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Introduction Proof

Presentation of the problem

Controllability of the transport/heat equation on the torus

ω non-empty open interval of T := R\2πZ, T > 0.

Theorem

The heat equation is null-controllable in any time T : ∀f0 ∈ L2(T),
∃u ∈ L2([0,T ]× ω), the solution f of

∂t f − ∂2
xx f = 1ωu, f (0, ·) = f0

satisfies f (T , ·) = 0 on T.

Theorem
ω Let c > 0. The transport equation at speed c is exactly controllable in time
T if T > 2π−|ω|

c : ∀f0, fT ∈ L2(T), ∃u ∈ L2((0,T )× ω), the solution f of

∂t f − c∂x f = 1ωu, f (0) = f0

satisfies f (T , ·) = fT on T. But not controllable if T < 2π−|ω|
c .
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Presentation of the problem

Motivation

Investigate systems of PDEs that involve both parabolic and transport effects.
Many models of interest can be written/transformed in this form.
Coupling different dynamics, with different behaviours in control theory, is
a challenging question: which dynamics “wins” ?
Many difficulties that are specific to systems: influence of the coupling
terms, regularity issues on the initial conditions...
Emphasis here on underactuated systems: less controls than equations.

Here, aim to work in a setting that might cover or generalize already known
results, under strong technical restrictions:

Work on the torus.
Restrict to linear constant couplings.

Partial study by Beauchard-Koenig-Le Balc’h ’20.
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Presentation of the problem

Parabolic-Transport Systems

The abstract system of d = dh + dp equations and m controls

∂t f + A∂x f − B∂2
x f + Kf = M1ωu, (t, x) ∈ (0,+∞)× T

f =

(
fh
fp

)
∈ Cd = Cdh+dp ;B =

(
0 0
0 D

)
, D + D∗ positive definite ; K =

(
K11 K12
K21 K22

)
;

A =

(
A11 A12
A21 A22

)
, A11 diagonalizable, Sp(A11) ⊂ R \ {0};

M =
(
M1 M2

)
∈ Md,m(C).

Coupling between parabolic and transport equations

f =

(
fh
fp

)
,

{
(∂t + A11∂x + K11)fh + (A12∂x + K12)fp = 1ωM1u,
(∂t − D∂2

x + A22∂x + K22)fp + (A21∂x + K21)fh = 1ωM2u.

Question

For which f0, T does there exist u ∈ L2((0,T )× ω,Cm) such that f (T , ·) = 0 ?
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Presentation of the problem

Example I: Linearized compressible Navier-Stokes

Navier-Stokes
ρ: fluid density. v : fluid velocity. a, γ, µ > 0.{

∂tρ+ ∂x(ρv) = 0 on [0,T ]× T,
ρ(∂tv + v∂xv) + ∂x(aρ

γ)− µ∂2
x v = 1ωu2(t, x) on [0,T ]× T,

Linearization around a stationary state (ρ̄, v̄) ∈ R∗
+ × R∗ :{

∂tρ+ v̄∂xρ+ ρ̄∂xv = 0 in [0,T ]× T,
∂tv + v̄∂xv + aρ̄γ−2∂xρ− µ

ρ̄∂
2
x v = 1ωu2(t, x) in [0,T ]× T.

[Chowdhury-Mitra-Ramaswamy-Renardy 2014]: control in time T > 2π/|v̄ | for initial conditions
(ρ0, v0) ∈ H1

m × L2. (m : mean-value equal to 0).

[Beauchard-Koenig-Le Balc’h ’23]: control in time T > (2π − |ω|)/|v̄ | for initial conditions in
H2

m × H2, non-controllability in time T < (2π − |ω|)/|v̄ |.

[Koenig-Lissy 2023] control in time T > (2π − |ω|)/|v̄ | for initial conditions in H1
m × L2,

non-controllability in time T < (2π − |ω|)/|v̄ | in no Sobolev space.
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Presentation of the problem

Example II : wave equation with structural damping

Wave equation with structural damping and moving control

∂tty − ∂xxy − ∂txxy + b∂ty = h in [0,T ]× T,

where b ∈ R and h(t, x) is a moving control at speed c ⩾ 0 :
h(t, x) = u(t, x)1ω+ct(x).

[Rosier-Rouchon 2007]: c = 0, controllability in no time.

[Martin-Rosier-Rouchon 2014]: c ̸= 0,controllability in time T > 2π for (y , ∂ty) ∈ Hs+2 × Hs ,
s > 15/2.

[Beauchard-Koenig-Le Balc’h 2020]: x ↔ x − ct, z = ∂ty − ∂xxy + (b − 1)y , with f =
( z̄

y

)
,

A =
(−c 0

0 c

)
, B =

( 0 0
0 µ/ρ

)
and K =

( 1 1−b
−1 b−1

)
: controllable in time T > (2π − |ω|)/c for initial

conditions in H1 × L2, not controllable in this space if T < (2π − |ω|)/c.
[Koenig-Lissy 2023] : not controllable in no Sobolev spaces.
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Presentation of the problem

Fully actuated system

Theorem (Case M = I , Beauchard-Koenig-Le Balc’h 2020)

Introduce
T ∗ =

2π − |ω|
minµ∈Sp(A11) |µ|

.

Then
1 the system is not null-controllable on ω in time T < T ∗,
2 the system is null-controllable on ω in time T > T ∗.

Minimal time = minimal time for the transport equation

In the case
∂t fh + A11∂x fh = uh1ω

Free solutions = sums of waves travelling at speed µk ∈ Sp(A11).
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Presentation of the problem

Underactuated system

For n ∈ Z, introduce Bn = n2B + inA+ K and
[Bn|M] = [M,BnM, . . . , |Bd−1

n M ∈ Md,md(R).

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every H4d(d−1) initial condition in time T > T ∗ iff
rank([Bn|M]) = d .

Coupling condition

n-th Fourier component of the parabolic-transport system:

X ′
n(t) + (n2B + inA+ K )Xn(t) = Mun(t)

Condition of the theorem ⇔ the finite-dimensional system
X ′
n + (n2B + inA+ K )Xn = Mun is controllable.

If T < T ∗, no controllability in no Sobolev Space by an appropriate WKB
construction (not totally trivial).
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Fictitious control method and algebraic solvability

Heuristic

First introduced in Coron’92 for ODEs and Coron-Lissy’14 for PDEs
(Navier-Stokes 3D).

This method is useful to control systems of linear partial differential equations
(PDEs) having n equations with m controls, m < n. There are roughly two
steps:

Firstly, control the system with a different control acting on each equation.
(Analytic resolution).
Secondly, try to find a way to get rid of the controls that should not
appear. (Algebraic resolution).

The first step is easier than the original problem.

Question
How to perform the second point?
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Fictitious control method and algebraic solvability

Algebraic solvability of differential systems

L : C∞(Q0)
m → C∞(Q0)

k linear partial differential operator (LPDO) on an
open set Q0 of Rd .

Goal

Solve Ly = f . (Gen-Dif-Syst)

Unknown: y . f is a source term.

Définition

Equation (Gen-Dif-Syst) is algebraically solvable if there exists a LPDO
M : C∞(Q0)

k → C∞(Q0)
m such that, for every f ∈ C∞(Q0)

k , Mf is a
solution of (Gen-Dif-Syst), i.e. L(M(f )) = f , i.e.

L ◦M = Id . (LcompM=I)
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Fictitious control method and algebraic solvability

Formal adjoint

Consider a LPDO M =
∑

|α|⩽m Aα∂
α, associate (formal) adjoint

M∗ : C∞(Q0)
l → C∞(Q0)

k

defined by

M∗ψ :=
∑

|α|⩽m

(−1)|α|∂α(Atr
αψ), ∀ψ ∈ C∞(Q0)

l .

Basic facts
M∗∗ = M.
If N is another LPDO of appropriate size, then (N ◦M)∗ = M∗ ◦ N ∗.

Consequence

(LcompM=I) is equivalent to

M∗ ◦ L∗ = Id .
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Fictitious control method and algebraic solvability

Some remarks

If M such that (LcompM=I) exists, the crucial point is that the solution
Mf depends locally on the source term f : if f is supported in ω, so is the
solution Mf .

For many PDEs, M does not exist (the inverse operator is a non-local
operator : the solution does not necessarily have the same support as f ).

⇒ the system (Gen-Dif-Syst) has to be underdetermined (less equations than
unknowns). In this case the “adjoint” equation L∗z = 0 is over-determined
(more equations than unknowns).
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Fictitious control method and algebraic solvability

What is the link with controllability? (1)

Consider some LPDO A and B a control operator which is also a LPDO, on
(0,T )× Ω, Ω bounded domain of Rd . Consider a system of PDEs with n
equations and distributed control:{

y ′ = Ay + Bu1ω in (0,T )× Ω,

y(0, ·) = y0 in Ω.
(Cont-Syst)

that we want to bring to 0 (for example) at time T > 0.

u: the control, supposed to act only on m of the equations (m < n) for
instance, supported on a subdomain ω.
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Fictitious control method and algebraic solvability

What is the link with controllability? (2)

First step (analytic part): we control the system on each equation. Assume
there exists a solution ŷ and a control û verifying{

ŷ ′ = Aŷ + û1ω,

y(0, ·) = y0.
(An-Syst)

û1ω is supposed to be regular enough, and to vanish at some order at time
t = 0 and time T = 0 and on ∂ω (for example û compactly supported in
(0,T )× ω).
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Fictitious control method and algebraic solvability

What is the link with controllability? (3)

Second step (algebraic part): we now consider û as a source term, and we
work locally on (0,T )× ω. We want to prove the algebraic solvability of
the following system: {

ỹ ′ = Aỹ + Bũ + û1ω, (Alg-Sys)

Can be rewritten under the form

L(ỹ , ũ) = f ,

where L(ỹ , ũ) := ỹ ′ −Aỹ − Bũ. Underdetermined. If we assume the
algebraic solvability, then there exists a solution (ỹ , ũ) which has the same
support as û1ω, and hence vanishes outside ω and at t = 0 and t = T .
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Fictitious control method and algebraic solvability

What is the link with controllability? (4)

To end, we just make the difference between ŷ and ỹ .
y := ỹ − ŷ verifies:

y ′ = Ay + Bũ because the “fictitious control” û 1̃ω̃ disappears from the
equation.
y(0, .) = ŷ(0, .)− ỹ(0, .) = y0 because ỹ vanishes at time t = 0.
y(T , .) = ŷ(T , .)− ỹ(T , .) = 0 because ŷ is controlled to 0 and ỹ vanishes
at time t = T .
ũ is supported in space on ω since it involves linear combinations of
derivatives of û.

A remark

ỹ modifies ŷ only locally on ω.
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y := ỹ − ŷ verifies:
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at time t = T .
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Interlude: the Kalman rank condition by algebraic solvability

Kalman condition

Consider the system of n ODEs controlled by m controls{
∂ty =Ay + Bu,

y(0) =y0,
(ODE-Cont)

where y0 ∈ Rn, u ∈ L2((0,T );Rm), A ∈ L(Rn) and B ∈ L(Rm,Rn).

Kalman-Ho-Narendra’63 CDE

System (ODE-Cont) is controllable at time T > 0 if and only if

Rank[A|B] = n,

where [A|B] := (B|AB|...|An−1B).
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Interlude: the Kalman rank condition by algebraic solvability

Kalman implies null controllability

Analytic Problem:
Find (ŷ , û) with v̂ ∈ C∞

c (0,T ) such that{
∂t ŷ = Aŷ + û,

ŷ(0) = y0, ŷ(T ) = 0 .

Algebraic Problem:
Find (ỹ , ũ) ∈ C∞

c (0,T ) such that

∂t ỹ = Aỹ + Bũ + û in (0,T ).

Conclusion:
The couple (y , u) := (ỹ − ŷ , ũ) is solution to system (ODE-Cont) satisfying
y(T ) = 0.
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Interlude: the Kalman rank condition by algebraic solvability

Resolution of the analytic problem

Consider η ∈ C∞([0,T ],R) with η = 1 on [0,T/3] and η = 0 on [2T/3,T ],
and consider yF solution of {

y ′
F = AyF

yF (0) = y0

Then ŷ = ηyF solution to {
ŷ ′ =Aŷ + û,

y(·, 0) =y0,

for û = ŷ ′ − Aŷ .

ŷ , û are in C∞,
ŷ(0) = y0 since η = 1 on 0,T/3],ŷ(T ) = 0 since η = 0 on [2T/3,T ],
û is compactly supported since η = 1 on [0,T/3] (so û = y ′

F − AyF = 0)
and η = 0 on [2T/3,T ].
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Then ŷ = ηyF solution to {
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Interlude: the Kalman rank condition by algebraic solvability

Resolution of the algebraic problem

Find (z̃ , ṽ) compactly supported such that

L(z̃ , ṽ) = v̂ ,

where
L(z̃ , ṽ) := ∂t z̃ − Az̃ − Bv̂ .

It suffices to find a differential operator M s.t.

L ◦M = Id .

The last equality is equivalent to

M∗ ◦ L∗ = Id ,

where L∗ is given by

L∗φ =

(
−∂tφ− A∗φ

−B∗φ

)
.
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Interlude: the Kalman rank condition by algebraic solvability

Heuristics

Remind L∗φ =

(
−∂tφ− A∗φ

−B∗φ

)
. Call L∗

1 = −∂t − A∗ and L∗
2 = −B∗.

By induction :
−L∗

2 = B∗.

Take −L∗
2. Compose by ∂t . Substract B∗L∗

1. We obtain
L∗

3 := ∂tB
∗ +−B∗∂t − B∗A∗ = B∗A∗.

Take L∗
3. Compose by ∂t . Substract B∗A∗L∗

1. We obtain
L∗

4 := ∂tB
∗A∗ +−B∗A∗∂t − B∗(A∗)2 = B∗(A∗)2.

By induction, we recover B∗,B∗A∗, . . .B∗(A∗)n−1.
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Interlude: the Kalman rank condition by algebraic solvability

More rigorously

Let S := (S1, ...,Sn) given for all (x1, x2) ∈ C∞(Ω;Rn+m) by
S1(x1, x2) := −x2,

S2(x1, x2) := x ′2 − B∗x1,

Sk(x1, x2) := Sk−1(x1, x2)
′ − B∗(A∗)k−2x1, ∀ k ∈ {3, ..., n}.

Then, we obtain
S ◦ L∗ = [A,B]∗.

Since the rank of [A|B] := (B|AB|...|An−1B) is equal to n, there exists
[A|B]−1 ∈ Mnm,n(R) such that [A|B][A|B]−1 = In. The operator

M := S∗[A|B]−1

is a differential operator of order n− 1 in time and is a solution of our problem.
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Back to the parabolic-transport system

Parabolic Components, Hyperbolic Components

Fourier components

(−B∂2
x + A∂x + K )Xe inx = n2

(
B +

i

n
A− 1

n2K

)
Xe inx .

Spectrum of −B∂2
x + A∂x + K

Sp(−B∂2
x + A∂x + K ) =

{
n2 Sp

(
B +

i

n
A− 1

n2K

)}
.

Perturbation theory

λnk eigenvalue of B + i
nA− 1

n2K . λk eigenvalue of B: λnk → λk ∈ Sp(B)

If λk ̸= 0, n2λnk ∼
n→+∞

n2λk : parabolic frequencies

If λk = 0, n2λnk ∼
n→+∞

inµk : hyperbolic frequencies

Free solutions: =
∑

Xnke
inx−n2λnk t ≈

∑
parabolic

Xnke
inx−n2λk t +

∑
hyperbolic

Xnke
inx−inµk t
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Back to the parabolic-transport system

Analytic resolution M = Id

The control problem under study

∂t f + A∂x f − B∂2
x f + Kf = 1ωu, (t, x) ∈ (0,+∞)× T. (Anal-Prob)

The result we aim to obtain

For any T > T ∗, for any s ∈ N∗ and any f0 ∈ Hs(T), there exists a control
u ∈ Hs

0((0,T )× ω) such that the solution f of (Anal-Prob) with initial
condition f (0, ·) = f0 verifies f (T , ·) = 0.

Follows from a well-known principle :
For parabolic equations with smooth coefficients, one can create C∞

0
controls even for rough initial condition (Lebeau-Robbiano’95).
For groups of operators, more regular initial conditions allow more regular
controls (Dehman-Lebeau’09, Ervedoza-Zuazua’10).

Here mix dynamics, but we adapt the arguments of Beauchard-Koenig-Le
Balc’h’20 (which themselves are inspired by Lebeau’Zuazua’98).
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Back to the parabolic-transport system

Analytic resolution M = Id II

Decouple and control

For uh, find up that controls parabolic frequencies in time T and is C∞
0 .

0 T ′ T<

For up, find uh that controls the hyperbolic frequencies in time T and is in
some Hk

0 space (Ervedoza-Zuazua’10).
If both steps agree, OK.
Make the two steps agree using the Fredholm alternative (on a finite
codimension subspace).
Deal with the finite dimensional subspaces that are left:
compactness-uniqueness.
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Back to the parabolic-transport system

Fourier projection and algebraic solvability

Let Bn = n2B + inA+ K and [Bn|M] = [M,BnM, . . . , |Bd−1
n M] ∈ Md,md(R).

Theorem

If rank[Bn|M] = d , for every X0 ∈ Cd , there exists u ∈ Hk
0 (0,T ) such that the

solution X of

X ′ = BnX +Mu, X (0) = X0

satisfies X (T ) = 0.

Proof by algebraic solvability:
Analytic part: already done, take the projection on the n-th mode of the
control u of the previous slide.
Then perform the algebraic solvability.
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Back to the parabolic-transport system

Fictitious control for parabolic-transport system

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every H4d(d−1) initial condition in time T > T ∗ if

∀n ∈ Z, Rank([Bn|M]) = d .

Algebraic solvability on each Fourier components?

(∂t − B∂2
x + A∂x + K )f = 1ωv

(v controls Q(∂x)
−1f0)

Fourier−−−−−−−−−−−→ X ′
n = BnXn + vn

Kalman condition−−−−−−−−−−−→ X ′
n = BnXn + [Bn|M]wn

Algebraic Solvability−−−−−−−−−−−→ X ′
n = BnXn +Mun

Inverse Fourier−−−−−−−−−−−→ (∂t − B∂2
x + A∂x + K )f = Mu

u = R(∂t , ∂x)v with R(τ, n) = P(τ, n)/Q(n) (rational function): , because of
the equation vn = [Bn|M]wn, no guarantee on Supp(u)
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Fictitious control for parabolic-transport system

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every H4d(d−1) initial condition in time T > T ∗ if

∀n ∈ Z, Rank([Bn|M]) = d .

Algebraic solvability on each Fourier components?

(∂t − B∂2
x + A∂x + K )f = 1ωQ(∂x)v (v controls Q(∂x)

−1f0)
Fourier−−−−−−−−−−−→ X ′

n = BnXn + Q(−in)vn
Kalman condition−−−−−−−−−−−→ X ′

n = BnXn + [Bn|M][Bn|M]−1Q(−in)vn
Algebraic Solvability−−−−−−−−−−−→ X ′

n = BnXn +MP(∂t ,−in)vn
Inverse Fourier−−−−−−−−−−−→ (∂t − B∂2

x + A∂x + K )f = MP(∂t , ∂x)v

u = R(∂t , ∂x)Q(∂x)v with R(τ, n) = P(τ, n)/Q(n) (rational function):
Supp(u)⊂ Supp(v)
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Back to the parabolic-transport system

Refinement on the loss of regularity

Loss of regularity

Null-controllability of every H4d(d−1)(T)d initial condition: very crude
regularity assumption...
But some regularity assumption is needed in general<;{

(∂t + ∂x)fh + ∂x fp + fp = 0
(∂t − ∂2

x )fp = 1ωup

Smoothing: if f0,h /∈ H1, we cannot steer f0 to 0 with L2 controls.
Can be refined easily to H4d(d−1)(T)dh × H4d(d−1)−1(T)dp by parabolic
regularity, and even a little bit more in some specific cases.
Almost optimal in the case of systems of 2 equations.
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Back to the parabolic-transport system

Refinement on the Kalman condition

Equations with invariants{
(∂t + ∂x)fh + ∂x fp = 0
(∂t − ∂2

x )fp = 1ωup
not null-controllable:

for n = 0, Vect{(n2B + inA+ K )iMv , i ∈ N, v ∈ Cd} = Vect
(

0
1

)
̸= Cd .

The average of the hyperbolic component is conserved. Maybe
null-controllability of every initial condition with zero hyperbolic-average?

Theorem (Koenig-Lissy 2023)

Assume T > T∗ and
∀|n| large enough, Vect{(n2B + inA+ K )iMv , i ∈ N, v ∈ Cd} = Cd

f0 ∈ H4d(d−1)(T)d

∀n ∈ Z, f̂0(n) ∈ Vect{(n2B + inA+ K )iMv , i ∈ N, v ∈ Cd}
There exists a control in L2((0,T )× ω) that steers f0 to 0 in time T .

Enables to treat (amongst others) the previous example.
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Back to the parabolic-transport system

Conclusion

Open problems

Stabilization ?
Domain other than T? First Tn, then other domains ?
Sharp results in terms of regularity ?
non-constant coefficients?
. . .

Thank you for your attention.
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