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Motivation

Why hyperbolic systems?

Conservation/balance of scalar quantities when taking into account:
I Evolution (e.g., transport) of conserved quantities in space and time
I Finite speed of propagation (vs. heat equation)

Natural representation for some industrial processes for which you have
I long distances (e.g. pipeline)
I slow propagation speeds (e.g. traffic)
I spatially dependent characteristics (e.g. composite materials)
I anisotropic behavior (e.g. ferromagnetism)

Multiple problems: stabilization, control, observability, parameter estimation...
I Wave equation: ∂tt w(t,x)− c2∂xx w(t,x) = 0.

Mathematically, this may look something like:

∂t ρ(t,x) = ∇f (t,x) + S(t,x), ∀(t,x) ∈ [0,T ]×Ω,

where ρ is the quantity conserved, f is a flux density and S is a source term.
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Motivation

Many physical laws are conservation/balance laws, e.g. mass, charge, energy, momentum
[Bastin, Coron; 2016]
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Networks of hyperbolic systems

Why coupled and interconnected hyperbolic systems?

Conservation/balance laws rarely appear isolated
I Navier-Stokes→ mass + energy + momentum
I Propagation phenomena rarely occur in a single direction

Systems modeled by hyperbolic PDEs do not exist in isolation, e.g.:
I Electric transmission networks→ interconnection of individual transmission lines
I Mechanical vibrations in drilling devices→ interconnection of different pipes

Possible coupling with ODEs
I actuator dynamics (e.g. pump, converter)
I load dynamics (e.g. valve, motor)
I sensor dynamics (e.g. flow-rate sensor, tachometer)
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Example: Traffic congestion control [Hu, Krstic]

Congested traffic→ Stop-and-go oscillations

Macroscopic models: hyperbolic PDEs that govern the evolution of density and velocity

Different traffic control strategies
1. Ramp metering: controls the traffic lights on a ramp
2. Varying speed limits (VSL): driving velocities are time-varying, dependent on real-time traffic
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Example: Traffic congestion control [Hu, Krstic]

Congested traffic→ Stop-and-go oscillations

Macroscopic models: hyperbolic PDEs that govern the evolution of density and velocity

Different traffic control strategies
1. Ramp metering: controls the traffic lights on a ramp
2. Varying speed limits (VSL): driving velocities are time-varying, dependent on real-time traffic

Simultaneous stabilization of the trafic on two connected roads
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Content of the presentation

What you will see (maybe learn!) in this presentation

Backstepping stabilization of elementary systems of balance laws
I Backstepping approach: integral change of coordinates
I Time delay representation (Integral Difference Equation)
I Scalar and non-scalar systems

Simplest type of interconnection: input delay
I IDE with delayed actuation
I Predictor design for IDEs
I Explicit realization of the prediction using a TDS approach

Stabilization of interconnections with a chain structure actuated at the extremity
I 1st approach: Successive backstepping transformations
I 2nd approach: Recursive dynamics interconnection framework

Stabilization at the junction of two scalar interconnected systems
I IDE with delayed and distributed actuation
I Controller obtained using Fredholm integral equations
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Content of the presentation

What you will not see in this presentation

No observer, only state-feedback

No ODEs, only hyperbolic PDEs

No universal and generic approach to stabilize arbitrary networks of PDEs
I Only chains: no cycle, no tree
I One and only one node of the chain is actuated
I No generic methods for the stabilization of underactuated PDE systems

No ugly computations (ok, maybe I’m lying for this one)
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System under consideration

System of scalar balance laws→ simple test case to present generic concepts

ut (t,x) + λ(x)ux (t,x) = σ
++(x)u(t,x) + σ

+(x)v(t,x),

vt (t,x)−µ(x)vx (t,x) = σ
−(x)u(t,x) + σ

−−(x)v(t,x),

u(t,0) = qv(t,0), v(t,1) = ρu(t,1) + V(t).

u(t,x)

v(t,x)

σ− σ+q ρ

V(t)

0 1 x

Diagonal terms can be removed with exp. change of coordinates

Distributed states and boundary control

Initial conditions in H1 with appropriate compatibility conditions→ well-posedness

Stabilization in the sense of the L2-norm
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System under consideration: well-posedness and stabilization objective

ut (t,x) + λ(x)ux (t,x) = σ
+(x)v(t,x),

vt (t,x)−µ(x)vx (t,x) = σ
−(x)u(t,x),

u(t,0) = qv(t,0), v(t,1) = ρu(t,1) + V(t).

Well-posedness in open-loop

For every initial condition (u0,v0) ∈ H1([0,1],R2) that verifies the compatibility conditions

u0(0) = Qv0(0), v0(1) = Ru0(1)

there exists one and one only

(u,v) ∈ C 1([0,∞),L2([0,1],R2))∩C 0([0,∞),H1([0,1],R2)),

which is a solution to the open-loop Cauchy problem (i.e., V ≡ 0).
Moreover, there exists κ0 > 0 such that for every (u0,v0) ∈ H1([0,1],R2) satisfying the
compatibility conditions, the unique solution verifies

||(u(t, ·),v(t, ·))||L2 ≤ κ0eκ0t ||(u0,v0)||L2 , ∀t ∈ [0,∞).

In closed-loop (continuous control-input)→ no problem (invertibility of the transformations)
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System under consideration: well-posedness and stabilization objective

ut (t,x) + λ(x)ux (t,x) = σ
+(x)v(t,x),

vt (t,x)−µ(x)vx (t,x) = σ
−(x)u(t,x),

u(t,0) = qv(t,0), v(t,1) = ρu(t,1) + V(t).

Stabilization objective

Design a continuous control input that exponentially stabilizes the system in the sense of the
L2-norm, i.e. there exist κ0 and ν > 0 such that for any initial condition (u0,v0) ∈ L2([0,1],R2),
we have

||(u(t, ·),v(t, ·))||L2 ≤ κ0e−νt ||(u0,v0)||L2 , 0≤ t
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Backstepping methodology

Map the original system to a target system for which the stability analysis is easier.
Variable change: integral transformation, classically Volterra transform of the second kind

α(t,x) = u(t,x)−
∫ x

0
K uu(x ,ξ)u(t,ξ) + K uv (x ,ξ)v(t,ξ)dξ,

β(t,x) = v(t,x)−
∫ x

0
K vu(x ,ξ)u(t,ξ) + K vv (x ,ξ)v(t,ξ)dξ,

Condensed form: γ(t,x) = w(t,x)−
∫ x

0
K (x ,y)w(t,y)dy .

w(0,x)

w(t,x)

eAOLt eAd t

γ(0,x)

γ(t,x)

T

T−1

Limitations

Choice of an adequate target system.

Proof of existence and invertibility of an adequate backstepping transform.
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Objective: Move the in-domain coupling terms at the actuated boundary.

ut (t,x) + λux (t,x) = σ
+v(t,x),

vt (t,x)−µvx (t,x) = σ
−u(t,x).

u(t,x)

v(t,x)

σ− σ+q ρ

V(t)

0 1 x

u(t,0) = qv(t,0)

v(t,1) = ρu(t,1) + V(t)

αt (t,x) + λαx (t,x) = 0,

βt (t,x)−µβx (t,x) = 0.

α(t,x)

β(t,x)

q ρ

V̄(t)

0 1 x

α(t,0) = qβ(t,0)

β(t,1) = ρα(t,1) + V(t)

−
∫ 1

0
Nα(ξ)α(t,ξ) + Nβ(ξ)β(t,ξ)dξ.

Natural control law

V(t) =−ρα(t,1) +
∫ 1

0

(
Nα(ξ)α(t,ξ) + Nβ(ξ)β(t,ξ)

)
dξ.
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Finite-time stabilization→ lack of robustness

V(t) =−ρα(t,1) +
∫ 1

0

(
Nα(ξ)α(t,ξ) + Nβ(ξ)β(t,ξ)

)
dξ.

Lack of robustness

The control law is not strictly proper→ no/poor robustness margins.

Solutions for a robust controller

1. Cancel a part of the reflection: V(t) =−ρ̃α(t,1) +
∫ 1

0

(
Nα(ξ)α(t,ξ) + Nβ(ξ)β(t,ξ)

)
dξ.

2. Low-pass filter the control law.
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Time-delay representation

αt (t,x) + λαx (t,x) =0

βt (t,x)−µβx (t,x) =0

α(t,0) = qβ(t,0)

β(t,1) = ρα(t,1)−
∫ 1

0

(
Nα(ξ)α(t,ξ) + Nβ(ξ)β(t,ξ)

)
dξ + V(t)

Integral Difference Equation (IDE) satisfied by β(t,1)

β(t,1) = ρqβ(t− τ,1)−
∫

τ

0
N(ξ)β(t−ξ,1)dξ + V(t), t >

1
λ

+
1
µ

= τ

Necessary condition for delay-robustness

The product ρq verifies |ρq|< 1→ Stability of the principal part.

Stability analysis

The PDE system and the time-delay system have equivalent stability properties.

V(t) =
∫

τ

0 N(ξ)β(t−ξ)dξ.
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Non-scalar systems of balance laws

ut (t,x) + Λ+ux (t,x) = Σ++(x)u(t,x)+Σ+−(x)v(t,x),

vt (t,x)−Λ−vx (t,x) = Σ−−(x)v(t,x)+Σ−(−x)u(t,x),

u(t,0) = Qv(t,0) v(t,1) = Ru(t,1) + V(t).

where Λ+ = diag(λ1, . . . ,λn), Λ− = diag(µ1, . . . ,µp) with

−µp < .. . <−µ1 < 0, 0 < λ1 < .. . < λn

u1(t,x)

u2(t,x)

v1(t,x)

v2(t,x)

Σ−+ Σ+−

Σ++

Σ−−

Q R

V1(t)

V2(t)
0 1 x

One boundary of the system is completely actuated.
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Backstepping transformation and time-delay formulation

Target system

αt (t,x) + Λ+
αx (t,x) = G1(x)β(t,0),

βt (t,x)−Λ−βx (t,x) = G2(x)β(t,1),

α(t,0) = Qβ(t,0) β(t,1) = Rα(t,1) +
∫ 1

0
L1(ξ)α(t,ξ) + L2(ξ)β(t,ξ)dξ + V(t)

Stabilizing control law: V(t) =−Rα(t,1)−
∫ 1

0 L1(ξ)α(t,ξ) + L2(ξ)β(t,ξ)dξ.

Time-delay formulation

Integral difference equation (IDE) for z(t) = β(t,1)

z(t) =
M

∑
k=1

Ak z(t− τk ) +
∫

τM

0
N(ν)z(t−ν)dν + V(t).
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Non-scalar systems of balance laws with an input delay

ut (t,x) + Λ+ux (t,x) = Σ++(x)u(t,x)+Σ+−(x)v(t,x),

vt (t,x)−Λ−vx (t,x) = Σ−−(x)v(t,x)+Σ−(−x)u(t,x),

u(t,0) = Qv(t,0) v(t,1) = Ru(t,1) + V(t−δ) with δ > 0.

u1(t,x)

u2(t,x)

v1(t,x)

v2(t,x)

Σ−+ Σ+−

Σ++

Σ−−

Q R

V1(t−δ)

V2(t−δ)

0 1 x
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wt (t,x)− 1
δ

wx (t,x) = 0,

u(t,0) = Qv(t,0) v(t,1) = Ru(t,1) + w(t,0), w(t,1) = V(t).

u1(t,x)

u2(t,x)

v1(t,x)

v2(t,x)

Σ−+ Σ+−

Σ++

Σ−−

Q R

V1(t)
w1(t,x)

w2(t,x)
V2(t)

0 1 x

The boundaries of the system are not completely actuated→ under-actuated system.
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Predictors for IDEs

Backstepping + method of characteristics→ IDE with equivalent stability properties.

X(t) =
M

∑
k=1

Ak X(t− τk ) +
∫

τM

0
N(ν)X(t−ν)dν + V(t−δ), t ≥ 0

Exponential stabilization using a predictor

The control law

Vpred(t) =−
∫

τM

0
N(ν)P(t, t−ν)dν,

in which the prediction P(t,s) is implicitly defined as

P(t,s) =
M

∑
k=1

Ak P(t,s− τk ) +
∫

τM

0
N(ν)P(t,s−ν)dν + V(s) , t−δ≤ s ≤ t

with initial condition P(t,s) = X(t + δ) if s < t−δ, exponentially stabilizes the system.

Integral relation of Volterra type→ Prediction well-defined.

Possible to explicitly compute this predictor?
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Explicit realization of the predictor

X(t) =
M

∑
k=1

Ak X(t− τk ) +
∫

τM

0
N(ν)X(t−ν)dν + V(t−δ), t ≥ 0

The τk are increasing and δ = τM (not restrictive).
We consider the following candidate control law

V(t) =
∫

δ

0
[f (ν)X(t−ν) + g(ν)V(t−ν)]dν,

with f and g piecewise continuous matrix-valued functions

Objective

Find f and g such that the control law V stabilizes the system.
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Volterra equations and explicit realization of the predictor

We have X(t) = ∑
M
k=1 Ak X(t− τk ) if

0 = g(ν) + N(ν)−
∫

ν

0
g(ν−η)N(η)dη−

M

∑
k=1

1[τk ,δ](ν)g(ν− τk )Ak , (1)

0 = f (ν−δ)−
∫

δ

ν−δ

g(ν−η)N(η)dη−
M

∑
k=1

1[δ,τk+δ](ν)g(ν− τk )Ak , (2)
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We have X(t) = ∑
M
k=1 Ak X(t− τk ) if

0 = g(ν) + N(ν)−
∫

ν

0
g(ν−η)N(η)dη−

M

∑
k=1

1[τk ,δ](ν)g(ν− τk )Ak , (1)

0 = f (ν−δ)−
∫

δ

ν−δ

g(ν−η)N(η)dη−
M

∑
k=1

1[δ,τk+δ](ν)g(ν− τk )Ak , (2)

Existence of the functions f and g

There exist two unique piecewise continuous functions (f ,g) that are solutions of (1)-(2).

Closed-loop exponential stability

The control law V(t) =
∫ 0
−δ

[f (−ν)X(t + ν) + g(ν)V(t + ν)]dν, where f and g are solutions of
(1)-(2) exponentially stabilizes the original system in the sense of the L2-norm. Moreover, the
control law is strictly proper and exponentially converges to zero.

This control law corresponds to an explicit realization of the predictor.
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Interconnection of two scalar systems

∂t ui + λi ∂x ui = σ
+
i (x)vi , ∂t vi −µi ∂x vi = σ

−
i (x)ui ,

u2(t,0) = q22v2(t,0), v2(t,1) = ρ22u2(t,1) + ρ21u1(t,0),

u1(t,0) = q11v1(t,0) + q12u2(t,1), v1(t,1) = ρ11u1(t,1) + V(t)

u2(t,x) q12 u1(t,x)

v2(t,x) ρ21 v1(t,x)

σ
−
2 σ

+
2 σ

−
1 σ

+
1

ρ11q22 q11ρ22

V(t)

Assumption 1 : controllability

The coefficient ρ21 verifies ρ21 6= 0

Necessary to act on the second subsystem.

Assumption 2 : delay robustness

The open-loop system without in-domain couplings is exp. stable

This assumption implies |ρ11q11|< 1 and |ρ22q22|< 1.
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Successive backstepping transformations

Objective

Using successive backstepping transformations we want to move the in-domain couplings at the
actuated boundary.

Classical backstepping transformations for each subsystem

α2(t,x) q12 α1(t,x)

β2(t,x) ρ21 β1(t,x)

I (α2,β2)

I (α2,β2)

I (α2,β2)

ρ11q22 q11ρ22

V(t) + I
(

α1
β1

)

Due to couplings from syst. (2) to syst. (1), some undesired terms appear in syst. (1).

I (α,β) =
∫ 1

0
L1(ξ)α(t,ξ) + L2(ξ)β(t,ξ).

Use an affine integral transformation on the first syst.

β̄1(t,x) = β1(t,x)−
∫ x

0
R(x ,ξ)β1(t,x)dx−

∫ 1

0
F α(x ,ξ)α2(t,ξ)dξ + F β(x ,ξ)β2(t,ξ)dξ,

Clear actuation path from V(t) to subsystem (2).
Stabilizing control law: V(t) =−I (α1,α2,β1,β2).
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Extensions and limitations of the approach

Extension to multiple subsystems

Possible but technical: requires additional conditions on the boundary couplings.

The transformations have to be modified when a new system is added to the chain

Extension to non-scalar subsystems

α2(t,x) Q12 α1(t,x)

β2(t,x)

Ω(x)β2(t,0)

R21 β1(t,x)

I (α2,β2)

I (α2,β2)

I (α2,β2)

R11Q22 Q11Q22

V(t) + I
(

α1
β1

)

System 2 is not autonomously exp. stable.

The affine transformation does not work anymore.

New objective

Develop a new modular approach to stabilize chains of non-scalar subsystems
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Non-scalar interconnected systems

∂t ui + Λ+
i ∂x ui = Σ++

i (x)ui + Σ++
i (x)vi ,

∂t vi −Λ−i ∂x vi = Σ−+i (x)ui + Σ−−i (x)vi ,

u2(t,0) = Q22v2(t,0), v2(t,1) = R22u2(t,1) + R21u1(t,0),

u1(t,0) = Q11v1(t,0) + Q12u2(t,1), v1(t,1) = R11u1(t,1) + V(t)

u2(t,x) Q12 u1(t,x)

v2(t,x) R21 v1(t,x)

Σ−+2 Σ+−
2 Σ−+1 Σ+−

1 R11Q22 Q11R22

V(t)

Assumption 1 : controllability

The matrix R21 is full row-rank (existence of a right inverse).

Conservative assumption but only specific results exist for underactuated systems

Assumption 2 : delay-robustness

The open-loop system without in-domain couplings is exp. stable.
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A delayed-control effect

Let us focus on the second subsystem and assume Σ−+1 = 0

u2(t,x)

v2(t,x)

Σ−+2 Σ+−
2Q22 R22

V(t)
R21 v1(t,x)

u2(t,x)

v2(t,x)

Σ−+2 Σ+−
2Q22 R22

Vvirt(t− 1
µ1

m1
)

The actuation acts on the distal subsystem with a constant delay.

We already know how to stabilize such a system!

Stabilizing controller

We choose the virtual control law as

Vvirt(t) =
∫

δ

0
f (ν)z(t−ν) + g(ν)Vvirt(t−ν)dν,

where z is defined from (u2,v2) using backstepping transformations and where f and g are the
solutions of appropriate Volterra equations.
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Tracking of the virtual control input

u2(t,x) Q12 u1(t,x)

v2(t,x) R21 v1(t,x)

Σ−+2 Σ+−
2 Σ−+1 Σ+−

1 R11Q22 Q11R22

V(t)

We now want R21v1(t,0) to track the signal Vvirt (t− 1
µ1

m1
).
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u2(t,x) Q12 u1(t,x)

v2(t,x) R21 v1(t,x)

Σ−+2 Σ+−
2 Σ−+1 Σ+−

1 R11Q22 Q11R22

V(t)

We now want R21v1(t,0) to track the signal Vvirt (t− 1
µ1

m1
).

Consider the backstepping transformation

β1(t,x) = v1(t,x) +
∫ x

0
K1(x ,y)u1(t,y) + L1(x ,y)v1(t,y)dy

+
∫ 1

0
K2(x ,y)u2(t,y) + L2(x ,y)v2(t,y)dy

Classical backstepping transformation with an affine part.

The kernels K2 and L2 verify K2(0,y) = L2(0,y) = 0⇒ β1(t,0) = v1(t,0).
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Σ−+2 Σ+−
2 Σ−+1 Σ+−

1 R11Q22 Q11R22
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Tracking of the virtual control input

We obtain the following target system

u2(t,x) Q12 u1(t,x)

I (u2,v2)

v2(t,x) R21 β1(t,x)

Σ−+2 Σ+−
2 Σ+−

1 R11Q22 Q11R22

V(t)
+I (u1,v1,u2,v2)

∂t β1(t,x)−Λ−1 ∂x β1(t,x) = Ω(x)β1(t,0) =


0
0 0 ?
...

. . .
0 . . . 0

β1(t,0)

Tracking control law see [Hu and al.]

Let Vi (t) =−(R11u1(t,1) + I (·))i + ζi

(
t +

1

µ1
i

)
−

m1

∑
j=i+1

∫ 1
µ1
i

0
Ωi,j (µ1

i ν)ζj

(
t +

1

µ1
i
−ν

)
dν

where ζ is an arbitrary known function. Then, for any t ≥ ∑
mp
j=1

1
µ1

j
, β1(t,0)≡ ζ(t).
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Stabilizing control law

We obtain the following target system

u2(t,x) Q12 u1(t,x)

I (u2,v2)

v2(t,x) R21 β1(t,x)

Σ−+2 Σ+−
2 Σ+−

1 R11Q22 Q11R22

V(t)
+I (u1,v1,u2,v2)

Stabilizing control law

The control law

Vi (t) =− (R11u1(t,1) + I (·))i + ζi

(
t +

1

µ1
i

)
−

m1

∑
j=i+1

∫ 1
µ1
i

0
Ωi,j (µ1

i ν)ζj

(
t +

1

µ1
i
−ν

)
dν

with ζ(t) = RT
21(R21RT

21)−1Vvirt(t− 1
µ1

1
), exponentially stabilizes the interconnected system.
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Summary of the approach, extensions and limitations

The proposed control strategy combines several ingredients
I The backstepping approach,
I State-predictors (virtual controller),
I Tracking component.

Possible to design a state-observer.

Low-pass filter the control law to guarantee robustness.

Extension to multiple subsystems

un(t,x)

vn(t,x)

Σ−n Σ+
nQn,n Rn,n

Qn,n−1

Rn−1,n

• • •

• • •

Q2,3

R3,2

u2(t,x)

v2(t,x)

Σ−2 Σ+
2

Q1,2

R2,1

u1(t,x)

v1(t,x)

Σ−1 Σ+
1Q1,1 R1,1

V(t)

1 001 10

Possible but technical: the backstepping transformation requires an additional component
to avoid causality issues.

Recursive dynamics interconnection framework : the control law is designed recursively
(starting with the last subsystem).
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Stabilization at the junction of two scalar interconnected systems

∂t ui (t,x) + λi ∂x ui (t,x) = σ
+
i (x)vi (t,x),

∂t vi (t,x)−µi ∂x vi (t,x) = σ
−
i (x)ui (t,x),

with the boundary conditions

u1(t,0) = q11v1(t,0), v2(t,1) = ρ22u2(t,1),

v1(t,1) = V(t) + ρ11u1(t,1) + ρ12v2(t,0), u2(t,0) = q22v2(t,0) + q21u1(t,1).

u1(t,x)

v1(t,x)

σ
−
1 σ

+
1

q11 ρ11

q21

ρ12

u2(t,x)

v2(t,x)

σ
−
2 σ

+
2

q22 ρ22

V(t)
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1 σ

+
1

q11 ρ11

q21

ρ12

u2(t,x)

v2(t,x)

σ
−
2 σ

+
2

q22 ρ22

V(t)

Delay robustness assumption

The open-loop system without in-domain couplings is exp. stable.

This implies |ρ11q11|< 1 and |ρ22q22|< 1.
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u1(t,x)

v1(t,x)

σ
−
1 σ

+
1

q11 ρ11

q21

ρ12

u2(t,x)

v2(t,x)

σ
−
2 σ

+
2

q22 ρ22

V(t)

Action from the subsystem “1” on the subsystem “2”.

The boundary coupling coefficient q21 satisfies q21 6= 0.

If q21 = 0, it is impossible to act on subsystem “2” using the control input on subsystem “1”.
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v1(t,x)

σ
−
1 σ

+
1

q11 ρ11

q21

ρ12

u2(t,x)

v2(t,x)

σ
−
2 σ

+
2

q22 ρ22

V(t)

Condition on the boundary couplings

The coupling coefficients q11 and ρ22 satisfy q11 6= 0, and ρ22 6= 0.

Conservative assumption. If q11 = 0, the control input can act on subsystem “2” through
distributed terms only.
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Controllability condition

The interconnected system may not be controllable.

Operator formulation: d
dt w = A

(
w
)

+BU, where B?(
(
u1 v1 u2 v2

)>
) = µ1v1(1), and

A : D(A)⊂ L2([0,1],R4)→ L2([0,1],R4)
u1
v1
u2
v2

 7−→

−λ1∂x u1 + σ

+
1 (·)v1

µ1∂x v1 + σ
−
1 (·)u1

−λ2∂x u2 + σ
−
2 (·)v2

µ2∂x v2 + σ
−
2 (·)u2

 ,

with D(A) = {(u1,v1,u2,v2) ∈ H1([0,1],R4)| u1(0) = q11v1(0), v2(1) = ρ22u2(1),
v1(1) = ρ11u1(1) + ρ12u2(1), u2(0) = q22v2(0) + q21u1(1)}.

Controllability condition (Coron, Fattorini)

The operators A? and B? verify

∀s ∈ C,ker(s−A?)∩ker(B?) = {0}.
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Backstepping transformation and time-delay representation

We apply classical backstepping transformations on each subsystem{
u1(t,x) = α1(t,x)−

∫ x
0 L11

1 (x ,y)α1(t,y) + L12
1 (x ,y)β1(t,y)dy ,

v1(t,x) = β1(t,x)−
∫ x

0 L21
1 (x ,y)α1(t,y) + L22

1 (x ,y)β1(t,y)dy ,{
u2(t,x) = α2(t,x)−

∫ 1
x L11

2 (x ,y)α2(t,y) + L12
2 (x ,y)β2(t,y)dy ,

v2(t,x) = β2(t,x)−
∫ 1

x L21
2 (x ,y)α2(t,y) + L22

2 (x ,y)β2(t,y)dy ,

Objective: move the in-domain couplings at the boundaries.
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Backstepping transformation and time-delay representation

Target system:

α1(t,x)

β1(t,x)

q11 ρ11

q21

ρ12

I (α1,β1,α2,β2)

α2(t,x)

β2(t,x)

q22 ρ22

V(t) + I (α1,β1,α2,β2)

Time-delay representation

Denote z1(t) = β1(t,1) and z2(t) = α2(t,0). We have for all t ≥max{τi = 1
λi

+ 1
µi
}

z1(t) =ρ11q11z1(t− τ1) + ρ12ρ22z2(t− τ2) + V(t)

+
∫

τ1

0
H11(ν)z1(t−ν)dν +

∫
τ2

0
H12(ν)z2(t−ν)dν,

z2(t) =q21q11z1(t− τ1) + q22ρ22z2(t− τ2)

+
∫

τ1

0
H21(ν)z1(t−ν)dν +

∫
τ2

0
H22(ν)z2(t−ν)dν.
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Denote z1(t) = β1(t,1) and z2(t) = α2(t,0). We have for all t ≥max{τi = 1
λi

+ 1
µi
}

z1(t) =V̄(t),

z2(t) =aV̄(t− τ1) + bz2(t− τ2) +
∫

τ1

0
H21(ν)V̄(t−ν)dν +

∫
τ2

0
H22(ν)z2(t−ν)dν,

with a 6= 0 and |b|< 1.

The exp. stability of z1 and z2 will imply the exp. stability of the original system.
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An IDE with distributed actuation

z2(t) = aV̄(t− τ1) + bz2(t− τ2) +
∫

τ1

0
H21(ν)V̄(t−ν)dν +

∫
τ2

0
H22(ν)z2(t−ν)dν.

The difficulties to stabilize the IDE are related to the simultaneous presence of a
distributed-delay term for the actuation and the state.

Laplace transform: F0(s)z2(s) = F1(s)V̄(s), where the holomorphic function F0 and F1
are defined by

F0(s) = 1−be−τ1s−
∫

τ2

0
H21(ν)e−νsdν, F1(s) = ae−τ1s +

∫
τ1

0
H22(ν)e−νsdν.

Controllability condition [Mounier]

The functions F0 and F1 cannot simultaneously vanish, for all s ∈ C, rank [F0(s),F1(s)] = 1.

Equivalent to the previous controllability condition.

From now, we assume that τ1 = (N + 1)τ2→ non restrictive as it is always possible to
artificially delay the control law V̄(t).
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Design of a state-feedback controller

z2(t) = aV̄(t− τ1) + bz2(t− τ2) +
∫

τ1

0
H21(ν)V̄(t−ν)dν +

∫
τ2

0
H22(ν)z2(t−ν)dν.

We consider the following candidate control law

V̄(t) =
∫

τ2

0
f (ν)z2(t−ν)dν +

∫
τ1

0
g(ν)V̄(t−ν)dν,

with f and g piecewise continuous matrix-valued functions.

Objective

Find f and g such that the control law V̄ stabilizes the system.
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with f and g piecewise continuous matrix-valued functions.

Objective

Find f and g such that the control law V̄ stabilizes the system.

We can show that

z2(t) = bz2(t− τ2) +
∫

τ2

0
I1(ν)z2(t−ν)dν +

∫
τ1

τ2

I2(ν)z2(t−ν)dν +
∫

τ1+τ2

τ1

I3(ν)z2(t−ν)dν

where

I1(ν) =g(ν) + H22(ν)−
∫

ν

0
f (η)H21(ν−η)dη−

∫
ν

0
g(η)H22(ν−η)dη,

I2(ν) =g(ν)−bg(ν− τ2)−
∫

τ2

0
f (η)H21(ν−η)dη−

∫
ν

ν−τ2

g(η)H22(ν−η)dη,

I3(ν) =af (ν− τ1)−bg(ν− τ2)−
∫

τ2

ν−τ1

f (η)H21(ν−η)dη−
∫

τ1

ν−τ2

g(η)H22(ν−η)dη,

32 / 39



Design of a state-feedback controller

z2(t) = aV̄(t− τ1) + bz2(t− τ2) +
∫

τ1

0
H21(ν)V̄(t−ν)dν +

∫
τ2

0
H22(ν)z2(t−ν)dν.

We consider the following candidate control law

V̄(t) =
∫

τ2

0
f (ν)z2(t−ν)dν +

∫
τ1

0
g(ν)V̄(t−ν)dν,

with f and g piecewise continuous matrix-valued functions.

Objective

Find f and g such that the control law V̄ stabilizes the system.

We can show that
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∫

τ2

0
I1(ν)z2(t−ν)dν +

∫
τ1

τ2

I2(ν)z2(t−ν)dν +
∫

τ1+τ2

τ1

I3(ν)z2(t−ν)dν.

If I1 = 0, I2 = 0, and I3 = 0, then z2 will exponentially converge to zero (since |b|< 1).
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Design of a state-feedback controller

Objective

Find f and g such that I1 = 0, I2 = 0 and I3 = 0.

Introduce gk defined on [0,τ2] s.t. for all ν ∈ [kτ2,(k + 1)τ2], gk (ν) = g(ν + kτ2).

The system I1(ν) = 0, I2(ν) = 0, I3(ν) = 0 is equivalent to

af (ν)−bgN(ν)−
∫

τ2

ν

gN(η)H22(ν + τ2−η)dη−
∫

τ2

ν

f (η)H21(ν + τ1−η)dη = 0,

gk (ν)−bgk−1(ν)−
∫

τ2

ν

gk−1(η)H22(ν−η + τ2)dη−
∫

ν

0
gk (η)H22(ν−η)dη

−
∫

τ2

0
f (η)H21(ν + kτ2−η)dη = 0,

g0(ν)−
∫

ν

0
g0(η)H22(ν−η)dη−

∫
ν

0
f (η)H21(ν−η)dη =−H22(ν),

which can be rewritten as

T0(f ,gN , . . . ,g0) = (−H22,0, . . . ,0), → Fredholm integral equation (a 6= 0)
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0
gk (η)H22(ν−η)dη

−
∫

τ2

0
f (η)H21(ν + kτ2−η)dη = 0,

g0(ν)−
∫

ν

0
g0(η)H22(ν−η)dη−

∫
ν

0
f (η)H21(ν−η)dη =−H22(ν),

which can be rewritten as

T0(f ,gN , . . . ,g0) = (−H22,0, . . . ,0), → Fredholm integral equation (a 6= 0)
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Fredholm equation and invertibility of a Fredholm operator

Consider the Fredholm integral operator T : L2([a,b],Rn)→ L2([a,b],Rn) defined by

T
(
z(·)

)
= Mz(·)−

∫ b

a
K (·,y)z(y)dy ,

where M is an invertible matrix and K is bounded piecewise continuous.

Invertibility of the operator T [Coron]

Consider two linear operators A ,B , such that D(A) = D(B)⊂ L2([a,b],Rn). Assume that

1. ker(T )⊂ D(A),

2. ker(T )⊂ ker(B),

3. ∀z ∈ ker(T ), T Az = 0,

4. ∀s ∈ C, ker(sId−A)∩ker(B) = {0}.
Then, the operator T is invertible.

Proof: Since the integral part of T is a compact operator, the Fredholm alternative implies that
dimker(T ) < ∞. The different conditions imply that ker(T ) = {0} and T is injective. Using the
Fredholm alternative, we obtain that T is invertible.
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Design of the state feedback controller

We want to show that the operator T0 is invertible.

Introduce the operators AT defined on D(AT )⊂ L2([0,τ2],R)N+2 by

AT : D(AT )→ L2([0,τ2],R)N+2
φ

ψN
...

ψ0

 7−→


∂x φ + φ(0)H22(·)
∂x ψN + φ(0)H21(·+ Nτ2)

...
∂x ψ0 + φ(0)H21(·)

 ,

where D(AT ) = {(φ,ψN , . . . ,ψ0) ∈ (H1([0,τ2],R))N+2, φ(τ2) = bφ(0), ψN(τ2) =
aφ(0),ψk (τ2) = ψk+1(0), 0≤ k < N}.
Define the operator BT : D(AT )→ (L2([0,τ2],R))N+2, by

BT (
(
φ ψN · · · ψ0

)>
) = ψ0(0).

The operators T0, AT and BT satisfy the assumptions of the invertibility theorem.
Therefore T0 is invertible, which concludes the proof.

Existence of f and g

There exist unique piecewise continuous functions f and g such that I1(ν) = 0, I2(ν) = 0, and
I3(ν) = 0.
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Control law and extensions

State-feedback control law

Consider the functions I1, I2 and I3 and let f and g be the unique piecewise continuous functions
that lead to I1(ν) = 0, I2(ν) = 0, and I3(ν) = 0. Then, the closed-loop system with the control
law

V(t) =−ρ11q11z1(t− τ1)−ρ12ρ22z2(t− τ2) + V̄(t)

−
∫

τ1

0
H11(ν)z1(t−ν)dν−

∫
τ2

0
H12(ν)z2(t−ν)dν,

where V̄ =
∫ τ2

0 f (ν)z2(t−ν)dν +
∫ τ1

0 g(ν)Ū(t−ν)dν is exponentially stable. Moreover, the
control law V(t) exponentially converges to zero and can be low-pass filtered such that the
resulting filtered control operator is strictly proper while stabilizing the plant

An observer with in-between measurement can be obtained using an analogous approach
→ Output-feedback controller.

Same kind of IDEs for underactuated PDE.

Non-scalar systems? More than two subsystems?
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General conclusions: Stabilization of networks with a chain structure

Key idea: rewriting hyperbolic systems as IDEs using backstepping

Chains with actuation at the extremity→ cascade structure
I Recursive dynamics interconnection framework: combines backstepping, predictions,

tracking.
I Possibility to add ODEs in the chain.
I Computational effort? Model reduction?

Chains with actuation at one of the junction→ Not always controllable
I IDE with a distributed effect of the actuation.
I Controller obtained by solving a Fredholm equation.
I More than two subsystems? Non-scalar subsystems? Cycle?
I Actuators at several nodes?
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Perspectives

Extension to systems with a more complex graph structure

Controllability and control design

Does a given configuration of actuators makes the system controllable? How to design
appropriate modular, scalable, and numerically implementable control laws?

Actuators placement

Considering a given number of actuators, what are the admissible locations that guarantee
controllability?

Qualitative analysis to understand the links between the structure of the network (e.g., number
of cycles, incidence matrix) and its controllability/observability properties.
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Perspectives

In-domain stabilization of hyperbolic systems

∂t u(t,x) + λ∂x u(t,x) = σ
+(x)v(t,x) + hu(x)V(t),

∂t v(t,x)−µ∂x v(t,x) = σ
−(x)v(t,x) + hv (x)V(t),

with the boundary conditions

u(t,0) = qv(t,0), v(t,1) = ρu(t,1),

Can be rewritten as the following IDE

z(t) = ρqz(t− τ) +
∫

τ

0
Nz(ν)z(t−ν)dν +

∫
τ

0
NV (ν)V(t−ν)dν,

Control design for the general class of IDEs, links with the structural properties?

General class of IDEs

z(t) =
N

∑
k=1

Ak z(t− τk ) +
∫

τN

0
f (ν)z(t−ν)dν +

N

∑
k=1

Bk V(t) +
∫

τN

0
g(ν)V(t−ν)dν,
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