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Network of 1D transport equations

O¢R(t,x) + AN(x)OxR(t,x) + D(x)R(t,x) = 0,t > 0,x € (0,1),
(Hyp){

(R+(t, 0)) _M (R+(fa 1)> + Bu(t), t >0,

R=(t,1) R=(t,0)
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Network of 1D transport equations

OrR(t,x) + A(x)0xR(t,x) + D(x)R(t,x) =0,t > 0,x € (0,1),

(Hyp)§ (R*(t,0)\ _ R*(t,1)
(R‘(L 1)> =M (R‘(t, 0)> + Bu(t), t>0,

» A(x), D(x) diagonal n x n matrices with nonzero diagonal
entries whose sign is independent of x;

» RT (resp. R™) gathers components of R whose corresponding
diagonal element in A(x) is positive (resp. negative);

> u: R,y — R™ control law; B real n x m matrix; M real n x n
matrix accounting for boundary conditions.
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Network of 1D transport equations

OrR(t,x) + A(x)0xR(t,x) + D(x)R(t,x) =0,t > 0,x € (0,1),

(Hyp){ (RT(t,0)\ _ ., (R™(t,1)
yp (R—(q 1)) =M (R‘(t, 0)> + Bu(t), t >0,

» A(x), D(x) diagonal n x n matrices with nonzero diagonal
entries whose sign is independent of x;

» RT (resp. R™) gathers components of R whose corresponding
diagonal element in A(x) is positive (resp. negative);

> u: R,y — R™ control law; B real n x m matrix; M real n x n
matrix accounting for boundary conditions.

Main goal: Determine (necessary/or sufficient) conditions in the
frequency domain, i.e., Hautus tests for L9 approx. and/or exact
controllability of (Hyp),

Previous work Tucsnak-Weiss (09); Bastin-Coron (16); Miller (05);
Ramdani and al. (05); Coron-Nguyen (19).
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Assumptions

> A(x) = diag{A\1(x), ..., \n(x)} and A € {0,...,n} s.t.
Ai(x) <0 < Aj(x) Vie{i+1,...,n}, je{l,...,n},

AL e L®((0,1),R) Vi€ {l,...,n}

> D(x) = diag{d1(x),...,dn(x)} with d; € L}((0,1),R)
Vie{l,...,n};
» Solution R splits into positive and negative velocities, i.e.,

C/RY\ .. [ Rt = (Ry...,R:)T,
R= <R_> with { R™ = (Rﬁ—i-l?"'aRn)T:
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Solution of (Hyp)

Definition (Solution)

T>0,u:[0,T] = R™ and Ry: [0,1] — R".

R: [0, T] x [0,1] — R" solution of (Hyp) in [0, T] with initial
condition Ry and control u if R(0,x) = Ro(x) Vx € [0, 1],
boundary equations satisfied Vt > 0, and, Vi € [1,n], t € [0, T],
and x € [0,1],

x+h d _ x+h 4i(&)
R,-<f+ / /\-(€€)’X+h>=efx VOR(Ex) ()

VheR st t+ [ % € [0, T and x + h € [0,1].
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Solution of (Hyp)

Definition (Solution)

T>0,u:[0,T] = R™ and Ry: [0,1] — R".

R: [0, T] x [0,1] — R" solution of (Hyp) in [0, T] with initial
condition Ry and control u if R(0,x) = Ro(x) Vx € [0, 1],
boundary equations satisfied Vt > 0, and, Vi € [1,n], t € [0, T],
and x € [0,1],

x+h df _fx+h d;(€) de
R; t+/ ,x+h>:e xRt x 2
(o[ 5 ) @
VheR st t+ [ % € [0, T and x + h € [0,1].

If R of class C! then it satisfies the PDE.

Cf. Concept of broad solution in Coron-Nguyen (19).
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Equivalent Linear Difference Delay System

1 di(x) 1 _dn(x) dx

Set K = Mdiag{ BRG A evc } and

L dx
Ti = , i€ |1, n].
/o ) [,
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Equivalent Linear Difference Delay System

1 di( 1 dn(x)
SetK=/\/ldiag{ —fo W e o e }and

L dx
= & e
/0|A,-(x>| (]

Consider the Linear Difference Delay System

y(t) yi(t —71)
(LDDS) : =K : + Bu(t), t>0,

Yn(t) Yn(t = 7n)

Claim: (Hyp) and (LDDS) are “equivalent”.
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Existence of L9-solutions of (Hyp)
For g € [1,00] and t > 0, 1-to-1 correspondence between

» solutions R(t,-) of (Hyp) defined on L9((0,1),R");
> solutions y := (yi(t + -))1<i<n of (LDDS) defined on

zq—HLq —73,0
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Existence of L9-solutions of (Hyp)

For g € [1,00] and t > 0, 1-to-1 correspondence between
» solutions R(t,-) of (Hyp) defined on L9((0,1),R");
> solutions y := (yi(t + -))1<i<n of (LDDS) defined on

Z"—HL" —73,0

Proposition (Mazanti, Sigalotti, C. 2020)

Let g€ [1,+00], T >0, Ry € L9((0,1),R"), and

u e L9((0, T),R™). Then (Hyp) admits a unique solution

R: [0, T] x [0,1] — R"™ in [0, T] with initial condition Ry and
control u, which satisfies R(t,-) € L9((0,1),R") for every
te[0,T].
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Controllability notions

Definition
Let g € [1,+0o0]. (Hyp) (resp. (LDDS)) is said to be
1) L9-approximately controllable if, for every e > 0 and
¢, € L9([0,1],R") (resp. Xg), there exists
u € L9([0, T],R™) such that the solution R (resp. y) of
(Hyp) (resp. (LDDS)) with initial condition ¢ and control u
satisfies |[R(T,) — ¥[[[0.1), 4 < € (resp. |ly;r] — ¥llza < €).
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Controllability notions

Definition
Let g € [1,+0o0]. (Hyp) (resp. (LDDS)) is said to be
1) L9-approximately controllable if, for every e > 0 and
¢, € L9([0,1],R") (resp. Xg), there exists
u € L9([0, T],R™) such that the solution R (resp. y) of
(Hyp) (resp. (LDDS)) with initial condition ¢ and control u
satisfies ||R(T,-) = tlljo,1], ¢ < € (resp. |lyj7] — ¥llzs < ).
2) L9-exactly controllable if, for every ¢, € L9([0, 1], R"),
there exists u € L9([0, T],R™) such that the solution R (resp.
y) of (Hyp) (resp. (LDDS)) with initial condition ¢ and
control u satisfies R(T,-) =1 (resp. y1] = ).

In above definition, T depends on data €, ¢, .
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Controllability notions

Definition
Let g € [1,+0o0]. (Hyp) (resp. (LDDS)) is said to be
1) L9-approximately controllable if, for every e > 0 and
¢, € L9([0,1],R") (resp. Xg), there exists
u € L9([0, T],R™) such that the solution R (resp. y) of
(Hyp) (resp. (LDDS)) with initial condition ¢ and control u
satisfies |[R(T,) — ¥[[[0.1), 4 < € (resp. |ly;r] — ¥llza < €).
2) L9-exactly controllable if, for every ¢, € L9([0, 1], R"),

there exists u € L9([0, T],R™) such that the solution R (resp.

y) of (Hyp) (resp. (LDDS)) with initial condition ¢ and
control u satisfies R(T,-) =1 (resp. y1] = ).

In above definition, T depends on data €, ¢, .
L9-approximately (resp. exactly) controllable in time T if time T
above does not depend on ¢, ¢, 1.

7/29



Representation Formulas - 1 -

Systems of the form (LDDS)

y(t) = ZKeJe y(t —7) + Bu(t), y cRY ueR™ t>0. (3)
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Representation Formulas - 1 -

Systems of the form (LDDS)

d
y(t) =D Kee/ y(t — 1) + Bu(t), y eRY, ueR"™, t>0. (3)
j=1

Definition
Consider family of matrices =, € My 4(R), n € Z9, defined by
0 if n € Z9\N¢9,
En - Id |f n = 0, (4)
> Kejel =, s if neNand |n| >0,

where s, = k-th canonical vector of NY.
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Representation Formulas - 2 -

Delay vector 7 := (71, ,7q)

1) (FLOW)
Ty(T): Xy — X, defined, for ¢ € X9 and i € [1,d],
s € [-7,0], by

(To(T)9). (s) = ¢ > ZieKejpj(T+s—7-0).

(£4)ENYx[1,d]
—7;<T+s—7£<0
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Representation Formulas - 2 -

Delay vector 7 := (71, ,7q4)
1) (FLOW)
Ty(T): Xy — X, defined, for ¢ € X9 and i € [1,d],
s c [—T,',O], by

(To(T)9). (s) = ¢ > ZieKejpj(T+s—7-0).

(£4)ENYx[1,d]
—7;<T+s—7£<0

2) (End-Point MAP) E4(T) : L9([0, T],R™) — X defined, for
ue L0, T],R™) and i € [1,d], by

(Eg(T)u); (1) =¢ Y ZBu(T+t—T-0), t € [-,0].

2eN?
TAST+t
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Representation Formulas - 3 -

Proposition (Mazanti, Sigalotti, C. 2020)
For T >0, g€ [l,+], ue L]0, T],R™), and ¢ € X9, Unique
Solution y of (LDDS) with initial condition ¢ and control u given

by
Vi) = Tq(t)9 + Eq(t)u, te[0, T]. (5)
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Representation Formulas - 3 -

Proposition (Mazanti, Sigalotti, C. 2020)
For T >0, g€ [l,+], ue L]0, T],R™), and ¢ € X9, Unique
Solution y of (LDDS) with initial condition ¢ and control u given

by
Vg = Ta(t)o + Eq(t)u,  te0, T]. (5)

For later use, consider dual operator Eq(T)* of E4(T).

Proposition

T 2 O' q 6 []‘?+OO)1

1 1/ _
Lyliog

E, (T) : X9 — L9([0, T|,R™), fory € £, t € [0, T]

(Ef(T)'y), (1) =& > B*=jejyj(t — T +7-£). (6)

(£4)ENTx[1,n]
—7;<t—T+71£<0
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Basic controllability properties
Let T >0, g € [1,400] and ¢’ conjugate exponent of q.
Proposition

(Hyp) L9-approximate (respectively, exactly) controllable in time T
if and only if the same is true for (LDDS).
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Basic controllability properties
Let T >0, g € [1,400] and ¢’ conjugate exponent of q.
Proposition
(Hyp) L9-approximate (respectively, exactly) controllable in time T
if and only if the same is true for (LDDS).
Proposition
1. The following assertions are equivalent:

(1.a) (LDDS) is L9-approximately controllable in time T,
(1.b) Ran E4(T) is dense in X9;
(1.c) The operator Eq(T)* is injective.
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Basic controllability properties
Let T >0, g € [1,400] and ¢’ conjugate exponent of q.

Proposition

(Hyp) L9-approximate (respectively, exactly) controllable in time T
if and only if the same is true for (LDDS).

Proposition

1. The following assertions are equivalent:
(1.a) (LDDS) is L9-approximately controllable in time T,
(1.b) Ran E4(T) is dense in X9;
(1.c) The operator Eq(T)* is injective.

2. The following assertions are equivalent:
(2.a) (LDDS) is L9-exactly controllable in time T,
(2.b) RanE4(T) =19
(2.c) (g <o) E4(T)* is bounded below: 3cg > 0

(OBS) ||Eq(T)*y||[0,T],q/ > CqHy”zq/v V}/ cx9. (7)
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Available results

1. Delays mq,..., 74 commensurable (i.e., all their pairwise ratios
are rational): can reformulate (LDDS) as an equivalent
difference equation with a single delay (up to state
augmentation). Then L9-approximate and exact controllability
equivalent (and independent of g) and can be checked by a
Kalman criterion.

2. Coron-Nguyen 2019: L2-exact controllability in optimal time
for specific systems (Hyp) (time-delay approach)

3. Two delays in dimension 2 (Mazanti, Sigalotti, C. 2020):
complete answers based on explicit (OBS).
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Available results

1. Delays mq,..., 7, commensurable (i.e., all their pairwise ratios

are rational): can reformulate (LDDS) as an equivalent
difference equation with a single delay (up to state
augmentation). Then L9-approximate and exact controllability
equivalent (and independent of g) and can be checked by a
Kalman criterion.

. Coron-Nguyen 2019: [2-exact controllability in optimal time
for specific systems (Hyp) (time-delay approach)

. Two delays in dimension 2 (Mazanti, Sigalotti, C. 2020):
complete answers based on explicit (OBS).

Case of 2 irrational delays approximate % by sequences of

rationals (r/)>0 and prove (c/)>o in (OBS) uniform. lower

bdd.
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Upper Bound on Controllability Time -1-

Theorem (Range saturation for End-Point Map E,)
Set T, =71 +---+74. Then

RanE,(T) =RanEy(T.), VT >T., qec[l,+x). (8)

Hence (LDDS) approx. (resp. exactly) controllable from the origin
IFF (LDDS) approx. (resp. exactly) controllable in time T,.

13/29



Upper Bound on Controllability Time -2-

SoP: Use representation formula of E4(T) and next lemma

Lemma (Generalized Cayley-Hamilton)
Jax € R for k € {0,1}9 s. t. Vj € [1,d] and
(e {l' e N | max;ep,qp 0 > 2 or t; =1}, we have

T

ej- Eg = — Z OzkejTEg_k. (9)
ke{0,1}9\{(0,...,0)}
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Upper Bound on Controllability Time -2-

SoP: Use representation formula of E4(T) and next lemma

Lemma (Generalized Cayley-Hamilton)
Jax € R for k € {0,1}9 s. t. Vj € [1,d] and
(e {t' e N | max;epy,q) ¢} > 2 or t; =1}, we have

ej-TEg = — Z OzkejTEg_k. (9)
ke{0,1}9\{(0,...,0)}

Proof of Lemma based on identity

—1
(/dd — thelelT — = tdKedeJ> = Z tfl s tf;dEg.
£=(ty, Lq)ENY
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Realization theory (after Yamamoto) -1-

Goal: Realize (LDDS) as an INPUT-OUPUT system u +— z where
z should represent y[y.
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Realization theory (after Yamamoto) -1-

Goal: Realize (LDDS) as an INPUT-OUPUT system u +— z where
z should represent y[y.

» Inputs u € LY(R,R™) with compact support in R_.
» Initial state = Origin.

d
> y(t) = Zl KejejTy(t — 7j) + Bu(t), t > inf supp(u).
J:

> y(t) =0, t <infsupp(u).
» Output z(t) = (yj(t — 75))1<j<d. t > 0.
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Realization theory (after Yamamoto) -1-

Goal: Realize (LDDS) as an INPUT-OUPUT system u +— z where

z should represent y[y.

» Inputs u € LY(R,R™) with compact support in R_.
» Initial state = Origin.

d
> y(t) = Zl KejejTy(t —7j) + Bu(t), t > inf supp(u).
J:

> y(t) =0, t <infsupp(u).
» Output z(t) = (yj(t — 75))1<j<d. t > 0.
Write z using convolution operator with kernel in

R(R4) = space of Radon measures supported in R,
i.e. find Ae R(R;) s.t.

2(t) = /m At — T)u(r)dr = (Ax u)(t), >0,

—00

(10)
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Realization theory (after Yamamoto) -2-

(10S)  z(t) = (Ax u)(t), t>0 and A=Q lxP,
where
Q = diag(é_n, c. ’5—771) — K(So, P .= Béo,

and Qlinvertible over R(R) (space of Radon measures).
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where
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Realization theory (after Yamamoto) -3-

7 : ¢ — ¢|r, truncation operator on LI(R,RY).

State space of (10S) in terms of distribution Q

(L)%= {z e L9, B | 7(Q2) =0}, (1)
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Realization theory (after Yamamoto) -3-

7 : ¢ — ¢|r, truncation operator on LI(R,RY).

State space of (10S) in terms of distribution Q
(199 = {z e L9m, B | w(@+2) =0}, (1)
Similarly state space of (10S) in space Radon measures:

(R)Q = {m;s | ¢ € (R(R4))? and 7(Q * md) = o}. (12)
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Realization theory (after Yamamoto) -3-

7 : ¢ — ¢|r, truncation operator on LI(R,RY).

State space of (10S) in terms of distribution Q
(199 = {z € LUR.BY [ m(@+z) =0}, (1)
Similarly state space of (10S) in space Radon measures:

(R)Q = {m | ¢ € (R(R4))? and 7(Q * md) = o}. (12)

State space of (I0S) in space of distributions:

(D)? = {mp | 6 (D'(Ry))? and 7(Q * 7¢) = o}. (13)
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Classical Definitions of Controllability

Set X € {L9,R¢,Dc} (Re for Radon with and D for distrib; “c”
compact support).
(10S) is said to be:

1) X -approximately controllable (from the origin) if
Vo € [1L, X((~71,0),R), In€ N, T, > 0 and
Un E X([O, Tn],Rm) s. t.

Z(Tn+') — ¢(-), in X-sense.

n—-+o00
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Set X € {L9,R¢,Dc} (Re for Radon with and D for distrib; “c”
compact support).
(10S) is said to be:

1) X -approximately controllable (from the origin) if
Vo € [1L, X((~71,0),R), In€ N, T, > 0 and
Un E X([O, Tn],Rm) s. t.

z(Th+-) — &(-), in X-sense.

n—-+o00

2) X-exactly controllable (from the origin) if
Vo € [T, X((=71,0),R), 3T > 0 and u € X([0, T],R) s. t.
for every j € [1, d]

zi(T +0) = ¢j(8) for § € [—75,0] in X-sense.
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Classical Definitions of Controllability

Set X € {L9,R¢, D¢} (Re for Radon with and D for distrib; “c”
compact support).
(10S) is said to be:

1) X -approximately controllable (from the origin) if

Vo € [1L, X((~71,0),R), In€ N, T, > 0 and
up € X([O, Tn],Rm) s. t.
zTh+-) — ¢(-), in X-sense.

n—-+o00

2) X-exactly controllable (from the origin) if
Vo € [T, X((=71,0),R), 3T > 0 and u € X([0, T],R) s. t.
for every j € [1, d]

zi(T +0) = ¢j(8) for § € [—75,0] in X-sense.

Remark: Similar definitions with uniform controllability time.
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Controllability in terms of Realization Theory

X € {L9,R¢,Dc}. (What follows is a tautology!)

Realization (10S) z=Axu is

1) X-approximately controllable if, for every Vr¢ € (X)®, 3 a
sequence of inputs (up)pen (in “X") s. t.

: d).
m(Ax* up) e ¢ in X (R+,R ),

2) X-exactly controllable if, V¢ € (X)@ 3 u (in “X") s. t. the
output z satisfies

z=m(Axu)=mo.
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X € {L9,R¢,Dc}. (What follows is a tautology!)

Realization (10S) z=Axu is

1) X-approximately controllable if, for every Vr¢ € (X)®, 3 a
sequence of inputs (up)pen (in “X") s. t.

: d).
m(Ax* up) e ¢ in X <R+,R ),

2) X-exactly controllable if, V¢ € (X)@ 3 u (in “X") s. t. the
output z satisfies

z=m(Axu)=mo.

Similar definitions with uniform controllabilty time.
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Approximate controllability -1-
Consider Q: C — M,, ,(C) defined by
Q(p) = diag(e”™, ..., eP™) — K, peC. (14)

Theorem (Fueyo, Mazanti, Sigalotti, C., 2023)

q € [1,400). (Hyp) L9-approx. contr. in time T, =71+ -+ Ty
<= rank[K, B] = n and one of the following equivalent assertions
holds true:

1. rank [@(p), B} =n VpeC

2. VpeC,
inf {|leTH(p)| +[leTB| 12 € C" IgTII =1} >0

3. Vp e C, det (@(p)é(p)* v BB*) > 0.
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Approximate controllability -2-
SoP: Yamamoto's results + upper bound on controllability time

Proposition (Salamon, Manitius, Yamamoto 1989)
The following are equivalent:
a) L9-approximate controllability, q € [1,00);
b)
c) Distributional approximate controllability;
d)

Radon approximate controllability;

3 two sequences of distributions (Sp)nen and (Rn)nen
compactly supported in R_ s.t.:

Q+xR,+PxS, _>—+> dolg, in distributional sense; (15)

e) (Hautus-Yamamoto criteria) The two conditions hold true:
1) rank [@(p)7 B} =d for every p € C,
2) rank [K,B] =d.
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Approximate controllability -2-
SoP: Yamamoto's results + upper bound on controllability time

Proposition (Salamon, Manitius, Yamamoto 1989)
The following are equivalent:
a) L9-approximate controllability, q € [1,00);
b)
c) Distributional approximate controllability;
d)

Radon approximate controllability;

3 two sequences of distributions (Sp)nen and (Rn)nen
compactly supported in R_ s.t.:

Q+xR,+PxS, n_>—+>oo dolg, in distributional sense; (15)
e) (Hautus-Yamamoto criteria) The two conditions hold true:

1) rank [@(p)7 B} =d forevery p € C,

2) rank [K,B] =d.

Fundamental ingredients: (a) algebraic approach with distributions;
(b) Approximate Bézout identity (15).
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Exact controllability

Theorem (Yamamoto 2011)

Distributional exact controllability < 3 two distributions R and S
compactly supported in R_ s.t. the following Bézout Identity holds

(Bézout-Dist.) QxR+ PxS=doly.
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Exact controllability

Theorem (Yamamoto 2011)

Distributional exact controllability < 3 two distributions R and S
compactly supported in R_ s.t. the following Bézout Identity holds

(Bézout-Dist.) QxR+ PxS=doly.

Remark: (Bézout-Radon) same statement as above with R and S
Radon measures in R(R_).
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Bézout and exact controllability

Realization z = A * u D-exact controllable =
since 7Q ! € (D)9, 3 distrib. S s.t.

T(AxS)=n(Q txPxS)=nQ L.

Then R:= Q '% PxS — Q! has compact support in R_, hence
(Bézout-Dist.) Q« R+ P xS = dply.
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Bézout and exact controllability

Realization z = A * u D-exact controllable =
since 7Q ! € (D)9, 3 distrib. S s.t.

T(AxS)=n(Q txPxS)=nQ L.
Then R:= Q '% PxS — Q! has compact support in R_, hence
(Bézout-Dist.) Q« R+ P xS = dply.

Assume (Bézout-Dist). Consider ¢ in (D)9.
Compute Q1% Bézout-Dist. Q@ * ¢.
It yields

¢=Q tx(old)* Qx¢
:Q_l*(P*5+Q*R)*Q*¢
=Q 'xPxSxQxdp+RxQxo
=AxS*xQ*xd+ RxQx¢.
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Bézout and exact controllability

Since (!!) m(R* Q@ x @) = m(R xw(Q  (w¢))) = 0, we get:
mp=m(AxS*xQx*¢)=7(Axw).

wi=S*xQx¢ (16)

Here w is a control steering target m¢ along (X)€.
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Bézout and exact controllability

Since (1) (R * Q % ¢) = n(R * (Q * (7¢))) = 0, we get:
7o =m(AxSxQxd) =m(Axw).
wi=S5%xQx¢ (16)
Here w is a control steering target m¢ along (X)€.
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Bézout and exact controllability

Since () m(R* Q x ¢) = m(R*m(Q * (7¢))) = 0, we get:
mp=m(AxS*xQx*¢)=7(Axw).

wi=S*xQx¢ (16)
Here w is a control steering target m¢ along (X)€.

Remarks:
> Adaptation to approximate controllability.
» From (16), control w is a function if ¢ smooth enough (=
exact cont. for smooth enough functions.)

» Assume Q, P with coeffs. in R.(R_) as for LDDS.

> (Bézout-Radon) <= Radon exact controllability;
> (Bézout-Radon) = L9 exact controllability, g € [1, oc].
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Exact controllability
Consider Q: C — M, n(C) defined by

Q(p) = diag(eP™, ..., eP™) — K, peC. (17)

Theorem (Fueyo, Mazanti, Sigalotti, C. 2023)

(Hyp) L'-exactly controllable in time 7y + --- + 17, <=
one of the following assertions holds true:

1. rank[M,B]=n VM € Q(C);
2. da>0st VpeC,

nf{|le™@)| +||e™B| 1g T IgTI =1} =
3. 3a >0 st VpeC, det (é(p)@(p)* + BB*) > a.
SoP: Resolution of Corona Problem in space of Radon measures

compactly supported.
Conjecture: same holds for L9 exact controllability, g € (1, o0).
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Proof of Exact controllability result -1-

Proposition (Fueyo, Mazanti, Sigalotti, C. 2023)

Realization z = Axu is L' exact. contr. <=
(Bézout-Radon), i.e., 3R, S with entries in R.(R_) s.t.

Q*xR+PxS=2dgly. (18)
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Proof of Exact controllability result -1-

Proposition (Fueyo, Mazanti, Sigalotti, C. 2023)

Realization z = Ax u is L} exact. contr. <=
(Bézout-Radon), i.e., 3R, S with entries in R.(R_) s.t.

Q+xR+PxS =20dgly. (18)

Sketch of proof: ( == ) If L! exactly controllable, 3 sequence
(S,) in LY(R,R™*9), compactly supported in [T, 0] s.t.

m(Q 1% PxS,) s 7Q™Y, in distribution sense.  (19)

From Open Mapping Theorem, ||S,]|1 < C for C > 0 independent
of n. Weak compactness in R (R_)(R_) = 35 € R(R_)(R-)
st. 5, — S.

n—-+o0o

Conclude with 7(Q 1% P x S) = 7QL.
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Proof of Exact controllability result -2-

Proposition (Fueyo, C., 2023)
(Bézout-Radon) for Realization z =A% u <=
rank[M,B] =n VM € Q(C).
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Proof of Exact controllability result -2-

Proposition (Fueyo, C., 2023)
(Bézout-Radon) for Realization z = Axu <=
rank[M,B] =n YM € Q(C).

Sketch of proof: (=) easy.

(<) This is a Corona Problem in R(R_):

Laplace transform of (Bézout-Radon) yields

Q(p)R(p)+ BS(p) =1la, peC. (20)
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Corona Problem -1-
For T >0,

N
QT :={heR(R_) |h=>D his_x, N\ €[0,T], h R, N € N}.
j=0

Proposition (Corona problem in R(R_)

K positive integer and T > 0. Consider f; € QT fori=1,..., K.
Assume Ja > 0 s.t.

i‘fi(s)’ >a, VseC, (21)

then 3g; € Rc(R_) fori=1,..., K satisfying

K
> fixgi=do. (22)
i=1
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Corona Problem -2-

SoP: (Classical strategy.) First notice that (Rc(R-), +, *)
commutative algebra. Hence

K
D fixgi=00 < Twosided ideal (f1, -, fk) = Re(R-).
i=1
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Cannot apply Gelfand's theory: (Rc(R-),+,*) not Banach.
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SoP: (Classical strategy.) First notice that (Rc(R-), +, *)
commutative algebra. Hence

K
D fixgi=00 < Twosided ideal (f1, -, fk) = Re(R-).
i=1
Argue by contradiction, i.e., (fi,- -, fk) # R(R_).
Naive strategy: (fi,--- , fx) contained in maximal ideal of
(Rc(R-),+, %) and hence contained in a maximal (proper) ideal.
Cannot apply Gelfand'’s theory: (R (R_),+,*) not Banach.
Solution:
(1) replace Rc(R_),+, *) by quotient algebra
A =TRc(R_),+,*)/(fk) which can be shown to be a
commutative unital Banach algebra with [dp] as unit.
(2) describe the homomorphisms of A, i.e., continuous
linear mappings ¢ : A — C.
Gelfand theory says that every maximal ideal lies in the kernel of a
homomorphism of A. Thanks (2), can contradict (21)
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