Approximate and exact controllability criteria for linear 1D hyperbolic systems

Y. Chitour, Laboratoire des signaux et systèmes Université Paris- Saclay, CentraleSupélec

Joint Work with S. Fueyo, G. Mazanti and M. Sigalotti

October 18, 2023 EDP-COSy 2023, Toulouse

Network of 1D transport equations

$$(Hyp) \begin{cases} \partial_t R(t,x) + \Lambda(x) \partial_x R(t,x) + D(x) R(t,x) = 0, t > 0, x \in (0,1), \\ \binom{R^+(t,0)}{R^-(t,1)} = M \binom{R^+(t,1)}{R^-(t,0)} + Bu(t), \qquad t \ge 0, \end{cases}$$

Network of 1D transport equations

$$(Hyp) \begin{cases} \partial_t R(t,x) + \Lambda(x) \partial_x R(t,x) + D(x) R(t,x) = 0, t > 0, x \in (0,1), \\ \binom{R^+(t,0)}{R^-(t,1)} = M \binom{R^+(t,1)}{R^-(t,0)} + Bu(t), \qquad t \ge 0, \end{cases}$$

- Λ(x), D(x) diagonal n × n matrices with nonzero diagonal entries whose sign is independent of x;
- R⁺ (resp. R⁻) gathers components of R whose corresponding diagonal element in Λ(x) is positive (resp. negative);
- $u: \mathbb{R}_+ \to \mathbb{R}^m$ control law; *B* real $n \times m$ matrix; *M* real $n \times n$ matrix accounting for boundary conditions.

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> ○ < ○ 2/29

Network of 1D transport equations

$$(Hyp) \begin{cases} \partial_t R(t,x) + \Lambda(x) \partial_x R(t,x) + D(x) R(t,x) = 0, t > 0, x \in (0,1), \\ \binom{R^+(t,0)}{R^-(t,1)} = M \binom{R^+(t,1)}{R^-(t,0)} + Bu(t), \qquad t \ge 0, \end{cases}$$

- Λ(x), D(x) diagonal n × n matrices with nonzero diagonal entries whose sign is independent of x;
- R⁺ (resp. R⁻) gathers components of R whose corresponding diagonal element in Λ(x) is positive (resp. negative);
- $u: \mathbb{R}_+ \to \mathbb{R}^m$ control law; *B* real $n \times m$ matrix; *M* real $n \times n$ matrix accounting for boundary conditions.

Main goal: Determine (necessary/or sufficient) conditions in the frequency domain, i.e., Hautus tests for L^q approx. and/or exact controllability of (Hyp),

Previous work Tucsnak-Weiss (09); Bastin-Coron (16); Miller (05); Ramdani and al. (05); Coron-Nguyen (19)

Assumptions

Solution *R* splits into positive and negative velocities, i.e.,

$$R = \begin{pmatrix} R^+ \\ R^- \end{pmatrix} \quad \text{with } \begin{cases} R^+ = (R_1, \dots, R_{\tilde{n}})^T, \\ R^- = (R_{\tilde{n}+1}, \dots, R_n)^T, \end{cases}$$

< □ ▶ < 륜 ▶ < 토 ▶ < 토 ▶ ○ 오 · 3/29

Solution of (Hyp)

Definition (Solution)

 $T > 0, u: [0, T] \rightarrow \mathbb{R}^{m}$, and $R_{0}: [0, 1] \rightarrow \mathbb{R}^{n}$. $R: [0, T] \times [0, 1] \rightarrow \mathbb{R}^{n}$ solution of (Hyp) in [0, T] with initial condition R_{0} and control u if $R(0, x) = R_{0}(x) \ \forall x \in [0, 1]$, boundary equations satisfied $\forall t \geq 0$, and, $\forall i \in [\![1, n]\!], t \in [0, T]$, and $x \in [0, 1]$,

$$R_i\left(t+\int_x^{x+h}\frac{d\xi}{\lambda_i(\xi)},x+h\right)=e^{-\int_x^{x+h}\frac{d_i(\xi)}{\lambda_i(\xi)}d\xi}R_i(t,x) \qquad (2)$$

 $\forall h \in \mathbb{R} \text{ s.t. } t + \int_x^{x+h} \frac{d\xi}{\lambda_i(\xi)} \in [0, T] \text{ and } x+h \in [0, 1].$

Solution of (Hyp)

Definition (Solution)

 $T > 0, u: [0, T] \rightarrow \mathbb{R}^{m}$, and $R_{0}: [0, 1] \rightarrow \mathbb{R}^{n}$. $R: [0, T] \times [0, 1] \rightarrow \mathbb{R}^{n}$ solution of (Hyp) in [0, T] with initial condition R_{0} and control u if $R(0, x) = R_{0}(x) \ \forall x \in [0, 1]$, boundary equations satisfied $\forall t \geq 0$, and, $\forall i \in [\![1, n]\!], t \in [0, T]$, and $x \in [0, 1]$,

$$R_i\left(t+\int_x^{x+h}\frac{d\xi}{\lambda_i(\xi)},x+h\right)=e^{-\int_x^{x+h}\frac{d_i(\xi)}{\lambda_i(\xi)}d\xi}R_i(t,x) \qquad (2)$$

 $\forall h \in \mathbb{R} \text{ s.t. } t + \int_{x}^{x+h} \frac{d\xi}{\lambda_i(\xi)} \in [0, T] \text{ and } x+h \in [0, 1].$ If *R* of class *C*¹ then it satisfies the PDE. Cf. Concept of *broad solution* in Coron-Nguyen (19).

Equivalent Linear Difference Delay System

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Set
$$K = M \operatorname{diag} \left\{ e^{-\int_0^1 \frac{d_1(x)}{|\lambda_1(x)|} dx}, \dots, e^{-\int_0^1 \frac{d_n(x)}{|\lambda_n(x)|} dx} \right\}$$
, and
$$\tau_i = \int_0^1 \frac{dx}{|\lambda_i(x)|}, \qquad i \in \llbracket 1, n \rrbracket.$$

Equivalent Linear Difference Delay System

Set
$$K = M \operatorname{diag} \left\{ e^{-\int_0^1 \frac{d_1(x)}{|\lambda_1(x)|} dx}, \dots, e^{-\int_0^1 \frac{d_n(x)}{|\lambda_n(x)|} dx} \right\}$$
, and
 $\tau_i = \int_0^1 \frac{dx}{|\lambda_i(x)|}, \qquad i \in \llbracket 1, n \rrbracket.$

Consider the Linear Difference Delay System

(LDDS)
$$\begin{pmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{pmatrix} = K \begin{pmatrix} y_1(t-\tau_1) \\ \vdots \\ y_n(t-\tau_n) \end{pmatrix} + Bu(t), \quad t \ge 0,$$

<ロ > < 合 > < 言 > < 言 > 三 の Q で 5/29

Claim: (Hyp) and (LDDS) are "equivalent".

Existence of *L*^{*q*}**-solutions of (Hyp)**

For $q \in [1,\infty]$ and $t \geq 0$, 1-to-1 correspondence between

- ▶ solutions $R(t, \cdot)$ of (Hyp) defined on $L^q((0, 1), \mathbb{R}^n)$;
- ▶ solutions $y_{[t]} := (y_i(t + \cdot))_{1 \le i \le n}$ of (LDDS) defined on

$$\Sigma^q = \prod_{i=1}^n L^q((-\tau_i, 0), \mathbb{R}).$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Existence of L^q-solutions of (Hyp)

For $q \in [1,\infty]$ and $t \geq$ 0, 1-to-1 correspondence between

- ▶ solutions $R(t, \cdot)$ of (Hyp) defined on $L^q((0, 1), \mathbb{R}^n)$;
- ▶ solutions $y_{[t]} := (y_i(t + \cdot))_{1 \le i \le n}$ of (LDDS) defined on

$$\Sigma^q = \prod_{i=1}^n L^q((-\tau_i, 0), \mathbb{R}).$$

Proposition (Mazanti, Sigalotti, C. 2020) Let $q \in [1, +\infty]$, T > 0, $R_0 \in L^q((0, 1), \mathbb{R}^n)$, and $u \in L^q((0, T), \mathbb{R}^m)$. Then (Hyp) admits a unique solution $R: [0, T] \times [0, 1] \to \mathbb{R}^n$ in [0, T] with initial condition R_0 and control u, which satisfies $R(t, \cdot) \in L^q((0, 1), \mathbb{R}^n)$ for every $t \in [0, T]$.

Controllability notions

Definition

Let $q \in [1, +\infty]$. (Hyp) (resp. (LDDS)) is said to be

1) L^{q} -approximately controllable if, for every $\epsilon > 0$ and $\phi, \psi \in L^{q}([0, 1], \mathbb{R}^{n})$ (resp. Σ_{q}), there exists $u \in L^{q}([0, T], \mathbb{R}^{m})$ such that the solution R (resp. y) of (Hyp) (resp. (LDDS)) with initial condition ϕ and control u satisfies $\|R(T, \cdot) - \psi\|_{[0,1], q} < \epsilon$ (resp. $\|y_{[T]} - \psi\|_{\Sigma^{q}} < \epsilon$).

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Controllability notions

Definition

Let $q \in [1, +\infty]$. (Hyp) (resp. (LDDS)) is said to be

- 1) L^{q} -approximately controllable if, for every $\epsilon > 0$ and $\phi, \psi \in L^{q}([0, 1], \mathbb{R}^{n})$ (resp. Σ_{q}), there exists $u \in L^{q}([0, T], \mathbb{R}^{m})$ such that the solution R (resp. y) of (Hyp) (resp. (LDDS)) with initial condition ϕ and control u satisfies $\|R(T, \cdot) \psi\|_{[0,1], q} < \epsilon$ (resp. $\|y_{[T]} \psi\|_{\Sigma^{q}} < \epsilon$).
- L^q-exactly controllable if, for every φ, ψ ∈ L^q([0,1], ℝⁿ), there exists u ∈ L^q([0, T], ℝ^m) such that the solution R (resp. y) of (Hyp) (resp. (LDDS)) with initial condition φ and control u satisfies R(T, ·) = ψ (resp. y_[T] = ψ).

In above definition, T depends on data ϵ, ϕ, ψ .

Controllability notions

Definition

Let $q \in [1, +\infty]$. (Hyp) (resp. (LDDS)) is said to be

- L^q-approximately controllable if, for every ε > 0 and φ, ψ ∈ L^q([0, 1], ℝⁿ) (resp. Σ_q), there exists u ∈ L^q([0, T], ℝ^m) such that the solution R (resp. y) of (Hyp) (resp. (LDDS)) with initial condition φ and control u satisfies ||R(T, ·) - ψ||_{[0,1], q} < ε (resp. ||y_[T] - ψ||_{Σ^q} < ε).
- L^q-exactly controllable if, for every φ, ψ ∈ L^q([0,1], ℝⁿ), there exists u ∈ L^q([0, T], ℝ^m) such that the solution R (resp. y) of (Hyp) (resp. (LDDS)) with initial condition φ and control u satisfies R(T, ·) = ψ (resp. y_[T] = ψ).

In above definition, T depends on data ϵ, ϕ, ψ . L^{q} -approximately (resp. exactly) controllable in time T if time Tabove does not depend on ϵ, ϕ, ψ .

Representation Formulas - 1 -

Systems of the form (LDDS) :

$$y(t) = \sum_{j=1}^{d} Ke_j e_j^T y(t-\tau_j) + Bu(t), \ y \in \mathbb{R}^d, \ u \in \mathbb{R}^m, \ t \ge 0.$$
(3)

・ ロ ト ・ 一部 ト ・ 注 ト ・ 注 ・ う へ で 8/29

Representation Formulas - 1 -

Systems of the form (LDDS) :

$$y(t) = \sum_{j=1}^{d} Ke_j e_j^T y(t-\tau_j) + Bu(t), \ y \in \mathbb{R}^d, \ u \in \mathbb{R}^m, \ t \ge 0.$$
(3)

Definition

Consider family of matrices $\Xi_n \in \mathcal{M}_{d,d}(\mathbb{R})$, $n \in \mathbb{Z}^d$, defined by

$$\Xi_n = \begin{cases} 0 & \text{if } n \in \mathbb{Z}^d \setminus \mathbb{N}^d, \\ I_d & \text{if } n = 0, \\ \sum_{j=1}^d K e_j e_j^T \Xi_{n-s_j} & \text{if } n \in \mathbb{N}^d \text{ and } |n| > 0, \end{cases}$$
(4)

where $s_k = k$ -th canonical vector of \mathbb{N}^d .

Representation Formulas - 2 -

Delay vector
$$\tau := (\tau_1, \cdots, \tau_d)$$

1) (FLOW)
 $\Upsilon_q(T) : \Sigma_q \longrightarrow \Sigma_q$ defined, for $\phi \in \Sigma^q$ and $i \in [\![1, d]\!]$,
 $s \in [-\tau_i, 0]$, by
 $(\Upsilon_q(T)\phi)_i(s) = e_i^T \sum_{\substack{(\ell,j) \in \mathbb{N}^d \times [\![1,d]\!]\\ -\tau_j \leq T + s - \tau \cdot \ell < 0}} \Xi_{\ell-e_j} Ke_j \phi_j (T + s - \tau \cdot \ell).$

Representation Formulas - 2 -

Delay vector
$$\tau := (\tau_1, \cdots, \tau_d)$$

1) (FLOW)
 $\Upsilon_q(T) : \Sigma_q \longrightarrow \Sigma_q$ defined, for $\phi \in \Sigma^q$ and $i \in [\![1, d]\!]$,
 $s \in [-\tau_i, 0]$, by
 $(\Upsilon_q(T)\phi)_i(s) = e_i^T \sum_{\substack{(\ell,j) \in \mathbb{N}^d \times [\![1,d]\!]\\ -\tau_j \leq T + s - \tau \cdot \ell < 0}} \Xi_{\ell-e_j} Ke_j \phi_j (T + s - \tau \cdot \ell).$

2) (End-Point MAP) $E_q(T) : L^q([0, T], \mathbb{R}^m) \longrightarrow \Sigma_q$ defined, for $u \in L^q([0, T], \mathbb{R}^m)$ and $i \in [\![1, d]\!]$, by

$$(E_q(T)u)_i(t) = e_i^T \sum_{\substack{\ell \in \mathbb{N}^d \\ \tau \cdot \ell \leq T+t}} \Xi_\ell Bu(T+t-\tau \cdot \ell), \qquad t \in [-\tau_i, 0].$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 9/29</p>

Representation Formulas - 3 -

Proposition (Mazanti, Sigalotti, C. 2020) For $T \ge 0$, $q \in [1, +\infty]$, $u \in L^q([0, T], \mathbb{R}^m)$, and $\phi \in \Sigma^q$, Unique Solution y of (LDDS) with initial condition ϕ and control u given by

$$y_{[t]} = \Upsilon_q(t)\phi + E_q(t)u, \qquad t \in [0, T].$$
(5)

Representation Formulas - 3 -

Proposition (Mazanti, Sigalotti, C. 2020) For $T \ge 0$, $q \in [1, +\infty]$, $u \in L^q([0, T], \mathbb{R}^m)$, and $\phi \in \Sigma^q$, Unique Solution y of (LDDS) with initial condition ϕ and control u given by

$$y_{[t]} = \Upsilon_q(t)\phi + E_q(t)u, \qquad t \in [0, T].$$
(5)

For later use, consider dual operator $E_q(T)^*$ of $E_q(T)$.

Proposition

$$T\geq 0$$
, $q\in [1,+\infty)$, $rac{1}{q}+rac{1}{q}'=1$.

 $E_{q}(T)^{*}: \Sigma^{q'} \longrightarrow L^{q'}([0,T],\mathbb{R}^{m}), \text{ for } y \in \Sigma^{q'}, t \in [0,T]$ $(E_{q}(T)^{*}y)_{i}(t) = e_{i}^{T} \sum_{\substack{(\ell,j) \in \mathbb{N}^{d} \times \llbracket 1,n \rrbracket \\ -\tau_{j} \leq t - T + \tau \cdot \ell < 0}} B^{*} \Xi_{\ell}^{*} e_{j} y_{j}(t - T + \tau \cdot \ell).$ (6)

Basic controllability properties

Let T > 0, $q \in [1, +\infty]$ and q' conjugate exponent of q. Proposition

(Hyp) L^q -approximate (respectively, exactly) controllable in time T if and only if the same is true for (LDDS).

<ロト < @ ト < 三 ト < 三 ト 三 の へ で 11/29

Basic controllability properties

Let $\mathcal{T} > \mathsf{0}, \ q \in [1, +\infty]$ and q' conjugate exponent of q.

Proposition

(Hyp) L^q -approximate (respectively, exactly) controllable in time T if and only if the same is true for (LDDS).

<ロト</th>
 ・< 目</th>
 ・< 目</th>
 つ< ()</th>
 11/29

Proposition

- 1. The following assertions are equivalent:
 - (1.a) (LDDS) is L^q -approximately controllable in time T;
 - (1.b) Ran $E_q(T)$ is dense in Σ^q ;
 - (1.c) The operator $E_q(T)^*$ is injective.

Basic controllability properties

Let $\mathcal{T} > 0$, $q \in [1, +\infty]$ and q' conjugate exponent of q.

Proposition

(Hyp) L^q -approximate (respectively, exactly) controllable in time T if and only if the same is true for (LDDS).

Proposition

- 1. The following assertions are equivalent:
 - (1.a) (LDDS) is L^q -approximately controllable in time T;
 - (1.b) Ran $E_q(T)$ is dense in Σ^q ;
 - (1.c) The operator $E_q(T)^*$ is injective.
- 2. The following assertions are equivalent:
 - (2.a) (LDDS) is L^q -exactly controllable in time T;
 - (2.b) Ran $E_q(T) = \Sigma^q$;
 - (2.c) $(q < \infty) E_q(T)^*$ is bounded below: $\exists c_q > 0$

(OBS) $||E_q(T)^*y||_{[0,T], q'} \ge c_q ||y||_{\Sigma^{q'}}, \quad \forall y \in \Sigma^{q'}.$ (7)

Available results

- Delays τ₁,...,τ_d commensurable (i.e., all their pairwise ratios are rational): can reformulate (LDDS) as an equivalent difference equation with a single delay (up to state augmentation). Then L^q-approximate and exact controllability equivalent (and independent of q) and can be checked by a Kalman criterion.
- Coron-Nguyen 2019: L²-exact controllability in optimal time for specific systems (Hyp) (time-delay approach)

< □ ▶ < @ ▶ < E ▶ < E ▶ E の C 12/29

3. Two delays in dimension 2 (Mazanti, Sigalotti, C. 2020): complete answers based on explicit (OBS).

Available results

- 1. Delays τ_1, \ldots, τ_d commensurable (i.e., all their pairwise ratios are rational): can reformulate (LDDS) as an equivalent difference equation with a single delay (up to state augmentation). Then L^q -approximate and exact controllability equivalent (and independent of q) and can be checked by a Kalman criterion.
- Coron-Nguyen 2019: L²-exact controllability in optimal time for specific systems (Hyp) (time-delay approach)
- Two delays in dimension 2 (Mazanti, Sigalotti, C. 2020): complete answers based on explicit (OBS). <u>Case of 2 irrational delays</u> approximate ^{T1}/₇₂ by sequences of rationals (r_l)_{l≥0} and prove (c^l_q)_{l≥0} in (OBS) uniform. lower bdd.

Upper Bound on Controllability Time -1-

Theorem (Range saturation for End-Point Map E_q) Set $T_* := \tau_1 + \cdots + \tau_d$. Then

 $\operatorname{\mathsf{Ran}} E_q(T) = \operatorname{\mathsf{Ran}} E_q(T_*), \qquad \forall T \ge T_*, \quad q \in [1, +\infty). \tag{8}$

Hence (LDDS) approx. (resp. exactly) controllable from the origin IFF (LDDS) approx. (resp. exactly) controllable in time T_* .

Upper Bound on Controllability Time -2-

<u>SoP</u>: Use representation formula of $E_q(T)$ and next lemma Lemma (Generalized Cayley-Hamilton) $\exists \alpha_k \in \mathbb{R} \text{ for } k \in \{0,1\}^d \text{ s. } t. \forall j \in [\![1,d]\!] \text{ and}$ $\ell \in \{\ell' \in \mathbb{N}^d \mid \max_{i \in [\![1,d]\!]} \ell'_i \geq 2 \text{ or } \ell'_j = 1\}, \text{ we have}$

$$e_{j}^{T} \Xi_{\ell} = -\sum_{k \in \{0,1\}^{d} \setminus \{(0,...,0)\}} \alpha_{k} e_{j}^{T} \Xi_{\ell-k}.$$
 (9)

Upper Bound on Controllability Time -2-

<u>SoP</u>: Use representation formula of $E_q(T)$ and next lemma Lemma (Generalized Cayley-Hamilton) $\exists \alpha_k \in \mathbb{R} \text{ for } k \in \{0,1\}^d \text{ s. } t. \forall j \in [\![1,d]\!] \text{ and}$ $\ell \in \{\ell' \in \mathbb{N}^d \mid \max_{i \in [\![1,d]\!]} \ell'_i \geq 2 \text{ or } \ell'_j = 1\}, \text{ we have}$

$$e_{j}^{T} \Xi_{\ell} = -\sum_{k \in \{0,1\}^{d} \setminus \{(0,...,0)\}} \alpha_{k} e_{j}^{T} \Xi_{\ell-k}.$$
 (9)

Proof of Lemma based on identity

$$\left(Id_d - t_1 Ke_1 e_1^T - \dots - t_d Ke_d e_d^T\right)^{-1} = \sum_{\ell = (\ell_1, \dots, \ell_d) \in \mathbb{N}^d} t_1^{\ell_1} \cdots t_d^{\ell_d} \Xi_{\ell}.$$

Realization theory (after Yamamoto) -1-

<u>Goal</u>: Realize (LDDS) as an INPUT-OUPUT system $u \mapsto z$ where z should represent $y_{[t]}$.

Realization theory (after Yamamoto) -1-

<u>Goal</u>: Realize (LDDS) as an INPUT-OUPUT system $u \mapsto z$ where z should represent $y_{[t]}$.

- ▶ Inputs $u \in L^q(\mathbb{R}, \mathbb{R}^m)$ with compact support in \mathbb{R}_- .
- Initial state = Origin.

•
$$y(t) = \sum_{j=1}^{a} Ke_j e_j^T y(t-\tau_j) + Bu(t), t \ge \inf supp(u).$$

▶
$$y(t) = 0, t < \inf supp(u).$$

• Output
$$z(t) = (y_j(t - \tau_j))_{1 \le j \le d}, t \ge 0.$$

Realization theory (after Yamamoto) -1-

<u>Goal</u>: Realize (LDDS) as an INPUT-OUPUT system $u \mapsto z$ where z should represent $y_{[t]}$.

- ▶ Inputs $u \in L^q(\mathbb{R}, \mathbb{R}^m)$ with compact support in \mathbb{R}_- .
- Initial state = Origin.

•
$$y(t) = \sum_{j=1}^{d} Ke_j e_j^T y(t-\tau_j) + Bu(t), t \ge \inf supp(u).$$

$$\flat y(t) = 0, \ t < \inf supp(u).$$

• Output
$$z(t) = (y_j(t - \tau_j))_{1 \le j \le d}, t \ge 0.$$

Write z using convolution operator with kernel in $\mathcal{R}(\mathbb{R}_+)$ = space of Radon measures supported in \mathbb{R}_+ , i.e. find $A \in \mathcal{R}(\mathbb{R}_+)$ s.t.

$$z(t) = \int_{-\infty}^{+\infty} A(t-\tau)u(\tau)d\tau = (A*u)(t), \qquad t \ge 0.$$
(10)

<ロ > < (日) < (15/29)

Realization theory (after Yamamoto) -2-

$$(IOS)$$
 $z(t) = (A * u)(t),$ $t \ge 0$ and $A = Q^{-1} * P,$ where

$$Q = \operatorname{diag}(\delta_{-\tau_1}, \ldots, \delta_{-\tau_n}) - K\delta_0, \quad P := B\delta_0,$$

and Q^{-1} invertible over $\mathcal{R}(\mathbb{R})$ (space of Radon measures).

4 ロト 4 日 ト 4 目 ト 4 目 ト 目 の 9 9 16/29

Realization theory (after Yamamoto) -2-

$$(IOS)$$
 $z(t) = (A * u)(t),$ $t \ge 0$ and $A = Q^{-1} * P,$ where

$$Q = \operatorname{diag}(\delta_{-\tau_1}, \ldots, \delta_{-\tau_n}) - K\delta_0, \quad P := B\delta_0,$$

and Q^{-1} invertible over $\mathcal{R}(\mathbb{R})$ (space of Radon measures).

4 ロト 4 日 ト 4 目 ト 4 目 ト 目 の 9 9 16/29

Realization theory (after Yamamoto) -3-

 $\pi: \phi \to \phi|_{\mathbb{R}_+}$ truncation operator on $L^q(\mathbb{R}_+, \mathbb{R}^d)$. State space of (IOS) in terms of distribution Q

$$(L^q)^Q := \left\{ z \in L^q(\mathbb{R}_+, \mathbb{R}^d) \mid \pi(Q * z) = 0 \right\},$$
 (11)

(ロ)、(日)、(日)、(日)、(日)、(日)、(17/29)

Realization theory (after Yamamoto) -3-

 $\pi: \phi \to \phi|_{\mathbb{R}_+}$ truncation operator on $L^q(\mathbb{R}_+, \mathbb{R}^d)$. State space of (IOS) in terms of distribution Q

$$(L^{q})^{Q} := \left\{ z \in L^{q}(\mathbb{R}_{+}, \mathbb{R}^{d}) \mid \pi(Q * z) = 0 \right\},$$
(11)

(ロ)、(日)、(日)、(日)、(日)、(日)、(17/29)

Similarly state space of (IOS) in space Radon measures:

$$(\mathcal{R})^{\mathcal{Q}} := \left\{ \pi \phi \mid \phi \in (\mathcal{R}(\mathbb{R}_+))^d \text{ and } \pi(\mathcal{Q} * \pi \phi) = 0 \right\}.$$
 (12)

Realization theory (after Yamamoto) -3-

 $\pi: \phi \to \phi|_{\mathbb{R}_+}$ truncation operator on $L^q(\mathbb{R}_+, \mathbb{R}^d)$. State space of (IOS) in terms of distribution Q

$$(L^{q})^{Q} := \left\{ z \in L^{q}(\mathbb{R}_{+}, \mathbb{R}^{d}) \mid \pi(Q * z) = 0 \right\},$$
(11)

Similarly state space of (IOS) in space Radon measures:

$$(\mathcal{R})^{Q} := \left\{ \pi \phi \mid \phi \in (\mathcal{R}(\mathbb{R}_{+}))^{d} \text{ and } \pi(Q * \pi \phi) = 0 \right\}.$$
(12)

State space of (IOS) in space of distributions:

$$(\mathcal{D})^Q := \left\{ \pi \phi \mid \phi \in \left(\mathcal{D}'(\mathbb{R}_+)
ight)^d \text{ and } \pi(Q * \pi \phi) = 0
ight\}.$$
 (13)

(ロ)、(日)、(日)、(日)、(日)、(日)、(17/29)

Classical Definitions of Controllability

Set $X \in \{L^q, \mathcal{R}_c, \mathcal{D}_c\}$ (\mathcal{R}_c for Radon with and \mathcal{D} for distrib; "c" compact support).

(IOS) is said to be:

1) X -approximately controllable (from the origin) if $\forall \phi \in \prod_{i=1}^{d} X((-\tau_i, 0), \mathbb{R}), \exists n \in \mathbb{N}, T_n > 0 \text{ and } u_n \in X([0, T_n], \mathbb{R}^m) \text{ s. t.}$

$$z(T_n + \cdot) \xrightarrow[n \to +\infty]{} \phi(\cdot), \text{ in } X \text{-sense.}$$

Classical Definitions of Controllability

Set $X \in \{L^q, \mathcal{R}_c, \mathcal{D}_c\}$ (\mathcal{R}_c for Radon with and \mathcal{D} for distrib; "c" compact support).

(IOS) is said to be:

1) X -approximately controllable (from the origin) if $\forall \phi \in \prod_{i=1}^{d} X((-\tau_i, 0), \mathbb{R}), \exists n \in \mathbb{N}, T_n > 0 \text{ and } u_n \in X([0, T_n], \mathbb{R}^m) \text{ s. t.}$

$$z(T_n + \cdot) \xrightarrow[n \to +\infty]{} \phi(\cdot), \text{ in } X\text{-sense.}$$

2) X-exactly controllable (from the origin) if $\forall \phi \in \prod_{i=1}^{d} X((-\tau_i, 0), \mathbb{R}), \exists T > 0 \text{ and } u \in X([0, T], \mathbb{R}) \text{ s. t.}$ for every $j \in [\![1, d]\!]$

 $z_j(T + \theta) = \phi_j(\theta)$ for $\theta \in [-\tau_j, 0]$ in X-sense.

Classical Definitions of Controllability

Set $X \in \{L^q, \mathcal{R}_c, \mathcal{D}_c\}$ (\mathcal{R}_c for Radon with and \mathcal{D} for distrib; "c" compact support).

(IOS) is said to be:

1) X -approximately controllable (from the origin) if $\forall \phi \in \prod_{i=1}^{d} X((-\tau_i, 0), \mathbb{R}), \exists n \in \mathbb{N}, T_n > 0 \text{ and } u_n \in X([0, T_n], \mathbb{R}^m) \text{ s. t.}$

$$z(T_n + \cdot) \xrightarrow[n \to +\infty]{} \phi(\cdot), \text{ in } X\text{-sense.}$$

2) X-exactly controllable (from the origin) if $\forall \phi \in \prod_{i=1}^{d} X((-\tau_i, 0), \mathbb{R}), \exists T > 0 \text{ and } u \in X([0, T], \mathbb{R}) \text{ s. t.}$ for every $j \in [\![1, d]\!]$

$$z_j(T + \theta) = \phi_j(\theta)$$
 for $\theta \in [-\tau_j, 0]$ in X-sense.

Remark: Similar definitions with uniform controllability time.

Controllability in terms of Realization Theory

 $X \in \{L^q, \mathcal{R}_c, \mathcal{D}_c\}$. (What follows is a tautology!)

Realization (IOS) $z = A \star u$ is

X-approximately controllable if, for every ∀πφ ∈ (X)^Q, ∃ a sequence of inputs (u_n)_{n∈N} (in "X") s. t.:

$$\pi(A * u_n) \xrightarrow[n \to +\infty]{} \pi \phi \quad ext{in} \quad X\left(\mathbb{R}_+, \mathbb{R}^d\right);$$

2) X-exactly controllable if, $\forall \pi \phi \in (X)^Q \exists u \text{ (in "}X") \text{ s. t. the output } z \text{ satisfies}$

$$z=\pi(A*u)=\pi\phi.$$

<ロト < 目 > < 目 > < 目 > 目 の へ C 19/29

Controllability in terms of Realization Theory

 $X \in \{L^q, \mathcal{R}_c, \mathcal{D}_c\}$. (What follows is a tautology!)

Realization (IOS) $z = A \star u$ is

X-approximately controllable if, for every ∀πφ ∈ (X)^Q, ∃ a sequence of inputs (u_n)_{n∈N} (in "X") s. t.:

$$\pi(A * u_n) \underset{n \to +\infty}{\longrightarrow} \pi \phi \quad \text{in} \quad X\left(\mathbb{R}_+, \mathbb{R}^d\right);$$

2) X-exactly controllable if, $\forall \pi \phi \in (X)^Q \exists u \text{ (in "}X") \text{ s. t. the output } z \text{ satisfies}$

$$z=\pi(A*u)=\pi\phi.$$

Similar definitions with uniform controllability time.

Approximate controllability -1-

Consider $\widehat{Q} \colon \mathbb{C} \to \mathcal{M}_{n,n}(\mathbb{C})$ defined by

$$\widehat{Q}(p) = \operatorname{diag}(e^{p au_1}, \dots, e^{p au_n}) - K, \qquad p \in \mathbb{C}.$$
 (14)

Theorem (Fueyo, Mazanti, Sigalotti, C., 2023)

 $q \in [1, +\infty)$. (Hyp) L^q -approx. contr. in time $T_* := \tau_1 + \cdots + \tau_n \iff \operatorname{rank}[K, B] = n$ and one of the following equivalent assertions holds true:

1. rank
$$\left[\widehat{Q}(p), B\right] = n \quad \forall p \in \mathbb{C};$$

2. $\forall p \in \mathbb{C},$
 $\inf \left\{ \left\| g^T H(p) \right\| + \left\| g^T B \right\| \mid g \in \mathbb{C}^n, \| g^T \| = 1 \right\} > 0;$
3. $\forall p \in \mathbb{C}, \det \left(\widehat{Q}(p) \widehat{Q}(p)^* + BB^* \right) > 0.$

・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ つ へ つ 20/29

Approximate controllability -2-

<u>SoP:</u> Yamamoto's results + upper bound on controllability time Proposition (Salamon, Manitius, Yamamoto 1989) The following are equivalent:

- a) L^q-approximate controllability, $q \in [1,\infty)$;
- b) Radon approximate controllability;
- c) Distributional approximate controllability;
- d) ∃ two sequences of distributions $(S_n)_{n \in \mathbb{N}}$ and $(R_n)_{n \in \mathbb{N}}$ compactly supported in ℝ_ s.t.:

 $Q * R_n + P * S_n \xrightarrow[n \to +\infty]{} \delta_0 I_d$, in distributional sense; (15)

e) (Hautus-Yamamoto criteria) The two conditions hold true:
1) rank [Q̂(p), B] = d for every p ∈ C,
2) rank [K, B] = d.

Approximate controllability -2-

<u>SoP:</u> Yamamoto's results + upper bound on controllability time Proposition (Salamon, Manitius, Yamamoto 1989)

The following are equivalent:

- a) L^q-approximate controllability, $q\in [1,\infty)$;
- b) Radon approximate controllability;
- c) Distributional approximate controllability;
- d) ∃ two sequences of distributions $(S_n)_{n \in \mathbb{N}}$ and $(R_n)_{n \in \mathbb{N}}$ compactly supported in ℝ_ s.t.:

 $Q * R_n + P * S_n \xrightarrow[n \to +\infty]{} \delta_0 I_d$, in distributional sense; (15)

e) (Hautus-Yamamoto criteria) The two conditions hold true:
1) rank [Q̂(p), B] = d for every p ∈ C,
2) rank [K, B] = d.

Fundamental ingredients:(a) algebraic approach with distributions;(b) Approximate Bézout identity (15).a = 1, 2, 3 =

Exact controllability

Theorem (Yamamoto 2011)

Distributional exact controllability $\Leftrightarrow \exists$ two distributions R and S compactly supported in \mathbb{R}_{-} s.t. the following Bézout Identity holds

(Bézout-Dist.) $Q * R + P * S = \delta_0 I_d.$

・ロト ・ 日 ・ ・ 王 ・ ・ 王 ・ つ へ (* 22/29)

Exact controllability

Theorem (Yamamoto 2011)

Distributional exact controllability $\Leftrightarrow \exists$ two distributions R and S compactly supported in \mathbb{R}_{-} s.t. the following Bézout Identity holds

(Bézout-Dist.)
$$Q * R + P * S = \delta_0 I_d$$
.

Remark: (Bézout-Radon) same statement as above with R and S Radon measures in $\mathcal{R}_c(\mathbb{R}_-)$.

・ロト ・ 日 ・ ・ 王 ・ ・ 王 ・ つ へ (* 22/29)

Realization $z = A * u \mathcal{D}$ -exact controllable \Rightarrow since $\pi Q^{-1} \in (\mathcal{D})^Q$, \exists distrib. *S* s.t.

$$\pi(A * S) = \pi(Q^{-1} * P * S) = \pi Q^{-1}.$$

Then $R := Q^{-1} * P * S - Q^{-1}$ has compact support in \mathbb{R}_{-} , hence (Bézout-Dist.) $Q * R + P * S = \delta_0 I_d$.

Realization $z = A * u \mathcal{D}$ -exact controllable \Rightarrow since $\pi Q^{-1} \in (\mathcal{D})^Q$, \exists distrib. *S* s.t.

$$\pi(A * S) = \pi(Q^{-1} * P * S) = \pi Q^{-1}.$$

Then $R := Q^{-1} * P * S - Q^{-1}$ has compact support in \mathbb{R}_{-} , hence (Bézout-Dist.) $Q * R + P * S = \delta_0 I_d$.

<ロト<

Assume (Bézout-Dist). Consider $\pi\phi$ in $(D)^Q$. Compute Q^{-1} * Bézout-Dist. $*Q * \phi$.

Realization $z = A * u \mathcal{D}$ -exact controllable \Rightarrow since $\pi Q^{-1} \in (\mathcal{D})^Q$, \exists distrib. *S* s.t.

$$\pi(A * S) = \pi(Q^{-1} * P * S) = \pi Q^{-1}.$$

Then $R := Q^{-1} * P * S - Q^{-1}$ has compact support in \mathbb{R}_{-} , hence (Bézout-Dist.) $Q * R + P * S = \delta_0 I_d$.

Assume (Bézout-Dist). Consider $\pi\phi$ in $(D)^Q$. Compute Q^{-1} * Bézout-Dist. $*Q * \phi$. It yields

$$\phi = Q^{-1} * (\delta_0 Id) * Q * \phi$$

= Q⁻¹ * (P * S + Q * R) * Q * ϕ
= Q⁻¹ * P * S * Q * ϕ + R * Q * ϕ
= A * S * Q * ϕ + R * Q * ϕ .

Since (!!)
$$\pi(R * Q * \phi) = \pi(R * \pi(Q * (\pi \phi))) = 0$$
, we get:
 $\pi \phi = \pi (A * S * Q * \phi) = \pi (A * \omega)$.
 $\omega := S * Q * \phi$ (16)

Here ω is a control steering target $\pi\phi$ along $(\Sigma)^Q$.

Since (!!)
$$\pi(R * Q * \phi) = \pi(R * \pi(Q * (\pi \phi))) = 0$$
, we get:
 $\pi \phi = \pi (A * S * Q * \phi) = \pi (A * \omega)$.
 $\omega := S * Q * \phi$ (16)

Here ω is a control steering target $\pi\phi$ along $(\Sigma)^Q$.

Remarks:

Adaptation to approximate controllability.

Since (!!)
$$\pi(R * Q * \phi) = \pi(R * \pi(Q * (\pi \phi))) = 0$$
, we get:
 $\pi \phi = \pi (A * S * Q * \phi) = \pi (A * \omega)$.
 $\omega := S * Q * \phi$ (16)

Here ω is a control steering target $\pi\phi$ along $(\Sigma)^Q$.

Remarks:

- Adaptation to approximate controllability.
- From (16), control ω is a function if ϕ smooth enough (\Rightarrow exact cont. for smooth enough functions.)

Since (!!)
$$\pi(R * Q * \phi) = \pi(R * \pi(Q * (\pi \phi))) = 0$$
, we get:
 $\pi \phi = \pi (A * S * Q * \phi) = \pi (A * \omega)$.
 $\omega := S * Q * \phi$
(16)

Here ω is a control steering target $\pi\phi$ along $(\Sigma)^Q$.

Remarks:

- Adaptation to approximate controllability.
- From (16), control ω is a function if ϕ smooth enough (\Rightarrow exact cont. for smooth enough functions.)
- Assume Q, P with coeffs. in $\mathcal{R}_c(\mathbb{R}_-)$ as for LDDS.
 - (Bézout-Radon) \iff Radon exact controllability;
 - (Bézout-Radon) $\Rightarrow L^q$ exact controllability, $q \in [1, \infty]$.

Exact controllability

Consider $\widehat{Q} \colon \mathbb{C} \to \mathcal{M}_{n,n}(\mathbb{C})$ defined by

$$\widehat{Q}(p) = \operatorname{diag}(e^{p\tau_1}, \dots, e^{p\tau_n}) - K, \qquad p \in \mathbb{C}.$$
 (17)

Theorem (Fueyo, Mazanti, Sigalotti, C. 2023) (*Hyp*) L^1 -exactly controllable in time $\tau_1 + \cdots + \tau_n \iff$ one of the following assertions holds true:

1. rank
$$[M, B] = n \quad \forall M \in \widehat{Q}(\mathbb{C});$$

2. $\exists \alpha > 0 \ s.t. \ \forall p \in \mathbb{C},$
 $\inf \left\{ \left\| g^T \widehat{Q}(p) \right\| + \left\| g^T B \right\| \mid g \in \mathbb{C}^n, \ \| g^T \| = 1 \right\} \ge \alpha;$
3. $\exists \alpha > 0 \ s.t. \ \forall p \in \mathbb{C}, \ \det \left(\widehat{Q}(p) \widehat{Q}(p)^* + BB^* \right) \ge \alpha.$

<u>SoP</u>: Resolution of Corona Problem in space of Radon measures compactly supported.

Conjecture: same holds for L^q exact controllability, $q \in (1, \infty)$.

Proposition (Fueyo, Mazanti, Sigalotti, C. 2023) Realization z = A * u is L^1 exact. contr. \iff (Bézout-Radon), i.e., $\exists R, S$ with entries in $\mathcal{R}_c(\mathbb{R}_-)$ s.t.

$$Q * R + P * S = \delta_0 I_d. \tag{18}$$

<ロト</th>
 ・< 目</th>
 ・< 目</th>
 つ< C</th>
 26/29

Proposition (Fueyo, Mazanti, Sigalotti, C. 2023) Realization z = A * u is L^1 exact. contr. \iff (Bézout-Radon), i.e., $\exists R, S$ with entries in $\mathcal{R}_c(\mathbb{R}_-)$ s.t.

$$Q * R + P * S = \delta_0 I_d. \tag{18}$$

Sketch of proof: (\implies) If L^1 exactly controllable, \exists sequence $\overline{(S_n)}$ in $L^1(\mathbb{R}, \mathbb{R}^{m \times d})$, compactly supported in $[-T_*, 0]$ s.t.

$$\pi(Q^{-1} * P * S_n) \xrightarrow[n \to +\infty]{} \pi Q^{-1}$$
, in distribution sense. (19)

Proposition (Fueyo, Mazanti, Sigalotti, C. 2023) Realization z = A * u is L^1 exact. contr. \iff (Bézout-Radon), i.e., $\exists R, S$ with entries in $\mathcal{R}_c(\mathbb{R}_-)$ s.t.

$$Q * R + P * S = \delta_0 I_d. \tag{18}$$

Sketch of proof: (\implies) If L^1 exactly controllable, \exists sequence $\overline{(S_n)}$ in $L^1(\mathbb{R}, \mathbb{R}^{m \times d})$, compactly supported in $[-T_*, 0]$ s.t.

$$\pi(Q^{-1} * P * S_n) \xrightarrow[n \to +\infty]{} \pi Q^{-1}, \text{ in distribution sense.}$$
(19)

From Open Mapping Theorem, $||S_n||_1 \leq C$ for C > 0 independent of *n*. Weak compactness in $\mathcal{R}_c(\mathbb{R}_-)(\mathbb{R}_-) \Rightarrow \exists S \in \mathcal{R}_c(\mathbb{R}_-)(\mathbb{R}_-)$ s.t. $S_n \xrightarrow[n \to +\infty]{} S$.

Proposition (Fueyo, Mazanti, Sigalotti, C. 2023) Realization z = A * u is L^1 exact. contr. \iff (Bézout-Radon), i.e., $\exists R, S$ with entries in $\mathcal{R}_c(\mathbb{R}_-)$ s.t.

$$Q * R + P * S = \delta_0 I_d. \tag{18}$$

Sketch of proof: (\implies) If L^1 exactly controllable, \exists sequence $\overline{(S_n)}$ in $L^1(\mathbb{R}, \mathbb{R}^{m \times d})$, compactly supported in $[-T_*, 0]$ s.t.

$$\pi(Q^{-1} * P * S_n) \xrightarrow[n \to +\infty]{} \pi Q^{-1}, \text{ in distribution sense.}$$
(19)

From Open Mapping Theorem, $||S_n||_1 \leq C$ for C > 0 independent of *n*. Weak compactness in $\mathcal{R}_c(\mathbb{R}_-)(\mathbb{R}_-) \Rightarrow \exists S \in \mathcal{R}_c(\mathbb{R}_-)(\mathbb{R}_-)$ s.t. $S_n \xrightarrow[n \to +\infty]{} S$. Conclude with $\pi(Q^{-1} * P * S) = \pi Q^{-1}$.

・ロト ・ 日 ・ ・ 王 ・ ・ 王 ・ つ へ (* 27/29)

Proposition (Fueyo, C., 2023) (Bézout-Radon) for Realization $z = A * u \iff$ rank $[M, B] = n \quad \forall M \in \overline{\widehat{Q}(\mathbb{C})}.$

Proposition (Fueyo, C., 2023) (*Bézout-Radon*) for Realization $z = A * u \iff$ rank $[M, B] = n \quad \forall M \in \overline{\widehat{Q}(\mathbb{C})}.$ Sketch of proof: (\Rightarrow) easy.

(\Leftarrow) This is a Corona Problem in $\mathcal{R}(\mathbb{R}_{-})$:

Laplace transform of (Bézout-Radon) yields

$$\widehat{Q}(p)\widehat{R}(p) + B\widehat{S}(p) = I_d, \quad p \in \mathbb{C}.$$
 (20)

・ロト ・ 日 ・ ・ 王 ・ ・ 王 ・ つ へ (* 27/29)

For T > 0,

$$\Omega^{\mathcal{T}}_{-} := \{ h \in \mathcal{R}(\mathbb{R}_{-}) \mid h = \sum_{j=0}^{N} h_j \delta_{-\lambda_j}, \, \lambda_j \in [0, T], \, h_j \in \mathbb{R}, \, N \in \mathbb{N} \}.$$

Proposition (Corona problem in $\mathcal{R}(\mathbb{R}_{-})$)

K positive integer and T > 0. Consider $f_i \in \Omega_{-}^T$ for i = 1, ..., K. Assume $\exists \alpha > 0$ s.t.

$$\sum_{i=1}^{K} \left| \hat{f}_{i}(s) \right| \geq \alpha, \quad \forall s \in \mathbb{C},$$
(21)

then $\exists g_i \in \mathcal{R}_c(\mathbb{R}_-)$ for $i = 1, \dots, K$ satisfying

$$\sum_{i=1}^{K} f_i * g_i = \delta_0.$$
(22)

<ロト</th>
 < 国ト</th>
 < 国ト</th>
 < 国ト</th>
 < 国ト</th>
 < 国</th>
 < 28/29</th>

<u>SoP:</u> (Classical strategy.) First notice that $(\mathcal{R}_c(\mathbb{R}_-), +, *)$ commutative algebra. Hence

$$\sum_{i=1}^{K} f_i * g_i = \delta_0 \iff \mathsf{Two \ sided \ ideal} \ (f_1, \cdots, f_K) = \mathcal{R}_c(\mathbb{R}_-).$$

<ロ > < 合 > < 言 > < 言 > 言 の < ? 29/29

<u>SoP:</u> (Classical strategy.) First notice that $(\mathcal{R}_c(\mathbb{R}_-), +, *)$ commutative algebra. Hence

$$\sum_{i=1}^{K} f_i * g_i = \delta_0 \iff \mathsf{Two \ sided \ ideal} \ (f_1, \cdots, f_K) = \mathcal{R}_c(\mathbb{R}_-).$$

Argue by contradiction, i.e., $(f_1, \dots, f_K) \neq \mathcal{R}_c(\mathbb{R}_-)$. Naive strategy: (f_1, \dots, f_K) contained in maximal ideal of $(\mathcal{R}_c(\mathbb{R}_-), +, *)$ and hence contained in a maximal (proper) ideal. Cannot apply Gelfand's theory: $(\mathcal{R}_c(\mathbb{R}_-), +, *)$ not Banach.

<ロト</th>
 ・< 三ト< 三</th>
 シーマック
 ・< 29/29</th>

<u>SoP:</u> (Classical strategy.) First notice that $(\mathcal{R}_c(\mathbb{R}_-), +, *)$ commutative algebra. Hence

$$\sum_{i=1}^{K} f_i * g_i = \delta_0 \iff \mathsf{Two sided ideal} (f_1, \cdots, f_K) = \mathcal{R}_c(\mathbb{R}_-).$$

Argue by contradiction, i.e., $(f_1, \dots, f_K) \neq \mathcal{R}_c(\mathbb{R}_-)$. Naive strategy: (f_1, \dots, f_K) contained in maximal ideal of $(\mathcal{R}_c(\mathbb{R}_-), +, *)$ and hence contained in a maximal (proper) ideal. Cannot apply Gelfand's theory: $(\mathcal{R}_c(\mathbb{R}_-), +, *)$ not Banach. Solution:

<u>SoP:</u> (Classical strategy.) First notice that $(\mathcal{R}_c(\mathbb{R}_-), +, *)$ commutative algebra. Hence

$$\sum_{i=1}^{\mathcal{K}} f_i * g_i = \delta_0 \iff \mathsf{Two} \mathsf{ sided ideal } (f_1, \cdots, f_{\mathcal{K}}) = \mathcal{R}_c(\mathbb{R}_-).$$

Argue by contradiction, i.e., $(f_1, \dots, f_K) \neq \mathcal{R}_c(\mathbb{R}_-)$. Naive strategy: (f_1, \dots, f_K) contained in maximal ideal of $(\mathcal{R}_c(\mathbb{R}_-), +, *)$ and hence contained in a maximal (proper) ideal. Cannot apply Gelfand's theory: $(\mathcal{R}_c(\mathbb{R}_-), +, *)$ not Banach. Solution:

- (1) replace $\mathcal{R}_c(\mathbb{R}_-), +, *$) by quotient algebra $\mathcal{A} = \mathcal{R}_c(\mathbb{R}_-), +, *)/(f_K)$ which can be shown to be a commutative unital Banach algebra with $[\delta_0]$ as unit.
- (2) describe the homomorphisms of \mathcal{A} , i.e., continuous linear mappings $\psi : \mathcal{A} \to \mathbb{C}$.

Gelfand theory says that every maximal ideal lies in the kernel of a homomorphism of \mathcal{A} . Thanks (2), can contradict (21) \mathbb{R} \mathbb{R} $\mathcal{A} \subset \mathcal{A}$