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Motivation
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Motivation

Why hyperbolic systems?

@ Conservation/balance of scalar quantities when taking into account:

> Evolution (e.g., transport) of conserved quantities in space and time
> Finite speed of propagation (vs. heat equation)
@ Natural representation for some industrial processes for which you have
> long distances (e.g. pipeline)
> slow propagation speeds (e.g. traffic)
> spatially dependent characteristics (e.g. composite materials)
> anisotropic behavior (e.g. ferromagnetism)

@ Multiple problems: stabilization, control, observability, parameter estimation...
> Wave equation: dgw(t,x) — c2dxw(t,x) = 0.

Mathematically, this may look something like:
arp(t, x) = Vi(t,x)+ S(t,x), V¥(t,x)€][0,T]xQ,

where p is the quantity conserved, f is a flux density and S is a source term.
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Motivation

Many physical laws are conservation/balance laws, e.g. mass, charge, energy, momentum
[Bastin, Coron; 2016]
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Networks of hyperbolic systems

Why coupled and interconnected hyperbolic systems?

@ Conservation/balance laws rarely appear isolated

> Navier-Stokes — mass + energy + momentum
> Propagation phenomena rarely occur in a single direction

@ Systems modeled by hyperbolic PDEs do not exist in isolation, e.g.:

» Electric transmission networks — interconnection of individual transmission lines
> Mechanical vibrations in drilling devices — interconnection of different pipes

@ Possible coupling with ODEs

> actuator dynamics (e.g. pump, converter)
> load dynamics (e.g. valve, motor)
> sensor dynamics (e.g. flow-rate sensor, tachometer)
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Example: Traffic congestion control [Hu, Krstic]
@ Congested traffic — Stop-and-go oscillations

@ Macroscopic models: hyperbolic PDEs that govern the evolution of density and velocity

@ Different traffic control strategies

1. Ramp metering: controls the traffic lights on a ramp
2. Varying speed limits (VSL): driving velocities are time-varying, dependent on real-time traffic
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Example: Traffic congestion control [Hu, Krstic]

@ Congested traffic — Stop-and-go oscillations

@ Macroscopic models: hyperbolic PDEs that govern the evolution of density and velocity

@ Different traffic control strategies

1. Ramp metering: controls the traffic lights on a ramp
2. Varying speed limits (VSL): driving velocities are time-varying, dependent on real-time traffic

@ Simultaneous stabilization of the trafic on two connected roads
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Content of the presentation

What you will see (maybe learn!) in this presentation

@ Backstepping stabilization of elementary systems of balance laws

» Backstepping approach: integral change of coordinates
> Time delay representation (Integral Difference Equation)
> Scalar and non-scalar systems
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What you will see (maybe learn!) in this presentation

@ Backstepping stabilization of elementary systems of balance laws

» Backstepping approach: integral change of coordinates
> Time delay representation (Integral Difference Equation)
> Scalar and non-scalar systems

@ Simplest type of interconnection: input delay

> IDE with delayed actuation
> Predictor design for IDEs
» Explicit realization of the prediction using a TDS approach

@ Stabilization of interconnections with a chain structure actuated at the extremity

> 1st approach: Successive backstepping transformations
> 2nd approach: Recursive dynamics interconnection framework

@ Stabilization at the junction of two scalar interconnected systems

> |DE with delayed and distributed actuation
> Controller obtained using Fredholm integral equations
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Content of the presentation

What you will not see in this presentation

@ No observer, only state-feedback

No ODEs, only hyperbolic PDEs

No universal and generic approach to stabilize arbitrary networks of PDEs

> Only chains: no cycle, no tree
> One and only one node of the chain is actuated
> No generic methods for the stabilization of underactuated PDE systems

@ No ugly computations (ok, maybe I'm lying for this one)
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System under consideration

System of scalar balance laws — simple test case to present generic concepts
ur(t,x) +MX)ux(t,x) =6 (x)u(t,x) + o (x)v(t,x),
vi(t, x) —u(x)vx(t,x) = o~ (X)u(t,x) + o (x)v(t.x),
u(t,0) = qv(t,0), v(t,1)=pu(t,1)+ V().

>p
<« V(1)

@ Diagonal terms can be removed with exp. change of coordinates

@ Distributed states and boundary control
@ Initial conditions in H' with appropriate compatibility conditions — well-posedness

@ Stabilization in the sense of the L2-norm
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System under consideration: well-posedness and stabilization objective

ur(t, x) + M) ux (t,x) = s+ (x)v(t, x),
(X)) (t,6) = 5~ (¥)ut, ),
u(t,0) = qv(t,0), v(t,1)=pu(t,1)+ V(1)

Well-posedness in open-loop
For every initial condition (up, vo) € H'([0,1],R?) that verifies the compatibility conditions
up(0) = Qvp(0), w(1) = Rup(1)
there exists one and one only
(u,v) € C'([0,%0), L2([0, 1], R?)) N C°([0, ), H' ([0, 1], R?)),

which is a solution to the open-loop Cauchy problem (i.e., V = 0).
Moreover, there exists Ko > 0 such that for every (uo,vo) € H'([0, 1], R?) satisfying the
compatibility conditions, the unique solution verifies

[1u(t, ), v(t,))llez < woe™[I(uo, vo)lee, V2 € [0,0).

In closed-loop (continuous control-input) — no problem (invertibility of the transformations)
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System under consideration: well-posedness and stabilization objective

ur(t, x) + M) ux(t, x) = s (x)v(t, x),
vi(t,x) —u(x)vx(t,x) = 6~ (x)u(t, x),
u(t,0) = qv(t,0), v(t,1)=pu(t,1)+ V().

Stabilization objective

Design a continuous control input that exponentially stabilizes the system in the sense of the
L2-norm, i.e. there exist o and v > 0 such that for any initial condition (up, vo) € L2([0, 1],R?),
we have

[1Cu(t, ), v(t, )]z < koe™[|(uo, vo)ll 2, 0t
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Backstepping methodology

@ Map the original system to a target system for which the stability analysis is easier.
@ Variable change: integral transformation, classically Volterra transform of the second kind

a(t.) = u(t. )~ [ KX EU(L.E) + K™ (x EJ(LE)E,
Btx) = W(t.x) = [ K™ (.E)U(L.E) + K™ (x E(LE)CE,

X
Condensed form:  y(t,x) = w(t,x)—/ K(x,y)w(t,y)dy.
0

w(0,x) T ¥(0,%)
eﬂoLf e/’zldt
w(t,x) . v(t,x)
=

Limitations
@ Choice of an adequate target system.
@ Proof of existence and invertibility of an adequate backstepping transform.
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Objective: Move the in-domain coupling terms at the actuated boundary.

ur(t,x) +Aux(t,x) = st v(t,x),
vi(t, x) —uvx(t, x) = o~ u(t, x).

u(t,x)
G o~ E ot E >P
*v(t,x)l — v
0 1 x
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Objective: Move the in-domain coupling terms at the actuated boundary.

() + A (t,x) = 6T v(t,x), oy (t,x) + Ao (t,x) =0,
Be(t,x) — uPx(t,x) =0.

ve(t, x) — pvy(t,x) = 6~ u(t, x).
u(t, x) ot, x)
G o ! ot )p G )p
*V(LX)- <« V(1) ) <« V(1)
0 1 x ? 1I X
u(t,0) = qv(t,0) a(t,0) = gB(t,0)
v(t,1) = pu(t, 1)+ V(1) B(t,1) = pa(t,1)+ V(1)
Natural control law
V(t) = —pay(t,1) J




Finite-time stabilization — lack of robustness

V() =-pa(t, 1)+ [ (N*©u(t.9)+ WERIB(.E)) &,
|

Finite-time
convergence

4 I I I I I
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Lack of robustness
The control law is not strictly proper — no/poor robustness margins. J
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Finite-time stabilization — lack of robustness

V() =-pa(t, 1)+ [ (N*©u(t.9)+ WERIB(.E)) &,

2 T T

T T
—0.1 delay
e Nominal performance

Finite-time
convergence

4 I I I I I

0 5 10 15 20 25 30

Lack of robustness
The control law is not strictly proper — no/poor robustness margins.

Solutions for a robust controller

1. Cancel a part of the reflection: V(t) = —poi(t,1) + [, <N“(§)(x(t§) + NW&)B(I.@)) dg.

2. Low-pass filter the control law.
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Time-delay representation

(X‘f(tvx) +7\r(xx(t,X) =0
Be(t, x) — uPx(t,x) =0

(X(LO) = qB(t7O)
1
B(t.1) = pa(t.1)— [ (N(©)a(r.) + N(E)B(1E)) de+ V(D)
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Time-delay representation
ot(t,x) + Ao (t, x) = 0 — Transport equation
Bi(t,x) — uPx(t,x) = 0 — Transport equation
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a(t,0) = qB(t,0)
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1

Integral Difference Equation (IDE) satisfied by B(t,1)
© 1
B(t71):pqﬁ(t_‘ta1)_/o N(é)ﬁ(f—&ﬂ)dé—l—V(t), I>X+;:T J
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Time-delay representation
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Time-delay representation

ot(t,x) + Ao (t, x) = 0 — Transport equation
Bi(t,x) — uPx(t,x) = 0 — Transport equation

(X(t,O) :qﬁ(t,O)

B =pa(t 1) [ (M(E)a(t8) + NEB(E) 6+ V(1

Integral Difference Equation (IDE) satisfied by B(t,1)

ﬁ(m):pqg(;_f,n_/ot/v(g)[s(r—gn)dgjt VD), t> %+% —1

Necessary condition for delay-robustness
The product pq verifies |pqg| < 1 — Stability of the principal part.

Stability analysis
The PDE system and the time-delay system have equivalent stability properties.

V() = Jg N(E)B(t &),
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Non-scalar systems of balance laws

ur(t, x) + ATy (t,x) = T () u(t, x)+Z T (x)v(t, x),
vi(t,x) =N v (8, x) =X (x)v(t,x)+X (—x)u(t, x),
u(t,0) = Qv(t,0) v(t,1)= Ru(t,1)+ V(1).

where AT =diag(A1,...,Ap), A~ =diag(u1, . .., up) with

—Up <. <—u <0, 0<M<...<Ap

"
M
- ) P4|
+
é___
M
+
|
__~
T By
<

>~

One boundary of the system is completely actuated.
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Backstepping transformation and time-delay formulation

@ Target system

o (t, x) + ATy (t, x) = Gy (x)B(t,0),
Be(t,x) — A" Bx(t,x) = Ga(x)B(1, 1),

o(t,0) = QB(,0) PB(t,1) = HOC(T71)+_/O1 L1 (8)out,8) + L2(8)B(t,§)d + V(1)

o Stabilizing control law: V(t) = —Ro(t,1) — [o L1 (E)o(t,E) + Lo (E)B(t,E)dE.
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Backstepping transformation and time-delay formulation

@ Target system

aT(t7X)+A+(xX(t7X) = Gi (X)B(I7O)7
Be(t,x) — A" PBx(t,x) = G2(x)B(t,1),

o(t,0) = QB(t,0) B(t,1) = Ro(t, 1)+/01 L1(&)ot,€) + L2(E)B(t,E)dE + V(1)
o Stabilizing control law: V(t) = —Ro(t,1) — [o L1 (E)o(t,E) + Lo (E)B(t,E)dE.

Time-delay formulation
Integral difference equation (IDE) for z(t) = B(¢,1)

M Tu
20 =Y, Ac(t—m)+ [ NW2(t-v)av+ V().
k=1 0
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Non-scalar systems of balance laws with an input delay

ur(t,x) + AT ue(t, x) = T (x)u(t, x)+X 7 (x)v(t, x),
ve(t, x) =N v (8, x) =X (x)v(t, x)+X (—x)u(t, x),
u(t,0) = Qv(t,0) v(t,1)=Ru(t,1)+ V(t—3) withd>0.

U2(T,X
ur(t,x ?iz++
<C'> oty oyt )R
— t : <« Vi(t-9)
T alto — Vao(t—3)
V2(t7X) 1 x
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Non-scalar systems of balance laws with an input delay

ur(t, %) + AT ue(t, x) = T (x)u(t, x)+Z T (x)v(t, x),
vi(t, x) — A" vi(t,x) = X7 (x)v(t, x)+X " (—x)u(t, x),

wi(t,x) ~ wi(t,) =0,

u(t,0) = Qv(t,0) v(t,1) = Ru(t,1)+w(t,0), w(t.1) = V(1.

up(t, x)
ur(t, x) ?i):++
Q z—+i >:+—i >F?
():1\ vv1(t.‘x) : wi(t,x) <« V(1)
0 I v2(1‘,x)I 1 x wa(t, x) « ve()

The boundaries of the system are not completely actuated — under-actuated system.
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Predictors for IDEs

Backstepping + method of characteristics — IDE with equivalent stability properties.
X(t) = ZAkXt—Tk +/ X(t—v)dv+V(t—38), t>0

Exponential stabilization using a predictor
The control law

Vorsa (1) / N(V)P(t,t —v)dv

in which the prediction P(t, s) is implicitly defined as

M M
P(t,s) = ZAkP(t,s—‘ck)—F/T N(V)P(t,s—v)dv+ V(s), t—B8<s<t
0

with initial condition P(t,s) = X(t+39) if s < t — 8, exponentially stabilizes the system.

@ Integral relation of Volterra type — Prediction well-defined.
@ Possible to explicitly compute this predictor?

16/39



Explicit realization of the predictor

X(t) = ZAkXt—rk +/ X(t—v)dv+V(t—3), t>0

The Tk are increasing and & = Ty (not restrictive).
We consider the following candidate control law

)
= [ X =)+ aW)v(e-v)lav,
with f and g piecewise continuous matrix-valued functions

Objective
Find f and g such that the control law V stabilizes the system. J
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X(t) = ZAKX(t—‘ck +/ N(V)X(t—Vv)av+ V(t—3), t>0

The T are increasing and & = Ty (not restrictive).
We consider the following candidate control law

S
V(1) = /O [F(V)X(t— V) +g(v)V(t— V)] dv,

with f and g piecewise continuous matrix-valued functions

Objective
Find f and g such that the control law V stabilizes the system. J

x(r)f/'ag(v) X(t—v dv_ZAkthrk +/ (N(W)X(t=Vv) — g(v) V(t—v—8))av

Z/ V)AX(t—V — Ty )dv — / / N(M)X(t—v—m)dnav,
—
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Explicit realization of the predictor

X(t) = ZAkthtk +/ N(V)X(t—v)dv+ V(t—38), t>0

The Tk are increasing and & = Ty (not restrictive).
We consider the following candidate control law

3
V(t) = / [F(V)X(t— V) + g(v) V(t — V)] dv,
0
with f and g piecewise continuous matrix-valued functions

Objective J

Find f and g such that the control law V stabilizes the system.

S M S
x(r)f/ gV)X(t—v)dv = ZAkX(tfrk)Jr/ (N(W)X(t=Vv) — g(V) V(t—v—8))av

Z/ V)AX(t—V—T)dv — / / N(M)X(t—v—m)dnav,
=

Fubini’s theorem
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Explicit realization of the predictor

X(t) = ZAkX(tf‘tk +/ NWV)X(t—v)dv+ V(t—38), t>0

The Tk are increasing and & = Ty (not restrictive).
We consider the following candidate control law

)
0= [ XV +aW)V(E-V)lav.
with f and g piecewise continuous matrix-valued functions

Objective J

Find f and g such that the control law V stabilizes the system.

) M S
x(;)—/0 gV)X(t —v)dv = ZAkX(t—‘ck)—i—/ (N(W)X(t—v) — g(V) V(t —v— 8))av
Z/ g(V)AX(t—v— rk)dvf/ / (s+M)N(M)anX(t—s)ds

28
- /a ,/S,Bg(sfﬂ)N(n)an(tf s)ds
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Explicit realization of the predictor

X(t) = % AkX(tftk)—k/TM N(V)X(t—V)dv+ V(t—38), t>0
k=1 0

The Tk are increasing and & = Ty (not restrictive).
We consider the following candidate control law

5
V(D) = [ IHW)X (=) +gV(t-vlav.
with f and g piecewise continuous matrix-valued functions

Objective J

Find f and g such that the control law V stabilizes the system.

) M S
x(r)—/0 gV)X(t —v)dv = ZAkX(t—‘ck)—i—/o (N(W)X(t—v) — g(v)V(t —v—8))av

k=1

M S S ps
+V(t,g),k;/0 W) AX(t=v=r)ov— [ [“g(s+m)N(m)dnx(t—s)ds

28 8
’/5 /Hg(sfn)N(n)an(t—s)ds,
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Explicit realization of the predictor

X(t) =

™=
>
2

X(t—1x +/ N(V)X(t—v)dv+V(t—95), t>0

The Tk are increasing and & = Ty (not restrictive).
We consider the following candidate control law

5
0= [ XV +aW)V(E-V)lav.
with f and g piecewise continuous matrix-valued functions

Objective J

Find f and g such that the control law V stabilizes the system.

X ? WX av= MAX "N(w)x d
() SOIX(-)av = Y AX(—50) 5 [ Ny
. f [ oaxt—v—zav— [ [ ofs - mnimanx(i—s)os

/26/ g(s—MN an(tfs)der/ (v = 8)X(t - v)av,
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Explicit realization of the predictor

X(t) = ZAkXt—Tk +/ X(t—v)dv+V(t—38), t>0

The Tk are increasing and & = Ty (not restrictive).
We consider the following candidate control law

= [UXE oVl

with f and g piecewise continuous matrix-valued functions

Objective
Find f and g such that the control law V stabilizes the system. J

x(t)f‘/o5 (V)X(t—Vv)dv = ZAkX t—rk)—i-/ V)X(t—v)dv
& s
= [ ats—mmemyanix(—s)as,
0 0

28 8 28
[ ats=mntmydnix(i—s)as+ [ rtv—8)x(t-+v)a,
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Volterra equations and explicit realization of the predictor
We have X(t) = Y M, AcX(t— 1) if
v M
0= g(v)+ N(¥)~ [ av—m)N(m)dn— ¥, g, 5(M)a(v — ) Ac M
k=1

S M
0=f(v=8)~ [ g(v-mIN()dN— . T, 451(v)o(v ), @
v k=1
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Volterra equations and explicit realization of the predictor
We have X(t) = Y M, AcX(t— 1) if
v M
0= g(v)+ N(¥)~ [ av—m)N(m)dn— ¥, g, 5(M)a(v — ) Ac M
k=1

5 M
0=1f(v-3) —/ SQ(V—H)N(n)dﬂ =Y Usari(M)g(v — ) Ak, @)
V= k=1

Existence of the functions f and g

There exist two unique piecewise continuous functions (f, g) that are solutions of (1)-(2).

Closed-loop exponential stability

The control law V(t) = [% [f(—V)X(t+V) +g(V)V(t+V)] dv, where f and g are solutions of
(1)-(2) exponentially stabilizes the original system in the sense of the L2-norm. Moreover, the
control law is strictly proper and exponentially converges to zero.

This control law corresponds to an explicit realization of the predictor.
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Interconnection of two scalar systems

Ot + Aidxuj = o7 (x)vi, 0V — Hidxv; = o7 (X)uj,
Up(t,0) = goova(t,0), va(t,1) = paztia(t, 1) + p21ui(t,0),
U1(t,0) = Q11 V1(l‘,0)+(.712U2(t7 1)7 V1(2‘,1) = P11y ([,1) + V(t)

uo(t, x) Q12 ui(t, x)

Q2 Oy

1
1
1
1
1
1

2

Vg(t,X) P V1(t,X)
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Interconnection of two scalar systems

0pUi + Midxui = 6 (X) Vi,  0¢vi — pidxVi = S (x) Ui,

Uz(t,0) = qeava(t,0), va(t,1) = pazua(t, 1)+ p21ui(t,0),
ur(t,0) = g11v1(t,0) + graup(t, 1), vi(t,1) = prrus(t,1) + V(1)

u(t, x) Q12 ui(t,x)
] ? ] ?
! 1 ! 1
1 1
@2 oy of . P22 @1 ooyl of P11
1 1
! 1 ! 1
¥ 1 2 1 P L/(t)
vo(t,x) P2t vi(t,x)
Assumption 1 : controllability
The coefficient poy verifies poy # 0 J

Necessary to act on the second subsystem.
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Interconnection of two scalar systems

0pUi + Midxui = 6 (X) Vi,  0¢vi — pidxVi = S (x) Ui,

ua(t,0) = goave(t,0), va(t,1) = pazua(t,1) 4+ p2yui(t,0),
U1(t,0) = Q11 V1(l‘,0)+(.712U2(t7 1)7 V1(2‘,1) = P11 U1(t,1) + V(t)

u(t, x) Q12 ui(t,x)
] ? ] ?
! 1 ! 1
1 1
@2 oy of . P22 @1 ooyl of P11
1 1
! 1 ! 1
2 L ¥ L « L/(t)
vo(t,x) P2t vi(t,x)

Assumption 1 : controllability
The coefficient poy verifies poy # 0

Necessary to act on the second subsystem.

Assumption 2 : delay robustness
The open-loop system without in-domain couplings is exp. stable

This assumption implies |p11g11] < 1 and |p22ge2| < 1.
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Successive backstepping transformations

Objective
Using successive backstepping transformations we want to move the in-domain couplings at the

actuated boundary.

@ Classical backstepping transformations for each subsystem

I(o,B2)
o (t,x) g12 i i (t,x)
Qg2 P22 q11 ](O%le) P11
. v “— V() +1 (“‘)
Ba(t,x) | P21 B (t,x) B

I(az,B2)
Due to couplings from syst. (2) to syst. (1), some undesired terms appear in syst. (1).

1@B)= [ L@ut)+ LEBL)
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Successive backstepping transformations

Objective
Using successive backstepping transformations we want to move the in-domain couplings at the

actuated boundary.
@ Use an affine integral transformation on the first syst.

B (60 = Bi(.)— [ AR (1 0x— [ Fo(x.E)an(t, )0 + F(x.Ba(t, )06,

I(o,B2)
02(t, x) g12 i o (1, x)
Q22 P22 11 ](0@732‘) P11
v o
" P2 Bi(t,x) v+l (B1)
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Successive backstepping transformations

Objective

Using successive backstepping transformations we want to move the in-domain couplings at the
actuated boundary.

@ Use an affine integral transformation on the first syst.

Bi(tx) = B (t,x) — /0 " ROE)B1 (t,x) o — /O O, E)ota(1,€) e + FP(x,E)Balt,E)

(02, B2)
aa(t, X) Gy o (1, X)
Qo2 P22 qi1 1(0€2I752) P11 o
B
) o O — V()+1 o

P2
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Successive backstepping transformations

Objective

Using successive backstepping transformations we want to move the in-domain couplings at the
actuated boundary.

@ Use an affine integral transformation on the first syst.

Bi(tx) = B (t,x) — /0 " ROE)B1 (t,x) o — /O O, E)ota(1,€) e + FP(x,E)Balt,E)

(02, B2)
aa(t, X) Gy o (1, X)
Qo2 P22 qi1 1(0€2I752) P11 o
B
) o O — V()+1 o

P2

@ Clear actuation path from V(t) to subsystem (2).
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Successive backstepping transformations

Objective

Using successive backstepping transformations we want to move the in-domain couplings at the
actuated boundary.

@ Use an affine integral transformation on the first syst.

Bi(tx) = B (t,x) — /0 " ROE)B1 (t,x) o — /O O, E)ota(1,€) e + FP(x,E)Balt,E)

(02, B2)
aa(t, X) Gy o (1, X)
Qo2 P22 qi1 1(0€2I752) P11 o
B
) o O — V()+1 o

B2
@ Clear actuation path from V(t) to subsystem (2).
@ Stabilizing control law: V(t) = —I(ou,02,B1,B2).
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Extensions and limitations of the approach

Extension to multiple subsystems

@ Possible but technical: requires additional conditions on the boundary couplings.
@ The transformations have to be modified when a new system is added to the chain
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Extensions and limitations of the approach

Extension to multiple subsystems
@ Possible but technical: requires additional conditions on the boundary couplings.
@ The transformations have to be modified when a new system is added to the chain

Extension to non-scalar subsystems
I(az,B2)
0(,2(1‘,X) Qi2 \:{ (X‘1(tfx)
A
1
1
Qo2 Qo2 Q11 (02, B2) R4
Q(x)B2(t,0 .
(0Be(t0) : vt (5)
Ba2(t,x) ! R21 B1(t,x) p
I(0g,B2)
@ System 2 is not autonomously exp. stable.
@ The affine transformation does not work anymore.

New objective
Develop a new modular approach to stabilize chains of non-scalar subsystems
21/39




Non-scalar interconnected systems

It + N axur = T ()ui + T (x) v,
9tvi —N\; 9xvi = ):fr(x)u,-qL):,-__(x)v,-7

U2(t,0) = Q22V2(1‘,0)7 Vg(l‘,‘l) = R22U2(t,1) + Roq U1(f,0)7
u1(t,0) = Qr1v1(t,0) + Quaup(t,1), va(t,1) = Riqus (8,1) + V(1)

uz(t,x) Q2 ui(t,x)
1 ? 1 I|\
| ! | !
Qo T, T T Rz IPID WD W R
1 1
! 1 ! 1
W L * L
<« V(t
vo(t, x) Ra1 vi(t, x) ®)
Assumption 1 : controllability
The matrix Rpq is full row-rank (existence of a right inverse). J

Conservative assumption but only specific results exist for underactuated systems

Assumption 2 : delay-robustness
The open-loop system without in-domain couplings is exp. stable. J
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A delayed-control effect

Let us focus on the second subsystem and assume Zf* =0

UQ(T,X)

1
Qoo 22_+: ):;__

1
¥

Ro2

- - - - - >

vo(t, x) Ra1 vi(t, x)
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A delayed-control effect

Let us focus on the second subsystem and assume ¥; * =0

u(t, x)
' %
! 1
1
Qo T, zji Roz
! 1
¥ L - Vvirl(tf ,u+)
va(t, x) "

The actuation acts on the distal subsystem with a constant delay.
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A delayed-control effect

Let us focus on the second subsystem and assume ¥; * =0

<« V\/irt(tl ! )

-
Hm,

The actuation acts on the distal subsystem with a constant delay.

We already know how to stabilize such a system!

Stabilizing controller
We choose the virtual control law as

)
Vyine (1) = /0 F(v)2(t—v) + (V) Voir (t— V)V,

where z is defined from (uz, v2) using backstepping transformations and where f and g are the
solutions of appropriate Volterra equations.
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Tracking of the virtual control input

uz(t,x) Qi2 i (t,x)
1 ? 1 ¢
1 . ! 1
1 1
Qo YT £ Rzz IPID WD W Ri1
1 1
1 . ! 1
¥ 1 ¥ 1 -« V(t)
vo(t,x) Ra1 vi(t,x)

We now want Aoy vy(t,0) to track the signal Vi (t — y%)
my
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Tracking of the virtual control input

uo(t, x) Qi2 ut(t, x)
1 ? 1 ¢
1 . ! 1
1 1
Qe Tt £, Rz (IPID WD W Ry
1 1
1 . ! 1
¥ L 2
! «— V(t
va(t, x) Rz vi(t,x) “

We now want Rpqvy(t,0) to track the signal Vi (t — ”%)

my
@ Consider the backstepping transformation

Bi(tx) = (t.x)+ [ Ky )un(t.9) + iy (.
+ [ Rl )t ) + eyl )ay

Classical backstepping transformation with an affine part.
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Tracking of the virtual control input

uo(t, x) Qi2 ut(t, x)
1 ? 1 ¢
1 . ! 1
1 1
Qe Tt £, Rz (IPID WD W Ry
1 1
1 . ! 1
¥ L 2
! «— V(t
va(t, x) Rz vi(t,x) “

We now want Rpqvy(t,0) to track the signal Vi (t — ”%)

my
@ Consider the backstepping transformation

Bi(tx) = (t.x)+ [ Ky )un(t.9) + iy (.
+ [ Rl )t ) + eyl )ay

Classical backstepping transformation with an affine part.
@ The kernels K> and Ly verify K>(0,y) = L2(0,y) =0 = B+(t,0) = v4(¢,0).
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Tracking of the virtual control input

@ We obtain the following target system I(u2,Vv2)

u(t,x) Qi2 J w1 (t,x) V
' % x
: ! !
Q2 T, 70 T Ro2 Qi1 P R
2, =2 ! 1
1
¥ : : <« V(1)
V2(t,X) Re1 ﬁ1(f,X) +I(U1,V1,U2,V2)
0
0 0 *
OB (6) ~ATOBi (£ ) = Q0OBI(LO) = | . . |Bi(t0)
0 0

Tracking control law see [Hu and al.]
Let Vi(t) = —(Ryqu' (t,1) + I()))i+ & (r+y ) Z /ﬂ, Qij(1 V)G (t+ )
i J=i+1

where ( is an arbitrary known function. Then, for any t > Z i 1 , B1(t,0) = E(1).
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Stabilizing control law

@ We obtain the following target system

I(u2,v2)

1

Fmmmmmmmmms
(1, X) Q2 ui(tx)
' 0 x
1 1 1
1

Q2 LT T Re Qn Ty Ris
1 1
1 I 1
* L L
<« V(1)

Vz(t,X) R B1(t,X) +I(U1,V1,U2,V2)

Stabilizing control law

The control law

Vi(t):f(H11u1(t,1)+I(’))i+C,‘<Z‘+l%> Z "/Q,,p,v)c,(wﬂ )dv

Jj=i+1

with §(t) = RL, (Re1RL,) ™ Vain (£ — l%) exponentially stabilizes the interconnected system.
1
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Summary of the approach, extensions and limitations

@ The proposed control strategy combines several ingredients

> The backstepping approach,
» State-predictors (virtual controller),
> Tracking component.

@ Possible to design a state-observer.
@ Low-pass filter the control law to guarantee robustness.
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Summary of the approach, extensions and limitations

@ The proposed control strategy combines several ingredients

> The backstepping approach,
» State-predictors (virtual controller),
> Tracking component.

@ Possible to design a state-observer.
@ Low-pass filter the control law to guarantee robustness.

Extension to multiple subsystems

up(t,x) Qn.n—1 Qo3 ua(t,x) Qi2 uy(t,x)
T\ T N\ T >\ >
'’ 1 '’ 1 '’ 1
ém b Hn> < > < PRl S > ém b Hu>
' ' '
! l ! l ! l
—t Ve Ne o e N —t e\ e—X oyt
Va(t,x) Rn-1.n Asz2 va(t,x) Rz,1 vi(t.x) o
0 1 0 1 0 1

@ Possible but technical: the backstepping transformation requires an additional component
to avoid causality issues.

@ Recursive dynamics interconnection framework: the control law is designed recursively
(starting with the last subsystem).
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Stabilization at the junction of two scalar interconnected systems

0eui(t, x) + Nidxui(t, x) = ot (x)vi(t, x),
91vi(t, x) — ioxVvi(t, x) = o; (x)ui(t,x),
with the boundary conditions

u1(t,0) = g11v1(,0), wva(t,1) = paoua(t, 1),
vi(t,1) = V(t) +p11ur(t,1) +p12ve(t,0), ue(t,0) = geava(t,0) + ge1us(t,1).

ur(t,x) Q21 u2(t, x)
1 ? 1 ?
| ! | !
a1 oyl oy P11 2 oy o, P22
HE .
vi(t,x) P12 vo(t,x)
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Stabilization at the junction of two scalar interconnected systems

0rui(t,x) + Xidxui(t,x) = ;" (x)vi(t, x),
Avi(t, x) — wioxvi(t, x) = o; (x)u;(t, x),
with the boundary conditions

u1(t,0) = g11v1(,0), wva(t,1) = paoua(t, 1),
vi(t,1) = V(t) +p11ur(t,1) +p12ve(t,0),  ue(t,0) = geava(t,0) + age1us(t,1).

ur(t,x) Qo1 u(t, x)

1 ¢ 1 ?

1 . ! 1

1 1

— -+ 1 — -+ 1
g1 oy ! o ! P11 G2 ©,! O, ! p22

1 . ! 1

* L * L

V1(t7X) P12 Vz(t,X)

V(1)

Delay robustness assumption
The open-loop system without in-domain couplings is exp. stable. J

This implies |p11g11] < 1 and |p22goz| < 1.
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Stabilization at the junction of two scalar interconnected systems

oru;(t, x) + Aioxui(t,x) = G,T*'(x) vi(t, x),
a[V,‘(t,X) —,U,'aXVj(t,X) = GF(X)Uf(t7X)7
with the boundary conditions

ur(t,0) = g11v1(t,0), va(t,1) = paaua(t, 1),

vi(t,1) = V(1) +p11ur(t,1) +p1ave(t,0), ue(t,0) = geave(t,0) +aerus(t,1).

U1(tfx) Q21 UQ(t,X)
— ; %

1 1
1 1

an oyt of, P11 ®2 oy of, p22
1 : ! :
* L * L
V1(t7X) P12 Vz(t,X)
V(1)

Action from the subsystem “1” on the subsystem “2”.
The boundary coupling coefficient gpy satisfies goy # 0.

If go1 =0, it is impossible to act on subsystem “2” using the control input on subsystem “1”.
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Stabilization at the junction of two scalar interconnected systems

0eui(t, x) + Nidxui(t, x) = ot (x)vi(t, x),
Avi(t, x) — pioxvi(t, x) = o; (x)u;(t,x),
with the boundary conditions
ur(t,0) = g11vi(t,0),  va(t,1) = paaua(t, 1),
vi(t,1) = V(1) +p11ur(t,1) +prava(t,0), wa(t,0) = goava(t,0) + goruq (t,1).

ui(t, x) Qo1 uo(t, x)

] ? ] ?

1 | 1 |

1 1

a1 oyt of E P11 Q2 o,! of E p22

! 1 ! 1

* 1 * 1

vi(t, x) P12 vo(t, x)

V(1)

Condition on the boundary couplings
The coupling coefficients g11 and pap satisfy g11 # 0, and poo # 0. J

Conservative assumption. If g11 = 0, the control input can act on subsystem “2” through

distributed terms only.
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Controllability condition

@ The interconnected system may not be controllable.
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Controllability condition

@ The interconnected system may not be controllable.

e Operator formulation: $w = A(w) + BU, where B*((u1  vi w2 VZ)T) =uyvi(1), and

A: D(A) C L3(]0,1],R*) — L3([0,1],R*)

uq — A0y Uy +G;L(-)V1
il H10x V1 +0TE')U1
us —lzaXU2+62 (~)V2
Vo U20xV2 465 (e

with D(A) = {(U1 ,Vi,U2, V2) € H1([0,1],R4)‘ [0} (0) =q11\1 (O)7 V2(1) = [1)22U2(1)7
vi(1) =pr1us (1) +prauz(1), u2(0) = goave(0) + ge1us (1)}
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Controllability condition

@ The interconnected system may not be controllable.

e Operator formulation: $w = A(w) + BU, where B*((u1  vi w2 vz)T) =uyvi(1), and

A: D(A) C L3([0,1],R*) — L3([0,1],R*)

uq 77»1E)Xu1 +G;L(-)V1
il H10x vy +0TE')U1
us —lzaXUQ-I—GZ (~)V2
Vo U20xV2 465 (e

with D(A) = {(U1 ,Vi,U2, V2) € H1([071],R4)‘ [0} (0) =q11\1 (O)7 V2(1) = p22U2(1)7
vi(1) = p1r1ui (1) +prau2(1), u2(0) = goave(0) + ge1ur (1)}

Controllability condition (Coron, Fattorini)

The operators A* and B* verify

Vs € C, ker(s — A*) Nker(B*) = {0}.
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Backstepping transformation and time-delay representation

We apply classical backstepping transformations on each subsystem

(t,x) = o (t,x) = fo L (x,¥)eu (8, y) + LiZ (x, ¥)B1 (t,¥)
( ) B (t X)ifOXL?( ,y)oc1(t,y)+L122(X,y)[31(t,y)
{Uz( X) = 0 (t,x) = [ LY (%, ¥)0ta(t,y) + L2 (x, y)Ba(t, y)dy.
va(t,x) = Ba(t,x) = [ L3 (X, ¥)0ta(t,y) + L32(x,y)Ba(t,y)dy,

Objective: move the in-domain couplings at the boundaries.

) I

dy
dy,
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Backstepping transformation and time-delay representation

Target system:
I(0u,B1,02,B2)

o (1, x) @iy oa(t, x)

an P11 Qo2 P2

B1(t,x) P12 Ba(t,x)

V(I)+ I((X17B1,(12,Bg)

30/39



Backstepping transformation and time-delay representation

Target system:
I(ou, B, 02,B2)

o1 (1,x) @iy oa(t, x)

g11 P11 Qo2 P22

B (t,x) P12 Ba(t,x)
V(1) + I(0,B1, 02, B2)
Time-delay representation
Denote z1(t) = B1(t,1) and z(t) = a2(t,0). We have for all t > max{t; = %, + ﬁ%}
z1(t) =p11g1121 (t — 1) + P12p2ez2(t —T2) + V(1)
+/OT' H11(v)z1(t—v)dv+/(:2 Hha(V)za(t—Vv)av,
22(t) =921 91121 (t — 1) + Geap22ze(t — T2)

+/OT‘ Hor (v)z1(t—v)dv+/012 Hoa (V) 2a(t — V) d.
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Backstepping transformation and time-delay representation

Target system:
I(o,B1,00,B2)

o1 (t,x) @iy oa(t, x)

g11 P11 Qo2 P22

B1(t,x) P12 Ba(t, x)
V(t)+ I(o,B1,002,B2)
Time-delay representation
Denote z1 (1) = B1(t,1) and z(1) = e:2(t,0). We have for all t > max{t; = ;- +
z1(t) =V(1),
2(1) :a\7(tf‘c1)+b22(tftg)+/oﬁ Hor (V)V(tfv)var/Orz Hoa (V) 2a(t = v)av,

with a0 and |b| < 1.

The exp. stability of z; and zp will imply the exp. stability of the original system.
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An IDE with distributed actuation

(1) = aV(t—r1)+b22(t—rg)—|—/OT1 Hor (V)V(t—v)dv—i—/OTz Hoa (V)22 — V) dv.

@ The difficulties to stabilize the IDE are related to the simultaneous presence of a
distributed-delay term for the actuation and the state.
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An IDE with distributed actuation

(1) = aV(t—r1)—|—b22(t—’cg)+/OT1 Hor (V)V(t—v)dv—i—/OTz Hoa (V)22 — V) dv.

@ The difficulties to stabilize the IDE are related to the simultaneous presence of a
distributed-delay term for the actuation and the state.

o Laplace transform: Fy(s)z2(s) = Fi(s)V/(s), where the holomorphic function F and F;
are defined by

To T1
Fo(s) =1—be ©° —/0 Hoq (V)eivsd\’7 F4 (S) =age U1 +/0 HQQ(V)eivst.

Controllability condition [Mounier]
The functions Fp and Fy cannot simultaneously vanish, for all s € C, rank[Fo(s), F1(s)] = 1. J

Equivalent to the previous controllability condition.
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An IDE with distributed actuation

(1) = aV(t—r1)—|—b22(t—rg)—|—/OT1 Hor (V)V(t—v)dv—i—/OTz Hoa (V)22 — V) dv.

@ The difficulties to stabilize the IDE are related to the simultaneous presence of a
distributed-delay term for the actuation and the state.

o Laplace transform: Fy(s)z2(s) = Fi(s)V/(s), where the holomorphic function F and F;
are defined by

To T1
Fo(s) =1—be ©° —/0 Hoq (V)eivsd\’7 F4 (S) =age U1 +/0 HQQ(V)eivst.

Controllability condition [Mounier]
The functions Fp and Fy cannot simultaneously vanish, for all s € C, rank[Fo(s), F1(s)] = 1. J

Equivalent to the previous controllability condition.
@ From now, we assume that Ty = (N + 1)tz — non restrictive as it is always possible to
artificially delay the control law V().
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Design of a state-feedback controller

_ Ty _ T2
22(t) = aV(t— 1) + bzo(t —12) +/0 Has (V)V(t—v)dv—i—/o Haa (V) 22(t — V) dv.
We consider the following candidate control law
_ T2 T _
V(1) = / £(v)za(t — V) dv +/ gV V(1 —v)dv,
0 0
with f and g piecewise continuous matrix-valued functions.

Objective
Find f and g such that the control law V stabilizes the system. J
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Design of a state-feedback controller

20(t) = aV(t—1) + bza(t—2) +/OT‘ Hor (V) V(t —v)av +/012 Hoa (V) 2a(t —V)av.
We consider the following candidate control law
V()= [ z—viav+ [ gmTe—v)av
with f and g piecewise continuous matrix-valued functions.
Objective

Find f and g such that the control law V stabilizes the system.

We can show that
T T1+T2

25(1) = bzs z—¢2)+/ Vz(t—v)av+ [ bWz(t-v)dvt (V)22 (t —v)av

T
where

() =9(¥) + Heo(v) — [ 1) Her(v =)~ [ g(n)ee(v ~m)em.

k(v) =g(v) — bg(v —12) — / MN)Hz1(v—m)an — /erg(n)szv n)an,

T1
Is(v) =af(v— 1) — bg(v — o) — /H f(m)Her(v—m)em = [ * g()Hez(v —m)en,
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Design of a state-feedback controller

_ T _ T2
20(t) = aV(t — ) + bz (t — 12) +/O Has (V)V(t—v)dv—i—/o Hoo (V) 2a(t — V) dlv.
We consider the following candidate control law
_ T2 T _
V(t) = / f(v)zz(tfv)dv—k/ gV V(t—v)av,
0 0
with f and g piecewise continuous matrix-valued functions.

Objective
Find f and g such that the control law V stabilizes the system. J

We can show that

T Ty T1+T2
Zg(l) ZDZQ(t—’Cg)-‘r /0 A (V)Zg(f—V)dV-i— /2(V)22(t—V)dV+ /3(V)22(1—V)d\/.
. Jt,

T

If 1 =0,k =0, and I3 =0, then z» will exponentially converge to zero (since |b| < 1).
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Design of a state-feedback controller

Objective
Find f and g such that /y =0, b =0and /3 = 0. J

@ Introduce g defined on [0,t2] s.t. for all v € [k12, (k4 1)T2], gk (V) = g(V + kT2).
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Design of a state-feedback controller

Objective
Find f and g such that /y =0, b =0and /3 = 0. J

@ Introduce g defined on [0,t2] s.t. for all v € [k12, (k4 1)T2], gk (V) = g(V + kT2).
@ The system /1(v) =0, k(v) =0, (V) = 0 is equivalent to

at(v) — bon(¥)~ | aw()Hea(v+2 ) — [ 1) Her(v 451 —m)m =0,
9k (V) — bgk—1(v) —/VTZ Gk—1(M)Ha2(v —n+12)dn —/0V gk(M)Hz2(v —m)dn
_ /0‘52 f(T])H21 (V+ kTo 71’])(.‘/1’] =0,

Vv vV
00(¥) — | ao(m)Hez(v —m)an = [ Hn)es (v =) =~ (v),
which can be rewritten as

To(f,on,---,90) = (—Hz2,0,...,0), — Fredholm integral equation (a # 0)
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Fredholm equation and invertibility of a Fredholm operator

Consider the Fredholm integral operator 7 : L2([a, b],R") — L?([a, b],R") defined by

b
T (20) = Mz0) = [ KCp)20)eb.

where M is an invertible matrix and K is bounded piecewise continuous.
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Fredholm equation and invertibility of a Fredholm operator

Consider the Fredholm integral operator 7 : L2([a, b],R") — L?([a, b],R") defined by

b
T (2()) = Mz() - | K(.9)z()ab.
a
where M is an invertible matrix and K is bounded piecewise continuous.

Invertibility of the operator 7" [Coron]

Consider two linear operators 4, B, such that D(A) = D(B) C L2([a,b],R"). Assume that
. ker(T) C D(A),

. ker(7T) C ker(‘B),

. Vzeker(T), TAz =0,

. Vs € C, ker(sld—4) Nker(B) = {0}.

Then, the operator 7 is invertible.

—_

A WD
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Consider the Fredholm integral operator 7 : L2([a, b],R") — L?([a, b],R") defined by
b
T (20) = Mz0) = [ KCp)20)eb.

where M is an invertible matrix and K is bounded piecewise continuous.

Invertibility of the operator 7" [Coron]

Consider two linear operators 4, B, such that D(A) = D(B) C L2([a,b],R"). Assume that
. ker(T) C D(A),

. ker(7T) C ker(‘B),

. Vzeker(T), TAz =0,

. Vs € C, ker(sld—4) Nker(B) = {0}.

Then, the operator 7 is invertible.

—_

A WD

Proof: Since the integral part of 7" is a compact operator, the Fredholm alternative implies that
dimker(7') < o. The different conditions imply that ker(7') = {0} and 7 is injective. Using the
Fredholm alternative, we obtain that ‘T is invertible.
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Design of the state feedback controller

We want to show that the operator Ty is invertible.
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Design of the state feedback controller
We want to show that the operator Ty is invertible.
@ Introduce the operators Ay defined on D(A¢) C L2([0,72], R)N*2 by
Az : D(Ag) — L3([0,72], R)NT2

] 9x0 -+ 0(0) Haa(+)

YN W +0(0)Ha1 (- + Nt2)
. — .

\I}o IxWo + ¢.(0)H21 ()

where D(A7) ={(¢,¥n,...,Yo) € (H1 ([OvTZ]vR))N+27 0(t2) = b9(0), Wn(t2) =
a(0), wk(12) = Wk+1(0), 0 < k <N}.
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Design of the state feedback controller
We want to show that the operator Ty is invertible.
@ Introduce the operators Ay defined on D(A¢) C L2([0,72], R)N*2 by
Az : D(Ag) — L3([0,72], R)NT2

] 9x® + 0(0)Hoo()

YN OxWN + 0(0)Ho1 (- + N12)
. — .

Vo 3o +0(0)He1 ()

where D(Ar) = {(0,¥n, .- Wo) € (H'([0,%21, R)¥+2, 0(t2) = b(0), yn(r2) =
a(0), wk(12) = Wk+1(0), 0 < k <N}.
o Define the operator By : D(Ar) — (L2([0,72], R))N*2, by

Br((0 wn W) ') =o(0).
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Design of the state feedback controller

We want to show that the operator Ty is invertible.
@ Introduce the operators Ay defined on D(A¢) C L2([0,72], R)N*2 by
Az : D(A7) — L3([0,12], R)NF2

] 9x0 -+ 0(0) Haa(+)

YN W +0(0)Ha1 (- + Nt2)
. — .

\I}o IxWo + ¢.(0)H21 ()

where D(A7) = {(0,Wn, -, Wo) € (H'([0,72], R))"*2, ¢(t2) = b0(0), Wn(2) =
a(0), wk(12) = Wk+1(0), 0 < k <N}.
o Define the operator By : D(Ar) — (L2([0,72], R))N*2, by
Br((0 wn -+ Wo)')=Wo(0).

@ The operators 7y, Ay and By satisfy the assumptions of the invertibility theorem.
Therefore Iy is invertible, which concludes the proof.
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Design of the state feedback controller

We want to show that the operator Ty is invertible.
@ Introduce the operators Ay defined on D(A¢) C L2([0,72], R)N*2 by
Az : D(A7) — L3([0,12], R)NF2

] 9x0 -+ 0(0) Haa(+)

YN W +0(0)Ha1 (- + Nt2)
. — .

Yo 9xWo + 0(0)Ha1 ()
where D(Ar) = {(0,¥n,.... o) € (H'([0.72], R))¥*2, 0(t2) = b0(0), yn(t2) =
a¢(0),\yk(12) = Ykt1 (0)7 0<k< N}.
@ Define the operator By : D(Az) — (L2([0,72],R))V*2, by
T
Br((0 wn - Wo) )=wo(0).
@ The operators 7y, Ay and By satisfy the assumptions of the invertibility theorem.
Therefore Iy is invertible, which concludes the proof.
Existence of f and g

There exist unique piecewise continuous functions f and g such that /; (v) =0, k(v) =0, and
/3(V) =0.
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Control law and extensions

State-feedback control law

Consider the functions /1, lb and /3 and let f and g be the unique piecewise continuous functions
that lead to /1 (v) =0, k(v) =0, and /5(v) = 0. Then, the closed-loop system with the control
law

V(t) =—p11G1121(t—T1) — p12P2aza(t — T2) + V(1)
T T:
—/ ' H11(V)z1(t—v)dv—/ * Hio(v)za(t— v)av,
0 0
where V = [72 f(v)z2(t — v)av + [5' g(v)U(t — v)dv is exponentially stable. Moreover, the

control law V(t) exponentially converges to zero and can be low-pass filtered such that the
resulting filtered control operator is strictly proper while stabilizing the plant
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@ An observer with in-between measurement can be obtained using an analogous approach
— Output-feedback controller.
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Control law and extensions

State-feedback control law

Consider the functions /1, lb and /3 and let f and g be the unique piecewise continuous functions

that lead to /1 (v) =0, k(v) =0, and /5(v) = 0. Then, the closed-loop system with the control
law

V(t) =—p11G1121(t—T1) — p12P2aza(t — T2) + V(1)
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control law V(t) exponentially converges to zero and can be low-pass filtered such that the
resulting filtered control operator is strictly proper while stabilizing the plant

@ An observer with in-between measurement can be obtained using an analogous approach
— Output-feedback controller.

@ Same kind of IDEs for underactuated PDE.

@ Non-scalar systems? More than two subsystems?
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General conclusions: Stabilization of networks with a chain structure

@ Key idea: rewriting hyperbolic systems as IDEs using backstepping
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@ Key idea: rewriting hyperbolic systems as IDEs using backstepping

@ Chains with actuation at the extremity — cascade structure
> Recursive dynamics interconnection framework: combines backstepping, predictions,
tracking.
> Possibility to add ODEs in the chain.
» Computational effort? Model reduction?
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General conclusions: Stabilization of networks with a chain structure

@ Key idea: rewriting hyperbolic systems as IDEs using backstepping

@ Chains with actuation at the extremity — cascade structure
> Recursive dynamics interconnection framework: combines backstepping, predictions,
tracking.
> Possibility to add ODEs in the chain.
» Computational effort? Model reduction?

@ Chains with actuation at one of the junction — Not always controllable
IDE with a distributed effect of the actuation.

> Controller obtained by solving a Fredholm equation.

> More than two subsystems? Non-scalar subsystems? Cycle?

> Actuators at several nodes?

v
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Perspectives
Extension to systems with a more complex graph structure

Input Input ¥ Subsystem 3

Subsystem 1 e Subsystem 2 Subsystem 3 Subsystem 1

h “A Subsystem 2
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Input Input ¥ Subsystem 3

Subsystem 1 e Subsystem 2 Subsystem 3 Subsystem 1

Sa Subsystem 2

Controllability and control design

Does a given configuration of actuators makes the system controllable? How to design
appropriate modular, scalable, and numerically implementable control laws?
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Perspectives
Extension to systems with a more complex graph structure

Input Input -V Subsystem 3

Subsystem 1 e Subsystem 2 Subsystem 3 Subsystem 1

h “A Subsystem 2

Controllability and control design

Does a given configuration of actuators makes the system controllable? How to design
appropriate modular, scalable, and numerically implementable control laws?

Actuators placement

Considering a given number of actuators, what are the admissible locations that guarantee
controllability?

Qualitative analysis to understand the links between the structure of the network (e.g., number
of cycles, incidence matrix) and its controllability/observability properties.

38/39



Perspectives

@ In-domain stabilization of hyperbolic systems
Aru(t, x) +Axu(t, x) = o (x)v(t, x) + hu(x) V(t),
orv(t,x) —uoxv(t,x) = o~ (x)v(t,x)+ hy(x) V(1),

with the boundary conditions

U(t70) = qv(t70)7 V(t11) = pu(t71)7
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Perspectives

@ In-domain stabilization of hyperbolic systems
Aru(t,x) +Adxu(t, x) = o (x)v(t,x) 4+ hu(x) V(1),
orv(t,x) —uoxv(t,x) = o~ (x)v(t,x)+ hy(x) V(1),
with the boundary conditions
u(t,0) = qv(t,0), v(t,1)=pu(t,1),

Can be rewritten as the following IDE

2(t) :pqz(t—r)—&-/ot Nz(v)z(t—v)dv—&-/ot Ny (V) V(t—V)av,

@ Control design for the general class of IDEs, links with the structural properties?

General class of IDEs

N TN N TN
2=y Akz(tf‘ck)+/ F(v)z(t—Vv)av+ Y B v(t)+/ gV)V(t—V)dv,
k=1 © k=1 0
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