Null controllability of underactuated linear parabolic-transport system
 In collaboration with Armand Koenig

Pierre Lissy

CERMICS, École des Ponts ParisTech

Workshop EDP COSy, Toulouse 19 october 2023

Summary

(1) Introduction

- Presentation of the problem
- Fictitious control method and algebraic solvability
(2) (Idea of the) proofs
- Interlude: the Kalman rank condition by algebraic solvability
- Back to the parabolic-transport system

Summary

(1) Introduction

- Presentation of the problem
- Fictitious control method and algebraic solvability

2 (Idea of the) proofs

- Interlude: the Kalman rank condition by algebraic solvability
- Back to the parabolic-transport system

Controllability of the transport/heat equation on the torus

ω non-empty open interval of $\mathbb{T}:=\mathbb{R} \backslash 2 \pi \mathbb{Z}, T>0$.

Theorem

The heat equation is null-controllable in any time $T: \forall f_{0} \in L^{2}(\mathbb{T})$, $\exists u \in L^{2}([0, T] \times \omega)$, the solution f of

$$
\partial_{t} f-\partial_{x x}^{2} f=1_{\omega} u, \quad f(0, \cdot)=f_{0}
$$

satisfies $f(T, \cdot)=0$ on \mathbb{T}.

Controllability of the transport/heat equation on the torus

ω non-empty open interval of $\mathbb{T}:=\mathbb{R} \backslash 2 \pi \mathbb{Z}, T>0$.

Theorem

The heat equation is null-controllable in any time $T: \forall f_{0} \in L^{2}(\mathbb{T})$, $\exists u \in L^{2}([0, T] \times \omega)$, the solution f of

$$
\partial_{t} f-\partial_{x x}^{2} f=1_{\omega} u, \quad f(0, \cdot)=f_{0}
$$

satisfies $f(T, \cdot)=0$ on \mathbb{T}.

Theorem

ω Let $c>0$. The transport equation at speed c is exactly controllable in time T if $T>\frac{2 \pi-|\omega|}{c}: \forall f_{0}, f_{T} \in L^{2}(\mathbb{T}), \exists u \in L^{2}((0, T) \times \omega)$, the solution f of

$$
\partial_{t} f-c \partial_{x} f=1_{\omega} u, \quad f(0)=f_{0}
$$

satisfies $f(T, \cdot)=f_{T}$ on \mathbb{T}. But not controllable if $T<\frac{2 \pi-|\omega|}{c}$.

Motivation

Investigate systems of PDEs that involve both parabolic and transport effects.

- Many models of interest can be written/transformed in this form.
- Coupling different dynamics, with different behaviours in control theory, is a challenging question: which dynamics "wins"?
- Many difficulties that are specific to systems: influence of the coupling terms, regularity issues on the initial conditions...
- Emphasis here on underactuated systems: less controls than equations.

Motivation

Investigate systems of PDEs that involve both parabolic and transport effects.

- Many models of interest can be written/transformed in this form.
- Coupling different dynamics, with different behaviours in control theory, is a challenging question: which dynamics "wins"?
- Many difficulties that are specific to systems: influence of the coupling terms, regularity issues on the initial conditions...
- Emphasis here on underactuated systems: less controls than equations.

Here, aim to work in a setting that might cover or generalize already known results, under strong technical restrictions:

- Work on the torus.
- Restrict to linear constant couplings.

Partial study by Beauchard-Koenig-Le Balc'h '20.

Parabolic-Transport Systems

The abstract system of $d=d_{h}+d_{p}$ equations and m controls

$$
\begin{gathered}
\partial_{t} f+A \partial_{x} f-B \partial_{x}^{2} f+K f=M 1_{\omega} \boldsymbol{u}, \quad(t, x) \in(0,+\infty) \times \mathbb{T} \\
f=\binom{f_{h}}{f_{p}} \in \mathbb{C}^{d}=\mathbb{C}^{d_{h}+d_{p}} ; B=\left(\begin{array}{ll}
0 & 0 \\
0 & D
\end{array}\right), D+D^{*} \text { positive definite } ; \quad K=\left(\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right) ; \\
A=\left(\begin{array}{ll}
A_{11} & \boldsymbol{A}_{12} \\
\boldsymbol{A}_{21} & A_{22}
\end{array}\right), \quad A_{11} \text { diagonalizable, } \operatorname{Sp}\left(A_{11}\right) \subset \mathbb{R} \backslash\{0\} ; \\
M=\left(\begin{array}{ll}
M_{1} & M_{2}
\end{array}\right) \in \mathcal{M}_{d, m}(\mathbb{C}) .
\end{gathered}
$$

Coupling between parabolic and transport equations

$$
f=\binom{f_{h}}{f_{p}},\left\{\begin{array}{l}
\left(\partial_{t}+A_{11} \partial_{x}+K_{11}\right) f_{h}+\left(\boldsymbol{A}_{12} \partial_{x}+K_{12}\right) f_{p}=1_{\omega} M_{1} u, \\
\left(\partial_{t}-D \partial_{x}^{2}+A_{22} \partial_{x}+K_{22}\right) f_{p}+\left(\boldsymbol{A}_{21} \partial_{x}+K_{21}\right) f_{h}=1_{\omega} M_{2} u .
\end{array}\right.
$$

Question

For which f_{0}, T does there exist $u \in L^{2}\left((0, T) \times \omega, \mathbb{C}^{m}\right)$ such that $f(T, \cdot)=0$?

Example I: Linearized compressible Navier-Stokes

Navier-Stokes

ρ : fluid density. v : fluid velocity. $a, \gamma, \mu>0$.

$$
\begin{cases}\partial_{t} \rho+\partial_{x}(\rho v) & =0 \text { on }[0, T] \times \mathbb{T}, \\ \rho\left(\partial_{t} v+v \partial_{x} v\right)+\partial_{x}\left(a \rho^{\gamma}\right)-\mu \partial_{x}^{2} v & =1_{\omega} u_{2}(t, x) \text { on }[0, T] \times \mathbb{T},\end{cases}
$$

Linearization around a stationary state $(\bar{\rho}, \bar{v}) \in \mathbb{R}_{+}^{*} \times \mathbb{R}^{*}$:

$$
\begin{cases}\partial_{t} \rho+\bar{v} \partial_{x} \rho+\bar{\rho} \partial_{x} v= & 0 \text { in }[0, T] \times \mathbb{T}, \\ \partial_{t} v+\bar{v} \partial_{x} v+a \bar{\rho}^{\gamma-2} \partial_{x} \rho-\frac{\mu}{\bar{\rho}} \partial_{x}^{2} v & =1_{\omega} u_{2}(t, x) \text { in }[0, T] \times \mathbb{T} .\end{cases}
$$

- [Chowdhury-Mitra-Ramaswamy-Renardy 2014]: control in time $T>2 \pi /|\bar{v}|$ for initial conditions $\left(\rho_{0}, v_{0}\right) \in H_{m}^{1} \times L^{2}$. (m : mean-value equal to 0).
- [Beauchard-Koenig-Le Balc'h '23]: control in time $T>(2 \pi-|\omega|) /|\bar{v}|$ for initial conditions in $H_{m}^{2} \times H^{2}$, non-controllability in time $T<(2 \pi-|\omega|) /|\bar{v}|$.
- [Koenig-Lissy 2023] control in time $T>(2 \pi-|\omega|) /|\bar{v}|$ for initial conditions in $H_{m}^{1} \times L^{2}$, non-controllability in time $T<(2 \pi-|\omega|) /|\bar{v}|$ in no Sobolev space.

Example II : wave equation with structural damping

Wave equation with structural damping and moving control

$$
\partial_{t t} y-\partial_{x x} y-\partial_{t x x} y+b \partial_{t} y=h \text { in }[0, T] \times \mathbb{T},
$$

where $b \in \mathbb{R}$ and $h(t, x)$ is a moving control at speed $c \geqslant 0$: $h(t, x)=u(t, x) 1_{\omega+c t}(x)$.

- [Rosier-Rouchon 2007]: $c=0$, controllability in no time.
- [Martin-Rosier-Rouchon 2014]: $c \neq 0$, controllability in time $T>2 \pi$ for $\left(y, \partial_{t} y\right) \in H^{s+2} \times H^{s}$, $s>15 / 2$.
- [Beauchard-Koenig-Le Balc'h 2020]: $x \leftrightarrow x-c t, z=\partial_{t} y-\partial_{x x} y+(b-1) y$, with $f=\binom{\bar{y}}{y}$, $A=\left(\begin{array}{cc}-c & 0 \\ 0 & c\end{array}\right), B=\left(\begin{array}{cc}0 & 0 \\ 0 & \mu / \rho\end{array}\right)$ and $K=\left(\begin{array}{cc}1 & 1 \\ -1 & b-1 \\ -1 & 1\end{array}\right)$: controllable in time $T>(2 \pi-|\omega|) / c$ for initial conditions in $H^{1} \times L^{2}$, not controllable in this space if $T<(2 \pi-|\omega|) / c$.
- [Koenig-Lissy 2023] : not controllable in no Sobolev spaces.

Fully actuated system

Theorem (Case , Beauchard-Koenig-Le Balc'h 2020)

Introduce

$$
T^{*}=\frac{2 \pi-|\omega|}{\min _{\mu \in \operatorname{Sp}_{\mathrm{p}}\left(A_{11}\right)}|\mu|} .
$$

Then
(3) the system is not null-controllable on ω in time $T<T^{*}$,
(2) the system is null-controllable on ω in time $T>T^{*}$.

Minimal time $=$ minimal time for the transport equation

In the case

$$
\partial_{t} f_{h}+A_{11} \partial_{x} f_{h}=u_{h} 1_{\omega}
$$

Free solutions $=$ sums of waves travelling at speed $\mu_{k} \in \operatorname{Sp}\left(A_{11}\right)$.

Underactuated system

For $n \in \mathbb{Z}$, introduce $B_{n}=n^{2} B+i n A+K$ and
$\left[B_{n} \mid M\right]=\left[M, B_{n} M, \ldots, \mid B_{n}^{d-1} M \in \mathcal{M}_{d, m d}(\mathbb{R})\right.$.

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every $\mathrm{H}^{4 d(d-1)}$ initial condition in time $T>T^{*}$ iff $\operatorname{rank}\left(\left[B_{n} \mid M\right]\right)=d$.

Coupling condition

n-th Fourier component of the parabolic-transport system:

$$
X_{n}^{\prime}(t)+\left(n^{2} B+i n A+K\right) X_{n}(t)=M u_{n}(t)
$$

Condition of the theorem \Leftrightarrow the finite-dimensional system $X_{n}^{\prime}+\left(n^{2} B+i n A+K\right) X_{n}=M u_{n}$ is controllable.

If $T<T^{*}$, no controllability in no Sobolev Space by an appropriate WKB construction (not totally trivial).

Summary

(1) Introduction

- Presentation of the problem
- Fictitious control method and algebraic solvability

2 (Idea of the) proofs

- Interlude: the Kalman rank condition by algebraic solvability
- Back to the parabolic-transport system

Heuristic

First introduced in Coron'92 for ODEs and Coron-Lissy'14 for PDEs (Navier-Stokes 3D).
This method is useful to control systems of linear partial differential equations (PDEs) having n equations with m controls, $m<n$. There are roughly two steps:

- Firstly, control the system with a different control acting on each equation. (Analytic resolution).
- Secondly, try to find a way to get rid of the controls that should not appear. (Algebraic resolution).
The first step is easier than the original problem.

Question

How to perform the second point?

Algebraic solvability of differential systems

$\mathcal{L}: C^{\infty}\left(Q_{0}\right)^{m} \rightarrow C^{\infty}\left(Q_{0}\right)^{k}$ linear partial differential operator (LPDO) on an open set Q_{0} of \mathbb{R}^{d}.

Goal

Solve $\mathcal{L} y=f$.
(Gen-Dif-Syst)
Unknown: y. f is a source term.

Définition

Equation (Gen-Dif-Syst) is algebraically solvable if there exists a LPDO $\mathcal{M}: C^{\infty}\left(Q_{0}\right)^{k} \rightarrow C^{\infty}\left(Q_{0}\right)^{m}$ such that, for every $f \in C^{\infty}\left(Q_{0}\right)^{k}, \mathcal{M} f$ is a solution of (Gen-Dif-Syst), i.e. $\mathcal{L}(\mathcal{M}(f))=f$, i.e.

$$
\mathcal{L} \circ \mathcal{M}=I d
$$

(LcompM=I)

Formal adjoint

Consider a LPDO $\mathcal{M}=\sum_{|\alpha| \leqslant m} A_{\alpha} \partial^{\alpha}$, associate (formal) adjoint

$$
\mathcal{M}^{*}: C^{\infty}\left(Q_{0}\right)^{\prime} \rightarrow C^{\infty}\left(Q_{0}\right)^{k}
$$

defined by

$$
\mathcal{M}^{*} \psi:=\sum_{|\alpha| \leqslant m}(-1)^{|\alpha|} \partial^{\alpha}\left(A_{\alpha}^{\operatorname{tr}} \psi\right), \forall \psi \in C^{\infty}\left(Q_{0}\right)^{\prime}
$$

Basic facts

- $\mathcal{M}^{* *}=\mathcal{M}$.
- If \mathcal{N} is another LPDO of appropriate size, then $(\mathcal{N} \circ \mathcal{M})^{*}=\mathcal{M}^{*} \circ \mathcal{N}^{*}$.

Consequence

(LcompM=I) is equivalent to

$$
\mathcal{M}^{*} \circ \mathcal{L}^{*}=I d
$$

Some remarks

- If \mathcal{M} such that $(\mathrm{LcompM}=\mathrm{I})$ exists, the crucial point is that the solution $\mathcal{M} f$ depends locally on the source term f : if f is supported in ω, so is the solution $\mathcal{M f}$.

Some remarks

- If \mathcal{M} such that $(\mathrm{LcompM}=\mathrm{I})$ exists, the crucial point is that the solution $\mathcal{M} f$ depends locally on the source term f : if f is supported in ω, so is the solution $\mathcal{M} f$.
- For many PDEs, \mathcal{M} does not exist (the inverse operator is a non-local operator : the solution does not necessarily have the same support as f).
\Rightarrow the system (Gen-Dif-Syst) has to be underdetermined (less equations than unknowns). In this case the "adjoint" equation $\mathcal{L}^{*} z=0$ is over-determined (more equations than unknowns).

What is the link with controllability?

Consider some LPDO \mathcal{A} and \mathcal{B} a control operator which is also a LPDO, on $(0, T) \times \Omega, \Omega$ bounded domain of \mathbb{R}^{d}. Consider a system of PDEs with n equations and distributed control:

$$
\left\{\begin{align*}
y^{\prime} & =\mathcal{A} y+\mathcal{B} u 1_{\omega} \text { in }(0, T) \times \Omega, \tag{Cont-Syst}\\
y(0, \cdot) & =y^{0} \text { in } \Omega .
\end{align*}\right.
$$

that we want to bring to 0 (for example) at time $T>0$.
u : the control, supposed to act only on m of the equations ($m<n$) for instance, supported on a subdomain ω.

What is the link with controllability? (2)

- First step (analytic part): we control the system on each equation. Assume there exists a solution \hat{y} and a control \widehat{u} verifying

$$
\left\{\begin{align*}
\widehat{y}^{\prime} & =\mathcal{A} \widehat{y}+\widehat{u} 1_{\omega}, \tag{An-Syst}\\
y(0, \cdot) & =y^{0}
\end{align*}\right.
$$

$\widehat{u} 1_{\omega}$ is supposed to be regular enough, and to vanish at some order at time $t=0$ and time $T=0$ and on $\partial \omega$ (for example \widehat{u} compactly supported in $(0, T) \times \omega)$.

What is the link with controllability? (3)

- Second step (algebraic part): we now consider \widehat{u} as a source term, and we work locally on $(0, T) \times \omega$. We want to prove the algebraic solvability of the following system:

$$
\begin{equation*}
\left\{\tilde{y}^{\prime}=\mathcal{A} \tilde{y}+\mathcal{B} \tilde{u}+\widehat{u} 1_{\omega},\right. \tag{Alg-Sys}
\end{equation*}
$$

Can be rewritten under the form

$$
\mathcal{L}(\tilde{y}, \tilde{u})=f,
$$

where $\mathcal{L}(\tilde{y}, \tilde{u}):=\tilde{y}^{\prime}-\mathcal{A} \tilde{y}-\mathcal{B} \tilde{u}$. Underdetermined. If we assume the algebraic solvability, then there exists a solution (\tilde{y}, \tilde{u}) which has the same support as $\widehat{u} 1_{\omega}$, and hence vanishes outside ω and at $t=0$ and $t=T$.

What is the link with controllability? (4)

To end, we just make the difference between \widehat{y} and \tilde{y}. $y:=\tilde{y}-\widehat{y}$ verifies:

What is the link with controllability? (4)

To end, we just make the difference between \widehat{y} and \tilde{y}. $y:=\tilde{y}-\widehat{y}$ verifies:

- $y^{\prime}=\mathcal{A} y+\mathcal{B} \tilde{u}$ because the "fictitious control" $\widehat{u} \tilde{1}_{\tilde{\omega}}$ disappears from the equation.

What is the link with controllability? (4)

To end, we just make the difference between \widehat{y} and \tilde{y}. $y:=\tilde{y}-\hat{y}$ verifies:

- $y^{\prime}=\mathcal{A} y+\mathcal{B} \tilde{u}$ because the "fictitious control" $\widehat{u} \tilde{1}_{\tilde{\omega}}$ disappears from the equation.
- $y(0,)=.\widehat{y}(0,)-.\tilde{y}(0,)=.y^{0}$ because \tilde{y} vanishes at time $t=0$.

What is the link with controllability?

To end, we just make the difference between \widehat{y} and \tilde{y}. $y:=\tilde{y}-\widehat{y}$ verifies:

- $y^{\prime}=\mathcal{A} y+\mathcal{B} \tilde{u}$ because the "fictitious control" $\widehat{u} \tilde{1}_{\tilde{\omega}}$ disappears from the equation.
- $y(0,)=.\widehat{y}(0,)-.\tilde{y}(0,)=.y^{0}$ because \tilde{y} vanishes at time $t=0$.
- $y(T,)=.\widehat{y}(T,)-.\tilde{y}(T,)=$.0 because \hat{y} is controlled to 0 and \tilde{y} vanishes at time $t=T$.

What is the link with controllability? (4)

To end, we just make the difference between \widehat{y} and \tilde{y}. $y:=\tilde{y}-\widehat{y}$ verifies:

- $y^{\prime}=\mathcal{A} y+\mathcal{B} u \tilde{u}$ because the "fictitious control" $\widehat{u} \tilde{1}_{\tilde{\omega}}$ disappears from the equation.
- $y(0,)=.\widehat{y}(0,)-.\tilde{y}(0,)=.y^{0}$ because \tilde{y} vanishes at time $t=0$.
- $y(T,)=.\widehat{y}(T,)-.\tilde{y}(T,)=$.0 because \hat{y} is controlled to 0 and \tilde{y} vanishes at time $t=T$.
- \tilde{u} is supported in space on ω since it involves linear combinations of derivatives of \widehat{u}.

A remark

\tilde{y} modifies \hat{y} only locally on ω.

Summary

(

- Presentation of the problem
- Fictitious control method and algebraic solvability
(2) (Idea of the) proofs
- Interlude: the Kalman rank condition by algebraic solvability
- Back to the parabolic-transport system

Summary

(1) Introduction

- Presentation of the problem
- Fictitious control method and algebraic solvability
(2) (Idea of the) proofs
- Interlude: the Kalman rank condition by algebraic solvability
- Back to the parabolic-transport system

Kalman condition

Consider the system of n ODEs controlled by m controls

$$
\left\{\begin{array}{l}
\partial_{t} y=A y+B u \\
y(0)=y^{0}
\end{array}\right.
$$

(ODE-Cont)
where $y^{0} \in \mathbb{R}^{n}, u \in L^{2}\left((0, T) ; \mathbb{R}^{m}\right), A \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ and $B \in \mathcal{L}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$.

Kalman condition

Consider the system of n ODEs controlled by m controls

$$
\left\{\begin{array}{l}
\partial_{t} y=A y+B u \\
y(0)=y^{0}
\end{array}\right.
$$

(ODE-Cont)
where $y^{0} \in \mathbb{R}^{n}, u \in L^{2}\left((0, T) ; \mathbb{R}^{m}\right), A \in \mathcal{L}\left(\mathbb{R}^{n}\right)$ and $B \in \mathcal{L}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$.

Kalman-Ho-Narendra'63 CDE

System (ODE-Cont) is controllable at time $T>0$ if and only if

$$
\operatorname{Rank}[A \mid B]=n,
$$

where $[A \mid B]:=\left(B|A B| \ldots \mid A^{n-1} B\right)$.

Kalman implies null controllability

Analytic Problem:

Find (\hat{y}, \widehat{u}) with $\hat{v} \in C_{c}^{\infty}(0, T)$ such that

$$
\left\{\begin{array}{l}
\partial_{t} \widehat{y}=A \widehat{y}+\widehat{u}, \\
\widehat{y}(0)=y^{0}, \widehat{y}(T)=0 .
\end{array}\right.
$$

Algebraic Problem:

Find $(\tilde{y}, \tilde{u}) \in C_{c}^{\infty}(0, T)$ such that

$$
\partial_{t} \tilde{y}=A \tilde{y}+B \tilde{u}+\widehat{u} \text { in }(0, T) .
$$

Conclusion:
The couple $(y, u):=(\tilde{y}-\widehat{y}, \tilde{u})$ is solution to system (ODE-Cont) satisfying $y(T)=0$.

Resolution of the analytic problem

Consider $\eta \in C^{\infty}([0, T], \mathbb{R})$ with $\eta=1$ on $[0, T / 3]$ and $\eta=0$ on $[2 T / 3, T]$, and consider y_{F} solution of

$$
\left\{\begin{aligned}
y_{F}^{\prime} & =A y_{F} \\
y_{F}(0) & =y^{0}
\end{aligned}\right.
$$

Then $\hat{y}=\eta y_{F}$ solution to

$$
\left\{\begin{aligned}
\hat{y}^{\prime} & =A \widehat{y}+\widehat{u}, \\
y(\cdot, 0) & =y^{0},
\end{aligned}\right.
$$

for $\widehat{u}=\widehat{y}^{\prime}-A \widehat{y}$.

Resolution of the analytic problem

Consider $\eta \in C^{\infty}([0, T], \mathbb{R})$ with $\eta=1$ on $[0, T / 3]$ and $\eta=0$ on $[2 T / 3, T]$, and consider y_{F} solution of

$$
\left\{\begin{aligned}
y_{F}^{\prime} & =A y_{F} \\
y_{F}(0) & =y^{0}
\end{aligned}\right.
$$

Then $\hat{y}=\eta y_{F}$ solution to

$$
\left\{\begin{aligned}
\hat{y}^{\prime} & =A \widehat{y}+\widehat{u}, \\
y(\cdot, 0) & =y^{0},
\end{aligned}\right.
$$

for $\widehat{u}=\widehat{y}^{\prime}-A \widehat{y}$.

- \widehat{y}, \widehat{u} are in C^{∞},
- $\widehat{y}(0)=y^{0}$ since $\eta=1$ on $\left.0, T / 3\right], \widehat{y}(T)=0$ since $\eta=0$ on $[2 T / 3, T]$,
- \widehat{u} is compactly supported since $\eta=1$ on $[0, T / 3]$ (so $\left.\widehat{u}=y_{F}^{\prime}-A y_{F}=0\right)$ and $\eta=0$ on $[2 T / 3, T]$.

Resolution of the algebraic problem

Find (\tilde{z}, \tilde{v}) compactly supported such that

$$
\mathcal{L}(\tilde{z}, \tilde{v})=\widehat{v},
$$

where

$$
\mathcal{L}(\tilde{z}, \tilde{v}):=\partial_{t} \tilde{z}-A \tilde{z}-B \widehat{v} .
$$

It suffices to find a differential operator \mathcal{M} s.t.

$$
\mathcal{L} \circ \mathcal{M}=I d .
$$

Resolution of the algebraic problem

Find (\tilde{z}, \tilde{v}) compactly supported such that

$$
\mathcal{L}(\tilde{z}, \tilde{v})=\widehat{v},
$$

where

$$
\mathcal{L}(\tilde{z}, \tilde{v}):=\partial_{t} \tilde{z}-A \tilde{z}-B \widehat{v} .
$$

It suffices to find a differential operator \mathcal{M} s.t.

$$
\mathcal{L} \circ \mathcal{M}=I d .
$$

The last equality is equivalent to

$$
\mathcal{M}^{*} \circ \mathcal{L}^{*}=I d,
$$

where \mathcal{L}^{*} is given by

$$
\mathcal{L}^{*} \varphi=\binom{-\partial_{t} \varphi-A^{*} \varphi}{-B^{*} \varphi} .
$$

Heuristics

Remind $\mathcal{L}^{*} \varphi=\binom{-\partial_{t} \varphi-A^{*} \varphi}{-B^{*} \varphi}$. Call $\mathcal{L}_{1}^{*}=-\partial_{t}-A^{*}$ and $\mathcal{L}_{2}^{*}=-B^{*}$.
By induction :

- $-\mathcal{L}_{2}^{*}=B^{*}$.
- Take $-\mathcal{L}_{2}^{*}$. Compose by ∂_{t}. Substract $B^{*} \mathcal{L}_{1}^{*}$. We obtain $\mathcal{L}_{3}^{*}:=\partial_{t} B^{*}+-B^{*} \partial_{t}-B^{*} A^{*}=B^{*} A^{*}$.
- Take \mathcal{L}_{3}^{*}. Compose by ∂_{t}. Substract $B^{*} A^{*} \mathcal{L}_{1}^{*}$. We obtain $\mathcal{L}_{4}^{*}:=\partial_{t} B^{*} A^{*}+-B^{*} A^{*} \partial_{t}-B^{*}\left(A^{*}\right)^{2}=B^{*}\left(A^{*}\right)^{2}$.

By induction, we recover $B^{*}, B^{*} A^{*}, \ldots B^{*}\left(A^{*}\right)^{n-1}$.

More rigorously

Let $\mathcal{S}:=\left(\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}\right)$ given for all $\left(x_{1}, x_{2}\right) \in \mathcal{C}^{\infty}\left(\Omega ; \mathbb{R}^{n+m}\right)$ by

$$
\left\{\begin{array}{l}
\mathcal{S}_{1}\left(x_{1}, x_{2}\right):=-x_{2}, \\
\mathcal{S}_{2}\left(x_{1}, x_{2}\right):=x_{2}^{\prime}-B^{*} x_{1}, \\
\mathcal{S}_{k}\left(x_{1}, x_{2}\right):=\mathcal{S}_{k-1}\left(x_{1}, x_{2}\right)^{\prime}-B^{*}\left(A^{*}\right)^{k-2} x_{1}, \quad \forall k \in\{3, \ldots, n\}
\end{array}\right.
$$

Then, we obtain

$$
\mathcal{S} \circ \mathcal{L}^{*}=[A, B]^{*} .
$$

Since the rank of $[A \mid B]:=\left(B|A B| \ldots \mid A^{n-1} B\right)$ is equal to n, there exists $[A \mid B]^{-1} \in \mathcal{M}_{n m, n}(\mathbb{R})$ such that $[A \mid B][A \mid B]^{-1}=I_{n}$. The operator

$$
\mathcal{M}:=\mathcal{S}^{*}[A \mid B]^{-1}
$$

is a differential operator of order $n-1$ in time and is a solution of our problem.

Summary

(1) Introduction

- Presentation of the problem
- Fictitious control method and algebraic solvability

2 (Idea of the) proofs

- Interlude: the Kalman rank condition by algebraic solvability
- Back to the parabolic-transport system

Parabolic Components, Hyperbolic Components

Fourier components

$$
\left(-B \partial_{x}^{2}+A \partial_{x}+K\right) X e^{i n x}=n^{2}\left(B+\frac{i}{n} A-\frac{1}{n^{2}} K\right) X e^{i n x}
$$

Spectrum of $-B \partial_{x}^{2}+A \partial_{x}+K$

$$
\operatorname{Sp}\left(-B \partial_{x}^{2}+A \partial_{x}+K\right)=\left\{n^{2} \operatorname{Sp}\left(B+\frac{i}{n} A-\frac{1}{n^{2}} K\right)\right\} .
$$

Perturbation theory

$\lambda_{n k}$ eigenvalue of $B+\frac{i}{n} A-\frac{1}{n^{2}} K . \lambda_{k}$ eigenvalue of $B: \lambda_{n k} \rightarrow \lambda_{k} \in \operatorname{Sp}(B)$

- If $\lambda_{k} \neq 0, n^{2} \lambda_{n k} \underset{n \rightarrow+\infty}{\sim} n^{2} \lambda_{k}$: parabolic frequencies
- If $\lambda_{k}=0, n^{2} \lambda_{n k} \underset{n \rightarrow+\infty}{\sim} i n \mu_{k}$: hyperbolic frequencies
- Free solutions: $=\sum X_{n k} e^{i n x-n^{2} \lambda_{n k} t} \approx \sum_{\text {parabolic }} X_{n k} e^{i n x-n^{2} \lambda_{k} t}+\sum_{\text {hyperbolic }} X_{n k} e^{i n x-i n \mu_{k} t}$

Analytic resolution $M=/ d$

The control problem under study

$$
\partial_{t} f+A \partial_{x} f-B \partial_{x}^{2} f+K f=1_{\omega} u, \quad(t, x) \in(0,+\infty) \times \mathbb{T} . \quad \text { (Anal-Prob) }
$$

The result we aim to obtain

For any $T>T^{*}$, for any $s \in \mathbb{N}^{*}$ and any $f_{0} \in H^{s}(\mathbb{T})$, there exists a control $u \in H_{0}^{s}((0, T) \times \omega)$ such that the solution f of (Anal-Prob) with initial condition $f(0, \cdot)=f_{0}$ verifies $f(T, \cdot)=0$.

Follows from a well-known principle :

- For parabolic equations with smooth coefficients, one can create C_{0}^{∞} controls even for rough initial condition (Lebeau-Robbiano'95).
- For groups of operators, more regular initial conditions allow more regular controls (Dehman-Lebeau'09, Ervedoza-Zuazua'10).
Here mix dynamics, but we adapt the arguments of Beauchard-Koenig-Le Balc'h'20 (which themselves are inspired by Lebeau'Zuazua'98).

Analytic resolution $M=/ d \|$

Decouple and control

Analytic resolution $M=/ d$ II

Decouple and control

- For u_{h}, find u_{p} that controls parabolic frequencies in time T and is C_{0}^{∞}.
-

Analytic resolution $M=/ d$ II

Decouple and control

- For u_{h}, find u_{p} that controls parabolic frequencies in time T and is C_{0}^{∞}.

- For u_{p}, find u_{h} that controls the hyperbolic frequencies in time T and is in some H_{0}^{k} space (Ervedoza-Zuazua'10).

Analytic resolution $M=/ d$ II

Decouple and control

- For u_{h}, find u_{p} that controls parabolic frequencies in time T and is C_{0}^{∞}.

- For u_{p}, find u_{h} that controls the hyperbolic frequencies in time T and is in some H_{0}^{k} space (Ervedoza-Zuazua'10).
- If both steps agree, OK.
- Make the two steps agree using the Fredholm alternative (on a finite codimension subspace).

Analytic resolution $M=/ d$ II

Decouple and control

- For u_{h}, find u_{p} that controls parabolic frequencies in time T and is C_{0}^{∞}.

- For u_{p}, find u_{h} that controls the hyperbolic frequencies in time T and is in some H_{0}^{k} space (Ervedoza-Zuazua'10).
- If both steps agree, OK.
- Make the two steps agree using the Fredholm alternative (on a finite codimension subspace).
- Deal with the finite dimensional subspaces that are left: compactness-uniqueness.

Fourier projection and algebraic solvability

$$
\text { Let } B_{n}=n^{2} B+i n A+K \text { and }\left[B_{n} \mid M\right]=\left[M, B_{n} M, \ldots, \mid B_{n}^{d-1} M\right] \in \mathcal{M}_{d, m d}(\mathbb{R}) \text {. }
$$

Theorem

If rank $\left[B_{n} \mid M\right]=d$, for every $X_{0} \in \mathbb{C}^{d}$, there exists $u \in H_{0}^{k}(0, T)$ such that the solution X of

$$
X^{\prime}=B_{n} X+M u, \quad X(0)=X_{0}
$$

satisfies $X(T)=0$.

Proof by algebraic solvability:

- Analytic part: already done, take the projection on the n-th mode of the control u of the previous slide.
- Then perform the algebraic solvability.

Fictitious control for parabolic-transport system

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every $\mathrm{H}^{4 d(d-1)}$ initial condition in time $T>T^{*}$ if

$$
\forall n \in \mathbb{Z}, \operatorname{Rank}\left(\left[B_{n} \mid M\right]\right)=d
$$

Algebraic solvability on each Fourier components?

$$
\left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=1_{\omega} v
$$

Fourier

$$
X_{n}^{\prime}=B_{n} X_{n}+v_{n}
$$

$\xrightarrow{\text { Kalman condition }} X_{n}^{\prime}=B_{n} X_{n}+\left[B_{n} \mid M\right] w_{n}$
$\xrightarrow{\text { Algebraic Solvability }} X_{n}^{\prime}=B_{n} X_{n}+M u_{n}$
$\xrightarrow{\text { Inverse Fourier }}\left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=M u$
$u=R\left(\partial_{t}, \partial_{x}\right) v$ with $R(\tau, n)=P(\tau, n) / Q(n)$ (rational function): , because of the equation $v_{n}=\left[B_{n} \mid M\right] w_{n}$, no guarantee on $\operatorname{Supp}(u)$

Fictitious control for parabolic-transport system

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every $\mathrm{H}^{4 d(d-1)}$ initial condition in time $T>T^{*}$ if

$$
\forall n \in \mathbb{Z}, \operatorname{Rank}\left(\left[B_{n} \mid M\right]\right)=d
$$

Algebraic solvability on each Fourier components?

$$
\left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=1_{\omega} v
$$

Fourier

$$
X_{n}^{\prime}=B_{n} X_{n}+v_{n}
$$

$\xrightarrow{\text { Kalman condition }} X_{n}^{\prime}=B_{n} X_{n}+\left[B_{n} \mid M\right] w_{n}$
$\xrightarrow{\text { Algebraic Solvability }} X_{n}^{\prime}=B_{n} X_{n}+M u_{n}$
$\xrightarrow{\text { Inverse Fourier }}\left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=M u$
$u=R\left(\partial_{t}, \partial_{x}\right) v$ with $R(\tau, n)=P(\tau, n) / Q(n)$ (rational function): , because of the equation $v_{n}=\left[B_{n} \mid M\right] w_{n}$, no guarantee on $\operatorname{Supp}(u)$

Fictitious control for parabolic-transport system

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every $\mathrm{H}^{4 d(d-1)}$ initial condition in time $T>T^{*}$ if

$$
\forall n \in \mathbb{Z}, \operatorname{Rank}\left(\left[B_{n} \mid M\right]\right)=d
$$

Algebraic solvability on each Fourier components?

$$
\left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=1_{\omega} Q\left(\partial_{x}\right) v \quad\left(v \text { controls } Q\left(\partial_{x}\right)^{-1} f_{0}\right)
$$

Fourier

$$
X_{n}^{\prime}=B_{n} X_{n}+Q(-i n) v_{n}
$$

$\xrightarrow{\text { Kalman condition }} X_{n}^{\prime}=B_{n} X_{n}+\left[B_{n} \mid M\right]\left[B_{n} \mid M\right]^{-1} Q(-$ in $) v_{n}$
Algebraic Solvability

$$
X_{n}^{\prime}=B_{n} X_{n}+M P\left(\partial_{t},-i n\right) v_{n}
$$

$\xrightarrow{\text { Inverse Fourier }}\left(\partial_{t}-B \partial_{x}^{2}+A \partial_{x}+K\right) f=M P\left(\partial_{t}, \partial_{x}\right) v$
$u=R\left(\partial_{t}, \partial_{x}\right) Q\left(\partial_{x}\right) v$ with $R(\tau, n)=P(\tau, n) / Q(n)$ (rational function):
$\operatorname{Supp}(u) \subset \operatorname{Supp}(v)$

Refinement on the loss of regularity

Loss of regularity

- Null-controllability of every $H^{4 d(d-1)}(\mathbb{T})^{d}$ initial condition: very crude regularity assumption...
- But some regularity assumption is needed in general<;
- $\left\{\begin{array}{l}\left(\partial_{t}+\partial_{x}\right) f_{\mathrm{h}}+\partial_{x} f_{\mathrm{p}}+f_{\mathrm{p}}=0 \\ \left(\partial_{t}-\partial_{x}^{2}\right) f_{\mathrm{p}}=1_{\omega} u_{\mathrm{p}}\end{array}\right.$

Smoothing: if $f_{0, \mathrm{~h}} \notin H^{1}$, we cannot steer f_{0} to 0 with L^{2} controls.

- Can be refined easily to $H^{4 d(d-1)}(\mathbb{T})^{d_{n}} \times H^{4 d(d-1)-1}(\mathbb{T})^{d_{p}}$ by parabolic regularity, and even a little bit more in some specific cases.
- Almost optimal in the case of systems of 2 equations.

Refinement on the Kalman condition

Equations with invariants

$\left\{\begin{array}{l}\left(\partial_{t}+\partial_{x}\right) f_{\mathrm{h}}+\partial_{x} f_{\mathrm{p}}=0 \\ \left(\partial_{t}-\partial_{x}^{2}\right) f_{\mathrm{p}}=1_{\omega} u_{\mathrm{p}}\end{array}\right.$ not null-controllable:
for $n=0, \operatorname{Vect}\left\{\left(n^{2} B+i n A+K\right)^{i} M v, i \in \mathbb{N}, v \in \mathbb{C}^{d}\right\}=\operatorname{Vect}\binom{0}{1} \neq \mathbb{C}^{d}$.
The average of the hyperbolic component is conserved. Maybe null-controllability of every initial condition with zero hyperbolic-average?

Theorem (Koenig-Lissy 2023)

Assume $T>T_{*}$ and

- $\forall|n|$ large enough, $\operatorname{Vect}\left\{\left(n^{2} B+i n A+K\right)^{i} M v, i \in \mathbb{N}, v \in \mathbb{C}^{d}\right\}=\mathbb{C}^{d}$
- $f_{0} \in H^{4 d(d-1)}(\mathbb{T})^{d}$
- $\forall n \in \mathbb{Z}, \widehat{f}_{0}(n) \in \operatorname{Vect}\left\{\left(n^{2} B+i n A+K\right)^{i} M v, i \in \mathbb{N}, v \in \mathbb{C}^{d}\right\}$

There exists a control in $L^{2}((0, T) \times \omega)$ that steers f_{0} to 0 in time T.
Enables to treat (amongst others) the previous example.

Conclusion

Open problems

- Stabilization ?
- Domain other than \mathbb{T} ? First \mathbb{T}^{n}, then other domains ?
- Sharp results in terms of regularity ?
- non-constant coefficients?
- ...

Conclusion

Open problems

- Stabilization ?
- Domain other than \mathbb{T} ? First \mathbb{T}^{n}, then other domains ?
- Sharp results in terms of regularity ?
- non-constant coefficients?
- ...

Thank you for your attention.

