Approximate and exact controllability criteria for linear 1D hyperbolic systems

Y. Chitour,
Laboratoire des signaux et systèmes Université Paris- Saclay, CentraleSupélec

Joint Work with S. Fueyo, G. Mazanti and M. Sigalotti

October 18, 2023
EDP-COSy 2023, Toulouse

Network of 1D transport equations

$$
\text { (Hyp) }\left\{\begin{array}{l}
\partial_{t} R(t, x)+\Lambda(x) \partial_{x} R(t, x)+D(x) R(t, x)=0, t>0, x \in(0,1), \\
\binom{R^{+}(t, 0)}{R^{-}(t, 1)}=M\binom{R^{+}(t, 1)}{R^{-}(t, 0)}+B u(t), \quad t \geq 0,
\end{array}\right.
$$

Network of 1D transport equations

$($ Hyp $)\left\{\begin{array}{l}\partial_{t} R(t, x)+\Lambda(x) \partial_{x} R(t, x)+D(x) R(t, x)=0, t>0, x \in(0,1), \\ \binom{R^{+}(t, 0)}{R^{-}(t, 1)}=M\binom{R^{+}(t, 1)}{R^{-}(t, 0)}+B u(t), \quad t \geq 0,\end{array}\right.$

- $\Lambda(x), D(x)$ diagonal $n \times n$ matrices with nonzero diagonal entries whose sign is independent of x;
- R^{+}(resp. R^{-}) gathers components of R whose corresponding diagonal element in $\Lambda(x)$ is positive (resp. negative);
- $u: \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$ control law; B real $n \times m$ matrix; M real $n \times n$ matrix accounting for boundary conditions.

Network of 1D transport equations

$($ Hyp $)\left\{\begin{array}{l}\partial_{t} R(t, x)+\Lambda(x) \partial_{x} R(t, x)+D(x) R(t, x)=0, t>0, x \in(0,1), \\ \binom{R^{+}(t, 0)}{R^{-}(t, 1)}=M\binom{R^{+}(t, 1)}{R^{-}(t, 0)}+B u(t), \quad t \geq 0,\end{array}\right.$

- $\Lambda(x), D(x)$ diagonal $n \times n$ matrices with nonzero diagonal entries whose sign is independent of x;
- R^{+}(resp. R^{-}) gathers components of R whose corresponding diagonal element in $\Lambda(x)$ is positive (resp. negative);
- $u: \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$ control law; B real $n \times m$ matrix; M real $n \times n$ matrix accounting for boundary conditions.
Main goal: Determine (necessary/or sufficient) conditions in the frequency domain, i.e., Hautus tests for L^{q} approx. and/or exact controllability of (Hyp),
Previous work Tucsnak-Weiss (09); Bastin-Coron (16); Miller (05);
Ramdani and al. (05); Coron-Nguyen (19).

Assumptions

- $\Lambda(x)=\operatorname{diag}\left\{\lambda_{1}(x), \ldots, \lambda_{n}(x)\right\}$ and $\exists \tilde{n} \in\{0, \ldots, n\}$ s.t.

$$
\lambda_{i}(x)<0<\lambda_{j}(x) \quad \forall i \in\{\tilde{n}+1, \ldots, n\}, j \in\{1, \ldots, n\},
$$

$$
\lambda_{i}, \frac{1}{\lambda_{i}} \in L^{\infty}((0,1), \mathbb{R}) \quad \forall i \in\{1, \ldots, n\}
$$

- $D(x)=\operatorname{diag}\left\{d_{1}(x), \ldots, d_{n}(x)\right\}$ with $d_{i} \in L^{1}((0,1), \mathbb{R})$ $\forall i \in\{1, \ldots, n\}$;
- Solution R splits into positive and negative velocities, i.e.,

$$
R=\binom{R^{+}}{R^{-}} \quad \text { with }\left\{\begin{array}{l}
R^{+}=\left(R_{1}, \ldots, R_{\tilde{n}}\right)^{T} \\
R^{-}=\left(R_{\tilde{n}+1}, \ldots, R_{n}\right)^{T}
\end{array}\right.
$$

Solution of (Hyp)

Definition (Solution)
$T>0, u:[0, T] \rightarrow \mathbb{R}^{m}$, and $R_{0}:[0,1] \rightarrow \mathbb{R}^{n}$.
$R:[0, T] \times[0,1] \rightarrow \mathbb{R}^{n}$ solution of (Hyp) in $[0, T]$ with initial condition R_{0} and control u if $R(0, x)=R_{0}(x) \forall x \in[0,1]$, boundary equations satisfied $\forall t \geq 0$, and, $\forall i \in \llbracket 1, n \rrbracket, t \in[0, T]$, and $x \in[0,1]$,

$$
\begin{equation*}
R_{i}\left(t+\int_{x}^{x+h} \frac{d \xi}{\lambda_{i}(\xi)}, x+h\right)=e^{-\int_{x}^{x+h} \frac{d_{i}(\xi)}{\lambda_{i}(\xi)} d \xi} R_{i}(t, x) \tag{2}
\end{equation*}
$$

$\forall h \in \mathbb{R}$ s.t. $t+\int_{x}^{x+h} \frac{d \xi}{\lambda_{i}(\xi)} \in[0, T]$ and $x+h \in[0,1]$.

Solution of (Hyp)

Definition (Solution)
$T>0, u:[0, T] \rightarrow \mathbb{R}^{m}$, and $R_{0}:[0,1] \rightarrow \mathbb{R}^{n}$.
$R:[0, T] \times[0,1] \rightarrow \mathbb{R}^{n}$ solution of (Hyp) in $[0, T]$ with initial
condition R_{0} and control u if $R(0, x)=R_{0}(x) \forall x \in[0,1]$, boundary equations satisfied $\forall t \geq 0$, and, $\forall i \in \llbracket 1, n \rrbracket, t \in[0, T]$, and $x \in[0,1]$,

$$
\begin{equation*}
R_{i}\left(t+\int_{x}^{x+h} \frac{d \xi}{\lambda_{i}(\xi)}, x+h\right)=e^{-\int_{x}^{x+h} \frac{d_{i}(\xi)}{\lambda_{i}(\xi)} d \xi} R_{i}(t, x) \tag{2}
\end{equation*}
$$

$\forall h \in \mathbb{R}$ s.t. $t+\int_{x}^{x+h} \frac{d \xi}{\lambda_{i}(\xi)} \in[0, T]$ and $x+h \in[0,1]$.
If R of class C^{1} then it satisfies the PDE.
Cf. Concept of broad solution in Coron-Nguyen (19).

Equivalent Linear Difference Delay System

Set $K=M \operatorname{diag}\left\{e^{-\int_{0}^{1} \frac{d_{1}(x)}{\left|\lambda_{1}(x)\right|} d x}, \ldots, e^{-\int_{0}^{1} \frac{d_{n}(x)}{\left|\lambda_{n}(x)\right|} d x}\right\}$, and

$$
\tau_{i}=\int_{0}^{1} \frac{d x}{\left|\lambda_{i}(x)\right|}, \quad i \in \llbracket 1, n \rrbracket .
$$

Equivalent Linear Difference Delay System

Set $K=M \operatorname{diag}\left\{e^{-\int_{0}^{1} \frac{d_{1}(x)}{\lambda_{1}(x) \mid} d x}, \ldots, e^{-\int_{0}^{1} \frac{d_{n}(x)}{\left|n_{n}(x)\right|} d x}\right\}$, and

$$
\tau_{i}=\int_{0}^{1} \frac{d x}{\left|\lambda_{i}(x)\right|}, \quad i \in \llbracket 1, n \rrbracket .
$$

Consider the Linear Difference Delay System

$$
(L D D S)\left(\begin{array}{c}
y_{1}(t) \\
\vdots \\
y_{n}(t)
\end{array}\right)=K\left(\begin{array}{c}
y_{1}\left(t-\tau_{1}\right) \\
\vdots \\
y_{n}\left(t-\tau_{n}\right)
\end{array}\right)+B u(t), \quad t \geq 0
$$

Claim: (Hyp) and (LDDS) are "equivalent".

Existence of L^{q}-solutions of (Hyp)

For $q \in[1, \infty]$ and $t \geq 0$, 1-to-1 correspondence between

- solutions $R(t, \cdot)$ of (Hyp) defined on $L^{q}\left((0,1), \mathbb{R}^{n}\right)$;
- solutions $y_{[t]}:=\left(y_{i}(t+\cdot)\right)_{1 \leq i \leq n}$ of (LDDS) defined on

$$
\Sigma^{q}=\prod_{i=1}^{n} L^{q}\left(\left(-\tau_{i}, 0\right), \mathbb{R}\right)
$$

Existence of L^{q}-solutions of (Hyp)

For $q \in[1, \infty]$ and $t \geq 0$, 1-to- 1 correspondence between

- solutions $R(t, \cdot)$ of (Hyp) defined on $L^{q}\left((0,1), \mathbb{R}^{n}\right)$;
- solutions $y_{[t]}:=\left(y_{i}(t+\cdot)\right)_{1 \leq i \leq n}$ of (LDDS) defined on

$$
\Sigma^{q}=\prod_{i=1}^{n} L^{q}\left(\left(-\tau_{i}, 0\right), \mathbb{R}\right)
$$

Proposition (Mazanti, Sigalotti, C. 2020)
Let $q \in[1,+\infty], T>0, R_{0} \in L^{q}\left((0,1), \mathbb{R}^{n}\right)$, and $u \in L^{q}\left((0, T), \mathbb{R}^{m}\right)$. Then (Hyp) admits a unique solution $R:[0, T] \times[0,1] \rightarrow \mathbb{R}^{n}$ in $[0, T]$ with initial condition R_{0} and control u, which satisfies $R(t, \cdot) \in L^{q}\left((0,1), \mathbb{R}^{n}\right)$ for every $t \in[0, T]$.

Controllability notions

Definition
Let $q \in[1,+\infty]$. (Hyp) (resp. (LDDS)) is said to be

1) L^{q}-approximately controllable if, for every $\epsilon>0$ and $\phi, \psi \in L^{q}\left([0,1], \mathbb{R}^{n}\right)\left(\right.$ resp. $\left.\Sigma_{q}\right)$, there exists $u \in L^{q}\left([0, T], \mathbb{R}^{m}\right)$ such that the solution R (resp. y) of (Hyp) (resp. (LDDS)) with initial condition ϕ and control u satisfies $\|R(T, \cdot)-\psi\|_{[0,1], q}<\epsilon\left(\right.$ resp. $\left.\left\|y_{[T]}-\psi\right\|_{\Sigma^{q}}<\epsilon\right)$.

Controllability notions

Definition

Let $q \in[1,+\infty]$. (Hyp) (resp. (LDDS)) is said to be

1) L^{q}-approximately controllable if, for every $\epsilon>0$ and $\phi, \psi \in L^{q}\left([0,1], \mathbb{R}^{n}\right)\left(\right.$ resp. $\left.\Sigma_{q}\right)$, there exists $u \in L^{q}\left([0, T], \mathbb{R}^{m}\right)$ such that the solution R (resp. y) of (Hyp) (resp. (LDDS)) with initial condition ϕ and control u satisfies $\|R(T, \cdot)-\psi\|_{[0,1], q}<\epsilon\left(\right.$ resp. $\left.\left\|y_{[T]}-\psi\right\|_{\Sigma^{q}}<\epsilon\right)$.
2) L^{q}-exactly controllable if, for every $\phi, \psi \in L^{q}\left([0,1], \mathbb{R}^{n}\right)$, there exists $u \in L^{q}\left([0, T], \mathbb{R}^{m}\right)$ such that the solution R (resp.
y) of (Hyp) (resp. (LDDS)) with initial condition ϕ and control u satisfies $R(T, \cdot)=\psi\left(\right.$ resp. $\left.y_{[T]}=\psi\right)$.

In above definition, T depends on data ϵ, ϕ, ψ.

Controllability notions

Definition

Let $q \in[1,+\infty]$. (Hyp) (resp. (LDDS)) is said to be

1) L^{q}-approximately controllable if, for every $\epsilon>0$ and $\phi, \psi \in L^{q}\left([0,1], \mathbb{R}^{n}\right)\left(\right.$ resp. $\left.\Sigma_{q}\right)$, there exists $u \in L^{q}\left([0, T], \mathbb{R}^{m}\right)$ such that the solution R (resp. y) of (Hyp) (resp. (LDDS)) with initial condition ϕ and control u satisfies $\|R(T, \cdot)-\psi\|_{[0,1], q}<\epsilon\left(\right.$ resp. $\left.\left\|y_{[T]}-\psi\right\|_{\Sigma^{q}}<\epsilon\right)$.
2) L^{q}-exactly controllable if, for every $\phi, \psi \in L^{q}\left([0,1], \mathbb{R}^{n}\right)$, there exists $u \in L^{q}\left([0, T], \mathbb{R}^{m}\right)$ such that the solution R (resp.
$y)$ of (Hyp) (resp. (LDDS)) with initial condition ϕ and control u satisfies $R(T, \cdot)=\psi$ (resp. $\left.y_{[T]}=\psi\right)$.

In above definition, T depends on data ϵ, ϕ, ψ.
L^{q}-approximately (resp. exactly) controllable in time T if time T above does not depend on ϵ, ϕ, ψ.

Representation Formulas - 1 -

Systems of the form (LDDS)

$$
\begin{equation*}
y(t)=\sum_{j=1}^{d} K e_{j} e_{j}^{T} y\left(t-\tau_{j}\right)+B u(t), y \in \mathbb{R}^{d}, u \in \mathbb{R}^{m}, t \geq 0 \tag{3}
\end{equation*}
$$

Representation Formulas - 1 -

Systems of the form (LDDS)

$$
\begin{equation*}
y(t)=\sum_{j=1}^{d} K e_{j} e_{j}^{T} y\left(t-\tau_{j}\right)+B u(t), y \in \mathbb{R}^{d}, u \in \mathbb{R}^{m}, t \geq 0 \tag{3}
\end{equation*}
$$

Definition
Consider family of matrices $\Xi_{n} \in \mathcal{M}_{d, d}(\mathbb{R}), n \in \mathbb{Z}^{d}$, defined by

$$
\Xi_{n}= \begin{cases}0 & \text { if } n \in \mathbb{Z}^{d} \backslash \mathbb{N}^{d} \tag{4}\\ I_{d} & \text { if } n=0 \\ \sum_{j=1}^{d} K e_{j} e_{j}^{T} \Xi_{n-s_{j}} & \text { if } n \in \mathbb{N}^{d} \text { and }|n|>0,\end{cases}
$$

where $s_{k}=k$-th canonical vector of \mathbb{N}^{d}.

Representation Formulas - 2 -

Delay vector $\tau:=\left(\tau_{1}, \cdots, \tau_{d}\right)$

1) (FLOW)
$\Upsilon_{q}(T): \Sigma_{q} \longrightarrow \Sigma_{q}$ defined, for $\phi \in \Sigma^{q}$ and $i \in \llbracket 1, d \rrbracket$, $s \in\left[-\tau_{i}, 0\right]$, by

$$
\left(\Upsilon_{q}(T) \phi\right)_{i}(s)=e_{i}^{T} \sum_{\substack{(\ell, j) \in \mathbb{N}^{d} \times \llbracket 1, d \rrbracket \\-\tau_{j} \leq T+s-\tau, \ell<0}} \Xi_{\ell-e_{j}} K e_{j} \phi_{j}(T+s-\tau \cdot \ell) .
$$

Representation Formulas - 2 -

Delay vector $\tau:=\left(\tau_{1}, \cdots, \tau_{d}\right)$

1) (FLOW)
$\Upsilon_{q}(T): \Sigma_{q} \longrightarrow \Sigma_{q}$ defined, for $\phi \in \Sigma^{q}$ and $i \in \llbracket 1, d \rrbracket$, $s \in\left[-\tau_{i}, 0\right]$, by

$$
\left(\Upsilon_{q}(T) \phi\right)_{i}(s)=e_{i}^{T} \sum_{\substack{(\ell, j) \in \mathbb{N}^{d} \times \llbracket 1, d \rrbracket \\-\tau_{j} \leq T+s-\tau, \ell<0}} \Xi_{\ell-e_{j}} K e_{j} \phi_{j}(T+s-\tau \cdot \ell) .
$$

2) (End-Point MAP) $E_{q}(T): L^{q}\left([0, T], \mathbb{R}^{m}\right) \longrightarrow \Sigma_{q}$ defined, for $u \in L^{q}\left([0, T], \mathbb{R}^{m}\right)$ and $i \in \llbracket 1, d \rrbracket$, by
$\left(E_{q}(T) u\right)_{i}(t)=e_{i}^{T} \sum_{\substack{\ell \in \mathbb{N}^{d} \\ \tau \cdot \ell \leq T+t}} \equiv_{\ell} B u(T+t-\tau \cdot \ell), \quad t \in\left[-\tau_{i}, 0\right]$.

Representation Formulas - 3-

Proposition (Mazanti, Sigalotti, C. 2020)
For $T \geq 0, q \in[1,+\infty], u \in L^{q}\left([0, T], \mathbb{R}^{m}\right)$, and $\phi \in \Sigma^{q}$, Unique Solution y of (LDDS) with initial condition ϕ and control u given by

$$
\begin{equation*}
y_{[t]}=\Upsilon_{q}(t) \phi+E_{q}(t) u, \quad t \in[0, T] . \tag{5}
\end{equation*}
$$

Representation Formulas - 3-

Proposition (Mazanti, Sigalotti, C. 2020)
For $T \geq 0, q \in[1,+\infty], u \in L^{q}\left([0, T], \mathbb{R}^{m}\right)$, and $\phi \in \Sigma^{q}$, Unique Solution y of (LDDS) with initial condition ϕ and control u given by

$$
\begin{equation*}
y_{[t]}=\Upsilon_{q}(t) \phi+E_{q}(t) u, \quad t \in[0, T] . \tag{5}
\end{equation*}
$$

For later use, consider dual operator $E_{q}(T)^{*}$ of $E_{q}(T)$.
Proposition

$$
T \geq 0, q \in[1,+\infty), \frac{1}{q}+\frac{1^{\prime}}{q}=1 .
$$

$$
E_{q}(T)^{*}: \Sigma^{q^{\prime}} \longrightarrow L^{q^{\prime}}\left([0, T], \mathbb{R}^{m}\right), \text { for } y \in \Sigma^{q^{\prime}}, t \in[0, T]
$$

$$
\begin{equation*}
\left(E_{q}(T)^{*} y\right)_{i}(t)=e_{i}^{T} \quad \sum_{\left.i, \mathbb{N}^{d} \backslash I T, T\right]} B^{*} \Xi_{\ell}^{*} e_{j} y_{j}(t-T+\tau \cdot \ell) . \tag{6}
\end{equation*}
$$

$$
\begin{gathered}
(\ell, j) \in \mathbb{N}^{d} \times \llbracket 1, n \rrbracket \\
-\tau_{j} \leq t-T+\tau \cdot \ell<0
\end{gathered}
$$

Basic controllability properties

Let $T>0, q \in[1,+\infty]$ and q^{\prime} conjugate exponent of q.
Proposition
(Hyp) L^{q}-approximate (respectively, exactly) controllable in time T if and only if the same is true for (LDDS).

Basic controllability properties

Let $T>0, q \in[1,+\infty]$ and q^{\prime} conjugate exponent of q.

Proposition

(Hyp) L^{q}-approximate (respectively, exactly) controllable in time T if and only if the same is true for (LDDS).

Proposition

1. The following assertions are equivalent:
(1.a) (LDDS) is L^{q}-approximately controllable in time T;
(1.b) $\operatorname{Ran} E_{q}(T)$ is dense in Σ^{q};
(1.c) The operator $E_{q}(T)^{*}$ is injective.

Basic controllability properties

Let $T>0, q \in[1,+\infty]$ and q^{\prime} conjugate exponent of q.

Proposition

(Hyp) L^{q}-approximate (respectively, exactly) controllable in time T if and only if the same is true for (LDDS).

Proposition

1. The following assertions are equivalent:
(1.a) (LDDS) is L^{q}-approximately controllable in time T;
(1.b) $\operatorname{Ran} E_{q}(T)$ is dense in Σ^{q};
(1.c) The operator $E_{q}(T)^{*}$ is infective.
2. The following assertions are equivalent:
(2.a) (LDDS) is L^{q}-exactly controllable in time T;
(2.b) $\operatorname{Ran} E_{q}(T)=\Sigma^{q}$;
(2.c) $(q<\infty) E_{q}(T)^{*}$ is bounded below: $\exists c_{q}>0$

$$
\begin{equation*}
\left\|E_{q}(T)^{*} y\right\|_{[0, T], q^{\prime}} \geq c_{q}\|y\|_{\Sigma q^{\prime}}, \quad \forall y \in \Sigma^{q^{\prime}} \tag{7}
\end{equation*}
$$

Available results

1. Delays $\tau_{1}, \ldots, \tau_{d}$ commensurable (i.e., all their pairwise ratios are rational): can reformulate (LDDS) as an equivalent difference equation with a single delay (up to state augmentation). Then L^{q}-approximate and exact controllability equivalent (and independent of q) and can be checked by a Kalman criterion.
2. Coron-Nguyen 2019: L2 -exact controllability in optimal time for specific systems (Hyp) (time-delay approach)
3. Two delays in dimension 2 (Mazanti, Sigalotti, C. 2020): complete answers based on explicit (OBS).

Available results

1. Delays $\tau_{1}, \ldots, \tau_{d}$ commensurable (i.e., all their pairwise ratios are rational): can reformulate (LDDS) as an equivalent difference equation with a single delay (up to state augmentation). Then L^{q}-approximate and exact controllability equivalent (and independent of q) and can be checked by a Kalman criterion.
2. Coron-Nguyen 2019: L2 -exact controllability in optimal time for specific systems (Hyp) (time-delay approach)
3. Two delays in dimension 2 (Mazanti, Sigalotti, C. 2020): complete answers based on explicit (OBS).
Case of 2 irrational delays approximate $\frac{\tau_{1}}{\tau_{2}}$ by sequences of rationals $\left(r_{l}\right)_{l \geq 0}$ and prove $\left(c_{q}^{\prime}\right)_{l \geq 0}$ in (OBS) uniform. lower bdd.

Upper Bound on Controllability Time -1-

Theorem (Range saturation for End-Point Map E_{q})
Set $T_{*}:=\tau_{1}+\cdots+\tau_{d}$. Then

$$
\begin{equation*}
\operatorname{Ran} E_{q}(T)=\operatorname{Ran} E_{q}\left(T_{*}\right), \quad \forall T \geq T_{*}, \quad q \in[1,+\infty) . \tag{8}
\end{equation*}
$$

Hence (LDDS) approx. (resp. exactly) controllable from the origin IFF (LDDS) approx. (resp. exactly) controllable in time T_{*}.

Upper Bound on Controllability Time -2-

SoP: Use representation formula of $E_{q}(T)$ and next lemma Lemma (Generalized Cayley-Hamilton)
$\exists \alpha_{k} \in \mathbb{R}$ for $k \in\{0,1\}^{d}$ s. $t . \forall j \in \llbracket 1, d \rrbracket$ and
$\ell \in\left\{\ell^{\prime} \in \mathbb{N}^{d} \mid \max _{i \in \llbracket 1, d \rrbracket} \ell_{i}^{\prime} \geq 2\right.$ or $\left.\ell_{j}^{\prime}=1\right\}$, we have

$$
\begin{equation*}
e_{j}^{T} \bar{\Xi}_{\ell}=-\sum_{k \in\{0,1\}^{d} \backslash\{(0, \ldots, 0)\}} \alpha_{k} e_{j}^{T} \bar{Z}_{\ell-k} . \tag{9}
\end{equation*}
$$

Upper Bound on Controllability Time -2-

SoP: Use representation formula of $E_{q}(T)$ and next lemma
Lemma (Generalized Cayley-Hamilton)
$\exists \alpha_{k} \in \mathbb{R}$ for $k \in\{0,1\}^{d}$ s. $t . \forall j \in \llbracket 1, d \rrbracket$ and
$\ell \in\left\{\ell^{\prime} \in \mathbb{N}^{d} \mid \max _{i \in[1, d]} \ell_{i}^{\prime} \geq 2\right.$ or $\left.\ell_{j}^{\prime}=1\right\}$, we have

$$
\begin{equation*}
e_{j}^{T} \bar{\Xi}_{\ell}=-\sum_{k \in\{0,1\}^{d} \backslash\{(0, \ldots, 0)\}} \alpha_{k} e_{j}^{T} \bar{E}_{\ell-k} . \tag{9}
\end{equation*}
$$

Proof of Lemma based on identity

$$
\left(I d_{d}-t_{1} K e_{1} e_{1}^{T}-\cdots-t_{d} K e_{d} e_{d}^{T}\right)^{-1}=\sum_{\ell=\left(\ell_{1}, \cdots, \ell_{d}\right) \in \mathbb{N}^{d}} t_{1}^{\ell_{1}} \cdots t_{d}^{\ell_{d}} \Xi_{\ell}
$$

Realization theory (after Yamamoto) -1-

Goal: Realize (LDDS) as an INPUT-OUPUT system $u \mapsto z$ where z should represent $y_{[t]}$.

Realization theory (after Yamamoto) -1-

Goal: Realize (LDDS) as an INPUT-OUPUT system $u \mapsto z$ where z should represent $y_{[t]}$.

- Inputs $u \in L^{q}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ with compact support in \mathbb{R}_{-}.
- Initial state $=$ Origin .
- $y(t)=\sum_{j=1}^{d} K e_{j} e_{j}^{T} y\left(t-\tau_{j}\right)+B u(t), t \geq \inf \operatorname{supp}(u)$.
- $y(t)=0, t<\inf \operatorname{supp}(u)$.
- Output $z(t)=\left(y_{j}\left(t-\tau_{j}\right)\right)_{1 \leq j \leq d,}, t \geq 0$.

Realization theory (after Yamamoto) -1-

Goal: Realize (LDDS) as an INPUT-OUPUT system $u \mapsto z$ where z should represent $y_{[t]}$.

- Inputs $u \in L^{q}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ with compact support in \mathbb{R}_{-}.
- Initial state $=$ Origin.
- $y(t)=\sum_{j=1}^{d} K e_{j} e_{j}^{T} y\left(t-\tau_{j}\right)+B u(t), t \geq \inf \operatorname{supp}(u)$.
- $y(t)=0, t<\inf \operatorname{supp}(u)$.
- Output $z(t)=\left(y_{j}\left(t-\tau_{j}\right)\right)_{1 \leq j \leq d,} t \geq 0$.

Write z using convolution operator with kernel in $\mathcal{R}\left(\mathbb{R}_{+}\right)=$space of Radon measures supported in \mathbb{R}_{+}, i.e. find $A \in \mathcal{R}\left(\mathbb{R}_{+}\right)$s.t.

$$
\begin{equation*}
z(t)=\int_{-\infty}^{+\infty} A(t-\tau) u(\tau) d \tau=(A * u)(t), \quad t \geq 0 \tag{10}
\end{equation*}
$$

Realization theory (after Yamamoto) -2-

$$
(I O S) \quad z(t)=(A * u)(t), \quad t \geq 0 \quad \text { and } \quad A=Q^{-1} * P,
$$

where

$$
Q=\operatorname{diag}\left(\delta_{-\tau_{1}}, \ldots, \delta_{-\tau_{n}}\right)-K \delta_{0}, \quad P:=B \delta_{0},
$$

and Q^{-1} invertible over $\mathcal{R}(\mathbb{R})$ (space of Radon measures).

Realization theory (after Yamamoto) -2-

$$
(I O S) \quad z(t)=(A * u)(t), \quad t \geq 0 \quad \text { and } \quad A=Q^{-1} * P,
$$

where

$$
Q=\operatorname{diag}\left(\delta_{-\tau_{1}}, \ldots, \delta_{-\tau_{n}}\right)-K \delta_{0}, \quad P:=B \delta_{0},
$$

and Q^{-1} invertible over $\mathcal{R}(\mathbb{R})$ (space of Radon measures).

Realization theory (after Yamamoto) -3-

$\pi:\left.\phi \rightarrow \phi\right|_{\mathbb{R}_{+}}$truncation operator on $L^{q}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$.
State space of (IOS) in terms of distribution Q

$$
\begin{equation*}
\left(L^{q}\right)^{Q}:=\left\{z \in L^{q}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right) \mid \pi(Q * z)=0\right\}, \tag{11}
\end{equation*}
$$

Realization theory (after Yamamoto) -3-
$\pi:\left.\phi \rightarrow \phi\right|_{\mathbb{R}_{+}}$truncation operator on $L^{q}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$.
State space of (IOS) in terms of distribution Q

$$
\begin{equation*}
\left(L^{q}\right)^{Q}:=\left\{z \in L^{q}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right) \mid \pi(Q * z)=0\right\}, \tag{11}
\end{equation*}
$$

Similarly state space of (IOS) in space Radon measures:

$$
\begin{equation*}
(\mathcal{R})^{Q}:=\left\{\pi \phi \mid \phi \in\left(\mathcal{R}\left(\mathbb{R}_{+}\right)\right)^{d} \text { and } \pi(Q * \pi \phi)=0\right\} . \tag{12}
\end{equation*}
$$

Realization theory (after Yamamoto) -3-

$\pi:\left.\phi \rightarrow \phi\right|_{\mathbb{R}_{+}}$truncation operator on $L^{q}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)$.
State space of (IOS) in terms of distribution Q

$$
\begin{equation*}
\left(L^{q}\right)^{Q}:=\left\{z \in L^{q}\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right) \mid \pi(Q * z)=0\right\}, \tag{11}
\end{equation*}
$$

Similarly state space of (IOS) in space Radon measures:

$$
\begin{equation*}
(\mathcal{R})^{Q}:=\left\{\pi \phi \mid \phi \in\left(\mathcal{R}\left(\mathbb{R}_{+}\right)\right)^{d} \text { and } \pi(Q * \pi \phi)=0\right\} . \tag{12}
\end{equation*}
$$

State space of (IOS) in space of distributions:

$$
\begin{equation*}
(\mathcal{D})^{Q}:=\left\{\pi \phi \mid \phi \in\left(\mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)\right)^{d} \text { and } \pi(Q * \pi \phi)=0\right\} \tag{13}
\end{equation*}
$$

Classical Definitions of Controllability

Set $X \in\left\{L^{q}, \mathcal{R}_{c}, \mathcal{D}_{c}\right\}$ (\mathcal{R}_{c} for Radon with and \mathcal{D} for distrib; " c " compact support).
(IOS) is said to be:

1) X-approximately controllable (from the origin) if $\forall \phi \in \prod_{i=1}^{d} X\left(\left(-\tau_{i}, 0\right), \mathbb{R}\right), \exists n \in \mathbb{N}, T_{n}>0$ and $u_{n} \in X\left(\left[0, T_{n}\right], \mathbb{R}^{m}\right)$ s. t.

$$
\left.z_{(} T_{n}+\cdot\right) \underset{n \rightarrow+\infty}{\longrightarrow} \phi(\cdot), \quad \text { in } X \text {-sense. }
$$

Classical Definitions of Controllability

Set $X \in\left\{L^{q}, \mathcal{R}_{c}, \mathcal{D}_{c}\right\}$ (\mathcal{R}_{c} for Radon with and \mathcal{D} for distrib; " c " compact support).
(IOS) is said to be:

1) X-approximately controllable (from the origin) if $\forall \phi \in \prod_{i=1}^{d} X\left(\left(-\tau_{i}, 0\right), \mathbb{R}\right), \exists n \in \mathbb{N}, T_{n}>0$ and $u_{n} \in X\left(\left[0, T_{n}\right], \mathbb{R}^{m}\right)$ s. t.

$$
\left.z_{(} T_{n}+\cdot\right) \underset{n \rightarrow+\infty}{\longrightarrow} \phi(\cdot), \quad \text { in } X \text {-sense. }
$$

2) X-exactly controllable (from the origin) if $\forall \phi \in \prod_{i=1}^{d} X\left(\left(-\tau_{i}, 0\right), \mathbb{R}\right), \exists T>0$ and $u \in X([0, T], \mathbb{R})$ s. t. for every $j \in \llbracket 1, d \rrbracket$

$$
z_{j}(T+\theta)=\phi_{j}(\theta) \quad \text { for } \theta \in\left[-\tau_{j}, 0\right] \text { in } X \text {-sense. }
$$

Classical Definitions of Controllability

Set $X \in\left\{L^{q}, \mathcal{R}_{c}, \mathcal{D}_{c}\right\}$ (\mathcal{R}_{c} for Radon with and \mathcal{D} for distrib; " c " compact support).
(IOS) is said to be:

1) X-approximately controllable (from the origin) if $\forall \phi \in \prod_{i=1}^{d} X\left(\left(-\tau_{i}, 0\right), \mathbb{R}\right), \exists n \in \mathbb{N}, T_{n}>0$ and $u_{n} \in X\left(\left[0, T_{n}\right], \mathbb{R}^{m}\right)$ s. t.

$$
\left.z_{(} T_{n}+\cdot\right) \underset{n \rightarrow+\infty}{\longrightarrow} \phi(\cdot), \quad \text { in } X \text {-sense. }
$$

2) X-exactly controllable (from the origin) if $\forall \phi \in \prod_{i=1}^{d} X\left(\left(-\tau_{i}, 0\right), \mathbb{R}\right), \exists T>0$ and $u \in X([0, T], \mathbb{R})$ s. t. for every $j \in \llbracket 1, d \rrbracket$

$$
z_{j}(T+\theta)=\phi_{j}(\theta) \quad \text { for } \theta \in\left[-\tau_{j}, 0\right] \text { in } X \text {-sense. }
$$

Remark: Similar definitions with uniform controllability time.

Controllability in terms of Realization Theory

$X \in\left\{L^{q}, \mathcal{R}_{c}, \mathcal{D}_{c}\right\}$. (What follows is a tautology!)
Realization (IOS) $z=A \star u$ is

1) X-approximately controllable if, for every $\forall \pi \phi \in(X)^{Q}, \exists$ a sequence of inputs $\left(u_{n}\right)_{n \in \mathbb{N}}$ (in " X ") s. t .:

$$
\pi\left(A * u_{n}\right) \underset{n \rightarrow+\infty}{\longrightarrow} \pi \phi \quad \text { in } \quad X\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)
$$

2) X-exactly controllable if, $\forall \pi \phi \in(X)^{Q} \exists u$ (in " X ") s. t. the output z satisfies

$$
z=\pi(A * u)=\pi \phi
$$

Controllability in terms of Realization Theory

$X \in\left\{L^{q}, \mathcal{R}_{c}, \mathcal{D}_{c}\right\}$. (What follows is a tautology!)
Realization (IOS) $z=A \star u$ is

1) X-approximately controllable if, for every $\forall \pi \phi \in(X)^{Q}, \exists$ a sequence of inputs $\left(u_{n}\right)_{n \in \mathbb{N}}$ (in " X ") s. t .:

$$
\pi\left(A * u_{n}\right) \underset{n \rightarrow+\infty}{\longrightarrow} \pi \phi \quad \text { in } \quad X\left(\mathbb{R}_{+}, \mathbb{R}^{d}\right)
$$

2) X-exactly controllable if, $\forall \pi \phi \in(X)^{Q} \exists u$ (in " X ") s. t. the output z satisfies

$$
z=\pi(A * u)=\pi \phi
$$

Similar definitions with uniform controllabilty time.

Approximate controllability -1-

Consider $\widehat{Q}: \mathbb{C} \rightarrow \mathcal{M}_{n, n}(\mathbb{C})$ defined by

$$
\begin{equation*}
\widehat{Q}(p)=\operatorname{diag}\left(e^{p \tau_{1}}, \ldots, e^{p \tau_{n}}\right)-K, \quad p \in \mathbb{C} . \tag{14}
\end{equation*}
$$

Theorem (Fueyo, Mazanti, Sigalotti, C., 2023)
$q \in\left[1,+\infty\right.$). (Hyp) L^{q}-approx. contr. in time $T_{*}:=\tau_{1}+\cdots+\tau_{n}$ $\Longleftrightarrow \operatorname{rank}[K, B]=n$ and one of the following equivalent assertions holds true:

1. $\operatorname{rank}[\widehat{Q}(p), B]=n \quad \forall p \in \mathbb{C}$;
2. $\forall p \in \mathbb{C}$,

$$
\inf \left\{\left\|g^{T} H(p)\right\|+\left\|g^{T} B\right\| \mid g \in \mathbb{C}^{n},\left\|g^{T}\right\|=1\right\}>0
$$

3. $\forall p \in \mathbb{C}, \operatorname{det}\left(\widehat{Q}(p) \widehat{Q}(p)^{*}+B B^{*}\right)>0$.

Approximate controllability -2-

SoP: Yamamoto's results + upper bound on controllability time Proposition (Salamon, Manitius, Yamamoto 1989)
The following are equivalent:
a) L^{q}-approximate controllability, $q \in[1, \infty)$;
b) Radon approximate controllability;
c) Distributional approximate controllability;
d) \exists two sequences of distributions $\left(S_{n}\right)_{n \in \mathbb{N}}$ and $\left(R_{n}\right)_{n \in \mathbb{N}}$ compactly supported in \mathbb{R}_{-}s.t.:

$$
\begin{equation*}
Q * R_{n}+P * S_{n} \underset{n \rightarrow+\infty}{\longrightarrow} \delta_{0} I_{d}, \quad \text { in distributional sense; } \tag{15}
\end{equation*}
$$

e) (Hautus-Yamamoto criteria) The two conditions hold true:

1) $\operatorname{rank}[\widehat{Q}(p), B]=d$ for every $p \in \mathbb{C}$,
2) $\operatorname{rank}[K, B]=d$.

Approximate controllability -2-

SoP: Yamamoto's results + upper bound on controllability time Proposition (Salamon, Manitius, Yamamoto 1989)
The following are equivalent:
a) L^{q}-approximate controllability, $q \in[1, \infty)$;
b) Radon approximate controllability;
c) Distributional approximate controllability;
d) \exists two sequences of distributions $\left(S_{n}\right)_{n \in \mathbb{N}}$ and $\left(R_{n}\right)_{n \in \mathbb{N}}$ compactly supported in \mathbb{R}_{-}s.t.:

$$
\begin{equation*}
Q * R_{n}+P * S_{n} \underset{n \rightarrow+\infty}{\longrightarrow} \delta_{0} I_{d}, \quad \text { in distributional sense; } \tag{15}
\end{equation*}
$$

e) (Hautus-Yamamoto criteria) The two conditions hold true:

1) $\operatorname{rank}[\widehat{Q}(p), B]=d$ for every $p \in \mathbb{C}$,
2) $\operatorname{rank}[K, B]=d$.

Fundamental ingredients: (a) algebraic approach with distributions; (b) Approximate Bézout identity (15).

Exact controllability

Theorem (Yamamoto 2011)
Distributional exact controllability $\Leftrightarrow \exists$ two distributions R and S compactly supported in \mathbb{R}_{-}s.t. the following Bézout Identity holds

$$
\text { (Bézout-Dist.) } \quad Q * R+P * S=\delta_{0} I_{d} \text {. }
$$

Exact controllability

Theorem (Yamamoto 2011)
Distributional exact controllability $\Leftrightarrow \exists$ two distributions R and S compactly supported in \mathbb{R}_{-}s.t. the following Bézout Identity holds

$$
\text { (Bézout-Dist.) } \quad Q * R+P * S=\delta_{0} I_{d} \text {. }
$$

Remark: (Bézout-Radon) same statement as above with R and S Radon measures in $\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)$.

Bézout and exact controllability

Realization $z=A * u \mathcal{D}$-exact controllable \Rightarrow since $\pi Q^{-1} \in(\mathcal{D})^{Q}, \exists$ distrib. S s.t.

$$
\pi(A * S)=\pi\left(Q^{-1} * P * S\right)=\pi Q^{-1}
$$

Then $R:=Q^{-1} * P * S-Q^{-1}$ has compact support in \mathbb{R}_{-}, hence (Bézout-Dist.) $Q * R+P * S=\delta_{0} l_{d}$.

Bézout and exact controllability

Realization $z=A * u \mathcal{D}$-exact controllable \Rightarrow since $\pi Q^{-1} \in(\mathcal{D})^{Q}, \exists$ distrib. S s.t.

$$
\pi(A * S)=\pi\left(Q^{-1} * P * S\right)=\pi Q^{-1}
$$

Then $R:=Q^{-1} * P * S-Q^{-1}$ has compact support in \mathbb{R}_{-}, hence (Bézout-Dist.) $Q * R+P * S=\delta_{0} l_{d}$.
Assume (Bézout-Dist). Consider $\pi \phi$ in ($D)^{Q}$.
Compute $Q^{-1} *$ Bézout-Dist. $* Q * \phi$.

Bézout and exact controllability

Realization $z=A * u \mathcal{D}$-exact controllable \Rightarrow since $\pi Q^{-1} \in(\mathcal{D})^{Q}, \exists$ distrib. S s.t.

$$
\pi(A * S)=\pi\left(Q^{-1} * P * S\right)=\pi Q^{-1}
$$

Then $R:=Q^{-1} * P * S-Q^{-1}$ has compact support in \mathbb{R}_{-}, hence (Bézout-Dist.) $Q * R+P * S=\delta_{0} l_{d}$.
Assume (Bézout-Dist). Consider $\pi \phi$ in ($D)^{Q}$.
Compute $Q^{-1} *$ Bézout-Dist. $* Q * \phi$.
It yields

$$
\begin{aligned}
\phi & =Q^{-1} *\left(\delta_{0} / d\right) * Q * \phi \\
& =Q^{-1} *(P * S+Q * R) * Q * \phi \\
& =Q^{-1} * P * S * Q * \phi+R * Q * \phi \\
& =A * S * Q * \phi+R * Q * \phi .
\end{aligned}
$$

Bézout and exact controllability

Since (!!) $\pi(R * Q * \phi)=\pi(R * \pi(Q *(\pi \phi)))=0$, we get:

$$
\begin{gather*}
\pi \phi=\pi(A * S * Q * \phi)=\pi(A * \omega) . \\
\omega:=S * Q * \phi \tag{16}
\end{gather*}
$$

Here ω is a control steering target $\pi \phi$ along $(\Sigma)^{Q}$.

Bézout and exact controllability

Since (!!) $\pi(R * Q * \phi)=\pi(R * \pi(Q *(\pi \phi)))=0$, we get:

$$
\begin{gather*}
\pi \phi=\pi(A * S * Q * \phi)=\pi(A * \omega) . \\
\omega:=S * Q * \phi \tag{16}
\end{gather*}
$$

Here ω is a control steering target $\pi \phi$ along $(\Sigma)^{Q}$.
Remarks:

- Adaptation to approximate controllability.

Bézout and exact controllability

Since (!!) $\pi(R * Q * \phi)=\pi(R * \pi(Q *(\pi \phi)))=0$, we get:

$$
\begin{gather*}
\pi \phi=\pi(A * S * Q * \phi)=\pi(A * \omega) . \\
\omega:=S * Q * \phi \tag{16}
\end{gather*}
$$

Here ω is a control steering target $\pi \phi$ along $(\Sigma)^{Q}$.
Remarks:

- Adaptation to approximate controllability.
- From (16), control ω is a function if ϕ smooth enough (\Rightarrow exact cont. for smooth enough functions.)

Bézout and exact controllability

Since (!!) $\pi(R * Q * \phi)=\pi(R * \pi(Q *(\pi \phi)))=0$, we get:

$$
\begin{gather*}
\pi \phi=\pi(A * S * Q * \phi)=\pi(A * \omega) . \\
\omega:=S * Q * \phi \tag{16}
\end{gather*}
$$

Here ω is a control steering target $\pi \phi$ along $(\Sigma)^{Q}$.
Remarks:

- Adaptation to approximate controllability.
- From (16), control ω is a function if ϕ smooth enough (\Rightarrow exact cont. for smooth enough functions.)
- Assume Q, P with coeffs. in $\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)$as for LDDS.
- (Bézout-Radon) \Longleftrightarrow Radon exact controllability;
- (Bézout-Radon) $\Rightarrow L^{q}$ exact controllability, $q \in[1, \infty]$.

Exact controllability

Consider $\widehat{Q}: \mathbb{C} \rightarrow \mathcal{M}_{n, n}(\mathbb{C})$ defined by

$$
\begin{equation*}
\widehat{Q}(p)=\operatorname{diag}\left(e^{p \tau_{1}}, \ldots, e^{p \tau_{n}}\right)-K, \quad p \in \mathbb{C} . \tag{17}
\end{equation*}
$$

Theorem (Fueyo, Mazanti, Sigalotti, C. 2023)
(Hyp) L^{1}-exactly controllable in time $\tau_{1}+\cdots+\tau_{n} \Longleftrightarrow$ one of the following assertions holds true:

1. $\operatorname{rank}[M, B]=n \quad \forall M \in \overline{\widehat{Q}(\mathbb{C})}$;
2. $\exists \alpha>0$ s.t. $\forall p \in \mathbb{C}$,

$$
\inf \left\{\left\|g^{T} \widehat{Q}(p)\right\|+\left\|g^{T} B\right\| \mid g \in \mathbb{C}^{n},\left\|g^{T}\right\|=1\right\} \geq \alpha ;
$$

3. $\exists \alpha>0$ s.t. $\forall p \in \mathbb{C}$, $\operatorname{det}\left(\widehat{Q}(p) \widehat{Q}(p)^{*}+B B^{*}\right) \geq \alpha$.

SoP: Resolution of Corona Problem in space of Radon measures compactly supported.
Conjecture: same holds for L^{q} exact controllability, $q \in(1, \infty)$.

Proof of Exact controllability result -1-

Proposition (Fueyo, Mazanti, Sigalotti, C. 2023)
Realization $z=A * u$ is L^{1} exact. contr. \Longleftrightarrow (Bézout-Radon), i.e., $\exists R, S$ with entries in $\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)$s.t.

$$
\begin{equation*}
Q * R+P * S=\delta_{0} I_{d} . \tag{18}
\end{equation*}
$$

Proof of Exact controllability result -1-

Proposition (Fueyo, Mazanti, Sigalotti, C. 2023)
Realization $z=A * u$ is L^{1} exact. contr. \Longleftrightarrow (Bézout-Radon), i.e., $\exists R, S$ with entries in $\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)$s.t.

$$
\begin{equation*}
Q * R+P * S=\delta_{0} I_{d} . \tag{18}
\end{equation*}
$$

Sketch of proof: (\Longrightarrow) If L^{1} exactly controllable, \exists sequence $\left(S_{n}\right)$ in $L^{1}\left(\mathbb{R}, \mathbb{R}^{m \times d}\right)$, compactly supported in $\left[-T_{*}, 0\right]$ s.t.

$$
\begin{equation*}
\pi\left(Q^{-1} * P * S_{n}\right) \underset{n \rightarrow+\infty}{\longrightarrow} \pi Q^{-1}, \quad \text { in distribution sense. } \tag{19}
\end{equation*}
$$

Proof of Exact controllability result -1-

Proposition (Fueyo, Mazanti, Sigalotti, C. 2023)
Realization $z=A * u$ is L^{1} exact. contr. \Longleftrightarrow
(Bézout-Radon), i.e., $\exists R, S$ with entries in $\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)$s.t.

$$
\begin{equation*}
Q * R+P * S=\delta_{0} I_{d} . \tag{18}
\end{equation*}
$$

Sketch of proof: (\Longrightarrow) If L^{1} exactly controllable, \exists sequence $\left(S_{n}\right)$ in $L^{1}\left(\mathbb{R}, \mathbb{R}^{m \times d}\right)$, compactly supported in $\left[-T_{*}, 0\right]$ s.t.

$$
\begin{equation*}
\pi\left(Q^{-1} * P * S_{n}\right) \underset{n \rightarrow+\infty}{\longrightarrow} \pi Q^{-1}, \quad \text { in distribution sense. } \tag{19}
\end{equation*}
$$

From Open Mapping Theorem, $\left\|S_{n}\right\|_{1} \leq C$ for $C>0$ independent of n. Weak compactness in $\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)\left(\mathbb{R}_{-}\right) \Rightarrow \exists S \in \mathcal{R}_{c}\left(\mathbb{R}_{-}\right)\left(\mathbb{R}_{-}\right)$ s.t. $S_{n} \xrightarrow[n \rightarrow+\infty]{ } S$.

Proof of Exact controllability result -1-

Proposition (Fueyo, Mazanti, Sigalotti, C. 2023)
Realization $z=A * u$ is L^{1} exact. contr. \Longleftrightarrow
(Bézout-Radon), i.e., $\exists R, S$ with entries in $\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)$s.t.

$$
\begin{equation*}
Q * R+P * S=\delta_{0} I_{d} . \tag{18}
\end{equation*}
$$

Sketch of proof: (\Longrightarrow) If L^{1} exactly controllable, \exists sequence $\left(S_{n}\right)$ in $L^{1}\left(\mathbb{R}, \mathbb{R}^{m \times d}\right)$, compactly supported in $\left[-T_{*}, 0\right]$ s.t.

$$
\begin{equation*}
\pi\left(Q^{-1} * P * S_{n}\right) \underset{n \rightarrow+\infty}{\longrightarrow} \pi Q^{-1}, \quad \text { in distribution sense. } \tag{19}
\end{equation*}
$$

From Open Mapping Theorem, $\left\|S_{n}\right\|_{1} \leq C$ for $C>0$ independent of n. Weak compactness in $\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)\left(\mathbb{R}_{-}\right) \Rightarrow \exists S \in \mathcal{R}_{c}\left(\mathbb{R}_{-}\right)\left(\mathbb{R}_{-}\right)$ s.t. $S_{n} \underset{n \rightarrow+\infty}{ } S$.

Conclude with $\pi\left(Q^{-1} * P * S\right)=\pi Q^{-1}$.

Proof of Exact controllability result -2-

Proposition (Fueyo, C., 2023)
(Bézout-Radon) for Realization $z=A * u \Longleftrightarrow$
$\operatorname{rank}[M, B]=n \quad \forall M \in \widehat{\widehat{Q}(\mathbb{C})}$.

Proof of Exact controllability result -2-

Proposition (Fueyo, C., 2023)
(Bézout-Radon) for Realization $z=A * u \Longleftrightarrow$
$\operatorname{rank}[M, B]=n \quad \forall M \in \overline{\widehat{Q}(\mathbb{C})}$.
Sketch of proof: (\Rightarrow) easy.
(\Leftarrow) This is a Corona Problem in $\mathcal{R}\left(\mathbb{R}_{-}\right)$:
Laplace transform of (Bézout-Radon) yields

$$
\begin{equation*}
\widehat{Q}(p) \widehat{R}(p)+B \widehat{S}(p)=I_{d}, \quad p \in \mathbb{C} \tag{20}
\end{equation*}
$$

Corona Problem -1-

For $T>0$,
$\Omega_{-}^{T}:=\left\{h \in \mathcal{R}\left(\mathbb{R}_{-}\right) \mid h=\sum_{j=0}^{N} h_{j} \delta_{-\lambda_{j}}, \lambda_{j} \in[0, T], h_{j} \in \mathbb{R}, N \in \mathbb{N}\right\}$.
Proposition (Corona problem in $\mathcal{R}\left(\mathbb{R}_{-}\right)$
K positive integer and $T>0$. Consider $f_{i} \in \Omega_{-}^{T}$ for $i=1, \ldots, K$.
Assume $\exists \alpha>0$ s.t.

$$
\begin{equation*}
\sum_{i=1}^{K}\left|\hat{f}_{i}(s)\right| \geq \alpha, \quad \forall s \in \mathbb{C} \tag{21}
\end{equation*}
$$

then $\exists g_{i} \in \mathcal{R}_{c}\left(\mathbb{R}_{-}\right)$for $i=1, \ldots, K$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{K} f_{i} * g_{i}=\delta_{0} \tag{22}
\end{equation*}
$$

Corona Problem -2-

SoP: (Classical strategy.) First notice that $\left(\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ commutative algebra. Hence

$$
\sum_{i=1}^{K} f_{i} * g_{i}=\delta_{0} \Leftrightarrow \text { Two sided ideal }\left(f_{1}, \cdots, f_{K}\right)=\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)
$$

Corona Problem -2-

SoP: (Classical strategy.) First notice that $\left(\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ commutative algebra. Hence

$$
\sum_{i=1}^{K} f_{i} * g_{i}=\delta_{0} \Leftrightarrow \text { Two sided ideal }\left(f_{1}, \cdots, f_{K}\right)=\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)
$$

Argue by contradiction, i.e., $\left(f_{1}, \cdots, f_{K}\right) \neq \mathcal{R}_{c}\left(\mathbb{R}_{-}\right)$. Naive strategy: $\left(f_{1}, \cdots, f_{K}\right)$ contained in maximal ideal of $\left(\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ and hence contained in a maximal (proper) ideal. Cannot apply Gelfand's theory: $\left(\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ not Banach.

Corona Problem -2-

SoP: (Classical strategy.) First notice that $\left(\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ commutative algebra. Hence

$$
\sum_{i=1}^{K} f_{i} * g_{i}=\delta_{0} \Leftrightarrow \text { Two sided ideal }\left(f_{1}, \cdots, f_{K}\right)=\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)
$$

Argue by contradiction, i.e., $\left(f_{1}, \cdots, f_{K}\right) \neq \mathcal{R}_{c}\left(\mathbb{R}_{-}\right)$. Naive strategy: $\left(f_{1}, \cdots, f_{K}\right)$ contained in maximal ideal of $\left(\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ and hence contained in a maximal (proper) ideal. Cannot apply Gelfand's theory: $\left(\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ not Banach. Solution:
(1) replace $\left.\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ by quotient algebra $\left.\mathcal{A}=\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right) /\left(f_{K}\right)$ which can be shown to be a commutative unital Banach algebra with [δ_{0}] as unit.

Corona Problem -2-

SoP: (Classical strategy.) First notice that $\left(\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ commutative algebra. Hence

$$
\sum_{i=1}^{K} f_{i} * g_{i}=\delta_{0} \Leftrightarrow \text { Two sided ideal }\left(f_{1}, \cdots, f_{K}\right)=\mathcal{R}_{c}\left(\mathbb{R}_{-}\right)
$$

Argue by contradiction, i.e., $\left(f_{1}, \cdots, f_{K}\right) \neq \mathcal{R}_{c}\left(\mathbb{R}_{-}\right)$. Naive strategy: $\left(f_{1}, \cdots, f_{K}\right)$ contained in maximal ideal of $\left(\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ and hence contained in a maximal (proper) ideal. Cannot apply Gelfand's theory: $\left(\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ not Banach. Solution:
(1) replace $\left.\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right)$ by quotient algebra $\left.\mathcal{A}=\mathcal{R}_{c}\left(\mathbb{R}_{-}\right),+, *\right) /\left(f_{K}\right)$ which can be shown to be a commutative unital Banach algebra with [δ_{0}] as unit.
(2) describe the homomorphisms of \mathcal{A}, i.e., continuous linear mappings $\psi: \mathcal{A} \rightarrow \mathbb{C}$.
Gelfand theory says that every maximal ideal lies in the kernel of a homomorphism of \mathcal{A}. Thanks (2), can contradict (21)

