
Different approaches to integral action in infinite-dimensional
nonlinear dynamics

EDP, commande et observation des systèmes, LAAS-CNRS, Toulouse
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Orientation



Set-point output regulation/tracking problem

Consider a controlled plant with state x ∈ X, input u ∈ U and output y ∈ Y .

ẋ = f(x, u)
u

y = h(x)
x y

• (Set-point output tracking problem.) Given yref ∈ Y , find a control law s.t.

1. The state x remains bounded;

2. (Asymptotic tracking.)

y(t) → yref , t → +∞.

• (Robust regulation.) Ensure that those properties hold “robustly”:

ẋ = f(x, u, d)
u

d

y

1. (Disturbance rejection.) In presence of some classes of exogeneous disturbances d;

2. Under parameter uncertainties?..

1/26



Set-point output regulation/tracking problem

Consider a controlled plant with state x ∈ X, input u ∈ U and output y ∈ Y .
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Integral action

Standing assumption

A constant input u⋆ produces a unique steady state x⋆.

For linear systems of the form ẋ = Ax+Bu where etA is exponentially stable,

0 ∈ ρ(A) and

x⋆ = A−1Bu⋆

is globally exponentially stable equilibrium w.r.t. to ẋ = Ax+Bu⋆.
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A nonlinear example

Minea system

Let δ > 0. Consider the following control system on X = R2:

ẋ1 + x1 + δx2
2 = u,

ẋ2 + x2 − δx1x2 = 0.

• We have
1

2

d

dt
∥x∥2 = −∥x∥2 + x1u ⩽ −

1

2
∥x∥2 +

1

2
|u|2

so that if u = 0, x → 0 uniformly and exponentially, plus ISS property.

• Nevertheless, depending on δ, the constant input u⋆ produces up to 3 equilibria

with heteroclinic curves.

Takeway point

Stability is not enough!
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Integral action

Consider adding an output integrator to the loop.

ẋ = f(x, u, d)
u

d

ż = y − yref
y

yref

z

• Given yref and a control law u = k(x, z), at any equilibrium (x⋆, z⋆),

y⋆ = yref .

• Control objective: Find a feedback control for which the system possesses an

attractive equilibrium.

• Integral control is robust w.r.t. whatever d that preserves existence of such points.
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Some possible strategies

Assume that 0 is an equilibrium for ẋ = f(x, 0, 0) plus some suitable ISS w.r.t. u.

1. (Perturbation approach.) Stabilize the cascade

ẋ = f(x, u, 0), ż = y

around 0 and hope that for small (yref , d), there is an attractive equilibrium

(x⋆, z⋆) for

ẋ = f(x, u, d), ż = y − yref , u = k(x, z).

2. (Change of variable.) If we already know u⋆ s.t. x⋆ has output y⋆ = yref , after

setting x 7→ x− x⋆, stabilize the cascade

ẋ = f(x+ x⋆, u⋆ + u)− f(x⋆, u⋆), ż = y.

A question

Can we assume yref = 0 without loss of generality? Yes and no...

• Dependence on the feedback function k w.r.t. yref .
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Constrained integral control with
monotone operators



Motivation

Let K be a nonempty closed convex subset of Y . How to use integral control under

the set constraint

z ∈ K?

• In case of pure integral output feedback, z is fed “as is” into the plant;

• Pros: controller satisfies operational constraints, anti-windup mechanism, etc.

A solution via projected dynamical systems

Replace the classical integrator with

ż = ΠK(z, y − yref)

where

ΠK(z, y) = argminw∈TK(z) ∥w − y∥

and TK(z) is the tangent cone of K at z.

6/26



Motivation

Let K be a nonempty closed convex subset of Y . How to use integral control under

the set constraint

z ∈ K?

• In case of pure integral output feedback, z is fed “as is” into the plant;

• Pros: controller satisfies operational constraints, anti-windup mechanism, etc.

A solution via projected dynamical systems

Replace the classical integrator with
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Actual motivation

Well-posedness

How to guarantee well-posedness of the closed-loop?

• For projections of vector fields, existence & uniqueness results are available.

• In the“no vector field”case (e.g., most PDEs of interest), no such thing but...

1. (Constrained integrator as a subsystem.) Investigate properties of the map

w ∈ L
2
(0, T ;Y ) 7→ z, where ż = ΠK(z, w), z(0) = z0,

and then “close the loop” with a linear well-posed system via a fixed-point argument.

2. Observe that

ż = ΠK(z, w) ⇐⇒ ż + NK(z) ∋ w,

where the normal cone NK : K ⇒ Y is maximal monotone.

Motives a direct argument for a special class of nonlinear systems!
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ż = ΠK(z, w) ⇐⇒ ż + NK(z) ∋ w,
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Monotone systems?

A suitable class of systems

What systems possess good monotonocity properties when coupled with the output

integrator?

• Assume that Y = U . Linear impedance-passive systems satisfy

1

2

d

dt
∥x∥2X ⩽ ⟨u, y⟩Y ,

so adding the integrator ż = y and choosing the output feedback u = −z yields

1

2

d

dt

{
∥x∥2X + ∥z∥2Y

}
⩽ 0.

For impedance-passive systems, there is a energy-preserving coupling with the

integrator!

• In the nonlinear setting, we seek incremental version of those properties.
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A prototype class of impedance-passive nonlinear systems

Let X and be Y be (real) Hilbert spaces. Assume that Y is finite-dimensional.

Consider a control system of the form

ẋ+A(x) ∋ Bu, y = B∗u,

where:

• A : dom(A) ⇒ X is maximal monotone, i.e.,

⟨a1 − a2, x1 − x2⟩ ⩾ 0, ai ∈ A(xi), and ran(A+ λ) = X, λ > 0;

• B ∈ L(Y,X).

Remark (Generation of contraction semigroups)

Maximal monotone operators characterizes (strongly continuous) contraction

semigroups on closed convex subsets of Hilbert spaces.

Given a nonempty closed convex subset K of Y , we close the loop with

ż +NK(z) ∋ B∗x, u = −z.

Lemma

1. The closed-loop equations generate a contraction semigroup on dom(A)×K.

2. If A has compact resolvent (A+ λ)−1, then so has the closed-loop generator.

3. The same holds when adding (d,−yref) ∈ X × Y .
9/26
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Equilibria and feasible references

Assumption

1. A−1 is well-defined and continuous.

2. ker(B) = {0}.

3. 0 ∈ ⟨A(x1)−A(x2), x1 − x2⟩X implies x1 = x2.

Let yref ∈ Y be feasible, i.e., there exists z⋆ ∈ K◦ s.t.

B∗x⋆ = yref , x⋆ = −A−1(Bu⋆), u⋆ = −z⋆.

Then, (x⋆, z⋆) ∈ dom(A)×K◦ is the unique equilibrium for the closed-loop.

Remark

yref remains feasible under small (in norm) and matched disturbance d ∈ ran(B).
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Asymptotic behavior

Assumption

A has compact resolvent (A+ λ)−1.

Let yref ∈ Y be feasible. Let (x0, z0) ∈ dom(A)×K. Consider

ω(x0, z0) =
⋂
s⩾0

⋃
t⩾s

S̃t(x0, z0), S̃t closed-loop semigroup.

• ω(x0, z0) is nonempty, invariant and attracts the solution originating at (x0, z0).

• Contraction semigroup: ω(x0, z0) ⊂ dom(A)×K and S̃t are isometries on

ω(x0, z0). This imposes

ω(x0, z0) = {(x⋆, z⋆)}.

Theorem

1. (Tracking with output feedback.) Closed-loop solutions (x, z) in dom(A)×K
converge in X × Y to the unique steady state (x⋆, z⋆). In particular,

B∗x(t) → yref , t → +∞.

2. (Robustness.) This holds in presence of any constant disturbance d ∈ X that

preserves feasibility of yref , e.g., sufficiently small matched d.
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Ccontrol of a nonlinear parabolic equation

Let Ω ⊂ Rd be a smooth bounded domain. Consider the control system:

∂w

∂t
−

d∑
i=1

∂

∂xi

(
∂w

∂xi

)p−1

+ wp−1 =
m∑

j=1

ujbj in Ω× (0,+∞),

w = 0 on ∂Ω× (0,+∞),

where p ∈ N∗ is even, bj are some smooth functions and uj are scalar control inputs.

• Let A : W 1,p
0 (Ω) → (W 1,p

0 (Ω))′ be given by

⟨A(w), φ⟩ ≜
d∑

i=1

∫
Ω

(
∂w

∂xi

)p−1 ∂φ

∂xi
dx+

∫
Ω
wp−1φ dx, w, φ ∈ W 1,p

0 (Ω).

and consider

dom(A) ≜ {w ∈ W 1,p
0 (Ω) : A(w) ∈ L2(Ω)}

so that A : dom(A) → L2(Ω) is maximal monotone with dense domain, compact

resolvent and

⟨A(w1)−A(w2), w1 − w2⟩L2(Ω) = ∥w1 − w2∥pW1,p(Ω)
⩾ 0.

• B ∈ L(Rm, L2(Ω)) and

B∗ =
m∑

j=1

b∗j .

We assume linear independance of the bj . 12/26



Ccontrol of a nonlinear parabolic equation

Let Ω ⊂ Rd be a smooth bounded domain. Consider the control system:

∂w

∂t
−

d∑
i=1

∂

∂xi

(
∂w

∂xi

)p−1

+ wp−1 =
m∑

j=1

ujbj in Ω× (0,+∞),

w = 0 on ∂Ω× (0,+∞),

where p ∈ N∗ is even, bj are some smooth functions and uj are scalar control inputs.

• Let A : W 1,p
0 (Ω) → (W 1,p

0 (Ω))′ be given by

⟨A(w), φ⟩ ≜
d∑

i=1

∫
Ω

(
∂w

∂xi

)p−1 ∂φ

∂xi
dx+

∫
Ω
wp−1φ dx, w, φ ∈ W 1,p

0 (Ω).

and consider

dom(A) ≜ {w ∈ W 1,p
0 (Ω) : A(w) ∈ L2(Ω)}

so that A : dom(A) → L2(Ω) is maximal monotone with dense domain, compact

resolvent and

⟨A(w1)−A(w2), w1 − w2⟩L2(Ω) = ∥w1 − w2∥pW1,p(Ω)
⩾ 0.

• B ∈ L(Rm, L2(Ω)) and

B∗ =
m∑

j=1

b∗j .

We assume linear independance of the bj . 12/26



Ccontrol of a nonlinear parabolic equation

Let Ω ⊂ Rd be a smooth bounded domain. Consider the control system:

∂w

∂t
−

d∑
i=1

∂

∂xi

(
∂w

∂xi

)p−1

+ wp−1 =
m∑

j=1

ujbj in Ω× (0,+∞),

w = 0 on ∂Ω× (0,+∞),

where p ∈ N∗ is even, bj are some smooth functions and uj are scalar control inputs.

• Let A : W 1,p
0 (Ω) → (W 1,p

0 (Ω))′ be given by

⟨A(w), φ⟩ ≜
d∑

i=1

∫
Ω

(
∂w

∂xi

)p−1 ∂φ

∂xi
dx+

∫
Ω
wp−1φ dx, w, φ ∈ W 1,p

0 (Ω).

and consider

dom(A) ≜ {w ∈ W 1,p
0 (Ω) : A(w) ∈ L2(Ω)}

so that A : dom(A) → L2(Ω) is maximal monotone with dense domain, compact

resolvent and

⟨A(w1)−A(w2), w1 − w2⟩L2(Ω) = ∥w1 − w2∥pW1,p(Ω)
⩾ 0.

• B ∈ L(Rm, L2(Ω)) and

B∗ =
m∑

j=1

b∗j .

We assume linear independance of the bj . 12/26



Extensions and limitations

• Finite-dimensional models of interest: impedance-passive systems with hysteresis.

• “Unbounded”/nonlinear B? Observability-type assumption? Case by case basis.

• (Robustness to parameter uncertainties.) Consider the following model:

∂w

∂t
−∆w + wp−1 + ap−2w

p + . . .+ w = Bu in Ω× (0,+∞),

w = 0 on ∂Ω× (0,+∞).

When u = 0, nontrivial attractor depending on the ai!
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Forwarding approach



Motivation

A nonlinear coupled PDE-ODE model: Planar motion of an homogeneous

Euler-Bernoulli beam of length L attached to a rotating joint.

• The deflection w in the beam frame and the rotation angle θ solve

∂2w

∂t2
+ λ

∂w

∂t
+

∂4w

∂ξ4
+ ξθ̈ − ρθ̇2w = 0,

θ̈(t) =
∂2w

∂ξ2
(0, t) + τ(t),

w(0, t) =
∂w

∂ξ
(0, t) = 0,

∂3w

∂ξ3
(L, t) =

∂2w

∂ξ2
(L, t) = 0,

where λ > 0 is a viscous damping coefficient.

• Control problem. Regulate θ.
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Forwarding design for stabilization of nonlinear systems

Consider a system of the form

ẋ = f(x) + g(x)u, x ∈ X,

ż = h(x), z ∈ Y.

where f(0) = 0, h(0) = 0. Suppose that

1. (ISS of the x-subsystem.) There exist a Lyapunov functional V and α, β > 0 s.t.

solutions to ẋ = f(x) + g(x)u satisfy

V̇ ⩽ −αV + β∥u∥.

2. (Invariant graph.) There exists a map M : X → Y with M(0) = 0 s.t.

The graph of M is invariant under ẋ = f(x), ż = h(x),

i.e.,

dM(x)f(x) = h(x), x ∈ X, i.e., LfM = h

Expression of M

Integrating along the flow Φt generated by f yields

M(x) = −
∫ +∞

0
h(Φtx) dt, x ∈ X.
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Construction of a Lyapunov function

Let

W (x, z) ≜ V (x) + β∥z −M(x)∥2, x ∈ X, z ∈ Y.

Then,
Ẇ = V̇ + 2β⟨z −M(x), ż − dM(x)ẋ⟩

= V̇ − 2β⟨z −M(x), dM(x)g(x)u⟩

Letting

Nonlinear full-state feedback law

u = g(x)∗dM(x)∗[z −M(x)]

yields, thanks to the ISS property,

Ẇ = V̇ − 2β∥u∥2 ⩽ −αV − β∥u∥2 ⩽ 0.
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Model under consideration

Consider a control system of the form

Semilinear system

ẋ = Ax+ f(x) + g(x)u,

ż = Sz + Cx+ h(x),

where

• A : D(A) → X generates a

C0-semigroup {etA}t⩾0;

• C ∈ L(D(A), Y ) is A-bounded;

• S ∈ L(Y ) is skew-adjoint, i.e.,

S∗ = −S;

and

• f : X → X

• g : X → L(U,X)

• h : X → Y

are locally Lipschitz with f(0) = 0 and

h(0) = 0.

Additional assumption

1. f and h are Fréchet differentiable with locally Lipschitz differential.

2. Without loss of generality, df(0) = 0 and dh(0) = 0.
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Semiglobal ISS

Assumption

There exist:

1. A (quadratic-like) Lyapunov function V ∈ C1(X,R) and β > 0 s.t., along

solutions to ẋ = Ax+ f(x) +Bu,

V̇ ⩽ β∥u∥2;

2. For every open bounded set B ⊂ X, a Lyapunov function VB ∈ C1(X,R) and

αB, βB > 0 s.t. if x remains in B then

V̇B ⩽ −αBVB + β∥u∥2.

Semiglobal exponential stability of the x-dynamics. With reference to the semigroup

Φt associated with ẋ = Ax+ f(x), the equilibrium 0 uniformly attract bounded sets

of X (with exponential rate depending on the bounded set).

Assumption

There exists P ∈ L(X) coercice self-adjoint and µ > 0 s.t.

⟨Ax, Px⟩ ⩽ −µ∥x∥2X , x ∈ dom(A).
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On Sylvester equations

The nonlinear operator equations for the existence of a suitable invariant graph for

ẋ = Ax+ f(x), ż = Sx+ Cx+ h(x) are

dM(x)(A+ f)(x) = SM(x) + (C + h)(x), x ∈ dom(A),

M(0) = 0.

Linear Sylvester equation

We seek M0 ∈ L(X,Y ) s.t.

M0A = SM0 + C.

• Operator or matrix equations of the form PA+BP = C are used in different
contexts:

1. Lyapunov equations when A is a semigroup generator, B = A∗ and C = − id;

2. Internal-model based control when S is a signal generator;

3. Existence of bounded solutions to ẋ = Ax + f with f ∈ Lp(0,+∞;X).

• Here, exponentially stability of etA and boundedness of etS backward in time:

M0x = CA−1x−
∫ +∞

0
Se−tSCA−1etAxdt.
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Nonlinear Sylvester equations

Perturbation argument

We search a solution M of the form

M(x) = M0 + F (x)

where F : X → Y , F (0) = 0, is Fréchet differentiable.

1. M solves the equation iff F solves

M0f(x) + dF (x)(A+ f)(x) = SF (x) + h(x), x ∈ dom(A),

or equivalently,

M0f(Φtx)+dF (Φtx)(A+f)(Φtx) = SF (Φtx)+h(Φtx), x ∈ dom(A), t ⩾ 0.

2. Applying the invertible operator e−tS yields that M is a solution iff

d

dt
e−tSF (Φtx) = −e−tS [M0f(Φtx)− h(Φtx)], x ∈ dom(A), t ⩾ 0.

3. Thus, if M is a solution, then because e−tS is uniformly bounded and

∥Φtx∥X → 0 as t → +∞ at exponential rate:

F (x) =

∫ +∞

0
e−tS [M0f(Φtx)− h(Φtx)] dt, x ∈ dom(A).
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1. M solves the equation iff F solves

M0f(x) + dF (x)(A+ f)(x) = SF (x) + h(x), x ∈ dom(A),

or equivalently,

M0f(Φtx)+dF (Φtx)(A+f)(Φtx) = SF (Φtx)+h(Φtx), x ∈ dom(A), t ⩾ 0.

2. Applying the invertible operator e−tS yields that M is a solution iff

d

dt
e−tSF (Φtx) = −e−tS [M0f(Φtx)− h(Φtx)], x ∈ dom(A), t ⩾ 0.

3. Thus, if M is a solution, then because e−tS is uniformly bounded and

∥Φtx∥X → 0 as t → +∞ at exponential rate:

F (x) =

∫ +∞

0
e−tS [M0f(Φtx)− h(Φtx)] dt, x ∈ dom(A).

20/26



Nonlinear Sylvester equations

Perturbation argument

We search a solution M of the form

M(x) = M0 + F (x)

where F : X → Y , F (0) = 0, is Fréchet differentiable.
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Sketch of the proof, continued

Now, assume that F given by the integral is Fréchet differentiable.

1. First, write

e−tSF (Φtx)−F (x) = −
∫ t

0
e−sS [M0f(Φsx)−h(Φsx)] ds, x ∈ dom(A), t ⩾ 0.

2. Dividing by t > 0 and letting t → 0 yield

d

dt
e−tSF (Φtx)

∣∣∣∣
t=0

= h(x)−M0f(x), x ∈ dom(A),

that is, by the chain rule,

−SF (x) + dF (x)(A+ f)(x) = h(x)−M0f(x), x ∈ dom(A).

Theorem (Existence of M)

There exists a unique Fréchet differentiable solution M : X → Y given by

M(x) = M0x+

∫ +∞

0
e−tS [M0f(Φtx)− h(Φtx)] dt

Furthermore, both M and dM are locally Lipschitz, and

dM(x)h = M0h+

∫ +∞

0
e−tS [M0df(Φtx)− dh(Φtx)]dΦt(x)hdt, x, h ∈ X.
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Stability of the closed-loop

We go back to the stabilized cascade with state feedback:

ẋ = Ax+ f(x) + g(x)u, ż = Sz + Cx+ h(x), u = g(x)∗dM(x)∗[z −M(x)].

Remark

• Local (in time) well-posedness on X × Y follows from results on Lipschitz

perturbations of linear equations.

• Our prior Lyapunov analysis indicates that solutions are global.

Assumption

1. Y is finite-dimensional.

2. (Nonresonance condition.)

ran(M0g(0)) = Y.

If S = 0, this reads as ran(CA−1g(0)) = Y .

This condition serves two purposes:

• (GAS via LaSalle.) Prove that a certain Lyapunov function W is zero only for

(x, z) = 0.

• (LES.) Around zero, get “strict dissipation in the z-variable” too!
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Stability result

With reference to the closed-loop equations

ẋ = Ax+ f(x) + g(x)u, ż = Sz + Cx+ h(x), u = g(x)∗dM(x)∗[z −M(x)],

we have the following stability properties.

Theorem (Stability & convergence)

0 is locally exponentially stable and globally asymptotically stable, i.e., for all initial

data (x0, z0) ∈ X × Y ,

∥(x(t), z(t))∥X×Y → 0, t → +∞

and there exist K,λ > 0 and a neighborhood V of 0 in X × Y s.t.

∥(x(t), z(t))∥X×Y ⩽ Ke−λt∥(x0, z0)∥X×Y , t ⩾ 0, (x0, z0) ∈ V.

The proof relies on Lyapunov functions of the form

W (x, z) = V (x) +
ρ

2
∥z −M(x)∥2Y .

23/26



Going back to the beam model

Steady state input and new coordinates: Having set

τ = −θ + θref + τ̃ , ϕ(t) = θ(t)− θref , v(ξ, t) = w(ξ, t) + ξϕ(t),

the plant equations become

∂2v

∂t2
+ λ

∂v

∂t
+

∂4v

∂ξ4
− λξϕ̇− ϕ̇2(v − ξϕ) = 0,

ϕ̈(t) =
∂2v

∂ξ2
(0, t)− ϕ(t) + τ̃(t),

∂3v

∂ξ3
(L, t) =

∂2v

∂ξ2
(L, t) = v(0, t) = 0,

∂v

∂ξ
(0, t) = ϕ(t).

Remark

The (v, ϕ)-equations do not depend on θref !
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Prestabilization and forwarding

1. Nonlinear prestabilization. Choose

τ̃ = −ϕ̇

∫
Ω
v
∂v

∂t
dξ + (ϕϕ̇− λ)

∫
Ω
ξ
∂v

∂t
dξ − ϕ̇+ u,

so that, letting

V =
1

2

(∫
Ω

∣∣∣∣∂v∂t
∣∣∣∣2 +

∣∣∣∣∂2v

∂ξ2

∣∣∣∣2 dξ + |ϕ̇|2 + |ϕ|2
)

,

we have

V̇ = −λ

∫
Ω

∣∣∣∣∂v∂t
∣∣∣∣2 dξ − |ϕ̇|2 + uϕ̇ ⩽

1

2
|u|2.

2. Strict control Lyapunov function on bounded set. Let

Vε = V + ε · Multiplier term.

Lemma

For any open bounded set B of the energy space X (≃ H2(Ω)× L2(Ω)× R2 with

coupling and some BC.), there exists ε, α, β > 0 s.t.

V̇ε ⩽ −αVε + β∥u∥2 in B.
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Result for the beam model

We are now in position to add the output integrator

ż = ϕ = θ − θref

and implement the forwarding feedback law

u = B∗dM(x)∗[z −M(x)]

to stabilize the cascade.

Theorem

1. (Output tracking.) Let θref ∈ R. With reference to the (w, ẇ, θ, θ̇, z)-dynamics,

the unique equilibrium at which θ = θref is LES and GAS (in energy norm). In

particular,

θ(t) → θref , t → +∞.

2. (Robustness.) Existence of a LES equilibrium is preserved under small matched

disturbance d ∈ R.
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Merci pour votre attention !
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