, T ) st x(T ;u, 0) = x∗ and ‖u‖Wm,∞ ≤ η.

(Wm,∞-STLC)⇒ (L∞-STLC)⇒ (W−1,∞-STLC) = (small-state STLC)
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Computing the state using Lie brackets

ẋ = f0(x) + u(t)f1(x) x(0) = 0

Theorem (Beauchard, Le Borgne, Marbach 2020)

x(t;u) =
∑
b

ηb(t, u)fb(0) +O(“remainders”) + o(x(t;u)).

The sum
I ranges over elements b of a basis of L(X)
I involves system-dependent vectors fb(0) ∈ Rn
I universal functionals ηb(t, u) homogeneous:
ηb(t, εu) = εn1(b)ηb(t, u) ηb(ε, u( .ε)) = ε|b|ηb(1, u) ...

Caution: The full sum does not converge, even with analyticity.
One has to consider (possibly infinite) truncations (wrt t, or u, or a
parameter). And well chosen bases of L(X). This is not a Taylor
expansion, but a csq of a Magnus-type formula.
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State-of-the-art about sufficient conditions

ẋ = f0(x) + u(t)f1(x). (?)

Known sufficient conditions for STLC share a common structure:

Theorem
Assume (LARC) and that, for every b ∈ B,

fb(0) ∈ span
{
fg(0); ω(g) < ω(b)

}
.

Then (?) is STLC.

I B ⊂ L(X) is a set of “potentially bad” brackets, which you
do not know how to use with your current technology

I ω : L(X)→ R is a “weight” which sorts the brackets
according to a small-parameter limit you are considering
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Version #1: Linear test

An example: 
ẋ1 = u+ x3

1,

ẋ2 = x1 + x2
1 + x5

3,

ẋ3 = x2 + x4
2.
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Version #1: Linear test

ẋ = f0(x) + u(t)f1(x). (?)

Theorem (Kalman 1960, Markus 1965)
The result holds with

I B := {b ∈ L(X); n1(b) ≥ 2}
I ω(b) := n1(b)

Indeed, use a control of the form u(t) = εū(t), then

x(t;u, 0) ≈
∑
b

εn1(b)ηb(t, ū)fb(0)

≈ ε
∑

n1(b)=1
ηb(t, ū)fb(0) + ε2 ∑

n1(b)≥2
· · ·

When n1(b) = 1, b = ± adkX0(X1) and fb(0) = ±(Df0(0))kf1(0).
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Version #2: Hermes condition

An example: 
ẋ1 = u,

ẋ2 = x3
1 + x4

1,

ẋ3 = x5
2 + x16

1 .
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Version #2: Hermes condition

ẋ = f0(x) + u(t)f1(x). (?)

Theorem (Sussmann 1983)
The result holds with

I B := {b ∈ L(X); n1(b) is even}
I ω(b) := n1(b)

Indeed, use a control of the form u(t) = εū(t), then

x(t;u, 0) ≈
∑
b

εn1(b)ηb(t, ū)fb(0)

≈
∑
j≥0

ε2j+1

 ∑
n1(b)=2j+1

ηb(t, ū)fb(0) + ε
∑

n1(b)=2j+2
ηb(t, ū)fb(0)


Key point: Odd terms aren’t signed since ηb(t,−u) = −ηb(t, u).
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Version #3: S(θ) condition
An example (Jakubczyk, Sussmann 1983):

ẋ1 = u,

ẋ2 = x1,

ẋ3 = x2
2 + x3

1.

If u is oscillating (contains high frequencies), then x1 and x2 also.
Since x1 = ẋ2, one can have |x3

1| � x2
2.

Involves W2 = ad2
[X1,X0](X0) and ad3

X1(X0).

Another (Stefani, 1985): 
ẋ1 = u,

ẋ2 = x1,

ẋ3 = x3
1x2.

The last one is quartic ... but good!
By time-reversal ǔ(t) = u(T − t) then x3(T )← −x3(T )
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Version #3: S(θ) condition

ẋ = f0(x) + u(t)f1(x). (?)

Theorem (Sussmann 1987)
Let θ ∈ [0, 1]. The result holds with

I B := {b ∈ L(X); n1(b) is even and n0(b) is odd}
I ω(b) := n1(b) + θn0(b)

For controls of the form u(t) = ε1−θū(t/εθ), then

x(t;u, 0) ≈
∑
b

εω(b)ηb(t, ū)fb(0)

Key point: Terms with n1(b) even and n0(b) even aren’t signed
since, by time reversal, ηb(t, ǔ) ≈ −ηb(t, u).

Similar & stronger: Agrachev Gamkrelidze 1993, Krastanov 2009.
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Sufficient conditions: conclusion

The brackets of L(X) \B are good: we know how to use them for
controllability. If all other brackets vanish, the system is STLC.

What about the brackets of B? Are they bad? Is some kind of
compensation condition indeed necessary for STLC?
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Necessary #1

ẋ = f0(x) + u(t)f1(x). (?)

Theorem (Sussmann 1983)
If (?) is W−1,∞-STLC, then, with W1 := [X1, [X1, X0]],

fW1(0) ∈ span{fb(0);n1(b) = 1}.

Idea:

x(t;u, 0) ≈
∑

n1(b)=1
ηb(t, u)fb(0) + 1

2

coercive︷ ︸︸ ︷(∫ t

0
u2

1

)
fW1(0)

+O(t‖u1‖2L2 + ‖u1‖3L3)

where u1(s) :=
∫ s

0 u and ‖u1‖3L3 ≤ ‖u1‖∞‖u1‖2L2 .
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Necessary #2

ẋ = f0(x) + u(t)f1(x). (?)

Theorem (Stefani 1986)
If (?) is W−1,∞-STLC, then, for each ` ∈ N∗,

fad2`
X1

(X0)(0) ∈ span{fb(0);n1(b) ≤ 2`− 1}.

Idea:

x(t;u, 0) ≈
∑

n1(b)<2`
ηb(t, u)fb(0) + 1

(2`)!

coercive︷ ︸︸ ︷(∫ t

0
u2`

1

)
fad2`

X1
(X0)(0)

+O(t‖u1‖2`L2` + ‖u1‖2`+1
L2`+1).
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Necessary #3

ẋ = f0(x) + u(t)f1(x). (?)

Theorem (Kawski 1987)
If (?) is L∞-STLC, then, for W2 := ad2

[X1,X0](X0)

fW2(0) ∈ span{fb(0);n1(b) ≤ 3∗}.

Idea:

x(t;u, 0) ≈
∑

n1(b)≤3∗
ηb(t, u)fb(0)+ 1

2

(∫ t

0
u2

2

)
fW2(0)+O(‖u1‖4L4).

And the key point: ‖u1‖4L4 ≤ ‖u‖2L∞‖u2‖2L2 .

∗: More precisely, one also has to exclude W2 itself.
20



Necessary #4

ẋ = f0(x) + u(t)f1(x). (?)

Theorem (Beauchard, Marbach 2022)
If (?) is L∞-STLC, then, for each k ∈ N, Wk := ad2

adk−1
X0

(X1)(X0)

fWk
(0) ∈ span{fb(0);n1(b) ≤ 2k − 1∗}.

Idea:

x(t;u, 0) ≈
∑

n1(b)≤2k−1∗
ηb(t, u)fb(0)+1

2

(∫ t

0
u2
k

)
fWk

(0)+O(‖u1‖2kL2k)

where, by Gagliardo-Nirenberg ‖u1‖2kL2k ≤ ‖u‖2k−2
L∞ ‖uk‖2L2 .

• Kawski had conjectured this in 1986, and proved a weaker
version where n1(b) ≤ 2k.
• We prove an analogue result for Wm,∞-STLC, ∀m ∈ J−1,∞J.
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Necessary #5

Theorem (KB FM 2020)
STLC ⇒ fWj (0) ∈ Nj(f)(0) for j = 2, 3, where
N2 = {Mν , P1,1,ν ; ν ∈ N} and
N3 =
{Mν , P1,l,ν , Q1,1,1, Q1,1,2,ν , Q

[
1,0, Q

[
1,1, Q

[
1,2, R1,1,1,1,ν , R

]
1,1,1,µ,ν ; l ∈

N∗, µ, ν ∈ N}.

where
Mν := X10ν ,
Wj,ν := (Mj−1,Mj)0ν ,
Pj,k,ν := (Mk−1,Wj,0)0ν ,
Qj,k,l,ν := (Ml−1, Pj,k,0)0ν , Q]j,µ,k,ν := (Wj,µ,Wk)0ν ,
Q[j,µ,ν := (Wj,µ,Wj,µ+1)0ν ,
Rj,k,l,m,ν := (Mm−1, Qj,k,l,0)0ν , R]j,k,l,µ,ν := (Wl,µ, Pj,k,0)0ν
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Necessary conditions: conclusion, perspectives

ẋ = f0(x) + u(t)f1(x)
We have proposed methodology ingredients to prove NC for STLC:

I approximate formula for the state from the fb(0),
I interpolation inequalities to absorb the remainder by the

coercive signed drift and the smallness of the control.

A long-standing problem is to “split” L(X) between good and bad
brackets (for definitions to be found). For example:

I “good”: a system involving only good ones should be STLC,
I “bad”: if a system is STLC, then no bad one is alone.

A contribution: a new Hall basis B? of L(X), specifically
designed for this purpose.

New interpolation inequalities are needed, for instance

‖Djϕ‖pLp ≤ ‖Dj+1ϕ‖qL∞
∫
R
|Dj1ϕ|p1 |Dj2ϕ|p2 . . . |Djkϕ|pk
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Example of transfer to Schrödinger PDE
i∂tψ = −∂2

xψ − u(t)µ(x)ψ ψ(t, 0) = ψ(t, 1) = 0

Ground state:
ψ1(t, x) :=

√
2 sin(πx)e−iπ2t

1
0

 f

Depending on the assumption on µ:
I linear test + smoothing effect [KB-Laurent 2010]
I 1 direction lost on the linearized syst and [Bournissou 2022]

I quadratic obstruction in some regimes
I STLC in other regimes : A3

∫ T
0 u2

3dt+ C
∫ T

0 u2
1u2

This is the first positive STLC result for a PDE with a
nonlinear competition.

Perspectives: Does it work for KdV?
How behave the high order terms for multi-input syst? [Gherdaoui]
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Part 2: Schrödinger PDE

i∂tψ = −∂2
xψ − u(t)µ(x)ψ ψ(t, 0) = ψ(t, 1) = 0

Ground state:
ψ1(t, x) :=

√
2 sin(πx)e−iπ2t

1
0

 f

Qu: Small-time local controllability around the ground state?

1. What can be proved with the linear test?
2. When the linearized system around the ground state is not

controllable:
I quadratic obstructions to STLC
I STLC with nonlinear competitions
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Schrödinger: local exact control around the ground state
i∂tψ = −∂2

xψ − u(t)µ(x)ψ ψ(t, .)|{0,1} = 0

Theorem (KB-Laurent 2010)
Let µ ∈ H3((0, 1),R) such that
∃c > 0,∀j ∈ N∗ c

j3 6 |〈µϕ1, ϕj〉| =
∣∣∣ ∫ 1

0 µ(x) sin(πx) sin(jπx)dx
∣∣∣.

The Schrödinger equation is STLC in H3
(0)(0, 1) with controls in L2:

∀T > 0, ∃η > 0 st ∀ψf ∈ S ∩H3
(0)(0, 1) with ‖ψf − ψ1(T )‖H3 < η,

∃u ∈ L2((0, T ),R) st ψ(T ;u, ϕ1) = ψf and ‖u‖L2 ≤ ‖ψf − ψ1(T )‖H3

Rk: 〈µϕ1, ϕj〉 = ±µ′(1)−µ′(0)
j3 + o( 1

j3 )

Proof: linear test + smoothing effect, flexible

[Bournissou 2021]: When the first p odd derivatives of µ vanish on {0, 1}
and ∀j ∈ J , c

j2p+3 ≤ |〈µϕ1, ϕj〉| then the projection on Span{ϕj ; j ∈ J}
is STLC in H2(p+k)+3

(0) (0, 1) with controls in Hk
0 (0, T ) and

∀m ∈ {−k, . . . , k}, ‖u‖Hm
0 (0,T ) ≤ C‖ψf − PJψ1(T )‖

H
2(p+m)+3
(0)

.
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Schrödinger: quadratic obstructions

i∂tψ = (−∂2
x − u(t)µ(x))ψ ψ(t, 0) = ψ(t, 1) = 0

[Coron 2006 / KB-Morancey 2014]: no L∞/L2-STLC when n = 1

Theorem (Bournissou 2021)
Let n,K ∈ N∗, µ ∈ H2n(0, 1) such that

I 〈µϕ1, ϕK〉 = 0, :1 lost direction
I the first (n− 1) odd derivatives of µ vanish at x = 0, 1,
I n is the minimal value st An = 〈[adn−1

∆ (µ), adn∆(µ)]ϕ1, ϕK〉 6= 0.

Then, the Schrödinger equation is not H2n−3-STLC

〈Quad(T ), ϕK〉
IBP=

n∑
p=1

Ap
∫ T

0 up(t)2ei(λK−λ1)(T−t)dt+ ... ≈
T→0

An
∫ T

0 u2
n

〈Order ≥ 3, ϕK〉
aux= O(‖u1‖3L2 + |u1(T )|3)

‖u1‖3L2 ≤ CT ‖u‖H2n−3‖un‖2L2

±=〈ψ(T ), ϕKe−iλ1T 〉 ≥ |An|−
∫ T

0
un(t)2dt− C‖ψ(T )− ϕ1e

−iλ1T ‖2
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Schrödinger: STLC recovery thanks to cubic terms

i∂tψ = (−∂2
x − u(t)µ(x))ψ ψ(t, 0) = ψ(t, 1) = 0

Theorem (Bournissou 2022)
Let K ≥ 2 and µ ∈ H11(0, 1) such that

I 〈µϕ1, ϕK〉 = 0 :1 lost direction
I µ′ = µ(3) = 0 on {0, 1} and c

j7 ≤ |〈µϕ1, ϕj〉| , ∀j ∈ N∗ \{K}
I n = 3 is smallest value of n ∈ N∗ for which :quadratic drift
An := 〈[adn−1

∆ (µ), adn∆(µ)]ϕ1, ϕK〉 does not vanish
I C := 〈[[µ,∆], ad2

µ(∆)]ϕ1, ϕK〉 6= 0. :cubic term

Then the Schrödinger equation is H2
0 -STLC with targets in H11

(0)(0, 1).

Rk: Not H3
0 -STLC

〈ψ(T )− ϕ1e
−iλ1T , ϕK〉 ≈ A3

∫ T

0
u2

3dt+ C

∫ T

0
u2

1u2 + ...
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Schrödinger: quadratic-cubic competition

〈ψ(T )− ϕ1e
−iλ1T , ϕK〉 ≈ A3

∫ T

0
u2

3dt+ C

∫ T

0
u2

1u2 + ...

Proof: For a given target ψf ∈ H11
(0)(0, 1)

1. Use oscillating controls for which the cubic term dominates the
quadratic one, to get the expected component along ϕK .

2. Correct the other components in infinite number, thanks to the
local controllability in projection [Bournissou 2021].

Then ψ(T ;u, ϕ1) = ψf + cϕK with |c| << ‖ψf − ψ1(T )‖ + Brouwer.

Key point: The second step does not affect much the component along
ϕK . Sharp estimates on this correction are needed. They involve the
H−k-norms of the control used and are proved in [Bournissou 2021].
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Bilinear control of Schrödinger: conclusion, perspectives

I A proof on the bilinear Schrödinger PDE of all the
quadratic drifts known in finite dimension.
Other examples of quadratic drifts: Burgers [Marbach 2017],
parabolic eqs [KB-Marbach 2020], KdV and St Venant
[Coron, Koenig, Nguyen 2020 & 2022]

I The first positive STLC result for a PDE with a
nonlinear competition [Bournissou 2022]

I Does it work for KdV?
I How behave the high order terms for a multi-input

Schrödinger PDE? [Gherdaoui]

Thanks !
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