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Presence of constraints
Any dynamical system is subject to constraints due to physical,
safety or technological reasons

Motivation

B Take into account these constraints when studying desirable
properties of the system (stability, performance, convergence)

Constraints affecting the actuators
and/or sensors

B Need to develop adequate methodologies
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Different types of isolated nonlinearities

Actuators/sensors practical
limitations: saturation, hysteresis,
dead-zone, discontinuities, . . .

Refs: E. Sontag, A. Teel, M. Turner, L. Zaccarian, J.M.

Gomes da Silva, Z. Lin, J.M. Biannic, B.

Jayawardhana, H. Logemann, P.O. Gutman, ...

Communication channels or
information capacity: quantizer,
coding, sampling . . .

Refs: D. Liberzon, C. De Persis, D. F. Delchamps, S. K.

Mitter, F. Ferrante, ...

Problem under study: positivity,
ReLu or ramp, gradient ∇f (x), ...

Refs: M. Ait-Rami, Y. Ebihara, P. Seiler, M. Arcak,

M.Korda, L. Lessard, R. Sanfelice, ...

1.3 The closed-loop system 11
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−umin(i)

umax(i)

Fig. 1.1 The saturation function
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w(t)
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Fig. 1.2 The closed-loop system

whereK ∈ℜm×n is a constant matrix.
The effective control law applied to system (1.1) under Assumption 1.2 is:

u(t) = sat(Kx(t)) (1.6)

with each component,i = 1, ...,m, defined as follows

sat(K(i)x(t)) =





umax(i) if K(i)x(t)> umax(i)

K(i)x(t) if −umin(i) ≤ K(i)x(t)≤ umax(i)

−umin(i) if K(i)x(t)<−umin(i)

(1.7)
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Main objectives

The main objectives are the ability to develop certificates of some

properties (stability, performance, robustness, safety, tolerance, algorithmic

convergence, ...), which are difficult or impossible to check analytically.

B The solutions consist in using suitable abstractions sufficiently
representative.

B Very simple example. Vertical position of the baby.

Indeed, the baby tries to control its
position (from the ground to stand up)

baby = inverted pendulum

diaper = a sort of uncertainty

muscle strength = constraint
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Particular case: saturation.
Class of nonlinearities apparently simple but difficult to manage

Limitations in magnitude, rate,
acceleration ... leading to
saturations. Examples: PIO
(Pilot-Induced-Oscillations) in
aircrafts and problem of formation
flight (satellites)
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The saturation function allows to
approximate other types of
nonlinearities. Examples: robust
landing and on-ground control for
civil aircraft - Approx. of ground
forces (nose wheel force)
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Main idea: embed the nonlinearity
Consider for example a continuous-time plant

ẋ = f (x) + g(x)ψ(u(x)) (1)

One can provide sector conditions on φ(u(x)) = ψ(u(x))− u(x):

(ψ(u(x))− u(x))>h(x) ≥ 0, x ∈ Ω (2)

B Used to handle different
problems (stability analysis,
optimization of the region of
stability, anti-windup schemes,
delay, sampling, event-triggered
control, ...)

u0

u0

0−u

0−u u

sat(u)

0−u

u0

sat(u)−u

u

Other methods: via differential inclusions, PWA, IQC (Khalil, Lin,
Alamo, Rantzer, Scherer, Valmorbida, ...) but may reveal to be
”more complex/conservative” in the control design context
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Main idea: embed the nonlinearity (cont’d)

System (1) can be re-written as

ẋ = (f (x) + g(x)u(x)) + g(x)(ψ(u(x))− u(x)) (3)

B The closed loop f (x) + g(x)u(x) is assumed to satisfy the
desired property (stability).

One can build a Lyapunov function V using the abstraction on the
nonlinearity to guarantee its decreasing along the closed-loop
trajectories:

V (x) > 0, x 6= 0, x ∈ Ω

V̇ (x) + τ(x)(ψ(u(x))− u(x))>h(x) < 0
(4)

8 / 37



General context ODE+saturation PDE+saturation Focus Conclusion

Focus: linear systems with saturating input

Consider the following system:

ẋ = Ax + Bsat(u)
u = Kx

(5)

Indeed, saturation is an abrupt nonlinearity [Tarbouriech et al., 2011],

[Teel and Zaccarian, 2011]

B Small signal (around the origin): sat(u) = u and no effect on
the system trajectories

B Large signal (far from the origin): sat(u) is uniformly bounded
and there is a severe effect on the system
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In general, ∃x(0) such that the trajectories converge to the origin, i.e.
x(t)→ 0 as t →∞, but also initial conditions leading to diverging
trajectories, i.e. x(t)→∞ as t →∞.

Region of attraction RA of the
origin = the set of all points
x(0) ∈ Rn leading to solutions that
converge asymptotically to the
origin.

B RA(0) = the exact stability region
of the saturated system.

B Global stability: RA(0) = Rn

B Local stability: RA(0) 6= Rn
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Objective: Approximate the RA

Stability may be local or global
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Quick overview

Seminal works but with different saturation maps as L2 saturation:

[Slemrod, 1989], [Lasiecka and Seidman, 2003] (See also
[Curtain and Zwart, 2020] for the case of Lipschitz nonlinearity)

Recent works dealing with cone bounded nonlinearly/saturation for abstract
systems, hyperbolic systems, reaction-diffusion systems:
[Prieur et al., 2016], [Marx et al., 2017], [Prieur and Tarbouriech, 2019],
[Chitour et al., 2020], [Mironchenko et al., 2021],
[Vanspranghe et al., 2021], [Gauvrit et al., 2023],
[Lhachemi and Prieur, 2023], ...
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Questions

What happens in the context of PDE in presence of saturation?

Distributed or boundary control subject to saturation?

Is it possible to use the same framework
(quadratic abstraction + Lyapunov-based conditions)?
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PDE + saturation

PDEs

Wave equation

Beam equation

Control law

Static control law

Dynamic control law

Nonlinearity

Saturation

Cone bounded

Common tools

Quadratic abstraction to embed
the nonlinearity

Lyapunov function to ensure the
stability

Main objectives

Well-posedness

Stability guarantees

Characterization of the basin of
attraction (Estimate)
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Two kinds of PDE

Wave equation (with boundary
conditions)

ztt(x , t) = zxx(x , t) + f (t)
z(0, t) = 0

zx(1, t) + g(t) = 0
(6)

with the following initial condition, for
all x in (0, 1),

z(x , 0) = z0(x)
zt(x , 0) = z1(x)

(7)

where z0 and z1 stand respectively for
the initial deflection of the slope and the
initial deflection speed.

1

Wave equation with cone-bounded control laws
Christophe Prieur, Sophie Tarbouriech, João M. Gomes da Silva Jr

Abstract—This paper deals with a wave equation with
a one-dimensional space variable, which describes the
dynamics of string deflection. Two kinds of control are
considered: a distributed action and a boundary control.
It is supposed that the control signal is subject to a
cone-bounded nonlinearity. This kind of feedback laws
includes (but is not restricted to) saturating inputs. By
closing the loop with such a nonlinear control, it is thus
obtained a nonlinear partial differential equation, which is
the generalization of the classical 1D wave equation. The
well-posedness is proven by using nonlinear semigroups
techniques. Considering a sector condition to tackle the
control nonlinearity and assuming that a tuning parameter
has a suitable sign, the asymptotic stability of the closed-
loop system is proven by Lyapunov techniques. Some
numerical simulations illustrate the asymptotic stability of
the closed-loop nonlinear partial differential equations.

I. INTRODUCTION

The general problem in this paper is the study of the
wave in a one-dimensional media, as considered e.g.
when modeling the dynamics of an elastic slope vibrat-
ing around its rest position. To be more specific, it is
considered the wave equation describing the dynamics of
the deformation denoted by z(x, t). The control is either
defined by an external force f(x, t), or by a boundary
action g(t), where the force and the deformation may
depend on the space and the time variables. A scheme
of the considered problem is depicted in Figure 1.

Depending on the control action, two classes of partial
differential equations (PDEs) are obtained. In the pres-
ence of an external distributed force f when the slope is
attached at both extremities, the dynamic of the vibration
is described by the following (see e.g. [14, Chap. 5.3])
for all t ≥ 0, x ∈ (0, 1),

ztt(x, t) = zxx(x, t) + f(x, t) (1)

Christophe Prieur is with Gipsa-lab, Grenoble Campus, 11 rue des
Mathématiques, BP 46, 38402 Saint Martin d’Hères Cedex, France,
christophe.prieur@gipsa-lab.fr.

S. Tarbouriech is with CNRS, LAAS, 7 avenue du colonel Roche,
F-31400 Toulouse, France and Univ de Toulouse, LAAS, F-31400
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J.M. Gomes da Silva Jr is with the Department of Automa-
tion and Energy, UFRGS, 90035-190 Porto Alegre-RS, Brazil,
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f(x, t)

z(x, t)

x = 0 x = 1

g(t)

Fig. 1. Vibrating slope subject to a external distributed action f(x, t)
and to a boundary action g(t).

where z stands for the state (the length of the string and
other physical parameters are normalized), and f(x, t) ∈
R is the control. The control f is distributed (in contrast
to boundary control), and is given by a bounded control
operator. Let us equip this system with the following
boundary conditions, for all t ≥ 0,

z(0, t) = 0 , (2a)

z(1, t) = 0 , (2b)

and with the following initial condition, for all x in
(0, 1),

z(x, 0) = z0(x) ,
zt(x, 0) = z1(x) ,

(3)

where z0 and z1 stand respectively for the initial deflec-
tion of the slope and the initial deflection speed.

When the control action is only at the boundary, it is
necessary to consider the following string equation, for
all t ≥ 0, x ∈ (0, 1),

ztt(x, t) = zxx(x, t) (4)

with the boundary conditions, for all t ≥ 0,

z(0, t) = 0 (5a)

zx(1, t) = g(t) (5b)

where g(t) is the boundary action at time t.
When closing the loop with a linear state feedback

law, the control problem of such a 1D wave equation is
considered in many works, see e.g. [8] where, in par-
ticular, stabilizing linear controllers and optimal linear
feedback laws are computed respectively by an appli-
cation of linear semigroup theory and LQR techniques.
The aim of this paper is to investigate the well-posedness
and the asymptotic stability of these classes of PDEs by
means of nonlinear control laws, and more precisely of
cone-bounded nonlinear control laws.

Vibrating slope subject to a external
distributed action f (x , t) and to a

boundary action g(t)
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Two kinds of PDE (cont’d)

Beam equation

wtt(x , t) + wxxxx(x , t) = u(t) d
dx [δη(x)− δξ(x)],

w(0, t) = wx(0, t) = wxx(π, t) = wxxx(π, t) = 0,
w(x , 0) = w0(x),
wt(x , 0) = w1(x)

(8)

with w(x , t) the deflection of the beam
with respect to the rest position, at
point x in [0, π] and at time t, u(t) the
voltage applied on a actuator located
between on the interval [η, ξ]. x = 0 x = π

η

ξ
w(x , t)

A clamped-free beam subject to a
piezoelectric actuator
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Two kinds of control law

Static nonlinear control: saturating static control

B Wave equation: g(t) = sat(dzt(1, t)),∀t ≥ 0 yields the boundary
conditions become:

z(0, t) = 0 , zx(1, t) + sat(dzt(1, t)) = 0

where sat is the localized saturated map [Prieur et al., 2016].

sat(v(i)) =



umax(i) if v(i) > umax(i)

v(i) if − umin(i) ≤ v(i) ≤ umax(i)

−umin(i) if v(i) < −umin(i)

1.3 The closed-loop system 11

v(i)

sat(v(i))

−umin(i)

umax(i)

Fig. 1.1 The saturation function

ACTUATOR

PLANT

CONTROLLER
v(t)

y(t)u(t)

w(t)

z(t)

Fig. 1.2 The closed-loop system

whereK ∈ℜm×n is a constant matrix.
The effective control law applied to system (1.1) under Assumption 1.2 is:

u(t) = sat(Kx(t)) (1.6)

with each component,i = 1, ...,m, defined as follows

sat(K(i)x(t)) =





umax(i) if K(i)x(t)> umax(i)

K(i)x(t) if −umin(i) ≤ K(i)x(t)≤ umax(i)

−umin(i) if K(i)x(t)<−umin(i)

(1.7)
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Two kinds of control law (cont’d)

Static nonlinear control: saturating static control

B Beam equation: u(t) = sat(k(wxt(η)− wxt(ξ))), ∀t ≥ 0 yields:

wtt(x , t) + wxxxx(x , t) = sat(k(wxt(η)− wxt(ξ))) d
dx [δη(x)− δξ(x)],

w(0, t) = wx(0, t) = wxx(π, t) = wxxx(π, t) = 0,
w(x , 0) = w0(x), wt(x , 0) = w1(x)

(9)

where sat is the localized saturated map [Prieur and Tarbouriech, 2019].

17 / 37



General context ODE+saturation PDE+saturation Focus Conclusion

Two kinds of control law (cont’d)

Dynamic nonlinear control:

B Wave equation: g(t) = sat(Dzt(1, t) + Cw(t)),∀t ≥ 0 yields the boundary
conditions:

z(0, t) = 0 ,
zx(1, t) + sat(Dzt(1, t) + Cw(t)) = 0 ,
ẇ = Aw + Bzt(1, t)

(10)

where w(t) ∈ Rn and sat is the localized saturated map
[Gauvrit et al., 2023].
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Two kinds of control law (cont’d)

Dynamic nonlinear control:

B Beam equation: u(t) is the output of a first order dynamical system and ue
is the new control law to design

wtt(x , t) + wxxxx(x , t) = sat(u(t)) d
dx [δη(x)− δξ(x)],

u̇(t) = − 1
τ u(t) + 1

τ ue(t)
w(0, t) = wx(0, t) = wxx(π, t) = wxxx(π, t) = 0,
w(x , 0) = w0(x), wt(x , 0) = w1(x)

(11)

where sat is the localized saturated map [Prieur and Tarbouriech, 2019].
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Focus on wave equation + dynamic nonlinear control

We are interested in a PDE coupled at the boundary with an ODE.

For all 0 < x < 1 and for all t ≥ 0, one gets

ztt(x , t) = zxx(x , t) , (12)

ẇ = Aw + Bzt(1, t) , (13)

z(0, t) = 0 , (14)

zx(1, t) + sat(Dzt(1, t) + Cw(t)) = 0 , (15)

B with the initial condition z(x , 0) = z0(x) and zt(x , 0) = z1(x)
B z(x , t) is the amplitude of the wave dynamics with respect to

the rest position, at point x in [0, 1] and at time t ≥ 0,
B w(t) is a dynamical state (in Rn) solving a linear

finite-dimensional differential equation,
B A, B and C are matrices of appropriate dimensions.

Objectives. Well-posedness + stability
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Well-posedness

Well-posedness without saturation

Let us use the following notation H1
(0)(0, 1) = {z ∈ H1(0, 1), z(0) = 0},

H = H1
(0)(0, 1)× L2(0, 1) and H = H× Rn. The linear system

ztt(x , t) = zxx(x , t) , (16)

ẇ = Aw + Bzt(1, t) , (17)

z(0, t) = 0 , (18)

zx(1, t) + Dzt(1, t) + Cw(t) = 0 , (19)

is well-posed if and only if D 6= −1 .

The proof of this well-posedness results from the classical Lumer-Philips
theorem (see e.g., Chapter 1 in [Pazy, 1983]).
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Well-posedness with saturation

The saturated system (12)-(15)

ztt(x , t) = zxx(x , t) ,

ẇ = Aw + Bzt(1, t) ,

z(0, t) = 0 ,

zx(1, t) + sat(Dzt(1, t) + Cw(t)) = 0 ,

is well-posed if D > −1 .

The proof proposed in [Gauvrit et al., 2023] is based on the use
of semigroups+quasi-dissipativity [Miyadera, 1992]:
(z, zt ,w) in D(A) =

{
(u, v,w) ∈ H1

(0)(0, 1)× L2(0, 1)× Rn,

u ∈ H2(0, 1), v ∈ H1
(0)(0, 1), u′(1) + sat(Dv(1) + Cw) = 0

}
22 / 37
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Stability

Recall the saturated system (12)-(15)

ztt(x , t) = zxx(x , t) ,

ẇ = Aw + Bzt(1, t) ,

z(0, t) = 0 ,

zx(1, t) + sat(Dzt(1, t) + Cw(t)) = 0 ,

The state of the system is constituted from z (PDE) and w (ODE).

B Preliminary result: stability for the linear case (without
saturation)
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Stability without saturation

The linear system (12)-(15) recalled below

ztt(x , t) = zxx(x , t) ,

ẇ = Aw + Bzt(1, t) ,

z(0, t) = 0 ,

zx(1, t) + Dzt(1, t) + Cw(t) = 0 ,

is exponentially stable if and only if the spectrum of A is in the strict left part of
the plane, σ(A) ⊂ C−, and if D > 0.

This result could be proven by a spectral analysis of the linear operator
describing (12)-(15).

We consider the following assumption σ(A) ⊂ C− and D > 0.
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Two cases of study

Assumption: σ(A) ⊂ C− and D > 0.

We consider two cases in order to be able to prove exponential
stability

B PDE-to-ODE case.
That corresponds to consider

C = 0

B ODE-to-PDE case.
That corresponds to consider

B = 0

Warning: For the moment no solution for B 6= 0 and C 6= 0
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Case 1: C = 0

PDE-to-ODE case. Consider the case where the PDE and the ODE are in
cascade form in this order, that is when C = 0, namely:

ztt(x , t) = zxx(x , t) , (20)

ẇ = Aw + Bzt(1, t) , (21)

z(0, t) = 0 , (22)

zx(1, t) + sat(Dzt(1, t)) = 0 , (23)

B Remark. The ODE dynamics do not have any impact on the
PDE, but the boundary value zt(1, t) is the input of the ODE.

26 / 37



General context ODE+saturation PDE+saturation Focus Conclusion

The necessary and sufficient condition for the asymptotic stability of the
linear system (12)-(15) is also a sufficient condition for the asymptotic
stability of the nonlinear system (20)-(23).

Assumption: σ(A) ⊂ C− and D > 0.

Stability - Case 1

System (20)-(23) is globally asymptotically stable, that is, there exists a
symmetric definite positive matrix P in Rn×n such that the following stability
condition

‖z(., t)‖H1
0 (0,1) + ‖zt(., t)‖L2(0,1) + w(t)>Pw(t)

≤ ‖z0‖H1
0 (0,1) + ‖z1‖L2(0,1) + w(0)>Pw(0), ∀t ≥ 0 ,

(24)

holds, together with the attractivity property (convergence property)

‖z(., t)‖H1
0 (0,1) + ‖zt(., t)‖L2(0,1) + ‖w(t)‖ →t→∞ 0 . (25)
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Main ingredients of the proof

The proof is inspired by the proof of Thm 2 in [Prieur et al., 2016] (see,
also, the proof of Thm 2.2 in [Marx et al., 2017]): LES+GA

The following Lyapunov function candidate

V (z ,w) =
1

2
(

∫ 1

0

eµx(zt + zx)2dx +

∫ 1

0

e−µx(zt − zx)2dx) + w>Pw

with µ > 0 and P = P> > 0.

V̇ = −µV + eµ

2 (zt(1, t)− sat(Dzt(1, t)))2 − e−µ

2 (zt(1, t) +
sat(Dzt(1, t)))2 + w>(A>P + PA + µP)w + 2w>PBzt(1, t)

V̇ = −µV + ξ>




A>P + PA + µP PB 0

B>P eµ

2 − e−µ

2 − eµ

2 − e−µ

2

0 − eµ

2 − e−µ

2
eµ

2 − e−µ

2




︸ ︷︷ ︸
Not sign definite

ξ

with ξ =




w
zt(1, t)

sat(Dzt(1, t))
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Main ingredients of the proof (cont’d)

We then need to use more information about the nonlinearity sat(Dzt(1, t)).

Quadratic abstraction for the nonlinearity φ1 = sat(Dzt(1, t))− Dzt(1, t)

ηφ1(sat(Dzt(1, t)) + Gzt(1, t)) ≤ 0⇐⇒ ηφ1(φ1 + (D + G )zt(1, t)) ≤ 0

∀zt(1, t) ∈ {v ;φ1(Gv) = 0},⇐⇒ |Gzt(1, t)| ≤ |G ||zt(1, t)| ≤ u0

with η > 0

Condition: V̇ ≤ V̇ − 2ηφ1(φ1 + Dzt(1, t)) < 0 along the trajectories of the
closed loop ⇒ V̇ ≤ −µV

V̇ ≤ −µV + ζ>

(
A>P + PA + µP PB 0

B>P (1− D)2 eµ

2
− (1 + D)2 e−µ

2
?

0 −(1− D) eµ

2
− (1 + D) e−µ

2
− η(D + G) eµ

2
− e−µ

2
− 2η

)

︸ ︷︷ ︸
∃η,µ,G ,P such that negative definite

ζ

with ζ =




w
zt(1, t)
φ1


 =




I 0 0
0 1 0
0 −D 1


 ξ
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Main ingredients of the proof (cont’d)

Initial condition: (z , zt ,w) in

D(A) =
{

(u, v ,w) ∈ H1
(0)(0, 1)× L2(0, 1)× Rn,

u ∈ H2(0, 1), v ∈ H1
(0)(0, 1), u′(1) + sat(Dv(1) + Cw) = 0

}

B Since zt(0, t) = 0, it holds |zt(1, t)|2 = |
∫ 1

0 zxt(., t)dx |2 ≤∫ 1
0 |zxt(., t)|2dx = ‖zt(., t)‖2

H1
(0)

(0,1)
.

B Thus,

|zt(1, t)| ≤ ‖z(., t)‖H1
0 (0,1) + ‖zt(., t)‖L2(0,1) + w(t)>Pw(t)

≤ ‖z0‖H1
0 (0,1) + ‖z1‖L2(0,1) + w(0)>Pw(0)

Then for any initial condition satisfying

|G |(‖z0‖H1
0 (0,1) + ‖z1‖L2(0,1) + w(0)>Pw(0)) ≤ u0

one gets

|Gzt(1, t)| ≤ |G ||zt(1, t)| ≤ u0
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Case 2: B = 0

ODE-to-PDE case. Let us now consider the case where the ODE and the
PDE are in cascade form in this order, that is when B = 0:

ztt(x , t) = zxx(x , t) , (26)

ẇ = Aw , (27)

z(0, t) = 0 , (28)

zx(1, t) + sat(Dzt(1, t) + Cw(t)) = 0 , (29)

B Remark. The ODE dynamics has an impact on the PDE, since
the boundary value zx(1, t) depends on w , but the stability of
the dynamics of w only depends on A.
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Assumption: σ(A) ⊂ C− and D > 0.

Stability - Case 2

System (20)-(23) is globally asymptotically stable, that is, there exists a
symmetric definite positive matrix P in Rn×n such that the following stability
condition

‖z(., t)‖H1
0 (0,1) + ‖zt(., t)‖L2(0,1) + w(t)>Pw(t)

≤ ‖z0‖H1
0 (0,1) + ‖z1‖L2(0,1) + w(0)>Pw(0), ∀t ≥ 0 ,

(30)

holds, together with the attractivity property (convergence property)

‖z(., t)‖H1
0 (0,1) + ‖zt(., t)‖L2(0,1) + ‖w(t)‖ →t→∞ 0 . (31)
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Main ingredients of the proof

The following Lyapunov function candidate

V (z ,w) =
1

2
(

∫ 1

0

eµx(zt + zx)2dx +

∫ 1

0

e−µx(zt − zx)2dx) + w>Pw

with µ > 0 and P = P> > 0.

From the assumption, there exists P = P> > 0 such that

A>P + PA +
D−1

2
C>C = −Q with Q = Q> > 0

V̇ = −µV + eµ

2 (zt(1, t)− sat(Dzt(1, t) + Cw(t)))2 − e−µ

2 (zt(1, t) +
sat(Dzt(1, t) + Cw(t)))2 + w>(A>P + PA + µP)w
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Main ingredients of the proof (cont’d)

We then need to use more information about the nonlineartity
sat(Dzt(1, t) + Cw(t)).

Quadratic abstraction for the nonlinearity
φ2 = sat(Dzt(1, t) + Cw(t))− Dzt(1, t)− Cw(t)

ηφ2(sat(Dzt(1, t) + Cw(t)) + Gzt(1, t) + G2w(t)) ≤ 0
⇐⇒ ηφ2(φ2 + (D + G1)zt(1, t) + (C + G2)w(t)) ≤ 0

∀zt(1, t),w(t) ∈ {v1, v2;φ1(G1v + G2v2) = 0},
⇐⇒ |G1zt(1, t) + G2w(t)| ≤ u0

with η > 0

V̇ ≤ −µV + ζ>2 Mζ2 < −µV with ζ =




w
zt(1, t)
φ2
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Main ingredients of the proof (cont’d)

M is defined as follows

M =(
A>P + PA + µP + sh(µ)C>C ? ?

−ch(µ) + sh(µ)DC (1− D)2 eµ

2
− (1 + D)2 e−µ

2
?

sh(µ)C − η(G2 + C) −(1− D) eµ

2
− (1 + D) e−µ

2
− η(D + G1) eµ

2
− e−µ

2
− 2η

)

∃η, µ,G1,G2,P such that M < 0

For example one can choose G1 = (`− 1)D and G2 = (`− 1)C

Initial condition: Due to the generalized sector condition (see e.g.,Lemma
1.5 in [Tarbouriech et al., 2011]), for all 1 > ` > 0, and for all η > 0, for
any initial condition (z0, z1,w0) in D(A) such that

(1− `)V (z0,w0)) ≤ u0 , (32)

it holds
ηφ2(φ2 + `Dzt(1, t) + `Cw(t)) ≤ 0 .
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Concluding remarks

Context. Presence of constraint on the input (as magnitude saturation)

Main topic: Stability analysis/stabilization via static or dynamic controller

B ODE+saturation
B PDE+saturation (wave equation, beam equation). Other results

in the literature (reaction-diffusion systems, KdV for example)

Focus on a case of dynamic controller: wave equation in closed loop with a

dynamic boundary control

B Two particular cases (C = 0 and B = 0)
B Main tools: Lyapunov function and generalized sector condition
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Prospectives

What happens with respect to the focus when B 6= 0 and C 6= 0?

Design of A, B, C , D

Presence of constraint on the input (as magnitude and rate saturation)

Extension to other nonlinearities

B Beam with nonlinear piezoelectric control (Joint work with A.
Mattioni and C. Prieur)

Extension to other PDE (Schrödinger)

Regulation problem: exosystem ρ̇ = Sρ, r = Eρ (Joint work with J.M.
Gomes da Silva Jr and C. Prieur)
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