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Presentation of the problem

Controllability of the transport/heat equation on the torus

w non-empty open interval of T := R\27xZ, T > 0.

The heat equation is null-controllable in any time T: Vfy € L2(T),
Ju € L2([0, T] x w), the solution f of

Of — 0 f =1,u, £(0,")="fy

satisfies f(T,)=0onT.
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Presentation of the problem

Controllability of the transport/heat equation on the torus

w non-empty open interval of T := R\27xZ, T > 0.

The heat equation is null-controllable in any time T: Vfy € L2(T),
Ju € L2([0, T] x w), the solution f of

Of — 0 f =1,u, £(0,")="fy

satisfies f(T,)=0onT.

.

w Let ¢ > 0. The transport equation at speed c is exactly controllable in time
T if T > 21l vy fr € L2(T), 3u € L2((0, T) x w), the solution f of

Oef — cOf = 1,u,  £(0) =1y

27— |w\

satisfies f(T,-) = fr on T. But not controllable if T <

\.
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Presentation of the problem

Motivation

Investigate systems of PDEs that involve both parabolic and transport effects.
@ Many models of interest can be written/transformed in this form.

o Coupling different dynamics, with different behaviours in control theory, is
a challenging question: which dynamics “wins" 7

@ Many difficulties that are specific to systems: influence of the coupling
terms, regularity issues on the initial conditions...

@ Emphasis here on underactuated systems: less controls than equations.
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Presentation of the problem

Motivation

Investigate systems of PDEs that involve both parabolic and transport effects.
@ Many models of interest can be written/transformed in this form.

o Coupling different dynamics, with different behaviours in control theory, is
a challenging question: which dynamics “wins" 7

@ Many difficulties that are specific to systems: influence of the coupling
terms, regularity issues on the initial conditions...

@ Emphasis here on underactuated systems: less controls than equations.

Here, aim to work in a setting that might cover or generalize already known
results, under strong technical restrictions:

@ Work on the torus.
@ Restrict to linear constant couplings.
Partial study by Beauchard-Koenig-Le Balc’h '20.
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Presentation of the problem

Parabolic-Transport Systems

The abstract system of d = d}, + d,, equations and m controls

Oef + Adxf — BO?f + Kf = M1,u, (t,x) € (0,+00) x T
f= (;’7) eCd=Cchtdh.p = (g g) , D+ D" positive definite ; K = (Kll Klz) :
P

Ko1 K2 )’
A= Au Az , Ar11 diagonalizable, Sp(A11) C R\ {0};
Az;  Ax

M = (Ml Mz) € Mdym(C).

.

Coupling between parabolic and transport equations

F fn (0 + A110x + K11)fp + (A120x + Ki2)fp = 1My u,
f5) | (Or — DO2 + A220x + K22)fp + (A210x + Ko1)f, = L, Mau.

A

For which fy, T does there exist u € L2((0, T) x w,C™) such that f(T,-)=07?
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Presentation of the problem

Example I: Linearized compressible Navier-Stokes

p: fluid density. v: fluid velocity. a,~, > 0.

Orp + Ox(pv) =0 on [0, T] xT,
p(Orv + vO,v) + Ox(ap?) — ud?v = 1,uz(t,x) on [0, T] x T,

Linearization around a stationary state (p, V) € RY x R* :

0tp + VOxp + pOxv = 0 in[0, T] xT,
Oev + V0v + ap"20p — £y = Loua(t,x) in [0, T] x T.

@ [Chowdhury-Mitra-Ramaswamy-Renardy 2014]: control in time T > 27 /|v| for initial conditions
(po, vo) € HY x L2, (i : mean-value equal to 0).

@ [Beauchard-Koenig-Le Balc’h '23]: control in time T > (2w — |w|)/|¥| for initial conditions in
H? x H?, non-controllability in time T < (27 — |w|)/|7].

@ [Koenig-Lissy 2023] control in time T > (27 — |w|)/|¥| for initial conditions in H2 x L2,
non-controllability in time T < (2w — |w|)/|V| in no Sobolev space.
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Presentation of the problem

Example Il : wave equation with structural damping

Wave equation with structural damping and moving control

Oty — OxxY — Opxy + bOry = hin [0, T] X T,

where b € R and h(t, x) is a moving control at speed ¢ > 0 :
h(t,x) = u(t, x) Lot (x).

@ [Rosier-Rouchon 2007]: ¢ = 0, controllability in no time.

@ [Martin-Rosier-Rouchon 2014]: ¢ # 0,controllability in time T > 27 for (y, dry) € H*™2 x H°,
s> 15/2.

@ [Beauchard-Koenig-Le Balc’h 2020]: x <> x — ct, z = Oty — Oy + (b — 1)y, with f = (i),
A= (_oc g) B = (3 u?p) and K = (_11 ;:f): controllable in time T > (27 — |w|)/c for initial
conditions in H* x L2, not controllable in this space if T < (27 — |w]|)/c.

@ [Koenig-Lissy 2023] : not controllable in no Sobolev spaces.
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Presentation of the problem

Fully actuated system

Theorem (Case , Beauchard-Koenig-Le Balc'h 2020)
Introduce
T — 27 — |w] .
Minuesp(Aa) ]
Then

@ the system is not null-controllable on w in time T < T*,

© the system is null-controllable on w in time T > T*.

Minimal time = minimal time for the transport equation

In the case

Otfn + A110xfp = uply,

Free solutions = sums of waves travelling at speed i, € Sp(A11).
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Presentation of the problem

Underactuated system

For n € Z, introduce B, = n’B + inA+ K and
[Bn|M] = [/\/’7 B.,M,..., |Bg_1M S Md,md(R)-

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every H*¥(4=1) initial condition in time T > T* iff
rank([B,|M]) = d.

Coupling condition

n-th Fourier component of the parabolic-transport system:
X)(t) + (B + inA + K)Xa(t) = Mu,(t)

Condition of the theorem < the finite-dimensional system
X! + (n*B + inA+ K)X, = Mu, is controllable.

If T < T*, no controllability in no Sobolev Space by an appropriate WKB
construction (not totally trivial).
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Fictitious control method and algebraic solvability

Heuristic

First introduced in Coron'92 for ODEs and Coron-Lissy'14 for PDEs
(Navier-Stokes 3D).
This method is useful to control systems of linear partial differential equations
(PDEs) having n equations with m controls, m < n. There are roughly two
steps:
@ Firstly, control the system with a different control acting on each equation.
(Analytic resolution).
@ Secondly, try to find a way to get rid of the controls that should not
appear. (Algebraic resolution).
The first step is easier than the original problem.

How to perform the second point? \
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Fictitious control method and algebraic solvability

Algebraic solvability of differential systems

L:C®(Qo)™ — C>=(Qo)¥ linear partial differential operator (LPDO) on an
open set Qg of RY.

Solve Ly =f. (Gen-Dif-Syst)

Unknown: y. f is a source term.

.

Définition

Equation (Gen-Dif-Syst) is algebraically solvable if there exists a LPDO
M C®(Qo)k — C>(Qo)™ such that, for every f € C>(Qo)k, Mf is a
solution of (Gen-Dif-Syst), i.e. L(M(f))=Tf, ie.

LoM=Id. (LcompM=lI)

V.




Introduction
000@00000

Fictitious control method and algebraic solvability

Formal adjoint

Consider a LPDO M =}, ., Aa0®, associate (formal) adjoint

M C(Q) — C(Qo)¥

defined by
M= (~1)9(AT), Vi € C(Qo)"
lal<m
Basic facts
o M*™ =M.

o If A is another LPDO of appropriate size, then (N o M)* = M* o N'*.

V.

Consequence

(LcompM=l) is equivalent to

M o LF =Id.

4
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Fictitious control method and algebraic solvability

Some remarks

o If M such that (LcompM=l) exists, the crucial point is that the solution
M depends locally on the source term f: if f is supported in w, so is the
solution M.
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Fictitious control method and algebraic solvability

Some remarks

o If M such that (LcompM=l) exists, the crucial point is that the solution
M depends locally on the source term f: if f is supported in w, so is the
solution Mf.

@ For many PDEs, M does not exist (the inverse operator is a non-local
operator : the solution does not necessarily have the same support as f).

= the system (Gen-Dif-Syst) has to be underdetermined (less equations than
unknowns). In this case the “adjoint” equation £*z = 0 is over-determined
(more equations than unknowns).
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Fictitious control method and algebraic solvability

What is the link with controllability? (1)

Consider some LPDO A and B a control operator which is also a LPDO, on
(0, T) x Q, Q bounded domain of RY. Consider a system of PDEs with n
equations and distributed control:

y' = Ay + Bul, in (0, T) x Q,
¥(0,

Cont-Syst
)=y%in Q. (Cont-Syst)

that we want to bring to 0 (for example) at time T > 0.

u: the control, supposed to act only on m of the equations (m < n) for
instance, supported on a subdomain w.
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Fictitious control method and algebraic solvability

What is the link with controllability? (2)

o First step (analytic part): we control the system on each equation. Assume
there exists a solution y and a control & verifying

{ j/\l:Aj/\—’—alw?

(An-Syst)

y(0,-) = y°.
ul,, is supposed to be regular enough, and to vanish at some order at time
t =0 and time T = 0 and on dw (for example T compactly supported in

(0, T) x w).
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Fictitious control method and algebraic solvability

What is the link with controllability? (3)

@ Second step (algebraic part): we now consider U as a source term, and we
work locally on (0, T) x w. We want to prove the algebraic solvability of
the following system:

{y/ = Ay + Bii + 101, (Alg-Sys)
Can be rewritten under the form
L(y, i) =f,

where L(y, i) := y' — Ay — Bii. Underdetermined. If we assume the
algebraic solvability, then there exists a solution (y, &i) which has the same
support as 01, and hence vanishes outside w and at t =0and t = T.
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Fictitious control method and algebraic solvability

What is the link with controllability? (4)

To end, we just make the difference between y and j.
y =y — y verifies:
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Fictitious control method and algebraic solvability

What is the link with controllability? (4)

To end, we just make the difference between y and j.
y =y — y verifies:
o y' = Ay + Bii because the “fictitious control” T 1 disappears from the
equation.
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Fictitious control method and algebraic solvability

What is the link with controllability? (4)

To end, we just make the difference between y and j.
y := y — y verifies:
o y' = Ay + Bii because the “fictitious control” T 1 disappears from the
equation.

e y(0,.) = ¥(0,.) — 7(0,.) = y° because y vanishes at time t = 0.
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Fictitious control method and algebraic solvability

What is the link with controllability? (4)

To end, we just make the difference between y and j.
y := y — y verifies:
o y' = Ay + Bii because the “fictitious control” T 1 disappears from the
equation.
e y(0,.) = ¥(0,.) — 7(0,.) = y° because y vanishes at time t = 0.
o y(T,)=y(T,.)—y(T,.) =0 because y is controlled to 0 and y vanishes
attime t=T.
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Fictitious control method and algebraic solvability

What is the link with controllability? (4)

To end, we just make the difference between y and j.
y =y — y verifies:
o y' = Ay + Bii because the “fictitious control” T 1 disappears from the
equation.
e y(0,.) = ¥(0,.) — 7(0,.) = y° because y vanishes at time t = 0.

o y(T,.)=y(T,.)—y(T,.) =0 because y is controlled to 0 and y vanishes
attimet=T.

@ (i is supported in space on w since it involves linear combinations of
derivatives of 0.

y modifies y only locally on w. \
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Interlude: the Kalman rank condition by algebraic solvability

Kalman condition

Consider the system of n ODEs controlled by m controls

{ 81-_)/ :AY+ BU,
y(0) =y°,

where y0 € R", u € [2((0, T);R™), A€ L£(R") and B € L(R™,R").

(ODE-Cont)
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Kalman condition

Consider the system of n ODEs controlled by m controls

{ 81-_)/ :A}’+ BU,
y(0) =y°,

where y° € R", u € L?((0, T);R™), Ac L(R") and B € L(R™,R").

(ODE-Cont)

Kalman-Ho-Narendra'63 CDE

System (ODE-Cont) is controllable at time T > 0 if and only if
Rank[A|B] = n,

where [A|B] := (B|AB|...|A"1B).
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Kalman implies null controllability

Analytic Problem:
Find (v, u) with v € C2°(0, T) such that

Oty = Ay + U,
{)7(0) =y% ¥(T)=0
Algebraic Problem:
Find (7, d) € C°(0, T) such that
Oy =Ay+Bii+u in (0,7).

Conclusion:
The couple (y, u) := (¥ — y, i) is solution to system (ODE-Cont) satisfying
y(T)=0.
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Resolution of the analytic problem

Consider n € C>°([0, T],R) withn =1 o0on [0, T/3] and n=0o0n [2T /3, T],
and consider yr solution of

Then y = nyF solution to

foru=y — Ay.
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Resolution of the analytic problem

Consider n € C*°([0, T],R) withn=1o0n [0, T/3] and p=0o0n [2T /3, T],
and consider yr solution of

Then y = nyF solution to

foru=y — Ay.
@ y,Uuarein C™,
@ y(0) = y%sincen=10n0,T/3],y(T) =0sincen=0o0n [2T/3, T],

@ U is compactly supported since =1 on [0, T/3] (so U = yf — Ayr = 0)
andp=0o0n[2T/3, T].
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Resolution of the algebraic problem

Find (2, V) compactly supported such that
L(Z,7) =V,

where
L(Z,V):=0:Z— AZ — BV.

It suffices to find a differential operator M s.t.

LoM=1Id.
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Resolution of the algebraic problem

Find (2, V) compactly supported such that
L(Z,7) =V,

where
L(Z,V):=0:Z— AZ — BV.

It suffices to find a differential operator M s.t.
LoM=Id.
The last equality is equivalent to
Mo LF =1d,

where L* is given by
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Heuristics

—0pp — A*
Remind L*¢ = ( v Bf) . Call £; = —0; — A* and L5 = —B*.
-B%p

By induction :
o — L3 =B

o Take —L3. Compose by J;. Substract B*L;. We obtain
L} = 0B* + —B*0; — B*A* = B*A*.

o Take £3. Compose by J;. Substract B*A*L]. We obtain
L = 0:B*A* + —B*A*0, — B*(A*)? = B*(A*)2.

By induction, we recover B*, B*A* ... B*(A*)"~1.
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More rigorously

Let S := (81, ..., Sn) given for all (x1, x2) € C=°(Q; R™™™) by

S1(x1, x2) 1= —xa,
Sa(x1, %) = B*x,
Sk(Xl,Xz) (X1,X2) - B*(A*)kile, vV ke {3, . n}.

Then, we obtain
SoLl*=][A B]".

Since the rank of [A|B] := (B|AB]|...|A""1B) is equal to n, there exists
[A|B]™r € Mum.n(R) such that [A|B][A|B]~! = I,. The operator

M = S*[AIB] !

is a differential operator of order n — 1 in time and is a solution of our problem.
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Back to the parabolic-transport system

Parabolic Components, Hyperbolic Components

Fourier components

(=B + AD, + K)Xe™ = n? (B+ LA— LK) X
x n n?

Spectrum of —Bd2 + Ad, + K

Sp(—Bd2 + Ad, + K) = {n2sp <B+ %A— %K)}

v

Perturbation theory

Aok eigenvalue of B+ LA — LK. A eigenvalue of B: )\, — A\« € Sp(B)
o If M\ #0, n®),, ~ n®\i: parabolic frequencies
n——-+oo

@ If \y =0, n®)\,, ~ inu: hyperbolic frequencies
n—-o00

. L2 .2 o
o Free solutions: = E Xy @™ Akt oy E K™~ At 4 E X ™ nHit

parabolic hyperbolic

v
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Back to the parabolic-transport system

Analytic resolution M = Id

The control problem under study

Oif + AD,f — BO?f + Kf = 1,u, (t,x) € (0,400) x T. (Anal-Prob)

The result we aim to obtain

For any T > T*, for any s € N* and any fy € H*(T), there exists a control
u € H§((0, T) x w) such that the solution f of (Anal-Prob) with initial
condition f(0, ) = fy verifies f(T,-) = 0.

Follows from a well-known principle :

@ For parabolic equations with smooth coefficients, one can create C§°
controls even for rough initial condition (Lebeau-Robbiano'95).

@ For groups of operators, more regular initial conditions allow more regular
controls (Dehman-Lebeau'09, Ervedoza-Zuazua'10).

Here mix dynamics, but we adapt the arguments of Beauchard-Koenig-Le
Balc'h'20 (which themselves are inspired by Lebeau'Zuazua'98).
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Back to the parabolic-transport system

Analytic resolution M = Id |l

Decouple and control
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Back to the parabolic-transport system

Analytic resolution M = Id |l

Decouple and control

@ For uy, find u, that controls parabolic frequencies in time T and is C5°.

\\

T'<T
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Back to the parabolic-transport system

Analytic resolution M = Id |l

Decouple and control

@ For uy, find u, that controls parabolic frequencies in time T and is C5°.

AN >
0 F—I T'<T

@ For up, find vy, that controls the hyperbolic frequencies in time T and is in

some H space (Ervedoza-Zuazua'l0).
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Back to the parabolic-transport system

Analytic resolution M = Id |l

Decouple and control

@ For uy, find u, that controls parabolic frequencies in time T and is C5°.

N T
g

@ For up, find vy, that controls the hyperbolic frequencies in time T and is in

some H space (Ervedoza-Zuazua'l0).
o If both steps agree, OK.

@ Make the two steps agree using the Fredholm alternative (on a finite
codimension subspace).
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Back to the parabolic-transport system

Analytic resolution M = Id |l

Decouple and control

@ For uy, find u, that controls parabolic frequencies in time T and is C5°.

—
0 F—I T'<T

For u,, find 1, that controls the hyperbolic frequencies in time T and is in

some H space (Ervedoza-Zuazua'l0).
If both steps agree, OK.

@ Make the two steps agree using the Fredholm alternative (on a finite
codimension subspace).

@ Deal with the finite dimensional subspaces that are left:
compactness-uniqueness.
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Back to the parabolic-transport system

Fourier projection and algebraic solvability

Let B, = n?B + inA+ K and [B,|M] = [M, B,M, ..., |BI~M] € My ma(R).

If rank[B,|M] = d, for every Xy € C?, there exists u € HE(0, T) such that the
solution X of

X' = B,X + Mu, X(0)=Xo
satisfies X(T) = 0.

Proof by algebraic solvability:

@ Analytic part: already done, take the projection on the n-th mode of the
control u of the previous slide.

@ Then perform the algebraic solvability.
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Back to the parabolic-transport system

Fictitious control for parabolic-transport system

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every H*¥(4=1) jnitial condition in time T > T* if

Vn € Z, Rank([B,|M]) = d.

v

Algebraic solvability on each Fourier components?

(0; — BO? + AD, + K)f =1,v
—Fowler s X! = ByXy + va
LKelman condition, X7 — B, Xy + [Ba| M]w,
Algebraic SOV X! = BoXo + Mu,
Inverse Fourler_, (3, — BOZ + Ady + K)f = Mu

u = R(0,0x)v with R(7,n) = P(r,n)/Q(n) (rational function): , because of
the equation v, = [B|M]w,, no guarantee on Supp(u)
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Back to the parabolic-transport system

Fictitious control for parabolic-transport system

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every H*¥(4=1) jnitial condition in time T > T* if

Vn € Z, Rank([B,|M]) = d.

v

Algebraic solvability on each Fourier components?

(0; — BO? + AD, + K)f =1,v
—Fowler s X! = ByXy + va
LKelman condition, X7 — B, Xy + [Ba| M]w,
Algebraic SOV X! = BoXo + Mu,
Inverse Fourler_, (3, — BOZ + Ady + K)f = Mu

u = R(0,0x)v with R(7,n) = P(r,n)/Q(n) (rational function): , because of
the equation v, = [B|M]w,, no guarantee on Supp(u)
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Back to the parabolic-transport system

Fictitious control for parabolic-transport system

Theorem (Underactuated system (Koenig-Lissy 2023))

Null-controllability of every H*¥(4=1) jnitial condition in time T > T* if

Vn € Z, Rank([B,|M]) = d.

v

Algebraic solvability on each Fourier components?

(0r — BO? + Ady + K)f =1,Q(d)v (v controls Q(dy) 1)
—Fouier X/ = B,X, + Q(—in)v,
Kalman condition X! = B, Xy + [B,,|M][B,,\M]’1Q(—in)v,,
Algebraic Solvabilitg X[,] _ Ban + MP(@h —in) v,
toverse FWer , (9, — BO2 + Ady + K)f = MP(0y, 8x)v

u = R(0, 0x)Q(0x)v with R(1,n) = P(r,n)/Q(n) (rational function):
Supp(u)C Supp(v)
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Back to the parabolic-transport system

Refinement on the loss of regularity

Loss of regularity

o Null-controllability of every H*¥(¢=1)(T)? initial condition: very crude
regularity assumption...

@ But some regularity assumption is needed in general<;
o { (0r + 0 ) + Oxfo + £, =0
(0r = o = Loy
Smoothing: if fon ¢ HY, we cannot steer fy to 0 with L2 controls.
o Can be refined easily to H*d(d=1)(T)d x H4d(d=1)=1(T) by parabolic
regularity, and even a little bit more in some specific cases.

@ Almost optimal in the case of systems of 2 equations.
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Back to the parabolic-transport system

Refinement on the Kalman condition

Equations with invariants

{ Egz i_ gé%;: i?ifzp_ U e il el e
for n =0, Vect{(n*B + inA+ K)'Mv,i € N,v € C*} = Vect () # C’.
The average of the hyperbolic component is conserved. Maybe

null-controllability of every initial condition with zero hyperbolic-average?

Theorem (Koenig-Lissy 2023)

Assume T > T, and
o V|n| large enough, Vect{(n*B + inA+ K)'Mv,i € N,v € C?} = C?
° fE) c H4d(d—1)(-|-)d
o Vne Z, fo(n) € Vect{(n’B + inA+ K) Mv,i € N,v € C?}

There exists a control in L?((0, T) x w) that steers fy to 0 in time T.

Enables to treat (amongst others) the previous example.



00000000e

Back to the parabolic-transport system

Conclusion

@ Stabilization ?

Domain other than T? First T”, then other domains ?
Sharp results in terms of regularity 7

non-constant coefficients?
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Back to the parabolic-transport system

Conclusion

@ Stabilization ?

Domain other than T? First T”, then other domains ?
Sharp results in terms of regularity 7

non-constant coefficients?

Thank you for your attention.
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