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Coefficient inverse problem in the wave equation

In a smooth bounded domain €2 C R”, it writes for instance,

uey(t,x) — Agy(t,x) + p*(2)y(t,z) = f(t,x), (t,z) € (0,T) x Q,
y(t,x) = g(t,l‘), ( ) (O T) x 00
(¥(0, ), 0y(0,2)) = (y°(2), y* (2)), z €.

e Given data: Source terms f,g ; initial data: (y°,y');
e Unknown: the potential p* = p*(z);
e Additional measurement : the flux d,y(t, ) on (0,T") x ON.



Motivation

@ The determination in € of p* from an additional
measurement are inverse problems for which uniqueness and
stability are well-known and proved using Carleman estimates.

@ Classical reconstruction : from the measurement
d* = 0,y[p*], calculate

. L, * |2
min J(p) = iH()uZ/[P} —d HZ

But J is not convex and may have several local minima, so
that the solution will depend on the initialization pyg.
Algorithms not guaranteed to converge to the global
minimum.

@ Kilibanov, Beilina and co-authors have worked a lot on related
questions...



The Carleman-based reconstruction algorithm

@ First goal : compute the PDE unknown coefficient with
convergence estimates and no a priori first guess.

@ Core idea : build a reconstruction algorithm (C-bRec)
e from the appropriate Carleman estimates to build the cost
functional,
e using the structure of the proof of stability to prove the global
convergence.
@ Until now, the idea was applied to three reconstruction cases:
e potential / wave speed in the wave equation ([Baudouin, de
Buhan, Ervedoza 2013, 2017], [Baudouin, de Buhan, Ervedoza,
Osses 2021]);
e source term in a non linear heat equation by [Boulakia, de
Buhan, Schwindt, 2020].



@ Presentation of the C-bRec algorithm

© C-bRec algorithm on a network
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@ Presentation of the C-bRec algorithm
@ Tools for the reconstruction of the potential
o ldea
@ New Algorithm



Determination of the potential in the wave equation

Y=g, (0,T) x 09
((0), 0:y(0)) = (3°,y"), €.

Is it possible to retrieve the potential p* = p*(x), © € Q from
measurement of the flux d* = 0,y[p*|(t,z) on (0,T) x Ty ?

{ attyfAy+p*y:f7 (OvT)ng

@ Uniqueness: Given p; # p2, can we guarantee 9, y[p1] # dvy[p2] ?

@ Stability: If d,y[p1] ~ dvy[p2], can we guarantee that p1 ~ ps ?

@ Reconstruction: Given d* = 9, y[p*], can we compute p* ?
e Known results: Uniqueness ([Klibanov 92], stability ([Yamamoto 99],
[Imanuvilov, Yamamoto 01]), using Carleman estimates.

e Main question: Reconstruction : how to compute the potential from
the boundary measurement ?



Stability Result ([Yamamoto 99], [Baudouin, Puel 01])

To

Let 29 € RV \ Q and let I'g and T satisfy o0

{r e d, (x —x¢) -v(x) >0} CTy ; T >sup{|lz— x|}
e

Let the potential p, the initial data y° and the solution y[p] s.t.
[Pl o) < m, ggg{lyo(w)!} >y >0, ylpl € H'(0,T;L%(Q)).

Then, one can prove uniqueness and local Lipschitz stability of the
inverse problem for the wave equation: Vg € L%om(Q),

lp — qHL2(Q) < C|0vylp] — aul/[Q]HHl((o,T);LZ(Fo))'



Towards a (re)constructive approach

The idea is considering p* as the fix point of a contracting application
~ construct a sequence (¢*)xen converging towards p*.

Based on the Bukhgeim-Klibanov method, it is easy to check that
Z =0y (ylg"] — y[p*]) satisfies

OuZ — DNoZ + ¢5(2)Z = (p* — ¢")0wylp] = h, (t,x) € (0,T) x Q,

Z(t,x) =0, (t,z) € (0,T) x 00
(2(0,2),0:2(0,x)) = (0, (p* — ¢")y"), z e Q.
One should notice that Z was built to be the unique minimizer of the
functional

T T

Ji(z) = / / ¥z — Apz 4+ q" (x)2—h]* + s/ / %10,z — 1" |?,
0JQ 0.Jr,

where 1/* = 9, (0,y[q"] — 0,y[p*]) on Ty x (0,T).Then

* k
pr=q"+
y°

Be careful: A is unknown.
Idea: minimize another functional .J} associated to / = 0.



Carleman estimate [Baudouin, de Buhan, Ervedoza 13]

Assuming g € L2 (Q), Lg =0 — Az +q(z), ot z)= eMlz—w0]®—Bt?)

{z €99, (x —x0) -v(x) >0} C Ty, suplz—xzo| < BT
z€Q
Jsg >0, A >0 and M = M(so, A, T, 3,20, m) > 0 such that
T « " «
s// e**? (|ow]? + |[Vw|* + s%|w|?) dzdt + 51/2/ 20| 9,1(0)|? da:
0/ Q
T T
< M// e**?|Lyw|? dxdt + Ms // e |0,w|? dodt,
0/a 0/

for all s > sp and w € L2(—T,T; H}(Q)) satisfying

dyw € L2((0,T) x T'o),

Lgqw € L?(Q x (0,T))
{ w(0,z) =0, Vo € Q.

~> but also Imanuvilov, Zhang, Klibanov,...



Carleman based Reconstruction Algorithm

Initialization: ¢% = 0 or any initial guess.
Iteration: Given ¢*,
1 - Compute w(g¥] the solution of

8t2w—Aw+qkw:f, in Qx (0,7),
w =g, on 09 x (0,T),
w(0) =wo, Orw(0) =w1, inQ,

and set ¥ = 9; (0, w([g*] — D w[p*]) on
To x (0,7).



Carleman based Reconstruction Algorithm

Initialization: ¢% = 0 or any initial guess.
Iteration: Given ¢*,
1 - Compute w(g¥] the solution of

8t2w—Aw+qkw:f, in Qx (0,7),
w =g, on 902 x (0,T),
w(0) =wo, Orw(0) =w1, inQ,

and set ¥ = 9; (0, w([g*] — D w[p*]) on
Ty x (0, 7).
2 - Introduce the functional

T T
K@= [ [ elnpales [ [ oot
0Ja 0Jrg

on the space
Tk:{ZeLz(Ov 5 01( )) 7(1‘70)70
Lz e L2(Q x (0,7)),0,2 € L?(Ty x (0,7))}.



Carleman based Reconstruction Algorithm

Initialization: ¢% = 0 or any initial guess. Theorem
Iteration: Given ¢", Assume some geometric and time
1 - Compute w[qk] the solution of conditions. Then, Vs > 0 and k € N,
the functional J(’)“ is continuous,
2w — Aw + w = f, in Qx (0,7), strictly convex and coercive on T*
w =g, on 09 x (0,T), endowed with a suitable weighted
w(0) =wo, Orw(0) =w1, inQ, norm.

and set ¥ = 9; (0, w([g*] — D w[p*]) on
I'o x (0,T).
2 - Introduce the functional

T T
K@= [ [ elnpales [ [ oot
0Ja 0Jrg

on the space
Tk:{ZeLz(Ov 5 01( )) 7(1‘70)70
Lz e L2(Q x (0,7)),0,2 € L?(Ty x (0,7))}.



Carleman based Reconstruction Algorithm

Initialization: ¢% = 0 or any initial guess.

Iteration: Given ¢*,
1 - Compute w(g¥] the solution of

8t2w—Aw+qkw:f, in Qx (0,7),
w =g, on 00 x (0,T

w(0) =wo, Orw(0) =w1, inQ,

and set ¥ = 9; (0, w([g*] — D w[p*]) on

I'o x (0,T).
2 - Introduce the functional

T T
K@= [ [ elnpales [ [ oot
0Ja 0Jrg

on the space
Tk ={z € L?(0, T;

Hy(9)),2(t = 0) =0,
Lz € L2(Q x (0,T)),8,2 € L2(T x (0,T))}.

Theorem

Assume some geometric and time
conditions. Then, Vs > 0 and k € N,
the functional J(’)“ is continuous,
strictly convex and coercive on T*
endowed with a suitable weighted
norm.

3 - Let Z* be the unique minimizer of
the functional J(’)“, and then set

o . 0 Z%(0
qk+l _ qk + (0)
wo

where wq is the initial condition.



Carleman based Reconstruction Algorithm

Initialization: ¢% = 0 or any initial guess. Theorem
Iteration: Given ¢", Assume some geometric and time
1 - Compute w[qk] the solution of conditions. Then, Vs > 0 and k € N,
the functional J(’)“ is continuous,
2w — Aw + w = f, in Qx (0,7), strictly convex and coercive on T*
w =g, on 09 x (0,T), endowed with a suitable weighted
w(0) =wo, Orw(0) =w1, inQ, norm.

3 - Let Z* be the unique minimizer of

k __ ¢ 3 ookl — A apln*
and set i = 8¢ (8, w[g"] — B,wp"]) on the functional J¥, and then set

Lo x (0,T).

2 - Introduce the functional 5 k( )
& . O0eZ"(0
qk+1 _ qk +

gk _ T 2507, 2 T 25019 k2 wo
0(2) = e”*?|Lgkz|"+s e“*|0yz—p” |,
0/Q 0Jrg

where wq is the initial condition.
k41 _ ~kt+1
on the space 4 - Finally, set ¢ =Tm (g™ 1)

T = {z € L*(0,T; H}(Q)), (t = 0) = 0, where

Loz € L2(Q x (0, T)),8uz € L2(To x (0, T))}. Flgl <m

_ q,
Tm(q) ‘{ sign(g)ym,  if g > m.



Algorithm’s convergence  [Baudouin, de Buhan & Ervedoza 13]

Theorem

Assuming the geometric and time conditions (among others), there
exists a constant M > 0 such that Vs > sg(m) and k € N,

* M s *
/9625<p(0)(qk+1 —p )2 dr < \/5/962 <p(0)(qk —p )2 dz.

In particular, when s is large enough, the algorithm converges.

Remark : Convergence to the global minimum from any initial guess.




Proof

As proposed earlier, let us set v* = 9, (y[qk] — y[p*]) that solves

0?v — Av + ¢Fv = fF, in Qx(0,7),
v =0, on 90 x (0,7),
v(0) =0, 9w(0) = (p* —¢")y°, InQ,

where [ = (p —q" F oy [p*).
By definition, ;¥ = 0,v" on Ty x (0,T), and we notice that v* is
the unique minimizer of the functional:

//2S“D|L rw — R +S//F e*?|0,w — p*|?,
0

on the space 7% = {w € L?(0,T; H}(Q)), w(t = 0) = 0,
Lpwe L*(2x (0,T)),0,w € L2(r0 x (0,7))}.



Proof Il

Let us write the Euler Lagrange equations satisfied by:
ZF minimizer of Jé“

T T
//GQSqukszqkw+s// e*(9,2" — )9, w = 0,
0Jo 0 /To

and v* minimizer of J,]f

T T
/ / e**? (Lgpv®— f*)Lppw + s / / > (90" — pM)dw =0,
0Ja 0 JIg

for all w € T*. Applying these to w = Z¥ — v* and subtracting the two
identities, we obtain:

T T T
// 628¢|quw|2 + S// e2sap‘8yw|2 — // eQSLPfk quw7
0Ja 0 /To 0%

implying (2ab < a2 + b?)

1 T 2s 2 T 2sp 2 1 ’ 2s k|2
S| ] L s [ | o <o [ [ e rt
2 0.Ja 0JTIy 2 0JQ



Proof Il

The LHS is precisely the RHS of the Carleman estimate. Hence:

: T
s1/2 / 2?0 9,w(0)|? dz < M/ / 25| ¥ dadt,
Ja 0o Jo
where 9;w(0) = 9;Z%(0) — 9;v*(0). Moreover,
0:2%(0) = (¢ =q")y", 0.0M(0) = (0" —d")y°, [ = (0" —d")Duylp).
Therefore, since p(t) < ¢(0) for all t € (0,T") we have:
/2 [ O PP do < Mo o ma o | €7l | da.
Using the positivity condition on y° and the fact that
" =" = T (@) = T (p*) < 13— 97

because T, is Lipschitz and T,,(p*) = p*, we can deduce

2s5¢(0) ( k+1 M . 25p(0)

2s¢p e P sp

€ q dx < ( ) / q p dzx. O
/&2 ( ) \ﬁ Q ( )



In theory, it works. But in practice ?

Two remarks:
@ Discretizing the wave equation brings numerical artefacts...

@ Minimizing a strictly convex and coercive quadratic functional based
. . . A
on a Carleman estimate means dealing with e2°¢"" for large
parameters s and ...

New goal: propose a numerically efficient algorithm.
Ideas: We need an algorithm constructed with at least
@ a regularization term in the cost functional,

@ a single parameter Carleman estimate.

~~ [Baudouin, de Buhan, Ervedoza 2017]



Convergence of the discrete inverse problems

Remarks:

@ Natural question for all inverse problems in infinite dimensions:
Finding a source term, a conductivity...

@ Depends a priori on the numerical scheme employed.
Main difficulty:

@ Different dynamics for the continuous wave equation versus its
discrete approximations, cf [Ervedoza, Zuazua 2011]:
~> Numerical artefacts: High-frequency spurious waves.

Convergence results for the inverse problem:

@ Penalization of high-frequencies with a regularization term in the
discrete Carleman estimates.

@ 1D [Baudouin, Ervedoza 2013] and 2D [Baudouin, Ervedoza, Osses
2015]



New C-bRec algorithm [Baudouin, de Buhan, Ervedoza
2017]

The algorithm is also modified according to the following items :
@ Single parameter Carleman estimate ;

~> presence of an additional term on the right
83 // 825@‘2‘2
@]
@ Preconditioning of the cost functional ;
~> introduce the conjugate variable y = e*¢z
@ Splitting of the observations by cut-off ;
~ % = n90,(ylq"] - ylp*))

. and the convergence result remains the same.



Outline

© C-bRec algorithm on a network
@ Setting
@ Tools
@ Algorithm and convergence result
@ Numerical results



PDE on networks

Applications :

control or stabilize the vibrations of elastic structures (as bridges,
cranes,...),

regulate the height of water in networks of irrigation canals,

find the topography of the bottom in a network of irrigation canals,
detect water losses by measurements in nodes,

control gas flow in pipelines through compressors,

determine the blood pressure leaving the heart with a finger pressure
measurement,

control road traffic on a network of roads or the flow of blood in a
network of arteries,...



PDE on networks

On networks, the state is represented by several components

v ()

and the components are coupled together by boundary conditions.

If p < N is the number of controls/observations, it is therefore necessary
to pass the information on the remaining N — p branches.

Goals:

@ minimize the number of observations, feedbacks or controls,

@ choice of placement of observations, feedback mechanisms or
controls based on network topology and branch lengths.



An inverse problem on network

Figure: An 8 branches tree-shaped network R, with an unobserved root
node and 5 observed leaf nodes e.



Notations

Let us thus consider a finite tree-shaped network R.
@ J: the set of names of all branches of the network.

@ We define the name of the branches by recurrence:

e To the root branch, named 1, we associate its N; children
branches denoted by 1, € N for i = 1..V;.

e From a branch named j € J we define the names of its N;
children branches by j; for i = 1..IV;.

@ /;: the length of the branch j.

® Jear ={j € J,N; =0}.

@ Jim={jeT,N; >0}

@ f;: the restriction of the function f on R to the branche j.

o [ 1 dasz/ e

IS

o [flj = 1i(;) - iji(o), Vj € Tint-
=1



An inverse problem on network

On each branch j € J of the network, we consider the
one-dimensional wave equation system

{attuj (t, ) — Dpps(t, ) + pj(2)u;(t, x) = g;(t, x), (t,x) € (0,T) x (0,£;),
u;(0,x) = u?(x), O (0,z) = ul(w), xz € (0,¢5),

with
for ] = 1a ul(tvo) = hl(t)v
'f] € jexta Uj(tvgj
If] S %nt, uj(t,Z'



Inverse problem on a network

Inverse problem

Knowing, for each branch j € J, the source term g; and the initial
data (u u; ) for the root and for each leaf j € {1} U J.z the
boundary source term hj, is it possible to identify the unknown
potentials p}(z) for any @ € (0,¢;), from the only extra knowledge
of the flux of the solutions through the leaf nodes of the network,
meaning:

di(t) = Opuj(t, 4;), fori € Jegr and t € (0,T),

where w7 is the solution associated to potential p;?




Lipschitz stability result [Baudouin, Crépeau, V. 2011]

Theorem

There exist a time Ty > 0 and a scalar oy > 0 such that if
@ Time condition: T > T,
@ Regularity condition: w € H'(0,T; L>°(R)),
© Sign condition: |u"| > " > 0 on the whole network R,

then for a fixed m > 0, there exists a positive constant
C = C(R,T,m) such that, if p and p* belong to
L (R) = {p € L*(R), |Iplleo(r) < m}, we have

P —])*Hiz(R) <C Z 102w (-, 4;) — am“;(':fi)nzl(oj)-
7‘,6:751;15

Proof: based on the Bukhgeim and Klibanov method and a two
parameters Carleman estimate.



Carleman weight function ¢

Vi€ T, pi(t,x) = (v —x;)® — B>+ M;, (t,x) € R x (0,4;).
There exist (z;)jes € R™, (M;)jes € RT, 8€(0,1) and T > 0 satisfying
BT > sup({; — ;)
JjeET
such that it holds

(I) V.]e%ntywjz(t70):<pj(tfj)7 VZG{LNJ}
(i) The matrices A?(t) satisfy for any j € Jint: 3af > 0,58; >0, V{ € RN+,

(A2 (1), €) = af I, BRUES R
(A2(1)€,6) > afllEll® = Bjlén, 411, VW, Ty < |t| < T

where A7 (t) are (N; + 1) x (N; + 1) symmetric matrices defined by

$, (0) — @5 (€5)  —@j(€5) - —¢;(¢;) —¢;(4;)[4];
A¥ = .
s 0 —9;(¢;) :
Din, (0) = ¢5(65)  —¢;5(£;)[9];
a;(t)

with ¢(z) := dop(t, x) and a;(t) = —¢;(4;)[8]7 + [(10e(t)]* — |61*)¢] -



First tool: one-parameter Carleman estimate [Baudouin, de
Buhan, Crépeau, V.]

Theorem
There exist C > 0, so > 0 such that for all s > sq , for allp € L3 (R),

T
st/? / 625'*5(0’“’)\01«,2“(0, x)|*dx + s/ / e (|(9tz|2 + 022> + 52|z|2) dzdt
JR -TJRr
T
< C/ / 623“’|8ttz — Opzz +pz|2dmdt
-TJRr
T
+C's Z / 3219 2 (¢, 0))2dt + Cs*I(z, 2),
i€Jeat” T
satisfied by all z € H*((=T,T); H}(R)) s.t. Ouz — duwz € L*((0,T) x R),
under Kirchhoff node condition and z(0,-) =0 in R, and where
T(z,2) = // ¢|2Pdudt + 3 / 2593 (1) (¢ 0 2dt
(tl2)e0 e, Jieonr,

with O = U]'EJOJ' where O]‘ = {(t,l’) S (07T) X (O,éj)7 |.CL‘ — $j| — ﬂm < 0}
and Or; = {t € (0,T), |¢; — x;| — B|t| < 0} defined only for x = {;, j € Tint-




The domains O; and Or,

Figure: lllustration of domains O; and Or; for the branch (0,¢;),
denoting T; = |l; — z;|/5.



Some ideas of the proof

We set y = ze®? on (—T,T) x (0,¢) and the conjugate operator
Ls(y) = €% (0 — Oyz) (e *?y). Easy calculations bring

Ls(y) = (Ony — Oz + $(10r0” — [0:0*)y)
Py
+ 250,00,y — 250,00y — 5(O1p — Orap) Y,
Poy Ry

and

T
/ / Lo(y) — Ryl’dadt
—-T JR

T T
:/ /(|P1y|2+|P2y|2)dwdt+2/ /Plyngdxdt.
-TJR -TJR



Some ideas of the proof

The main work of the proof consists in the computation and bound
from below of the cross-term

T ¢
I:/ / Py Poydzdt,
-1 Jo
by:

@ positive and dominant terms as

T
p / / (1812 + 10y + $2IyI?) dadt
T JR

@ negative boundary terms (measured)

—sZ/|8g7tf |2dt

1€Text
@ negative boundary terms

3 2 $3
—S ly|“dzdt, — / ly; (¢, £;)]dt.
//(|t,:c)e(9 Z |t|€O; ’

JE€ETint



Terms at the internal nodes

The terms at the internal nodes are

B> Y / (A% (t )) dt— 0322/ ly; (¢, £;)2dt,

JEjznt j€\7’bnt o

where W;(t) € RNiT! is defined by

.
Wj(t):(axyﬁ(t,()) - Oayyy, (1,0) Syj(t»fj))

Moreover, by assumption on A;‘-’, we have

S s / YW (1), W (1)) dit

Jejznt

> (Cs® Z/ \yjtﬁ )|?dt—C's? Z/ ly; (¢, £;)]dt.

J€Tint J€Tint It1>T;



Second tool: properties of the cut-off function n¥

P = 0?0, (uF — u*) (with n¥ € C2((0,T) x R)) is solution of

{@tvk(t, x) — Opevt (t, ) 4+ pF(x)0f (t, ) = f*(t,z), in (0,T) xR,
v*(0,2) =0, 9,0F(0,2) =17 (0,2)(p* () — p"(x))u’(z), inR,

where f* = n®(p* — pF)Ou* — [n%, Ost — Ors) Ot (uk — u*)

vF satisfies also the continuity and the Kirchhoff law at the internal

nodes, and the Dirichlet boundary condition at the external nodes.

v® is built to be the unique minimizer of the functional
1 /7
Fs[pk” fkaﬂk](2> = § / / ezswlattz - aﬁvzz +pk2 - fk|2 dxdt
0o JR

5 Z ’ (L)
2 250 (t,l;
+ 7 / e
1€ETeat

.3
Dpzilt, 05) — k(1) dt + = I(2, 2),

where we set, for all i € Jequr, ¥ (t) = nf (¢, 0;)0; (Ouul (¢, 6;) — di (1)).



Properties expected from v*

@ Encoding (p* — p*), which is the information we seek, through the
initial speed data 9,v%(0,-) = 1¥(0,-)(p* — p*)u°

~ 17 (0,-) = 1.
@ Vanishing in the domains O and Or, so that Z(v*,v%) =0

~ 17 = 0 on some domain greater than O U (Ujedin. O, x {4;}).

@ Allowing the source term f* solved by v* to be manageable. We
will ask for n¥ to vary (between 0 and 1) only in a small region of
(0,T) x R. Actually, on each (0,T) x (0,¢;), it will be specifically
possible (meaning manageable) where M; < ¢; < x? + M;.

@ But it also has to be done properly across each internal node to
ensure continuity and Kirchhoff law for v* at those nodes.



Context of application of the cut-off functions n¥ over two
consecutive branches j and j;.

t




Third tool: properties of the cost functional F

Lemma

For all s > 0 large enough, p € L>(R), f € L*(0,T; L*(R)) and
w € L2(0,T), the functional Fy[p, f, u] recalled here

[pv f7 / / 25<P|8tt2’ — a,acz + pz — f|2 dxdt
— 25p,(t,4;) ) N, 2 s”
+2i§ /0 210|923 (1, 47) — g (1)t + 5 I(z,z),
ext

is continuous, strictly convex and coercive on T defined by

T = {z e ([0, T); Hy(R)NC ([0, T]; L*(R)), Jet2—Buwz € L*((0, T)xR)
2(0,-)=0inR, and [0u2];(t) =0, Vj € Tint,t € (o,T)}

and equipped with an appropriate weighed norm.
Thenceforth, the functional F[p, f, u] admits a unique minimizer on the
set T.

v

—_———— == =




The C-bRec algorithm on a network
Knowing, for each branch j € 7, g;, h; and (u?,ujl) we have the extra measured
information at the leaves of the network R:
di (t) = Oguf(t,£;), for i € Jextr and t € (0,T).

Initialisation: Choose any initial guess p® € L (R).
Iteration: Knowing p* € L (R),
@ Calculate the solution uk associated to pk, and set

Vi € Jeat, VE € (0,T), b (t) = nf (t,£)0 (Duul (t,6:) — d; (1))

@ Minimize the functional Fs[p¥,0, 1*] defined by on the space 7 and denote w*
its unique minimizer.

© Then set .
L _ Opw™(0, -
pk+l = pk —+ 75] ’ ), on R.
u
© Finally, construct
Skt1 if 155+ <
k+1 _ o (skt1y . p s ! |P \ sm,
p m (P ) { sign(ﬁk+1)m, if |ﬁk+1‘ > m.

Stopping criterion: Choose € > 0 and K € N* and stop the iterative loop as soon as
k+1 _  k
Hpj p; lloo

sup ‘%2 <e or sup ——— < ¢,
§€Text lld7 2 JeT m

Duuf (8, 4;) — d

or when the maximal number of iterations K is reached.



Convergence result [Baudouin, de Buhan, Crépeau, V]

Theorem

Assume that p* € L9(R). Then there exists a constant C' > 0
such that for all s large enough and for all k € N, it holds

. C\* .
/ e?scp(O) |pk —p |2 dr < <1/2> / e25gz>(0)‘p0 —p |2 dr.
R s R

In particular, if s is large enough, the sequence (p*)ren given by
the algorithm converges towards p* when k tends to infinity.




Discretization of the algorithm

@ Discretization of the system: finite differences (explicit centered
scheme) in space and time.

@ Minimization of Fy[p*,0, u*]: resolution of a variational formulation

e approximation of the integrals using rectangle quadrature rules
and standard centered finite differences,

e attention must be paid to the discretization process of T,

e add viscosity terms to guarantee coercivity property uniformly
with respect to discretization parameters (to handle high
frequency spurious waves).

@ Presence of large exponential factors in F,[p”, 0, u*]:

o to work on the conjugate variable (yF)!" = (wk)pess(t"2i)
that acts as a preconditioner of the linear system,

o there are still exponential factors in the right hand side vector
~> develop a progressive process to compute the solution as
the aggregation of several problems localized in subdomains in
which the exponential factors are all of the same order.



Numerical example

Figure: First setting - a 3 branches network, with observations at e.



Numerical

values
U U1 g h m
(2,2,2) (0,0,0) |(0,0,0) | (222) 2
45 I5] s €1 €9
(0.5,1,0.75) 0.99 1 1073 1072
x; M; T N, N,
(-0.3,-2.89,-2.89) | (7.71,0,0) | 3.9 | 100%¢; | 110% T

Table: Numerical values of the variables used for all the numerical

examples.




Simulations from data without noise

(a) (b) (c)
pi(r) = —li.3,0.8/(x/01) pi1(x) = sin(2mz/l11) pia(x) = sin(5mz/l12)

Figure: Top line: Convergence history of the reconstruction process.
Bottom line: final reconstruction result (dotted black line) and exact
coefficient (red line) for the three branches.



Simulations with several levels of noise: 8 = 1%, 6 = 2%,
0 = 5% noise in the data

rrrrrrrrrr




Wrong choices of the parameters: T'= 1.5, T' = 1.25,
without projection
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Conclusion

@ Reconstruction of potentials on networks of wave equations.

@ The C-bRec approach seems quite adaptable, even if it is to
the price of appropriate one-parameter Carleman estimates.

@ Other numerical examples of network?

@ Other equations? KdV equation? Elasticity?
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