Different approaches to integral action in infinite-dimensional nonlinear dynamics

EDP, commande et observation des systèmes, LAAS-CNRS, Toulouse

Nicolas Vanspranghe
October 18, 2023

Tampere University

Orientation

Set-point output regulation/tracking problem

Consider a controlled plant with state $x \in X$, input $u \in U$ and output $y \in Y$.

$$
\xrightarrow{u} \xrightarrow{x}=f(x, u) \xrightarrow{x} y(x) \xrightarrow{y}
$$

- (Set-point output tracking problem.) Given $y_{\text {ref }} \in Y$, find a control law s.t.

1. The state x remains bounded;
2. (Asymptotic tracking.)

- (Robust regulation.) Ensure that those properties hold "robustly"

1. (Disturbance rejection.) In presence of some classes of 2. Under parameter uncertainties?.

Set-point output regulation/tracking problem

Consider a controlled plant with state $x \in X$, input $u \in U$ and output $y \in Y$.

$$
\xrightarrow{u} \xrightarrow{\dot{x}=f(x, u)} \xrightarrow{x} y=h(x) \xrightarrow{y}
$$

- (Set-point output tracking problem.) Given $y_{\text {ref }} \in Y$, find a control law s.t.

1. The state x remains bounded;
2. (Asymptotic tracking.)

$$
y(t) \rightarrow y_{\text {ref }}, \quad t \rightarrow+\infty
$$

- (Robust regulation.) Ensure that those properties hold "robustly"

1. (Disturbance rejection.) In presence of some classes of
2. Under parameter uncertainties?.

Set-point output regulation/tracking problem

Consider a controlled plant with state $x \in X$, input $u \in U$ and output $y \in Y$.

$$
\xrightarrow{u} \xrightarrow[\longrightarrow]{\dot{x}=f(x, u)} \xrightarrow{x=h(x)} \xrightarrow{y}
$$

- (Set-point output tracking problem.) Given $y_{\text {ref }} \in Y$, find a control law s.t.

1. The state x remains bounded;
2. (Asymptotic tracking.)

$$
y(t) \rightarrow y_{\text {ref }}, \quad t \rightarrow+\infty .
$$

- (Robust regulation.) Ensure that those properties hold "robustly":

1. (Disturbance rejection.) In presence of some classes of exogeneous disturbances d;
2. Under parameter uncertainties?..

Integral action

Standing assumption

A constant input u^{\star} produces a unique steady state x^{\star}.
For linear systems of the form $\dot{x}=A x+B u$ where $e^{t A}$ is exponentially stable, $0 \in \rho(A)$ and

$$
x^{\star}=A^{-1} B u^{\star}
$$

is globally exponentially stable equilibrium w.r.t. to $\dot{x}=A x+B u^{\star}$.

A nonlinear example

Minea system

Let $\delta>0$. Consider the following control system on $X=\mathbb{R}^{2}$:

$$
\begin{aligned}
& \dot{x}_{1}+x_{1}+\delta x_{2}^{2}=u, \\
& \dot{x}_{2}+x_{2}-\delta x_{1} x_{2}=0 .
\end{aligned}
$$

- We have

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|x\|^{2}=-\|x\|^{2}+x_{1} u \leqslant-\frac{1}{2}\|x\|^{2}+\frac{1}{2}|u|^{2}
$$

so that if $u=0, x \rightarrow 0$ uniformly and exponentially, plus ISS property.

- Nevertheless, depending on δ, the constant input u^{\star} produces up to 3 equilibria with heteroclinic curves.

Takeway point

Stability is not enough!

Integral action

Consider adding an output integrator to the loop.

- Given $y_{\text {ref }}$ and a control law $u=k(x, z)$, at any equilibrium $\left(x^{\star}, z^{\star}\right)$,
- Control objective: Find a feedback control for which the system possesses an
- Integral control is robust w.r.t. whatever d that preserves existence of such points.

Integral action

Consider adding an output integrator to the loop.

- Given $y_{\text {ref }}$ and a control law $u=k(x, z)$, at any equilibrium $\left(x^{\star}, z^{\star}\right)$,

$$
y^{\star}=y_{\mathrm{ref}} .
$$

- Control objective: Find a feedback control for which the system possesses an attractive equilibrium.
- Integral control is robust w.r.t. whatever d that preserves

Integral action

Consider adding an output integrator to the loop.

- Given $y_{\text {ref }}$ and a control law $u=k(x, z)$, at any equilibrium $\left(x^{\star}, z^{\star}\right)$,

$$
y^{\star}=y_{\mathrm{ref}} .
$$

- Control objective: Find a feedback control for which the system possesses an attractive equilibrium.
- Integral control is robust w.r.t. whatever d that preserves existence of such points.

Some possible strategies

Assume that 0 is an equilibrium for $\dot{x}=f(x, 0,0)$ plus some suitable ISS w.r.t. u.

1. (Perturbation approach.) Stabilize the cascade
around 0 and hope that for small (y_{ref}, d), there is an attractive equilibrium (x^{\star}, z^{\star}) for
2. (Change of variable.) If we already know u^{\star} s.t. x^{\star} has output $y^{\star}=y_{\text {ref }}$, after setting $x \mapsto x-x^{\star}$, stabilize the cascade
[^0]
Some possible strategies

Assume that 0 is an equilibrium for $\dot{x}=f(x, 0,0)$ plus some suitable ISS w.r.t. u.

1. (Perturbation approach.) Stabilize the cascade

$$
\dot{x}=f(x, u, 0), \quad \dot{z}=y
$$

around 0 and hope that for small $\left(y_{\text {ref }}, d\right)$, there is an attractive equilibrium (x^{\star}, z^{\star}) for

$$
\dot{x}=f(x, u, d), \quad \dot{z}=y-y_{\mathrm{ref}}, \quad u=k(x, z)
$$

2. (Change of variable.) If we already know u^{\star} s.t. x^{\star} has output $y^{\star}=y_{\text {ref }}$, after setting $x \mapsto x-x^{\star}$, stabilize the cascade

A question
Can we assum $y_{\text {rof }}=0$ hath oss generalin? Yes and no.
\qquad on the feedback function k w.r.t. $y_{\text {ref }}$

Some possible strategies

Assume that 0 is an equilibrium for $\dot{x}=f(x, 0,0)$ plus some suitable ISS w.r.t. u.

1. (Perturbation approach.) Stabilize the cascade

$$
\dot{x}=f(x, u, 0), \quad \dot{z}=y
$$

around 0 and hope that for small $\left(y_{\text {ref }}, d\right)$, there is an attractive equilibrium (x^{\star}, z^{\star}) for

$$
\dot{x}=f(x, u, d), \quad \dot{z}=y-y_{\mathrm{ref}}, \quad u=k(x, z)
$$

2. (Change of variable.) If we already know u^{\star} s.t. x^{\star} has output $y^{\star}=y_{\text {ref }}$, after setting $x \mapsto x-x^{\star}$, stabilize the cascade

$$
\dot{x}=f\left(x+x^{\star}, u^{\star}+u\right)-f\left(x^{\star}, u^{\star}\right), \quad \dot{z}=y .
$$

A question
Can we assume y ref $=0$ loss ? Yes and no.

- Dependence on the feedback function k w.r.t. $y_{\text {ref }}$

Some possible strategies

Assume that 0 is an equilibrium for $\dot{x}=f(x, 0,0)$ plus some suitable ISS w.r.t. u.

1. (Perturbation approach.) Stabilize the cascade

$$
\dot{x}=f(x, u, 0), \quad \dot{z}=y
$$

around 0 and hope that for small $\left(y_{\text {ref }}, d\right)$, there is an attractive equilibrium $\left(x^{\star}, z^{\star}\right)$ for

$$
\dot{x}=f(x, u, d), \quad \dot{z}=y-y_{\mathrm{ref}}, \quad u=k(x, z)
$$

2. (Change of variable.) If we already know u^{\star} s.t. x^{\star} has output $y^{\star}=y_{\text {ref }}$, after setting $x \mapsto x-x^{\star}$, stabilize the cascade

$$
\dot{x}=f\left(x+x^{\star}, u^{\star}+u\right)-f\left(x^{\star}, u^{\star}\right), \quad \dot{z}=y .
$$

A question

Can we assume $y_{\text {ref }}=0$ without loss of generality? Yes and no...

- Dependence on the feedback function k w.r.t. $y_{\text {ref }}$.

Constrained integral control with monotone operators

Motivation

Let \mathcal{K} be a nonempty closed convex subset of Y. How to use integral control under the set constraint

$$
z \in \mathcal{K} ?
$$

- In case of pure integral output feedback, z is fed "as is" into the plant;
- Pros: controller satisfies operational constraints, anti-windup mechanism, etc.

A solution via
Replace the classical integrator with
where
$\Pi_{\mathcal{K}}(z, y)=\operatorname{argmin}_{w \in T_{\mathcal{K}}(z)}\|w-y\|$
and $T_{K}(z)$ is the want momo of K at *

Motivation

Let \mathcal{K} be a nonempty closed convex subset of Y. How to use integral control under the set constraint

$$
z \in \mathcal{K} ?
$$

- In case of pure integral output feedback, z is fed "as is" into the plant;
- Pros: controller satisfies operational constraints, anti-windup mechanism, etc.

A solution via
Replace the classical integrator with
where
$\Pi_{\mathcal{K}}(z, y)=\operatorname{argmin}_{w \in T_{\mathcal{K}}(z)}\|w-y\|$
and $T_{\mathcal{K}}(z)$ is the

Motivation

Let \mathcal{K} be a nonempty closed convex subset of Y. How to use integral control under the set constraint

$$
z \in \mathcal{K} ?
$$

- In case of pure integral output feedback, z is fed "as is" into the plant;
- Pros: controller satisfies operational constraints, anti-windup mechanism, etc.

A solution via projected dynamical systems

Replace the classical integrator with

$$
\dot{z}=\Pi_{\mathcal{K}}\left(z, y-y_{\mathrm{ref}}\right)
$$

where

$$
\Pi_{\mathcal{K}}(z, y)=\operatorname{argmin}_{w \in T_{\mathcal{K}}(z)}\|w-y\|
$$

and $T_{\mathcal{K}}(z)$ is the tangent cone of \mathcal{K} at z.

Actual motivation

Well-posedness
 How to guarantee well-posedness of the closed-loop?

- For projections of vector fields, existence $\&$ uniqueness results are available.

1. (Constrained integrator as a subsystem.) Investigate properties of the map
and then "close the loop" with a linear well-posed system via a fixed-point argument
2. Observe that

Motives a direct argument for a special class of nonlinear systems!

Actual motivation

Well-posedness

How to guarantee well-posedness of the closed-loop?

- For projections of vector fields, existence \& uniqueness results are available.
- In the "no vector field" case (e.g., most PDEs of interest), no such thing but...

1. (Constrained integrator as a subsystem.) Investigate properties of the map

$$
w \in L^{2}(0, T ; Y) \mapsto z, \quad \text { where } \quad \dot{z}=\Pi_{\mathcal{K}}(z, w), \quad z(0)=z_{0},
$$ and then "close the loop" with a linear well-posed system via a fixed-point argument.

2. Observe that
where the
Motives a direct argument for a special class of nonlinear systems!

Actual motivation

Well-posedness

How to guarantee well-posedness of the closed-loop?

- For projections of vector fields, existence \& uniqueness results are available.
- In the "no vector field" case (e.g., most PDEs of interest), no such thing but...

1. (Constrained integrator as a subsystem.) Investigate properties of the map

$$
w \in L^{2}(0, T ; Y) \mapsto z, \quad \text { where } \quad \dot{z}=\Pi_{\mathcal{K}}(z, w), \quad z(0)=z_{0},
$$

and then "close the loop" with a linear well-posed system via a fixed-point argument.
2. Observe that

$$
\dot{z}=\Pi_{\mathcal{K}}(z, w) \Longleftrightarrow \dot{z}+N_{\mathcal{K}}(z) \ni w,
$$

where the normal cone $N_{\mathcal{K}}: \mathcal{K} \rightrightarrows Y$ is maximal monotone.
Motives a direct argument for a special class of nonlinear systems!

Actual motivation

Well-posedness

How to guarantee well-posedness of the closed-loop?

- For projections of vector fields, existence \& uniqueness results are available.
- In the "no vector field" case (e.g., most PDEs of interest), no such thing but...

1. (Constrained integrator as a subsystem.) Investigate properties of the map

$$
w \in L^{2}(0, T ; Y) \mapsto z, \quad \text { where } \quad \dot{z}=\Pi_{\mathcal{K}}(z, w), \quad z(0)=z_{0},
$$

and then "close the loop" with a linear well-posed system via a fixed-point argument.
2. Observe that

$$
\dot{z}=\Pi_{\mathcal{K}}(z, w) \Longleftrightarrow \dot{z}+N_{\mathcal{K}}(z) \ni w,
$$

where the normal cone $N_{\mathcal{K}}: \mathcal{K} \rightrightarrows Y$ is maximal monotone.
Motives a direct argument for a special class of nonlinear systems!

Monotone systems?

A suitable class of systems

What systems possess good monotonocity properties when coupled with the output integrator?

- Assume that $Y=U$. Linear impedance-passive systems satisfy so adding the integrator $\dot{z}=y$ and choosing the output feedback $u=-z$ yields For impedance-passive systems, there is a energy-preserving coupling with the integrator!
- In the nonlinear setting, we seek incremental version of those properties.

Monotone systems?

A suitable class of systems

What systems possess good monotonocity properties when coupled with the output integrator?

- Assume that $Y=U$. Linear impedance-passive systems satisfy

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|x\|_{X}^{2} \leqslant\langle u, y\rangle_{Y}
$$

so adding the integrator $\dot{z}=y$ and choosing the output feedback $u=-z$ yields

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\{\|x\|_{X}^{2}+\|z\|_{Y}^{2}\right\} \leqslant 0
$$

For impedance-passive systems, there is a energy-preserving coupling with the integrator!

- In the nonlinear setting, we seek incremental version of those properties.

Monotone systems?

A suitable class of systems

What systems possess good monotonocity properties when coupled with the output integrator?

- Assume that $Y=U$. Linear impedance-passive systems satisfy

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|x\|_{X}^{2} \leqslant\langle u, y\rangle_{Y}
$$

so adding the integrator $\dot{z}=y$ and choosing the output feedback $u=-z$ yields

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\{\|x\|_{X}^{2}+\|z\|_{Y}^{2}\right\} \leqslant 0
$$

For impedance-passive systems, there is a energy-preserving coupling with the integrator!

- In the nonlinear setting, we seek incremental version of those properties.

A prototype class of impedance-passive nonlinear systems

Let X and be Y be (real) Hilbert spaces. Assume that Y is finite-dimensional.
Consider a control system of the form

$$
\dot{x}+A(x) \ni B u, \quad y=B^{*} u,
$$

where:

- $A: \operatorname{dom}(A) \rightrightarrows X$ is maximal monotone, i.e.,

$$
\left\langle a_{1}-a_{2}, x_{1}-x_{2}\right\rangle \geqslant 0, \quad a_{i} \in A\left(x_{i}\right), \quad \text { and } \quad \operatorname{ran}(A+\lambda)=X, \quad \lambda>0
$$

- $B \in \mathcal{L}(Y, X)$.

Remark (Generation of contraction semigroups)

Maximal monotone operators characterizes (strongly continuous) contraction semigroups on closed convex subsets of Hilbert spaces.

Given a nonempty closed convex subset \mathcal{K} of Y, we close the loop with

Lemma

1. The closed-loop equations generate a
2. If A has
then so has the closed-loop generator.
3. The same holds when adding $\left(d,-y_{\text {ref }}\right) \in X \times Y$

A prototype class of impedance-passive nonlinear systems

Let X and be Y be (real) Hilbert spaces. Assume that Y is finite-dimensional.
Consider a control system of the form

$$
\dot{x}+A(x) \ni B u, \quad y=B^{*} u,
$$

where:

- $A: \operatorname{dom}(A) \rightrightarrows X$ is maximal monotone, i.e.,

$$
\left\langle a_{1}-a_{2}, x_{1}-x_{2}\right\rangle \geqslant 0, \quad a_{i} \in A\left(x_{i}\right), \quad \text { and } \quad \operatorname{ran}(A+\lambda)=X, \quad \lambda>0
$$

- $B \in \mathcal{L}(Y, X)$.

Remark (Generation of contraction semigroups)

Maximal monotone operators characterizes (strongly continuous) contraction semigroups on closed convex subsets of Hilbert spaces.

Given a nonempty closed convex subset \mathcal{K} of Y, we close the loop with

$$
\dot{z}+N_{\mathcal{K}}(z) \ni B^{*} x, \quad u=-z
$$

Lemma

1. The closed-loop equations generate a contraction semigroup on $\overline{\operatorname{dom}(A)} \times \mathcal{K}$.
2. If A has compact resolvent $(A+\lambda)^{-1}$, then so has the closed-loop generator.
3. The same holds when adding $\left(d,-y_{\mathrm{ref}}\right) \in X \times Y$.

Equilibria and feasible references

Assumption

1. A^{-1} is well-defined and continuous.
2. $\operatorname{ker}(B)=\{0\}$.
3. $0 \in\left\langle A\left(x_{1}\right)-A\left(x_{2}\right), x_{1}-x_{2}\right\rangle_{X}$ implies $x_{1}=x_{2}$.
```
Let }\mp@subsup{y}{\mathrm{ ref }}{}\inY\mathrm{ be feasible, i.e., there exists }\mp@subsup{z}{}{\star}\in\mathcal{K}\mathrm{ s.t.
```

Then, $\left(x^{\star}, z^{\star}\right) \in \operatorname{dom}(A) \times \mathcal{K}^{\circ}$ is the unique equilibrium for the closed-loop
Remarl
$y_{\text {ref }}$ remains feasible under small (in norm) and matched disturbance $d \in \operatorname{ran}(B)$.

Equilibria and feasible references

Assumption

1. A^{-1} is well-defined and continuous.
2. $\operatorname{ker}(B)=\{0\}$.
3. $0 \in\left\langle A\left(x_{1}\right)-A\left(x_{2}\right), x_{1}-x_{2}\right\rangle_{X}$ implies $x_{1}=x_{2}$.

Let $y_{\text {ref }} \in Y$ be feasible, i.e., there exists $z^{\star} \in \mathcal{K}^{\circ}$ s.t.

$$
B^{*} x^{\star}=y_{\mathrm{ref}}, \quad x^{\star}=-A^{-1}\left(B u^{\star}\right), \quad u^{\star}=-z^{\star}
$$

Then, $\left(x^{\star}, z^{\star}\right) \in \operatorname{dom}(A) \times \mathcal{K}^{\circ}$ is the unique equilibrium for the closed-loop.

Remark

$y_{\text {ref }}$ remains feasible under small (in norm) and matched disturbance $d \in \operatorname{ran}(B)$.

Asymptotic behavior

Assumption

A has compact resolvent $(A+\lambda)^{-1}$.
Let $y_{\text {ref }} \in Y$ be feasible. Let $\left(x_{0}, z_{0}\right) \in \operatorname{dom}(A) \times \mathcal{K}$. Consider

$$
\omega\left(x_{0}, z_{0}\right)=\bigcap_{s \geqslant 0} \overline{\bigcup_{t \geqslant s} \tilde{S}_{t}\left(x_{0}, z_{0}\right)}, \quad \tilde{S}_{t} \text { closed-loop semigroup. }
$$

- $\omega\left(x_{0}, z_{0}\right)$ is nonempty, invariant and attracts the solution originating at $\left(x_{0}, z_{0}\right)$.
- Contraction semigroup: $\omega\left(x_{0}, z_{0}\right) \subset \operatorname{dom}(A) \times \mathcal{K}$ and S_{t} are isometries on $\omega\left(x_{0}, z_{0}\right)$. This imposes

Theorem

1. (Tracking with output feedback.) Closed-loop solutions (x, z) in $\operatorname{dom}(A) \times K$ converge in $X \times Y$ to the unique steady state $\left(x^{\star}, z^{\star}\right)$. In particular,
2. (Robustness.) This holds in presence of any constant disturbance $d \in X$ that of $y_{\text {ref }}$, e.g., sufficiently small matched d.

Asymptotic behavior

Assumption

A has compact resolvent $(A+\lambda)^{-1}$.
Let $y_{\text {ref }} \in Y$ be feasible. Let $\left(x_{0}, z_{0}\right) \in \operatorname{dom}(A) \times \mathcal{K}$. Consider

$$
\omega\left(x_{0}, z_{0}\right)=\bigcap_{s \geqslant 0} \overline{\bigcup_{t \geqslant s} \tilde{S}_{t}\left(x_{0}, z_{0}\right)}, \quad \tilde{S}_{t} \text { closed-loop semigroup. }
$$

- $\omega\left(x_{0}, z_{0}\right)$ is nonempty, invariant and attracts the solution originating at $\left(x_{0}, z_{0}\right)$.
- Contraction semigroup: $\omega\left(x_{0}, z_{0}\right) \subset \operatorname{dom}(A) \times \mathcal{K}$ and \tilde{S}_{t} are isometries on $\omega\left(x_{0}, z_{0}\right)$. This imposes

$$
\omega\left(x_{0}, z_{0}\right)=\left\{\left(x^{\star}, z^{\star}\right)\right\} .
$$

Theorem

1. (T.anch:ng with output feedback.) Closed-loop solutions ($x, 2$) in $\operatorname{dom}(A) \times 1$ converge in $X \times Y$ to the unique steady state $\left(x^{\star}, z^{\star}\right)$. In particular,
2. (Robustness.) This holds in presence of any constant disturbance $d \in X$ that

Asymptotic behavior

Assumption

A has compact resolvent $(A+\lambda)^{-1}$.
Let $y_{\text {ref }} \in Y$ be feasible. Let $\left(x_{0}, z_{0}\right) \in \operatorname{dom}(A) \times \mathcal{K}$. Consider

$$
\omega\left(x_{0}, z_{0}\right)=\bigcap_{s \geqslant 0} \overline{\bigcup_{t \geqslant s} \tilde{S}_{t}\left(x_{0}, z_{0}\right)}, \quad \tilde{S}_{t} \text { closed-loop semigroup. }
$$

- $\omega\left(x_{0}, z_{0}\right)$ is nonempty, invariant and attracts the solution originating at $\left(x_{0}, z_{0}\right)$.
- Contraction semigroup: $\omega\left(x_{0}, z_{0}\right) \subset \operatorname{dom}(A) \times \mathcal{K}$ and \tilde{S}_{t} are isometries on $\omega\left(x_{0}, z_{0}\right)$. This imposes

$$
\omega\left(x_{0}, z_{0}\right)=\left\{\left(x^{\star}, z^{\star}\right)\right\} .
$$

Theorem

1. (Tracking with output feedback.) Closed-loop solutions (x, z) in $\overline{\operatorname{dom}(A)} \times \mathcal{K}$ converge in $X \times Y$ to the unique steady state $\left(x^{\star}, z^{\star}\right)$. In particular,

$$
B^{*} x(t) \rightarrow y_{\mathrm{ref}}, \quad t \rightarrow+\infty
$$

2. (Robustness.) This holds in presence of any constant disturbance $d \in X$ that preserves feasibility of $y_{\text {ref }}$, e.g., sufficiently small matched d.

Ccontrol of a nonlinear parabolic equation

Let $\Omega \subset \mathbb{R}^{d}$ be a smooth bounded domain. Consider the control system:

$$
\begin{array}{ll}
\frac{\partial w}{\partial t}-\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left(\frac{\partial w}{\partial x_{i}}\right)^{p-1}+w^{p-1}=\sum_{j=1}^{m} u_{j} b_{j} & \text { in } \Omega \times(0,+\infty), \\
w=0 & \text { on } \partial \Omega \times(0,+\infty),
\end{array}
$$

where $p \in \mathbb{N}^{*}$ is even, b_{j} are some smooth functions and u_{j} are scalar control inputs.

- Let $A: W_{0}^{1, p}(\Omega) \rightarrow\left(W_{0}^{1, p}(\Omega)\right)^{\prime}$ be given by

and consider
$\operatorname{dom}(A) \triangleq\left\{w \in W_{0}^{1, p}(\Omega): A(w) \in L^{2}(\Omega)\right\}$
so that $A: \operatorname{don}(A) \rightarrow L^{2}(\Omega)$ is maximal monotone with dense domain, compact resolvent and
- $B \in \mathcal{L}\left(\mathbb{R}^{m}, L^{2}(\Omega)\right)$ and

Ccontrol of a nonlinear parabolic equation

Let $\Omega \subset \mathbb{R}^{d}$ be a smooth bounded domain. Consider the control system:

$$
\begin{array}{ll}
\frac{\partial w}{\partial t}-\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left(\frac{\partial w}{\partial x_{i}}\right)^{p-1}+w^{p-1}=\sum_{j=1}^{m} u_{j} b_{j} & \text { in } \Omega \times(0,+\infty) \\
w=0 & \text { on } \partial \Omega \times(0,+\infty)
\end{array}
$$

where $p \in \mathbb{N}^{*}$ is even, b_{j} are some smooth functions and u_{j} are scalar control inputs.

- Let $A: W_{0}^{1, p}(\Omega) \rightarrow\left(W_{0}^{1, p}(\Omega)\right)^{\prime}$ be given by

$$
\langle A(w), \varphi\rangle \triangleq \sum_{i=1}^{d} \int_{\Omega}\left(\frac{\partial w}{\partial x_{i}}\right)^{p-1} \frac{\partial \varphi}{\partial x_{i}} \mathrm{~d} x+\int_{\Omega} w^{p-1} \varphi \mathrm{~d} x, \quad w, \varphi \in W_{0}^{1, p}(\Omega)
$$

and consider

$$
\operatorname{dom}(A) \triangleq\left\{w \in W_{0}^{1, p}(\Omega): A(w) \in L^{2}(\Omega)\right\}
$$

so that $A: \operatorname{dom}(A) \rightarrow L^{2}(\Omega)$ is maximal monotone with dense domain, compact resolvent and

$$
\left\langle A\left(w_{1}\right)-A\left(w_{2}\right), w_{1}-w_{2}\right\rangle_{L^{2}(\Omega)}=\left\|w_{1}-w_{2}\right\|_{W^{1, p}(\Omega)}^{p} \geqslant 0 .
$$

- $B \in \mathcal{L}\left(\mathbb{R}^{m}, L^{2}(\Omega)\right)$ and

Ccontrol of a nonlinear parabolic equation

Let $\Omega \subset \mathbb{R}^{d}$ be a smooth bounded domain. Consider the control system:

$$
\begin{array}{ll}
\frac{\partial w}{\partial t}-\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left(\frac{\partial w}{\partial x_{i}}\right)^{p-1}+w^{p-1}=\sum_{j=1}^{m} u_{j} b_{j} & \text { in } \Omega \times(0,+\infty) \\
w=0 & \text { on } \partial \Omega \times(0,+\infty)
\end{array}
$$

where $p \in \mathbb{N}^{*}$ is even, b_{j} are some smooth functions and u_{j} are scalar control inputs.

- Let $A: W_{0}^{1, p}(\Omega) \rightarrow\left(W_{0}^{1, p}(\Omega)\right)^{\prime}$ be given by

$$
\langle A(w), \varphi\rangle \triangleq \sum_{i=1}^{d} \int_{\Omega}\left(\frac{\partial w}{\partial x_{i}}\right)^{p-1} \frac{\partial \varphi}{\partial x_{i}} \mathrm{~d} x+\int_{\Omega} w^{p-1} \varphi \mathrm{~d} x, \quad w, \varphi \in W_{0}^{1, p}(\Omega) .
$$

and consider

$$
\operatorname{dom}(A) \triangleq\left\{w \in W_{0}^{1, p}(\Omega): A(w) \in L^{2}(\Omega)\right\}
$$

so that $A: \operatorname{dom}(A) \rightarrow L^{2}(\Omega)$ is maximal monotone with dense domain, compact resolvent and

$$
\left\langle A\left(w_{1}\right)-A\left(w_{2}\right), w_{1}-w_{2}\right\rangle_{L^{2}(\Omega)}=\left\|w_{1}-w_{2}\right\|_{W^{1, p}(\Omega)}^{p} \geqslant 0
$$

- $B \in \mathcal{L}\left(\mathbb{R}^{m}, L^{2}(\Omega)\right)$ and

$$
B^{*}=\sum_{j=1}^{m} b_{j}^{*}
$$

We assume linear independance of the b_{j}.

Extensions and limitations

- Finite-dimensional models of interest: impedance-passive systems with hysteresis.
- "Unbounded" /nonlinear B? Observability-type assumption? Case by case basis.
- (Robustness to parameter uncertainties.) Consider the following model:

When $u=0$, nontrivial attractor depending on the a_{i} !

Extensions and limitations

- Finite-dimensional models of interest: impedance-passive systems with hysteresis.
- "Unbounded" / nonlinear B? Observability-type assumption? Case by case basis.
- (Robustness to parameter uncertainties.) Consider the following model:

$$
\begin{array}{ll}
\frac{\partial w}{\partial t}-\Delta w+w^{p-1}+a_{p-2} w^{p}+\ldots+w=B u & \text { in } \Omega \times(0,+\infty) \\
w=0 & \text { on } \partial \Omega \times(0,+\infty)
\end{array}
$$

When $u=0$, nontrivial attractor depending on the a_{i} !

Forwarding approach

Motivation

A nonlinear coupled PDE-ODE model: Planar motion of an homogeneous Euler-Bernoulli beam of length L attached to a rotating joint.

- The deflection w in the beam frame and the rotation angle θ solve

$$
\begin{aligned}
& \frac{\partial^{2} w}{\partial t^{2}}+\lambda \frac{\partial w}{\partial t}+\frac{\partial^{4} w}{\partial \xi^{4}}+\xi \ddot{\theta}-\rho \dot{\theta}^{2} w=0 \\
& \ddot{\theta}(t)=\frac{\partial^{2} w}{\partial \xi^{2}}(0, t)+\tau(t) \\
& w(0, t)=\frac{\partial w}{\partial \xi}(0, t)=0 \\
& \frac{\partial^{3} w}{\partial \xi^{3}}(L, t)=\frac{\partial^{2} w}{\partial \xi^{2}}(L, t)=0
\end{aligned}
$$

where $\lambda>0$ is a viscous damping coefficient.

- Control problem. Regulate θ.

Forwarding design for stabilization of nonlinear systems

Consider a system of the form

$$
\begin{array}{ll}
\dot{x}=f(x)+g(x) u, & x \in X, \\
\dot{z}=h(x), & z \in Y .
\end{array}
$$

where $f(0)=0, h(0)=0$.
Suppose that

1. (ISS of the x-subsystem.) There exist a Lyapunov functional V and $\alpha, \beta>0$ s.t. solutions to $\dot{x}=f(x)+g(x) u$ satisfy
2. (Invariant graph.) There exists a map $M: X \rightarrow Y$ with The graph of M is invariant under $\dot{x}=f(x), \dot{z}=h(x)$

Expression of M
Integrating along th flow Φ_{t} generated by f yields

Forwarding design for stabilization of nonlinear systems

Consider a system of the form

$$
\begin{array}{ll}
\dot{x}=f(x)+g(x) u, & x \in X \\
\dot{z}=h(x), & z \in Y .
\end{array}
$$

where $f(0)=0, h(0)=0$. Suppose that

1. (ISS of the x-subsystem.) There exist a Lyapunov functional V and $\alpha, \beta>0$ s.t. solutions to $\dot{x}=f(x)+g(x) u$ satisfy

$$
\dot{V} \leqslant-\alpha V+\beta\|u\| .
$$

2. (Invariant graph.) There exists a map $M: X \rightarrow Y$ with The granh of M is invariant under $\dot{x}=f(x), \dot{z}=h(x)$

Expression of M
Integrating along the flow Φ_{t} generated by f yields

Forwarding design for stabilization of nonlinear systems

Consider a system of the form

$$
\begin{array}{ll}
\dot{x}=f(x)+g(x) u, & x \in X \\
\dot{z}=h(x), & z \in Y .
\end{array}
$$

where $f(0)=0, h(0)=0$. Suppose that

1. (ISS of the x-subsystem.) There exist a Lyapunov functional V and $\alpha, \beta>0$ s.t. solutions to $\dot{x}=f(x)+g(x) u$ satisfy

$$
\dot{V} \leqslant-\alpha V+\beta\|u\| .
$$

2. (Invariant graph.) There exists a map $M: X \rightarrow Y$ with $M(0)=0$ s.t. The graph of M is invariant under $\dot{x}=f(x), \dot{z}=h(x)$, i.e.,

$$
\mathrm{d} M(x) f(x)=h(x), \quad x \in X, \quad \text { i.e., } \quad \mathcal{L}_{f} M=h
$$

Expression of M
Integrating along the flow Φ_{t} generated by f yields

Forwarding design for stabilization of nonlinear systems

Consider a system of the form

$$
\begin{array}{ll}
\dot{x}=f(x)+g(x) u, & x \in X \\
\dot{z}=h(x), & z \in Y
\end{array}
$$

where $f(0)=0, h(0)=0$. Suppose that

1. (ISS of the x-subsystem.) There exist a Lyapunov functional V and $\alpha, \beta>0$ s.t. solutions to $\dot{x}=f(x)+g(x) u$ satisfy

$$
\dot{V} \leqslant-\alpha V+\beta\|u\| .
$$

2. (Invariant graph.) There exists a map $M: X \rightarrow Y$ with $M(0)=0$ s.t. The graph of M is invariant under $\dot{x}=f(x), \dot{z}=h(x)$, i.e.,

$$
\mathrm{d} M(x) f(x)=h(x), \quad x \in X, \quad \text { i.e., } \quad \mathcal{L}_{f} M=h
$$

Expression of M

Integrating along the flow Φ_{t} generated by f yields

$$
M(x)=-\int_{0}^{+\infty} h\left(\Phi_{t} x\right) \mathrm{d} t, \quad x \in X .
$$

Construction of a Lyapunov function

Let

$$
W(x, z) \triangleq V(x)+\beta\|z-M(x)\|^{2}, \quad x \in X, \quad z \in Y .
$$

Then,

Letting
Noonlinear full-state feedback law
yields, thanks to the ISS property,

Construction of a Lyapunov function

Let

$$
W(x, z) \triangleq V(x)+\beta\|z-M(x)\|^{2}, \quad x \in X, \quad z \in Y .
$$

Then,

$$
\begin{aligned}
\dot{W} & =\dot{V}+2 \beta\langle z-M(x), \dot{z}-\mathrm{d} M(x) \dot{x}\rangle \\
& =\dot{V}-2 \beta\langle z-M(x), \mathrm{d} M(x) g(x) u\rangle
\end{aligned}
$$

Letting
NIonlinear full-state feedback law
yields, thanks to the ISS property,

Construction of a Lyapunov function

Let

$$
W(x, z) \triangleq V(x)+\beta\|z-M(x)\|^{2}, \quad x \in X, \quad z \in Y
$$

Then,

$$
\begin{aligned}
\dot{W} & =\dot{V}+2 \beta\langle z-M(x), \dot{z}-\mathrm{d} M(x) \dot{x}\rangle \\
& =\dot{V}-2 \beta\langle z-M(x), \mathrm{d} M(x) g(x) u\rangle
\end{aligned}
$$

Letting

Nonlinear full-state feedback law

$$
u=g(x)^{*} \mathrm{~d} M(x)^{*}[z-M(x)]
$$

yields, thanks to the ISS property,

$$
\dot{W}=\dot{V}-2 \beta\|u\|^{2} \leqslant-\alpha V-\beta\|u\|^{2} \leqslant 0 .
$$

Model under consideration

Consider a control system of the form

Semilinear system

$$
\begin{aligned}
& \dot{x}=A x+f(x)+g(x) u, \\
& \dot{z}=S z+C x+h(x),
\end{aligned}
$$

where

- $A: \mathcal{D}(A) \rightarrow X$ generates a C_{0}-semigroup $\left\{e^{t A}\right\}_{t \geqslant 0}$;
- $C \in \mathcal{L}(\mathcal{D}(A), Y)$ is A-bounded;
- $S \in \mathcal{L}(Y)$ is skew-adjoint, i.e., $S^{*}=-S$;
and
- $f: X \rightarrow X$
- $g: X \rightarrow \mathcal{L}(U, X)$
- $h: X \rightarrow Y$
are locally Lipschitz with $f(0)=0$ and $h(0)=0$.

Additional assumption

1. f and h are Fréchet differentiable with locally Lipschitz differential.
2. Without loss of generality, $\mathrm{d} f(0)=0$ and $\mathrm{d} h(0)=0$.

Model under consideration

Consider a control system of the form

Semilinear system

$$
\begin{aligned}
& \dot{x}=A x+f(x)+g(x) u, \\
& \dot{z}=S z+C x+h(x),
\end{aligned}
$$

where

- $A: \mathcal{D}(A) \rightarrow X$ generates a C_{0}-semigroup $\left\{e^{t A}\right\}_{t \geqslant 0}$;
- $C \in \mathcal{L}(\mathcal{D}(A), Y)$ is A-bounded;
- $S \in \mathcal{L}(Y)$ is skew-adjoint, i.e., $S^{*}=-S$;
and
- $f: X \rightarrow X$
- $g: X \rightarrow \mathcal{L}(U, X)$
- $h: X \rightarrow Y$
are locally Lipschitz with $f(0)=0$ and $h(0)=0$.

Additional assumption

1. f and h are Fréchet differentiable with locally Lipschitz differential.
2. Without loss of generality, $\mathrm{d} f(0)=0$ and $\mathrm{d} h(0)=0$.

Semiglobal ISS

Assumption

There exist:

1. A (quadratic-like) Lyapunov function $V \in \mathcal{C}^{1}(X, \mathbb{R})$ and $\beta>0$ s.t., along solutions to $\dot{x}=A x+f(x)+B u$,

$$
\dot{V} \leqslant \beta\|u\|^{2} ;
$$

2. For every open bounded set $\mathcal{B} \subset X$, a Lyapunov function $V_{\mathcal{B}} \in \mathcal{C}^{1}(X, \mathbb{R})$ and $\alpha_{\mathcal{B}}, \beta_{\mathcal{B}}>0$ s.t. if x remains in \mathcal{B} then

$$
\dot{V}_{\mathcal{B}} \leqslant-\alpha_{\mathcal{B}} V_{\mathcal{B}}+\beta\|u\|^{2} .
$$

Semiglobal exponential stability of the x-dynamics. With reference to the semigroup Φ_{t} associated with $\dot{x}=A x+f(x)$, the equilibrium 0 uniformly attract bounded sets of X (with exponential rate depending on the bounded set).

Assumption

There exists $P \in \mathcal{L}(X)$ coercice self-adjoint and $\mu>0$ s.t.
\qquad

Semiglobal ISS

Assumption

There exist:

1. A (quadratic-like) Lyapunov function $V \in \mathcal{C}^{1}(X, \mathbb{R})$ and $\beta>0$ s.t., along solutions to $\dot{x}=A x+f(x)+B u$,

$$
\dot{V} \leqslant \beta\|u\|^{2} ;
$$

2. For every open bounded set $\mathcal{B} \subset X$, a Lyapunov function $V_{\mathcal{B}} \in \mathcal{C}^{1}(X, \mathbb{R})$ and $\alpha_{\mathcal{B}}, \beta_{\mathcal{B}}>0$ s.t. if x remains in \mathcal{B} then

$$
\dot{V}_{\mathcal{B}} \leqslant-\alpha_{\mathcal{B}} V_{\mathcal{B}}+\beta\|u\|^{2} .
$$

Semiglobal exponential stability of the x-dynamics. With reference to the semigroup Φ_{t} associated with $\dot{x}=A x+f(x)$, the equilibrium 0 uniformly attract bounded sets of X (with exponential rate depending on the bounded set).

Assumption

There exists $P \in \mathcal{L}(X)$ coercice self-adjoint and $\mu>0$ s.t.

Semiglobal ISS

Assumption

There exist:

1. A (quadratic-like) Lyapunov function $V \in \mathcal{C}^{1}(X, \mathbb{R})$ and $\beta>0$ s.t., along solutions to $\dot{x}=A x+f(x)+B u$,

$$
\dot{V} \leqslant \beta\|u\|^{2} ;
$$

2. For every open bounded set $\mathcal{B} \subset X$, a Lyapunov function $V_{\mathcal{B}} \in \mathcal{C}^{1}(X, \mathbb{R})$ and $\alpha_{\mathcal{B}}, \beta_{\mathcal{B}}>0$ s.t. if x remains in \mathcal{B} then

$$
\dot{V}_{\mathcal{B}} \leqslant-\alpha_{\mathcal{B}} V_{\mathcal{B}}+\beta\|u\|^{2} .
$$

Semiglobal exponential stability of the x-dynamics. With reference to the semigroup Φ_{t} associated with $\dot{x}=A x+f(x)$, the equilibrium 0 uniformly attract bounded sets of X (with exponential rate depending on the bounded set).

Assumption

There exists $P \in \mathcal{L}(X)$ coercice self-adjoint and $\mu>0$ s.t.

$$
\langle A x, P x\rangle \leqslant-\mu\|x\|_{X}^{2}, \quad x \in \operatorname{dom}(A) .
$$

On Sylvester equations

The nonlinear operator equations for the existence of a suitable invariant graph for $\dot{x}=A x+f(x), \dot{z}=S x+C x+h(x)$ are

$$
\begin{aligned}
& \mathrm{d} M(x)(A+f)(x)=S M(x)+(C+h)(x), \quad x \in \operatorname{dom}(A), \\
& M(0)=0 .
\end{aligned}
$$

Linear Sylvester equation
We seek $M_{0} \in \mathcal{L}(X, Y)$ s.t.

- Operator or matrix equations of the form $P A+B P=C$ are used in different contexts:
- Here, exponentially stability of $e^{t A}$ and boundedness of $e^{t S}$ backward in time:

On Sylvester equations

The nonlinear operator equations for the existence of a suitable invariant graph for $\dot{x}=A x+f(x), \dot{z}=S x+C x+h(x)$ are

$$
\begin{aligned}
& \mathrm{d} M(x)(A+f)(x)=S M(x)+(C+h)(x), \quad x \in \operatorname{dom}(A), \\
& M(0)=0 .
\end{aligned}
$$

Linear Sylvester equation

We seek $M_{0} \in \mathcal{L}(X, Y)$ s.t.

$$
M_{0} A=S M_{0}+C
$$

- Operator or matrix equations of the form $P A+B P=C$ are used in different contexts:

```
1. Lyapunov equations when }A\mathrm{ is a semigroup generator, }B=\mp@subsup{A}{}{*}\mathrm{ and }C=-id
2. Internal-model based control when S is a signal generator;
    3. Existence of bounded solutions to \dot{x}=Ax+f\mathrm{ with }f\in\mp@subsup{L}{}{p}(0,+\infty;X)
```

- Here, exponentially stability of $e^{t A}$ and boundedness of $e^{t S}$ backward in time:

On Sylvester equations

The nonlinear operator equations for the existence of a suitable invariant graph for $\dot{x}=A x+f(x), \dot{z}=S x+C x+h(x)$ are

$$
\begin{aligned}
& \mathrm{d} M(x)(A+f)(x)=S M(x)+(C+h)(x), \quad x \in \operatorname{dom}(A), \\
& M(0)=0 .
\end{aligned}
$$

Linear Sylvester equation

We seek $M_{0} \in \mathcal{L}(X, Y)$ s.t.

$$
M_{0} A=S M_{0}+C
$$

- Operator or matrix equations of the form $P A+B P=C$ are used in different contexts:

1. Lyapunov equations when A is a semigroup generator, $B=A^{*}$ and $C=-\mathrm{id}$;
2. Internal-model based control when S is a signal generator;
3. Existence of bounded solutions to $\dot{x}=A x+f$ with $f \in L^{p}(0,+\infty ; X)$.

On Sylvester equations

The nonlinear operator equations for the existence of a suitable invariant graph for $\dot{x}=A x+f(x), \dot{z}=S x+C x+h(x)$ are

$$
\begin{aligned}
& \mathrm{d} M(x)(A+f)(x)=S M(x)+(C+h)(x), \quad x \in \operatorname{dom}(A), \\
& M(0)=0 .
\end{aligned}
$$

Linear Sylvester equation

We seek $M_{0} \in \mathcal{L}(X, Y)$ s.t.

$$
M_{0} A=S M_{0}+C
$$

- Operator or matrix equations of the form $P A+B P=C$ are used in different contexts:

1. Lyapunov equations when A is a semigroup generator, $B=A^{*}$ and $C=-\mathrm{id}$;
2. Internal-model based control when S is a signal generator;
3. Existence of bounded solutions to $\dot{x}=A x+f$ with $f \in L^{p}(0,+\infty ; X)$.

- Here, exponentially stability of $e^{t A}$ and boundedness of $e^{t S}$ backward in time:

$$
M_{0} x=C A^{-1} x-\int_{0}^{+\infty} S e^{-t S} C A^{-1} e^{t A} x \mathrm{~d} t
$$

Nonlinear Sylvester equations

Perturbation argument

We search a solution M of the form

$$
M(x)=M_{0}+F(x)
$$

where $F: X \rightarrow Y, F(0)=0$, is Fréchet differentiable.

1. M solves the equation iff F solves
or equivalently,
2. Applying the invertible operator $e^{-t S}$ yields that M is a solution if
3. Thus, if M is a solution, then because $e^{-t S}$ is uniformly bounded and $\left\|\Phi_{t} x\right\|_{X} \rightarrow 0$ as $t \rightarrow+\infty$ at exponential rate:

Nonlinear Sylvester equations

Perturbation argument

We search a solution M of the form

$$
M(x)=M_{0}+F(x)
$$

where $F: X \rightarrow Y, F(0)=0$, is Fréchet differentiable.

1. M solves the equation iff F solves

$$
M_{0} f(x)+\mathrm{d} F(x)(A+f)(x)=S F(x)+h(x), \quad x \in \operatorname{dom}(A),
$$

or equivalently,
$M_{0} f\left(\Phi_{t} x\right)+\mathrm{d} F\left(\Phi_{t} x\right)(A+f)\left(\Phi_{t} x\right)=S F\left(\Phi_{t} x\right)+h\left(\Phi_{t} x\right), \quad x \in \operatorname{dom}(A), \quad t \geqslant 0$.
2. Applying the invertible operator $e^{-t S}$ yields that M is a solution
3. Thus, if M is a solution, then because $e^{-t S}$ is uniformly bounded and
$\left\|\Phi_{t} x\right\|_{X} \rightarrow 0$ as $t \rightarrow+\infty$ at exponential rate:

Nonlinear Sylvester equations

Perturbation argument

We search a solution M of the form

$$
M(x)=M_{0}+F(x)
$$

where $F: X \rightarrow Y, F(0)=0$, is Fréchet differentiable.

1. M solves the equation iff F solves

$$
M_{0} f(x)+\mathrm{d} F(x)(A+f)(x)=S F(x)+h(x), \quad x \in \operatorname{dom}(A),
$$

or equivalently,
$M_{0} f\left(\Phi_{t} x\right)+\mathrm{d} F\left(\Phi_{t} x\right)(A+f)\left(\Phi_{t} x\right)=S F\left(\Phi_{t} x\right)+h\left(\Phi_{t} x\right), \quad x \in \operatorname{dom}(A), \quad t \geqslant 0$.
2. Applying the invertible operator $e^{-t S}$ yields that M is a solution iff

$$
\frac{\mathrm{d}}{\mathrm{~d} t} e^{-t S} F\left(\Phi_{t} x\right)=-e^{-t S}\left[M_{0} f\left(\Phi_{t} x\right)-h\left(\Phi_{t} x\right)\right], \quad x \in \operatorname{dom}(A), \quad t \geqslant 0
$$

3. Thus, if M is a solution, then because $e^{-t S}$ is uniformly bounded and $\left\|\Phi_{t} x\right\|_{X} \rightarrow 0$ as $t \rightarrow+\infty$ at exponential rate:

Nonlinear Sylvester equations

Perturbation argument

We search a solution M of the form

$$
M(x)=M_{0}+F(x)
$$

where $F: X \rightarrow Y, F(0)=0$, is Fréchet differentiable.

1. M solves the equation iff F solves

$$
M_{0} f(x)+\mathrm{d} F(x)(A+f)(x)=S F(x)+h(x), \quad x \in \operatorname{dom}(A),
$$

or equivalently,
$M_{0} f\left(\Phi_{t} x\right)+\mathrm{d} F\left(\Phi_{t} x\right)(A+f)\left(\Phi_{t} x\right)=S F\left(\Phi_{t} x\right)+h\left(\Phi_{t} x\right), \quad x \in \operatorname{dom}(A), \quad t \geqslant 0$.
2. Applying the invertible operator $e^{-t S}$ yields that M is a solution iff

$$
\frac{\mathrm{d}}{\mathrm{~d} t} e^{-t S} F\left(\Phi_{t} x\right)=-e^{-t S}\left[M_{0} f\left(\Phi_{t} x\right)-h\left(\Phi_{t} x\right)\right], \quad x \in \operatorname{dom}(A), \quad t \geqslant 0
$$

3. Thus, if M is a solution, then because $e^{-t S}$ is uniformly bounded and $\left\|\Phi_{t} x\right\|_{X} \rightarrow 0$ as $t \rightarrow+\infty$ at exponential rate:

$$
F(x)=\int_{0}^{+\infty} e^{-t S}\left[M_{0} f\left(\Phi_{t} x\right)-h\left(\Phi_{t} x\right)\right] \mathrm{d} t, \quad x \in \operatorname{dom}(A)
$$

Sketch of the proof, continued

Now, assume that F given by the integral is Fréchet differentiable.

1. First, write

$$
e^{-t S} F\left(\Phi_{t} x\right)-F(x)=-\int_{0}^{t} e^{-s S}\left[M_{0} f\left(\Phi_{s} x\right)-h\left(\Phi_{s} x\right)\right] \mathrm{ds}, \quad x \in \operatorname{dom}(A),
$$

2. Dividing by $t>0$ and letting $t \rightarrow 0$ yield

$$
\left.\frac{\mathrm{d}}{\mathrm{d} t} e^{-t S} F\left(\Phi_{t} x\right)\right|_{t=0}=h(x)-M_{0} f(x), \quad x \in \operatorname{dom}(A),
$$

that is, by the chain rule,

$$
-S F(x)+\mathrm{d} F(x)(A+f)(x)=h(x)-M_{0} f(x), \quad x \in \operatorname{dom}(A)
$$

Theorem (Existence of $M)$
There exists a unique Fréchet differentiable solution $M: X \rightarrow Y$ given by

$$
M(x)=M_{0} x+\int_{0}^{+\infty} e^{-t S}\left[M_{0} f\left(\Phi_{t} x\right)-h\left(\Phi_{t} x\right)\right] \mathrm{d} t
$$ Furthermore, both M and $\mathrm{d} M$ are locally Lipschitz, and $\quad l$

Sketch of the proof, continued

Now, assume that F given by the integral is Fréchet differentiable.

1. First, write

$$
e^{-t S} F\left(\Phi_{t} x\right)-F(x)=-\int_{0}^{t} e^{-s S}\left[M_{0} f\left(\Phi_{s} x\right)-h\left(\Phi_{s} x\right)\right] \mathrm{d} s, \quad x \in \operatorname{dom}(A), \quad t \geqslant 0 .
$$

2. Dividing by $t>0$ and letting $t \rightarrow 0$ yield

that is, by the chain rule,

Theorem (Existence of M)
There exists a

Furthermore, both M and $\mathrm{d} M$ are locally Lipschitz, and

Sketch of the proof, continued

Now, assume that F given by the integral is Fréchet differentiable.

1. First, write

$$
e^{-t S} F\left(\Phi_{t} x\right)-F(x)=-\int_{0}^{t} e^{-s S}\left[M_{0} f\left(\Phi_{s} x\right)-h\left(\Phi_{s} x\right)\right] \mathrm{d} s, \quad x \in \operatorname{dom}(A), \quad t \geqslant 0 .
$$

2. Dividing by $t>0$ and letting $t \rightarrow 0$ yield

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} e^{-t S} F\left(\Phi_{t} x\right)\right|_{t=0}=h(x)-M_{0} f(x), \quad x \in \operatorname{dom}(A)
$$

that is, by the chain rule,

$$
-S F(x)+\mathrm{d} F(x)(A+f)(x)=h(x)-M_{0} f(x), \quad x \in \operatorname{dom}(A)
$$

Theorem (Existence of M)

There exists a unique Fréchet differentiable solution $M: X \rightarrow Y$ given by

Furthermore, both M and $\mathrm{d} M$ are locally Lipschitz, and

Sketch of the proof, continued

Now, assume that F given by the integral is Fréchet differentiable.

1. First, write

$$
e^{-t S} F\left(\Phi_{t} x\right)-F(x)=-\int_{0}^{t} e^{-s S}\left[M_{0} f\left(\Phi_{s} x\right)-h\left(\Phi_{s} x\right)\right] \mathrm{d} s, \quad x \in \operatorname{dom}(A), \quad t \geqslant 0 .
$$

2. Dividing by $t>0$ and letting $t \rightarrow 0$ yield

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} e^{-t S} F\left(\Phi_{t} x\right)\right|_{t=0}=h(x)-M_{0} f(x), \quad x \in \operatorname{dom}(A)
$$

that is, by the chain rule,

$$
-S F(x)+\mathrm{d} F(x)(A+f)(x)=h(x)-M_{0} f(x), \quad x \in \operatorname{dom}(A)
$$

Theorem (Existence of M)

There exists a unique Fréchet differentiable solution $M: X \rightarrow Y$ given by

$$
M(x)=M_{0} x+\int_{0}^{+\infty} e^{-t S}\left[M_{0} f\left(\Phi_{t} x\right)-h\left(\Phi_{t} x\right)\right] \mathrm{d} t
$$

Furthermore, both M and $\mathrm{d} M$ are locally Lipschitz, and

$$
\mathrm{d} M(x) h=M_{0} h+\int_{0}^{+\infty} e^{-t S}\left[M_{0} \mathrm{~d} f\left(\Phi_{t} x\right)-\mathrm{d} h\left(\Phi_{t} x\right)\right] \mathrm{d} \Phi_{t}(x) h \mathrm{~d} t, \quad x, h \in X
$$

Stability of the closed-loop

We go back to the stabilized cascade with state feedback:

$$
\dot{x}=A x+f(x)+g(x) u, \quad \dot{z}=S z+C x+h(x), \quad u=g(x)^{*} \mathrm{~d} M(x)^{*}[z-M(x)] .
$$

Remark

- Local (in time) well-posedness on $X \times Y$ follows from results on Lipschitz perturbations of linear equations.
- Our prior Lyapunov analysis indicates that solutions are global.

Assumption

1 V is finite-er imensional
2. (Nonresonance condition.)

$$
\operatorname{ran}\left(M_{0} g(0)\right)=Y
$$

If $S=0$, this reads as $\operatorname{ran}\left(C A^{-1} g(0)\right)=Y$

This condition serves two purposes:

- (GAS via LaSalle.) Prove that a certain Lyapunov function W is zero only for
- (LES.) Around zero, get "strict dissipation in the z-variable" too!

Stability of the closed-loop

We go back to the stabilized cascade with state feedback:

$$
\dot{x}=A x+f(x)+g(x) u, \quad \dot{z}=S z+C x+h(x), \quad u=g(x)^{*} \mathrm{~d} M(x)^{*}[z-M(x)] .
$$

Remark

- Local (in time) well-posedness on $X \times Y$ follows from results on Lipschitz perturbations of linear equations.
- Our prior Lyapunov analysis indicates that solutions are global.

Assumption

1. Y is finite-dimensional.
2. (Nonresonance condition.)

$$
\operatorname{ran}\left(M_{0} g(0)\right)=Y
$$

If $S=0$, this reads as $\operatorname{ran}\left(C A^{-1} g(0)\right)=Y$.

This condition serves two purposes:

- (GAS via LaSalle.) Prove that a certain Lyapunov function W is zero only for $(x, z)=0$.
- (LES.) Around zero, get "strict dissipation in the z-variable" too!

Stability result

With reference to the closed-loop equations

$$
\dot{x}=A x+f(x)+g(x) u, \quad \dot{z}=S z+C x+h(x), \quad u=g(x)^{*} \mathrm{~d} M(x)^{*}[z-M(x)],
$$

we have the following stability properties.

Theorem (Stability \& convergence)

0 is locally exponentially stable and globally asymptotically stable, i.e., for all initial data $\left(x_{0}, z_{0}\right) \in X \times Y$,

$$
\|(x(t), z(t))\|_{X \times Y} \rightarrow 0, \quad t \rightarrow+\infty
$$

and there exist $K, \lambda>0$ and a neighborhood \mathcal{V} of 0 in $X \times Y$ s.t.

$$
\|(x(t), z(t))\|_{X \times Y} \leqslant K e^{-\lambda t}\left\|\left(x_{0}, z_{0}\right)\right\|_{X \times Y}, \quad t \geqslant 0, \quad\left(x_{0}, z_{0}\right) \in \mathcal{V}
$$

The proof relies on Lyapunov functions of the form

$$
W(x, z)=V(x)+\frac{\rho}{2}\|z-M(x)\|_{Y}^{2} .
$$

Going back to the beam model

Steady state input and new coordinates: Having set

$$
\tau=-\theta+\theta_{\mathrm{ref}}+\tilde{\tau}, \quad \phi(t)=\theta(t)-\theta_{\mathrm{ref}}, \quad v(\xi, t)=w(\xi, t)+\xi \phi(t)
$$

the plant equations become

$$
\begin{aligned}
& \frac{\partial^{2} v}{\partial t^{2}}+\lambda \frac{\partial v}{\partial t}+\frac{\partial^{4} v}{\partial \xi^{4}}-\lambda \xi \dot{\phi}-\dot{\phi}^{2}(v-\xi \phi)=0, \\
& \ddot{\phi}(t)=\frac{\partial^{2} v}{\partial \xi^{2}}(0, t)-\phi(t)+\tilde{\tau}(t) \\
& \frac{\partial^{3} v}{\partial \xi^{3}}(L, t)=\frac{\partial^{2} v}{\partial \xi^{2}}(L, t)=v(0, t)=0, \\
& \frac{\partial v}{\partial \xi}(0, t)=\phi(t) .
\end{aligned}
$$

Remark

The (v, ϕ)-equations do not depend on $\theta_{\text {ref }}$!

Prestabilization and forwarding

1. Nonlinear prestabilization. Choose

$$
\tilde{\tau}=-\dot{\phi} \int_{\Omega} v \frac{\partial v}{\partial t} \mathrm{~d} \xi+(\phi \dot{\phi}-\lambda) \int_{\Omega} \xi \frac{\partial v}{\partial t} \mathrm{~d} \xi-\dot{\phi}+u
$$

so that, letting

$$
V=\frac{1}{2}\left(\int_{\Omega}\left|\frac{\partial v}{\partial t}\right|^{2}+\left|\frac{\partial^{2} v}{\partial \xi^{2}}\right|^{2} \mathrm{~d} \xi+|\dot{\phi}|^{2}+|\phi|^{2}\right)
$$

we have

$$
\dot{V}=-\lambda \int_{\Omega}\left|\frac{\partial v}{\partial t}\right|^{2} \mathrm{~d} \xi-|\dot{\phi}|^{2}+u \dot{\phi} \leqslant \frac{1}{2}|u|^{2}
$$

2. Strict control Lyapunov function on bounded set. Let

Prestabilization and forwarding

1. Nonlinear prestabilization. Choose

$$
\tilde{\tau}=-\dot{\phi} \int_{\Omega} v \frac{\partial v}{\partial t} \mathrm{~d} \xi+(\phi \dot{\phi}-\lambda) \int_{\Omega} \xi \frac{\partial v}{\partial t} \mathrm{~d} \xi-\dot{\phi}+u
$$

so that, letting

$$
V=\frac{1}{2}\left(\int_{\Omega}\left|\frac{\partial v}{\partial t}\right|^{2}+\left|\frac{\partial^{2} v}{\partial \xi^{2}}\right|^{2} \mathrm{~d} \xi+|\dot{\phi}|^{2}+|\phi|^{2}\right)
$$

we have

$$
\dot{V}=-\lambda \int_{\Omega}\left|\frac{\partial v}{\partial t}\right|^{2} \mathrm{~d} \xi-|\dot{\phi}|^{2}+u \dot{\phi} \leqslant \frac{1}{2}|u|^{2} .
$$

2. Strict control Lyapunov function on bounded set. Let

$$
V_{\varepsilon}=V+\varepsilon \cdot \text { Multiplier term. }
$$

Lemma

For any open bounded set \mathcal{B} of the energy space $X\left(\simeq H^{2}(\Omega) \times L^{2}(\Omega) \times \mathbb{R}^{2}\right.$ with coupling and some $B C$.), there exists $\varepsilon, \alpha, \beta>0$ s.t.

$$
\dot{V}_{\varepsilon} \leqslant-\alpha V_{\varepsilon}+\beta\|u\|^{2} \quad \text { in } \mathcal{B} .
$$

Result for the beam model

We are now in position to add the output integrator

$$
\dot{z}=\phi=\theta-\theta_{\mathrm{ref}}
$$

and implement the forwarding feedback law

$$
u=B^{*} \mathrm{~d} M(x)^{*}[z-M(x)]
$$

to stabilize the cascade.

Theorem

1. (Output tracking.) Let $\theta_{\text {ref }} \in \mathbb{R}$. With reference to the ($w, \dot{w}, \theta, \dot{\theta}, z$)-dynamics, the unique equilibrium at which $\theta=\theta_{\text {ref }}$ is LES and GAS (in energy norm). In particular,

$$
\theta(t) \rightarrow \theta_{\text {ref }}, \quad t \rightarrow+\infty .
$$

2. (Robustness.) Existence of a LES equilibrium is preserved under small matched disturbance $d \in \mathbb{R}$.

Merci pour votre attention !

[^0]: A question
 Can we assume $y_{\text {ref }}=0$? 0 ?

 - Dependence on the feedback function k w.r.t. $y_{\text {ref }}$

