Stabilization of networks of hyperbolic systems with a chain structure

Jean Auriol Joint work with D. Bresch-Pietri, F. Bribiesca-Argomedo, S. Niculescu, J. Redaud

L2S, CNRS, Université Paris-Saclay, UMR 8506

October 27, 2023

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
 - Evolution (e.g., transport) of conserved quantities in space and time
 - Finite speed of propagation (vs. heat equation)

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
 - Evolution (e.g., transport) of conserved quantities in space and time
 - Finite speed of propagation (vs. heat equation)
- Natural representation for some industrial processes for which you have
 - Iong distances (e.g. pipeline)
 - slow propagation speeds (e.g. traffic)
 - spatially dependent characteristics (e.g. composite materials)
 - anisotropic behavior (e.g. ferromagnetism)

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
 - Evolution (e.g., transport) of conserved quantities in space and time
 - Finite speed of propagation (vs. heat equation)
- Natural representation for some industrial processes for which you have
 - Iong distances (e.g. pipeline)
 - slow propagation speeds (e.g. traffic)
 - spatially dependent characteristics (e.g. composite materials)
 - anisotropic behavior (e.g. ferromagnetism)
- Multiple problems: stabilization, control, observability, parameter estimation...
 - Wave equation: $\partial_{tt}w(t,x) c^2 \partial_{xx}w(t,x) = 0.$

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
 - Evolution (e.g., transport) of conserved quantities in space and time
 - Finite speed of propagation (vs. heat equation)
- Natural representation for some industrial processes for which you have
 - Iong distances (e.g. pipeline)
 - slow propagation speeds (e.g. traffic)
 - spatially dependent characteristics (e.g. composite materials)
 - anisotropic behavior (e.g. ferromagnetism)
- Multiple problems: stabilization, control, observability, parameter estimation...
 - Wave equation: $\partial_{tt}w(t,x) c^2 \partial_{xx}w(t,x) = 0.$

Mathematically, this may look something like:

$$\partial_t \rho(t,x) = \nabla f(t,x) + S(t,x), \quad \forall (t,x) \in [0,T] \times \Omega,$$

where ρ is the quantity conserved, *f* is a flux density and *S* is a source term.

Many physical laws are **conservation/balance laws**, e.g. mass, charge, energy, momentum [Bastin, Coron; 2016]

Why coupled and interconnected hyperbolic systems?

- Conservation/balance laws rarely appear isolated
 - ► Navier-Stokes → mass + energy + momentum
 - Propagation phenomena rarely occur in a single direction
- Systems modeled by hyperbolic PDEs do not exist in isolation, e.g.:
 - Electric transmission networks \rightarrow interconnection of individual transmission lines
 - Mechanical vibrations in drilling devices \rightarrow interconnection of different pipes
- Possible coupling with ODEs
 - actuator dynamics (e.g. pump, converter)
 - load dynamics (e.g. valve, motor)
 - sensor dynamics (e.g. flow-rate sensor, tachometer)

Example: Traffic congestion control [Hu, Krstic]

- Congested traffic \rightarrow Stop-and-go oscillations
- Macroscopic models: hyperbolic PDEs that govern the evolution of density and velocity
- Different traffic control strategies
 - 1. Ramp metering: controls the traffic lights on a ramp
 - 2. Varying speed limits (VSL): driving velocities are time-varying, dependent on real-time traffic

Example: Traffic congestion control [Hu, Krstic]

- Congested traffic \rightarrow Stop-and-go oscillations
- Macroscopic models: hyperbolic PDEs that govern the evolution of density and velocity
- Different traffic control strategies
 - 1. Ramp metering: controls the traffic lights on a ramp
 - 2. Varying speed limits (VSL): driving velocities are time-varying, dependent on real-time traffic
- Simultaneous stabilization of the trafic on two connected roads

- Backstepping stabilization of elementary systems of balance laws
 - Backstepping approach: integral change of coordinates
 - Time delay representation (Integral Difference Equation)
 - Scalar and non-scalar systems

- Backstepping stabilization of elementary systems of balance laws
 - Backstepping approach: integral change of coordinates
 - Time delay representation (Integral Difference Equation)
 - Scalar and non-scalar systems
- Simplest type of interconnection: input delay
 - IDE with delayed actuation
 - Predictor design for IDEs
 - Explicit realization of the prediction using a TDS approach

- Backstepping stabilization of elementary systems of balance laws
 - Backstepping approach: integral change of coordinates
 - Time delay representation (Integral Difference Equation)
 - Scalar and non-scalar systems
- Simplest type of interconnection: input delay
 - IDE with delayed actuation
 - Predictor design for IDEs
 - Explicit realization of the prediction using a TDS approach
- Stabilization of interconnections with a chain structure actuated at the extremity
 - 1st approach: Successive backstepping transformations
 - 2nd approach: Recursive dynamics interconnection framework

- Backstepping stabilization of elementary systems of balance laws
 - Backstepping approach: integral change of coordinates
 - Time delay representation (Integral Difference Equation)
 - Scalar and non-scalar systems
- Simplest type of interconnection: input delay
 - IDE with delayed actuation
 - Predictor design for IDEs
 - Explicit realization of the prediction using a TDS approach
- Stabilization of interconnections with a chain structure actuated at the extremity
 - 1st approach: Successive backstepping transformations
 - 2nd approach: Recursive dynamics interconnection framework
- Stabilization at the junction of two scalar interconnected systems
 - IDE with delayed and distributed actuation
 - Controller obtained using Fredholm integral equations

• No observer, only state-feedback

- No observer, only state-feedback
- No ODEs, only hyperbolic PDEs

- No observer, only state-feedback
- No ODEs, only hyperbolic PDEs
- No universal and generic approach to stabilize arbitrary networks of PDEs
 - Only chains: no cycle, no tree
 - One and only one node of the chain is actuated
 - No generic methods for the stabilization of underactuated PDE systems

- No observer, only state-feedback
- No ODEs, only hyperbolic PDEs
- No universal and generic approach to stabilize arbitrary networks of PDEs
 - Only chains: no cycle, no tree
 - One and only one node of the chain is actuated
 - No generic methods for the stabilization of underactuated PDE systems
- No ugly computations (ok, maybe I'm lying for this one)

System under consideration

System of scalar balance laws \rightarrow simple test case to present generic concepts

$$u_{t}(t,x) + \lambda(x)u_{x}(t,x) = \sigma^{++}(x)u(t,x) + \sigma^{+}(x)v(t,x),$$

$$v_{t}(t,x) - \mu(x)v_{x}(t,x) = \sigma^{-}(x)u(t,x) + \sigma^{--}(x)v(t,x),$$

$$u(t,0) = qv(t,0), \quad v(t,1) = \rho u(t,1) + V(t).$$

- Diagonal terms can be removed with exp. change of coordinates
- Distributed states and boundary control
- Initial conditions in H^1 with appropriate compatibility conditions \rightarrow well-posedness
- Stabilization in the sense of the L²-norm

System under consideration: well-posedness and stabilization objective

$$u_t(t,x) + \lambda(x)u_x(t,x) = \sigma^+(x)v(t,x),$$

$$v_t(t,x) - \mu(x)v_x(t,x) = \sigma^-(x)u(t,x),$$

$$u(t,0) = qv(t,0), \quad v(t,1) = \rho u(t,1) + V(t).$$

Well-posedness in open-loop

For every initial condition $(u_0, v_0) \in H^1([0, 1], \mathbb{R}^2)$ that verifies the compatibility conditions

$$u_0(0) = Qv_0(0), \quad v_0(1) = Ru_0(1)$$

there exists one and one only

$$(u,v) \in \mathcal{C}^{1}([0,\infty), L^{2}([0,1],\mathbb{R}^{2})) \cap \mathcal{C}^{0}([0,\infty), H^{1}([0,1],\mathbb{R}^{2})),$$

which is a solution to the open-loop Cauchy problem (i.e., $V \equiv 0$). Moreover, there exists $\kappa_0 > 0$ such that for every $(u_0, v_0) \in H^1([0, 1], \mathbb{R}^2)$ satisfying the compatibility conditions, the unique solution verifies

$$||(u(t,\cdot),v(t,\cdot))||_{L^2} \leq \kappa_0 e^{\kappa_0 t} ||(u_0,v_0)||_{L^2}, \quad \forall t \in [0,\infty).$$

In closed-loop (continuous control-input) \rightarrow no problem (invertibility of the transformations)

$$u_{t}(t,x) + \lambda(x)u_{x}(t,x) = \sigma^{+}(x)v(t,x),$$

$$v_{t}(t,x) - \mu(x)v_{x}(t,x) = \sigma^{-}(x)u(t,x),$$

$$u(t,0) = qv(t,0), \quad v(t,1) = \rho u(t,1) + V(t)$$

Stabilization objective

Design a continuous control input that **exponentially stabilizes** the system in the sense of the L^2 -norm, i.e. there exist κ_0 and $\nu > 0$ such that for any initial condition $(u_0, v_0) \in L^2([0, 1], \mathbb{R}^2)$, we have

$$||(u(t,\cdot),v(t,\cdot))||_{L^2} \le \kappa_0 e^{-vt} ||(u_0,v_0)||_{L^2}, \ 0 \le t$$

Backstepping methodology

- Map the original system to a *target system* for which the stability analysis is easier.
- Variable change: integral transformation, classically Volterra transform of the second kind

$$\alpha(t,x) = u(t,x) - \int_0^x K^{uu}(x,\xi)u(t,\xi) + K^{uv}(x,\xi)v(t,\xi)d\xi,$$

$$\beta(t,x) = v(t,x) - \int_0^x K^{vu}(x,\xi)u(t,\xi) + K^{vv}(x,\xi)v(t,\xi)d\xi,$$

Condensed form: $\gamma(t,x) = w(t,x) - \int_0^x K(x,y)w(t,y)dy.$

Limitations

- Choice of an adequate target system.
- Proof of existence and invertibility of an adequate backstepping transform.

u(t,0) = qv(t,0) $v(t,1) = \rho u(t,1) + V(t)$

$$u_t(t,x) + \lambda u_x(t,x) = \sigma^+ v(t,x),$$

$$v_t(t,x) - \mu v_x(t,x) = \sigma^- u(t,x).$$

 $v(t, 1) = \rho u(t, 1) + V(t)$

$$u_t(t,x) + \lambda u_x(t,x) = \sigma^+ v(t,x),$$

$$v_t(t,x) - \mu v_x(t,x) = \sigma^- u(t,x).$$

$$u(t,0) = qv(t,0)$$

 $v(t,1) = \rho u(t,1) + V(t)$

 $\alpha_t(t,x) + \lambda \alpha_x(t,x) = 0,$ $\beta_t(t,x) - \mu \beta_x(t,x) = 0.$ $\alpha(t,x)$ q ρ $\beta(t,x)$ $\alpha(t,0) = q\beta(t,0)$ $\beta(t,1) = \rho\alpha(t,1) + V(t)$ $-\int_0^1 N^{\alpha}(\xi)\alpha(t,\xi)+N^{\beta}(\xi)\beta(t,\xi)d\xi.$

Natural control law

 $V(t) = -\rho\alpha(t,1) + \int_0^1 \left(N^{\alpha}(\xi)\alpha(t,\xi) + N^{\beta}(\xi)\beta(t,\xi) \right) d\xi.$

Finite-time stabilization \rightarrow lack of robustness

$V(t) = -\rho\alpha(t,1) + \int_0^1 \left(N^{\alpha}(\xi)\alpha(t,\xi) + N^{\beta}(\xi)\beta(t,\xi) \right) d\xi.$

Lack of robustness

The control law is not strictly proper \rightarrow no/poor robustness margins.

Finite-time stabilization \rightarrow lack of robustness

$V(t) = -\rho\alpha(t,1) + \int_0^1 \left(N^{\alpha}(\xi)\alpha(t,\xi) + N^{\beta}(\xi)\beta(t,\xi) \right) d\xi.$

Lack of robustness

The control law is not strictly proper \rightarrow no/poor robustness margins.

Solutions for a robust controller

- 1. Cancel a part of the reflection: $V(t) = -\tilde{\rho}\alpha(t,1) + \int_0^1 \left(N^{\alpha}(\xi)\alpha(t,\xi) + N^{\beta}(\xi)\beta(t,\xi) \right) d\xi$.
- 2. Low-pass filter the control law.

$$\begin{aligned} \alpha_t(t,x) + \lambda \alpha_x(t,x) &= 0\\ \beta_t(t,x) - \mu \beta_x(t,x) &= 0 \end{aligned}$$
$$\alpha(t,0) &= q\beta(t,0)\\ \beta(t,1) &= \rho \alpha(t,1) - \int_0^1 \left(N^{\alpha}(\xi) \alpha(t,\xi) + N^{\beta}(\xi) \beta(t,\xi) \right) d\xi + V(t) \end{aligned}$$

 $\begin{aligned} \alpha_t(t,x) + \lambda \alpha_x(t,x) &= 0 \to \text{Transport equation} \\ \beta_t(t,x) - \mu \beta_x(t,x) &= 0 \to \text{Transport equation} \\ \alpha(t,0) &= q\beta(t,0) \\ \beta(t,1) &= \rho \alpha(t,1) - \int_0^1 \left(N^{\alpha}(\xi) \alpha(t,\xi) + N^{\beta}(\xi) \beta(t,\xi) \right) d\xi + V(t) \end{aligned}$

$$\begin{aligned} \alpha_t(t,x) + \lambda \alpha_x(t,x) &= 0 \to \text{Transport equation} \\ \beta_t(t,x) - \mu \beta_x(t,x) &= 0 \to \text{Transport equation} \\ \alpha(t,0) &= q\beta(t,0) \\ \beta(t,1) &= \rho\alpha(t,1) - \int_0^1 \left(N^{\alpha}(\xi)\alpha(t,\xi) + N^{\beta}(\xi)\beta(t,\xi) \right) d\xi + V(t) \end{aligned}$$

Integral Difference Equation (IDE) satisfied by $\beta(t, 1)$

$$\beta(t,1) = \rho q \beta(t-\tau,1) - \int_0^\tau N(\xi) \beta(t-\xi,1) d\xi + V(t), \quad t > \frac{1}{\lambda} + \frac{1}{\mu} = \tau$$

$$\alpha_{t}(t,x) + \lambda \alpha_{x}(t,x) = 0 \rightarrow \text{Transport equation}$$

$$\beta_{t}(t,x) - \mu \beta_{x}(t,x) = 0 \rightarrow \text{Transport equation}$$

$$\alpha(t,0) = q\beta(t,0)$$

$$\beta(t,1) = \rho\alpha(t,1) - \int_{0}^{1} \left(N^{\alpha}(\xi)\alpha(t,\xi) + N^{\beta}(\xi)\beta(t,\xi) \right) d\xi + V(t)$$

Integral Difference Equation (IDE) satisfied by $\beta(t, 1)$

$$\beta(t,1) = \rho q \beta(t-\tau,1) - \int_0^\tau N(\xi) \beta(t-\xi,1) d\xi + V(t), \quad t > \frac{1}{\lambda} + \frac{1}{\mu} = \tau$$

Necessary condition for delay-robustness

The product ρq verifies $|\rho q| < 1 \rightarrow$ Stability of the **principal part**.

$$\begin{aligned} \alpha_t(t,x) + \lambda \alpha_x(t,x) &= 0 \to \text{Transport equation} \\ \beta_t(t,x) - \mu \beta_x(t,x) &= 0 \to \text{Transport equation} \\ \alpha(t,0) &= q\beta(t,0) \\ \beta(t,1) &= \rho\alpha(t,1) - \int_0^1 \left(N^{\alpha}(\xi)\alpha(t,\xi) + N^{\beta}(\xi)\beta(t,\xi) \right) d\xi + V(t) \end{aligned}$$

Integral Difference Equation (IDE) satisfied by $\beta(t, 1)$

$$\beta(t,1) = \rho q \beta(t-\tau,1) - \int_0^\tau N(\xi) \beta(t-\xi,1) d\xi + V(t), \quad t > \frac{1}{\lambda} + \frac{1}{\mu} = \tau$$

Necessary condition for delay-robustness

The product ρq verifies $|\rho q| < 1 \rightarrow$ Stability of the **principal part**.

Stability analysis

The PDE system and the time-delay system have equivalent stability properties.

$$V(t) = \int_0^\tau N(\xi)\beta(t-\xi)d\xi.$$

Non-scalar systems of balance laws

$$u_t(t,x) + \Lambda^+ u_x(t,x) = \Sigma^{++}(x)u(t,x) + \Sigma^{+-}(x)v(t,x),$$

$$v_t(t,x) - \Lambda^- v_x(t,x) = \Sigma^{--}(x)v(t,x) + \Sigma^-(-x)u(t,x),$$

$$u(t,0) = Qv(t,0) \quad v(t,1) = Ru(t,1) + V(t).$$

where $\Lambda^+ = \text{diag}(\lambda_1, \dots, \lambda_n), \Lambda^- = \text{diag}(\mu_1, \dots, \mu_p)$ with

 $-\mu_{p} < \ldots < -\mu_{1} < 0, \quad 0 < \lambda_{1} < \ldots < \lambda_{n}$

One boundary of the system is completely actuated.

Target system

$$\begin{aligned} &\alpha_t(t,x) + \Lambda^+ \alpha_x(t,x) = G_1(x)\beta(t,0), \\ &\beta_t(t,x) - \Lambda^- \beta_x(t,x) = G_2(x)\beta(t,1), \\ &\alpha(t,0) = Q\beta(t,0) \quad \beta(t,1) = R\alpha(t,1) + \int_0^1 L_1(\xi)\alpha(t,\xi) + L_2(\xi)\beta(t,\xi)d\xi + V(t) \end{aligned}$$

• Stabilizing control law: $V(t) = -R\alpha(t,1) - \int_0^1 L_1(\xi)\alpha(t,\xi) + L_2(\xi)\beta(t,\xi)d\xi$.

Target system

$$\begin{aligned} &\alpha_t(t,x) + \Lambda^+ \alpha_x(t,x) = G_1(x)\beta(t,0), \\ &\beta_t(t,x) - \Lambda^- \beta_x(t,x) = G_2(x)\beta(t,1), \\ &\alpha(t,0) = Q\beta(t,0) \quad \beta(t,1) = R\alpha(t,1) + \int_0^1 L_1(\xi)\alpha(t,\xi) + L_2(\xi)\beta(t,\xi)d\xi + V(t) \end{aligned}$$

• Stabilizing control law: $V(t) = -R\alpha(t,1) - \int_0^1 L_1(\xi)\alpha(t,\xi) + L_2(\xi)\beta(t,\xi)d\xi$.

Time-delay formulation

Integral difference equation (IDE) for $z(t) = \beta(t, 1)$

$$z(t) = \sum_{k=1}^{M} A_k z(t-\tau_k) + \int_0^{\tau_M} N(\nu) z(t-\nu) d\nu + V(t).$$
$$u_{t}(t,x) + \Lambda^{+} u_{x}(t,x) = \Sigma^{++}(x)u(t,x) + \Sigma^{+-}(x)v(t,x),$$

$$v_{t}(t,x) - \Lambda^{-} v_{x}(t,x) = \Sigma^{--}(x)v(t,x) + \Sigma^{-}(-x)u(t,x),$$

$$u(t,0) = Qv(t,0) \quad v(t,1) = Ru(t,1) + V(t-\delta) \quad \text{with } \delta > 0.$$

Non-scalar systems of balance laws with an input delay

$$u_{t}(t,x) + \Lambda^{+}u_{x}(t,x) = \Sigma^{++}(x)u(t,x) + \Sigma^{+-}(x)v(t,x),$$

$$v_{t}(t,x) - \Lambda^{-}v_{x}(t,x) = \Sigma^{--}(x)v(t,x) + \Sigma^{-}(-x)u(t,x),$$

$$w_{t}(t,x) - \frac{1}{\delta}w_{x}(t,x) = 0,$$

$$u(t,0) = Qv(t,0) \quad v(t,1) = Ru(t,1) + w(t,0), \quad w(t,1) = V(t).$$

The boundaries of the system are not completely actuated \rightarrow under-actuated system.

Predictors for IDEs

Backstepping + method of characteristics \rightarrow IDE with equivalent stability properties.

$$X(t) = \sum_{k=1}^{M} A_k X(t-\tau_k) + \int_0^{\tau_M} N(v) X(t-v) dv + V(t-\delta), \quad t \ge 0$$

Exponential stabilization using a predictor

The control law

$$V_{\text{pred}}(t) = -\int_0^{\tau_M} N(v) P(t, t-v) dv,$$

in which the **prediction** P(t, s) is implicitly defined as

$$\mathsf{P}(t,s) = \sum_{k=1}^{M} \mathsf{A}_k \mathsf{P}(t,s-\tau_k) + \int_0^{\tau_M} \mathsf{N}(\mathsf{v}) \mathsf{P}(t,s-\mathsf{v}) d\mathsf{v} + \mathsf{V}(s), \quad t-\delta \leq s \leq t$$

with initial condition $P(t,s) = X(t+\delta)$ if $s < t-\delta$, exponentially stabilizes the system.

- Integral relation of Volterra type \rightarrow Prediction well-defined.
- Possible to explicitly compute this predictor?

$$X(t) = \sum_{k=1}^{M} A_k X(t-\tau_k) + \int_0^{\tau_M} N(v) X(t-v) dv + V(t-\delta), \quad t \ge 0$$

$$V(t) = \int_0^{\delta} [f(\mathbf{v})X(t-\mathbf{v}) + g(\mathbf{v})V(t-\mathbf{v})] d\mathbf{v},$$

with f and g piecewise continuous matrix-valued functions

Objective

$$X(t) = \sum_{k=1}^{M} A_k X(t-\tau_k) + \int_0^{\tau_M} N(v) X(t-v) dv + V(t-\delta), \quad t \ge 0$$

$$V(t) = \int_0^{\delta} [f(v)X(t-v) + g(v)V(t-v)] dv,$$

with f and g piecewise continuous matrix-valued functions

Objective

$$X(t) - \int_0^{\delta} g(\mathbf{v}) X(t-\mathbf{v}) d\mathbf{v} = \sum_{k=1}^M A_k X(t-\tau_k) + \int_0^{\delta} (N(\mathbf{v}) X(t-\mathbf{v}) - g(\mathbf{v}) V(t-\mathbf{v}-\delta)) d\mathbf{v}$$
$$+ V(t-\delta) - \sum_{k=1}^M \int_0^{\delta} g(\mathbf{v}) A_k X(t-\mathbf{v}-\tau_k) d\mathbf{v} - \int_0^{\delta} \int_0^{\delta} g(\mathbf{v}) N(\eta) X(t-\mathbf{v}-\eta) d\eta d\mathbf{v},$$

$$X(t) = \sum_{k=1}^{M} A_k X(t-\tau_k) + \int_0^{\tau_M} N(v) X(t-v) dv + V(t-\delta), \quad t \ge 0$$

$$V(t) = \int_0^{\delta} [f(v)X(t-v) + g(v)V(t-v)] dv,$$

with f and g piecewise continuous matrix-valued functions

Objective

$$X(t) - \int_0^{\delta} g(\mathbf{v}) X(t-\mathbf{v}) d\mathbf{v} = \sum_{k=1}^M A_k X(t-\tau_k) + \int_0^{\delta} (N(\mathbf{v}) X(t-\mathbf{v}) - g(\mathbf{v}) V(t-\mathbf{v}-\delta)) d\mathbf{v}$$
$$+ V(t-\delta) - \sum_{k=1}^M \int_0^{\delta} g(\mathbf{v}) A_k X(t-\mathbf{v}-\tau_k) d\mathbf{v} - \underbrace{\int_0^{\delta} \int_0^{\delta} g(\mathbf{v}) N(\eta) X(t-\mathbf{v}-\eta) d\eta d\mathbf{v}}_{\mathbf{v}},$$

$$X(t) = \sum_{k=1}^{M} A_k X(t-\tau_k) + \int_0^{\tau_M} N(v) X(t-v) dv + V(t-\delta), \quad t \ge 0$$

$$V(t) = \int_0^{\delta} [f(\mathbf{v})X(t-\mathbf{v}) + g(\mathbf{v})V(t-\mathbf{v})] d\mathbf{v},$$

with f and g piecewise continuous matrix-valued functions

Objective

$$\begin{split} X(t) &- \int_0^{\delta} g(\mathbf{v}) X(t-\mathbf{v}) d\mathbf{v} = \sum_{k=1}^M A_k X(t-\tau_k) + \int_0^{\delta} (N(\mathbf{v}) X(t-\mathbf{v}) - g(\mathbf{v}) V(t-\mathbf{v}-\delta)) d\mathbf{v} \\ &+ V(t-\delta) - \sum_{k=1}^M \int_0^{\delta} g(\mathbf{v}) A_k X(t-\mathbf{v}-\tau_k) d\mathbf{v} - \int_0^{\delta} \int_0^s g(s+\eta) N(\eta) d\eta X(t-s) ds \\ &- \int_{\delta}^{2\delta} \int_{s-\delta}^{\delta} g(s-\eta) N(\eta) d\eta X(t-s) ds, \end{split}$$

$$X(t) = \sum_{k=1}^{M} A_k X(t-\tau_k) + \int_0^{\tau_M} N(v) X(t-v) dv + V(t-\delta), \quad t \ge 0$$

$$V(t) = \int_0^{\delta} [f(\mathbf{v})X(t-\mathbf{v}) + g(\mathbf{v})V(t-\mathbf{v})] d\mathbf{v},$$

with f and g piecewise continuous matrix-valued functions

Objective

$$\begin{split} X(t) &- \int_0^{\delta} g(\mathbf{v}) X(t-\mathbf{v}) d\mathbf{v} = \sum_{k=1}^M A_k X(t-\tau_k) + \int_0^{\delta} (N(\mathbf{v}) X(t-\mathbf{v}) - g(\mathbf{v}) V(t-\mathbf{v}-\delta)) d\mathbf{v} \\ &+ V(t-\delta) - \sum_{k=1}^M \int_0^{\delta} g(\mathbf{v}) A_k X(t-\mathbf{v}-\tau_k) d\mathbf{v} - \int_0^{\delta} \int_0^s g(s+\eta) N(\eta) d\eta X(t-s) ds \\ &- \int_{\delta}^{2\delta} \int_{s-\delta}^{\delta} g(s-\eta) N(\eta) d\eta X(t-s) ds, \end{split}$$

$$X(t) = \sum_{k=1}^{M} A_k X(t-\tau_k) + \int_0^{\tau_M} N(v) X(t-v) dv + V(t-\delta), \quad t \ge 0$$

$$V(t) = \int_0^{\delta} [f(\mathbf{v})X(t-\mathbf{v}) + g(\mathbf{v})V(t-\mathbf{v})] d\mathbf{v},$$

with f and g piecewise continuous matrix-valued functions

Objective

$$\begin{aligned} X(t) &- \int_0^\delta g(\mathbf{v}) X(t-\mathbf{v}) d\mathbf{v} = \sum_{k=1}^M A_k X(t-\tau_k) + \int_0^\delta N(\mathbf{v}) X(t-\mathbf{v}) d\mathbf{v} \\ &- \sum_{k=1}^M \int_0^\delta g(\mathbf{v}) A_k X(t-\mathbf{v}-\tau_k) d\mathbf{v} - \int_0^\delta \int_s^0 g(s+\eta) N(\eta) d\eta X(t-s) ds \\ &- \int_\delta^{2\delta} \int_{s-\delta}^\delta g(s-\eta) N(\eta) d\eta X(t-s) ds + \int_\delta^{2\delta} f(\mathbf{v}-\delta) X(t-\mathbf{v}) d\mathbf{v}, \end{aligned}$$

$$X(t) = \sum_{k=1}^{M} A_k X(t-\tau_k) + \int_0^{\tau_M} N(v) X(t-v) dv + V(t-\delta), \quad t \ge 0$$

$$V(t) = \int_0^{\delta} [f(\mathbf{v})X(t-\mathbf{v}) + g(\mathbf{v})V(t-\mathbf{v})] d\mathbf{v},$$

with f and g piecewise continuous matrix-valued functions

Objective

$$\begin{aligned} X(t) &- \int_0^\delta g(\mathbf{v}) X(t-\mathbf{v}) d\mathbf{v} = \sum_{k=1}^M A_k X(t-\tau_k) + \int_0^\delta N(\mathbf{v}) X(t-\mathbf{v}) d\mathbf{v} \\ &- \sum_{k=1}^M \int_0^\delta g(\mathbf{v}) A_k X(t-\mathbf{v}-\tau_k) d\mathbf{v} - \int_0^\delta [\int_0^s g(s-\eta) N(\eta) d\eta] X(t-s) ds, \\ &- \int_\delta^{2\delta} [\int_{s-\delta}^\delta g(s-\eta) N(\eta) d\eta] X(t-s) ds + \int_\delta^{2\delta} f(\mathbf{v}-\delta) X(t+\mathbf{v}) d\mathbf{v}, \end{aligned}$$

Volterra equations and explicit realization of the predictor

We have
$$X(t) = \sum_{k=1}^{M} A_k X(t - \tau_k)$$
 if

$$0 = g(v) + N(v) - \int_0^v g(v - \eta) N(\eta) d\eta - \sum_{k=1}^{M} \mathbb{1}_{[\tau_k, \delta]}(v) g(v - \tau_k) A_k, \quad (1)$$

$$0 = f(v - \delta) - \int_{v - \delta}^{\delta} g(v - \eta) N(\eta) d\eta - \sum_{k=1}^{M} \mathbb{1}_{[\delta, \tau_k + \delta]}(v) g(v - \tau_k) A_k, \quad (2)$$

Volterra equations and explicit realization of the predictor

We have $X(t) = \sum_{k=1}^{M} A_k X(t - \tau_k)$ if

$$0 = g(\nu) + N(\nu) - \int_0^{\nu} g(\nu - \eta) N(\eta) d\eta - \sum_{k=1}^M \mathbb{1}_{[\tau_k, \delta]}(\nu) g(\nu - \tau_k) A_k, \tag{1}$$

$$0 = f(\nu - \delta) - \int_{\nu - \delta}^{\delta} g(\nu - \eta) N(\eta) d\eta - \sum_{k=1}^{M} \mathbb{1}_{[\delta, \tau_k + \delta]}(\nu) g(\nu - \tau_k) A_k,$$
(2)

Existence of the functions f and g

There exist two unique piecewise continuous functions (f,g) that are solutions of (1)-(2).

Closed-loop exponential stability

The control law $V(t) = \int_{-\delta}^{0} [f(-v)X(t+v) + g(v)V(t+v)] dv$, where *f* and *g* are solutions of (1)-(2) **exponentially stabilizes** the original system in the sense of the L^2 -norm. Moreover, the control law is **strictly proper and exponentially converges to zero**.

This control law corresponds to an explicit realization of the predictor.

Interconnection of two scalar systems

Interconnection of two scalar systems

Necessary to act on the second subsystem.

Interconnection of two scalar systems

Assumption 1 : controllability

The coefficient ρ_{21} verifies $\rho_{21} \neq 0$

Necessary to act on the second subsystem.

Assumption 2 : delay robustness

The open-loop system without in-domain couplings is exp. stable

This assumption implies $|\rho_{11}q_{11}| < 1$ and $|\rho_{22}q_{22}| < 1$.

Successive backstepping transformations

Objective

Using successive backstepping transformations we want to move the in-domain couplings at the actuated boundary.

• Classical backstepping transformations for each subsystem

Due to couplings from syst. (2) to syst. (1), some undesired terms appear in syst. (1).

$$I(\alpha,\beta) = \int_0^1 L_1(\xi)\alpha(t,\xi) + L_2(\xi)\beta(t,\xi).$$

Successive backstepping transformations

Objective

Using successive backstepping transformations we want to move the in-domain couplings at the actuated boundary.

• Use an affine integral transformation on the first syst.

$$\bar{\beta}_1(t,x) = \beta_1(t,x) - \int_0^x R(x,\xi)\beta_1(t,x)dx - \int_0^1 F^{\alpha}(x,\xi)\alpha_2(t,\xi)d\xi + F^{\beta}(x,\xi)\beta_2(t,\xi)d\xi,$$

Objective

Using successive backstepping transformations we want to move the in-domain couplings at the actuated boundary.

• Use an affine integral transformation on the first syst.

$$\bar{\beta}_{1}(t,x) = \beta_{1}(t,x) - \int_{0}^{x} R(x,\xi)\beta_{1}(t,x)dx - \int_{0}^{1} F^{\alpha}(x,\xi)\alpha_{2}(t,\xi)d\xi + F^{\beta}(x,\xi)\beta_{2}(t,\xi)d\xi,$$

$$I(\alpha_{2},\beta_{2})$$

$$q_{12}$$

$$q_{12}$$

$$q_{12}$$

$$q_{11}$$

$$I(\alpha_{2},\beta_{2})$$

$$P_{21}$$

$$\bar{\beta}_{1}(t,x)$$

$$V(t) + I\begin{pmatrix} \alpha_{1} \\ \beta_{1} \\ \alpha_{2} \\ \beta_{2} \end{pmatrix}$$

Objective

Using successive backstepping transformations we want to move the in-domain couplings at the actuated boundary.

• Use an affine integral transformation on the first syst.

$$\bar{\beta}_{1}(t,x) = \beta_{1}(t,x) - \int_{0}^{x} R(x,\xi)\beta_{1}(t,x)dx - \int_{0}^{1} F^{\alpha}(x,\xi)\alpha_{2}(t,\xi)d\xi + F^{\beta}(x,\xi)\beta_{2}(t,\xi)d\xi,$$

$$I(\alpha_{2},\beta_{2})$$

$$q_{12}$$

$$q_{12}$$

$$q_{12}$$

$$q_{11}$$

$$I(\alpha_{2},\beta_{2})$$

$$P_{21}$$

$$\bar{\beta}_{1}(t,x)$$

$$V(t) + I\begin{pmatrix} \alpha_{1} \\ \beta_{1} \\ \alpha_{2} \\ \beta_{2} \end{pmatrix}$$

• Clear actuation path from V(t) to subsystem (2).

Objective

Using successive backstepping transformations we want to move the in-domain couplings at the actuated boundary.

• Use an affine integral transformation on the first syst.

$$\bar{\beta}_{1}(t,x) = \beta_{1}(t,x) - \int_{0}^{x} R(x,\xi)\beta_{1}(t,x)dx - \int_{0}^{1} F^{\alpha}(x,\xi)\alpha_{2}(t,\xi)d\xi + F^{\beta}(x,\xi)\beta_{2}(t,\xi)d\xi,$$

$$I(\alpha_{2},\beta_{2})$$

$$q_{12}$$

$$q_{12}$$

$$q_{12}$$

$$q_{11}$$

$$I(\alpha_{2},\beta_{2})$$

$$V(t) + I\begin{pmatrix}\alpha_{1}\\\beta_{1}\\\alpha_{2}\\\beta_{2}\end{pmatrix}$$

- Clear actuation path from V(t) to subsystem (2).
- Stabilizing control law: $V(t) = -I(\alpha_1, \alpha_2, \beta_1, \beta_2)$.

Extension to multiple subsystems

- Possible but technical: requires additional conditions on the boundary couplings.
- The transformations have to be modified when a new system is added to the chain

Extensions and limitations of the approach

Extension to multiple subsystems

- Possible but technical: requires additional conditions on the boundary couplings.
- The transformations have to be modified when a new system is added to the chain

Extension to non-scalar subsystems

- System 2 is not autonomously exp. stable.
- The affine transformation does not work anymore.

New objective

Develop a new modular approach to stabilize chains of non-scalar subsystems

Non-scalar interconnected systems

Assumption 1 : controllability

The matrix R_{21} is full row-rank (existence of a right inverse).

Conservative assumption but only specific results exist for underactuated systems

Assumption 2 : delay-robustness

The open-loop system without in-domain couplings is exp. stable.

A delayed-control effect

Let us focus on the second subsystem and assume $\Sigma_1^{-+}=0$

A delayed-control effect

Let us focus on the second subsystem and assume $\Sigma_1^{-+}=0$

The actuation acts on the distal subsystem with a constant delay.

A delayed-control effect

Let us focus on the second subsystem and assume $\Sigma_1^{-+}=0$

The actuation acts on the distal subsystem with a constant delay.

We already know how to stabilize such a system!

Stabilizing controller

We choose the virtual control law as

$$V_{\text{virt}}(t) = \int_0^{\delta} f(\mathbf{v}) z(t-\mathbf{v}) + g(\mathbf{v}) V_{\text{virt}}(t-\mathbf{v}) d\mathbf{v},$$

where z is defined from (u_2, v_2) using backstepping transformations and where f and g are the solutions of appropriate Volterra equations.

We now want $R_{21}v_1(t,0)$ to track the signal $V_{virt}(t-\frac{1}{\mu_{m_1}^4})$.

We now want $R_{21}v_1(t,0)$ to track the signal $V_{virt}(t-\frac{1}{\mu_{m_1}^1})$.

Consider the backstepping transformation

$$\beta_{1}(t,x) = v_{1}(t,x) + \int_{0}^{x} K_{1}(x,y)u_{1}(t,y) + L_{1}(x,y)v_{1}(t,y)dy$$
$$+ \int_{0}^{1} K_{2}(x,y)u_{2}(t,y) + L_{2}(x,y)v_{2}(t,y)dy$$

Classical backstepping transformation with an affine part.

We now want $R_{21}v_1(t,0)$ to track the signal $V_{virt}(t-\frac{1}{\mu_{m_1}^{1}})$.

Consider the backstepping transformation

$$\beta_{1}(t,x) = v_{1}(t,x) + \int_{0}^{x} K_{1}(x,y)u_{1}(t,y) + L_{1}(x,y)v_{1}(t,y)dy$$
$$+ \int_{0}^{1} K_{2}(x,y)u_{2}(t,y) + L_{2}(x,y)v_{2}(t,y)dy$$

Classical backstepping transformation with an affine part.

• The kernels K_2 and L_2 verify $K_2(0, y) = L_2(0, y) = 0 \Rightarrow \beta_1(t, 0) = v_1(t, 0)$.

• We obtain the following target system $I(u_2, v_2)$

Tracking control law see [Hu and al.]

Let
$$V_i(t) = -(R_{11}u^1(t,1) + I(\cdot))_i + \zeta_i\left(t + \frac{1}{\mu_i^1}\right) - \sum_{j=i+1}^{m_1} \int_0^{\frac{1}{\mu_i^1}} \Omega_{i,j}(\mu_i^1 \nu) \zeta_j\left(t + \frac{1}{\mu_i^1} - \nu\right) d\nu$$

where ζ is an arbitrary known function. Then, for any $t \ge \sum_{j=1}^{m_p} \frac{1}{\mu_j^j}$, $\beta_1(t,0) \equiv \zeta(t)$.

• We obtain the following target system

Stabilizing control law

The control law

$$V_i(t) = -(R_{11}u^1(t,1) + I(\cdot))_i + \zeta_i\left(t + \frac{1}{\mu_i^1}\right) - \sum_{j=i+1}^{m_1} \int_0^{\frac{1}{\mu_i^1}} \Omega_{i,j}(\mu_i^1 \nu) \zeta_j\left(t + \frac{1}{\mu_i^1} - \nu\right) d\nu$$

with $\zeta(t) = R_{21}^T (R_{21} R_{21}^T)^{-1} V_{\text{virt}} (t - \frac{1}{\mu_1^1})$, exponentially stabilizes the interconnected system.

Summary of the approach, extensions and limitations

- The proposed control strategy combines several ingredients
 - The backstepping approach,
 - State-predictors (virtual controller),
 - Tracking component.
- Possible to design a state-observer.
- Low-pass filter the control law to guarantee robustness.

Summary of the approach, extensions and limitations

- The proposed control strategy combines several ingredients
 - The backstepping approach,
 - State-predictors (virtual controller),
 - Tracking component.
- Possible to design a state-observer.
- Low-pass filter the control law to guarantee robustness.

Extension to multiple subsystems

- Possible but technical: the backstepping transformation requires an additional component to avoid causality issues.
- *Recursive dynamics interconnection framework*: the control law is designed recursively (starting with the last subsystem).

$$\partial_t u_i(t,x) + \lambda_i \partial_x u_i(t,x) = \sigma_i^+(x) v_i(t,x), \partial_t v_i(t,x) - \mu_i \partial_x v_i(t,x) = \sigma_i^-(x) u_i(t,x),$$

with the boundary conditions

$$u_1(t,0) = q_{11}v_1(t,0), \quad v_2(t,1) = \rho_{22}u_2(t,1),$$

$$v_1(t,1) = V(t) + \rho_{11}u_1(t,1) + \rho_{12}v_2(t,0), \quad u_2(t,0) = q_{22}v_2(t,0) + q_{21}u_1(t,1).$$

$$\begin{aligned} \partial_t u_i(t,x) + \lambda_i \partial_x u_i(t,x) &= \sigma_i^+(x) v_i(t,x), \\ \partial_t v_i(t,x) - \mu_i \partial_x v_i(t,x) &= \sigma_i^-(x) u_i(t,x), \end{aligned}$$

with the boundary conditions

$$u_1(t,0) = q_{11}v_1(t,0), \quad v_2(t,1) = \rho_{22}u_2(t,1), v_1(t,1) = \frac{V(t)}{1} + \rho_{11}u_1(t,1) + \rho_{12}v_2(t,0), \quad u_2(t,0) = q_{22}v_2(t,0) + q_{21}u_1(t,1).$$

Delay robustness assumption

The open-loop system without in-domain couplings is exp. stable.

This implies $|\rho_{11}q_{11}| < 1$ and $|\rho_{22}q_{22}| < 1$.

$$\begin{aligned} \partial_t u_i(t,x) + \lambda_i \partial_x u_i(t,x) &= \sigma_i^+(x) v_i(t,x), \\ \partial_t v_i(t,x) - \mu_i \partial_x v_i(t,x) &= \sigma_i^-(x) u_i(t,x), \end{aligned}$$

with the boundary conditions

$$u_1(t,0) = q_{11}v_1(t,0), \quad v_2(t,1) = \rho_{22}u_2(t,1),$$

$$v_1(t,1) = V(t) + \rho_{11}u_1(t,1) + \rho_{12}v_2(t,0), \quad u_2(t,0) = q_{22}v_2(t,0) + q_{21}u_1(t,1).$$

Action from the subsystem "1" on the subsystem "2".

The boundary coupling coefficient q_{21} satisfies $q_{21} \neq 0$.

If $q_{21} = 0$, it is impossible to act on subsystem "2" using the control input on subsystem "1".
$$\begin{aligned} \partial_t u_i(t,x) + \lambda_i \partial_x u_i(t,x) &= \sigma_i^+(x) v_i(t,x), \\ \partial_t v_i(t,x) - \mu_i \partial_x v_i(t,x) &= \sigma_i^-(x) u_i(t,x), \end{aligned}$$

with the boundary conditions

$$u_1(t,0) = q_{11}v_1(t,0), \quad v_2(t,1) = \rho_{22}u_2(t,1),$$

$$v_1(t,1) = V(t) + \rho_{11}u_1(t,1) + \rho_{12}v_2(t,0), \quad u_2(t,0) = q_{22}v_2(t,0) + q_{21}u_1(t,1).$$

Condition on the boundary couplings

The coupling coefficients q_{11} and ρ_{22} satisfy $q_{11} \neq 0$, and $\rho_{22} \neq 0$.

Conservative assumption. If $q_{11} = 0$, the control input can act on subsystem "2" through distributed terms only.

• The interconnected system may not be controllable.

- The interconnected system may not be controllable.
- Operator formulation: $\frac{d}{dt}w = A(w) + BU$, where $B^{\star}(\begin{pmatrix} u_1 & v_1 & u_2 & v_2 \end{pmatrix}^{\top}) = \mu_1 v_1(1)$, and

$$\begin{array}{c} A: D(A) \subset L^{2}([0,1], \mathbb{R}^{4}) \to L^{2}([0,1], \mathbb{R}^{4}) \\ \begin{pmatrix} u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \end{pmatrix} \longmapsto \begin{pmatrix} -\lambda_{1}\partial_{x}u_{1} + \sigma_{1}^{+}(\cdot)v_{1} \\ \mu_{1}\partial_{x}v_{1} + \sigma_{1}^{-}(\cdot)u_{1} \\ -\lambda_{2}\partial_{x}u_{2} + \sigma_{2}^{-}(\cdot)u_{2} \\ \mu_{2}\partial_{x}v_{2} + \sigma_{2}^{-}(\cdot)u_{2} \end{pmatrix},$$

with $D(A) = \{(u_1, v_1, u_2, v_2) \in H^1([0, 1], \mathbb{R}^4) | u_1(0) = q_{11}v_1(0), v_2(1) = \rho_{22}u_2(1), v_1(1) = \rho_{11}u_1(1) + \rho_{12}u_2(1), u_2(0) = q_{22}v_2(0) + q_{21}u_1(1)\}.$

- The interconnected system may not be controllable.
- Operator formulation: $\frac{d}{dt}w = A(w) + BU$, where $B^{\star}(\begin{pmatrix} u_1 & v_1 & u_2 & v_2 \end{pmatrix}^{\top}) = \mu_1 v_1(1)$, and

$$\begin{array}{c} \mathsf{A} : \mathsf{D}(\mathsf{A}) \subset \mathsf{L}^{2}([0,1],\mathbb{R}^{4}) \to \mathsf{L}^{2}([0,1],\mathbb{R}^{4}) \\ \begin{pmatrix} u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \end{pmatrix} \longmapsto \begin{pmatrix} -\lambda_{1}\partial_{x}u_{1} + \sigma_{1}^{+}(\cdot)v_{1} \\ \mu_{1}\partial_{x}v_{1} + \sigma_{1}^{-}(\cdot)u_{1} \\ -\lambda_{2}\partial_{x}u_{2} + \sigma_{2}^{-}(\cdot)v_{2} \\ \mu_{2}\partial_{x}v_{2} + \sigma_{2}^{-}(\cdot)u_{2} \end{pmatrix},$$

with $D(A) = \{(u_1, v_1, u_2, v_2) \in H^1([0, 1], \mathbb{R}^4) | u_1(0) = q_{11}v_1(0), v_2(1) = \rho_{22}u_2(1), v_1(1) = \rho_{11}u_1(1) + \rho_{12}u_2(1), u_2(0) = q_{22}v_2(0) + q_{21}u_1(1)\}.$

Controllability condition (Coron, Fattorini)

The operators A^* and B^* verify

$$\forall s \in \mathbb{C}, \ker(s - A^*) \cap \ker(B^*) = \{0\}.$$

We apply classical backstepping transformations on each subsystem

$$\begin{cases} u_{1}(t,x) = \alpha_{1}(t,x) - \int_{0}^{x} L_{1}^{11}(x,y)\alpha_{1}(t,y) + L_{1}^{12}(x,y)\beta_{1}(t,y)dy, \\ v_{1}(t,x) = \beta_{1}(t,x) - \int_{0}^{x} L_{1}^{21}(x,y)\alpha_{1}(t,y) + L_{1}^{22}(x,y)\beta_{1}(t,y)dy, \\ \begin{cases} u_{2}(t,x) = \alpha_{2}(t,x) - \int_{x}^{x} L_{2}^{11}(x,y)\alpha_{2}(t,y) + L_{2}^{12}(x,y)\beta_{2}(t,y)dy, \\ v_{2}(t,x) = \beta_{2}(t,x) - \int_{x}^{x} L_{2}^{21}(x,y)\alpha_{2}(t,y) + L_{2}^{22}(x,y)\beta_{2}(t,y)dy, \end{cases} \end{cases}$$

Objective: move the in-domain couplings at the boundaries.

Backstepping transformation and time-delay representation

Target system:

Backstepping transformation and time-delay representation

Time-delay representation

Denote $z_1(t) = \beta_1(t, 1)$ and $z_2(t) = \alpha_2(t, 0)$. We have for all $t \ge \max\{\tau_i = \frac{1}{\lambda_i} + \frac{1}{\mu_i}\}$

$$\begin{aligned} z_1(t) = &\rho_{11}q_{11}z_1(t-\tau_1) + \rho_{12}\rho_{22}z_2(t-\tau_2) + V(t) \\ &+ \int_0^{\tau_1} H_{11}(\nu)z_1(t-\nu)d\nu + \int_0^{\tau_2} H_{12}(\nu)z_2(t-\nu)d\nu, \\ z_2(t) = &q_{21}q_{11}z_1(t-\tau_1) + q_{22}\rho_{22}z_2(t-\tau_2) \\ &+ \int_0^{\tau_1} H_{21}(\nu)z_1(t-\nu)d\nu + \int_0^{\tau_2} H_{22}(\nu)z_2(t-\nu)d\nu. \end{aligned}$$

Backstepping transformation and time-delay representation

Target system:

Time-delay representation

Denote $z_1(t) = \beta_1(t, 1)$ and $z_2(t) = \alpha_2(t, 0)$. We have for all $t \ge \max\{\tau_i = \frac{1}{\lambda_i} + \frac{1}{\mu_i}\}$

$$z_{1}(t) = \overline{V}(t),$$

$$z_{2}(t) = a\overline{V}(t-\tau_{1}) + bz_{2}(t-\tau_{2}) + \int_{0}^{\tau_{1}} H_{21}(v)\overline{V}(t-v)dv + \int_{0}^{\tau_{2}} H_{22}(v)z_{2}(t-v)dv,$$

with $a \neq 0$ and |b| < 1.

The exp. stability of z_1 and z_2 will imply the exp. stability of the original system.

$$z_2(t) = a\bar{V}(t-\tau_1) + bz_2(t-\tau_2) + \int_0^{\tau_1} H_{21}(v)\bar{V}(t-v)dv + \int_0^{\tau_2} H_{22}(v)z_2(t-v)dv.$$

• The difficulties to stabilize the IDE are related to the simultaneous presence of a distributed-delay term for the actuation and the state.

$$z_2(t) = a\bar{V}(t-\tau_1) + bz_2(t-\tau_2) + \int_0^{\tau_1} H_{21}(v)\bar{V}(t-v)dv + \int_0^{\tau_2} H_{22}(v)z_2(t-v)dv.$$

- The difficulties to stabilize the IDE are related to the simultaneous presence of a distributed-delay term for the actuation and the state.
- Laplace transform: $F_0(s)z_2(s) = F_1(s)\overline{V}(s)$, where the holomorphic function F_0 and F_1 are defined by

$$F_0(s) = 1 - b e^{-\tau_1 s} - \int_0^{\tau_2} H_{21}(v) e^{-v s} dv, \quad F_1(s) = a e^{-\tau_1 s} + \int_0^{\tau_1} H_{22}(v) e^{-v s} dv.$$

Controllability condition [Mounier]

The functions F_0 and F_1 cannot simultaneously vanish, for all $s \in \mathbb{C}$, $rank[F_0(s), F_1(s)] = 1$.

Equivalent to the previous controllability condition.

$$z_2(t) = a\bar{V}(t-\tau_1) + bz_2(t-\tau_2) + \int_0^{\tau_1} H_{21}(v)\bar{V}(t-v)dv + \int_0^{\tau_2} H_{22}(v)z_2(t-v)dv.$$

- The difficulties to stabilize the IDE are related to the simultaneous presence of a distributed-delay term for the actuation and the state.
- Laplace transform: $F_0(s)z_2(s) = F_1(s)\overline{V}(s)$, where the holomorphic function F_0 and F_1 are defined by

$$F_0(s) = 1 - b e^{-\tau_1 s} - \int_0^{\tau_2} H_{21}(v) e^{-v s} dv, \quad F_1(s) = a e^{-\tau_1 s} + \int_0^{\tau_1} H_{22}(v) e^{-v s} dv.$$

Controllability condition [Mounier]

The functions F_0 and F_1 cannot simultaneously vanish, for all $s \in \mathbb{C}$, $rank[F_0(s), F_1(s)] = 1$.

Equivalent to the previous controllability condition.

 From now, we assume that τ₁ = (N+1)τ₂ → non restrictive as it is always possible to artificially delay the control law V(t).

$$z_{2}(t) = a\overline{V}(t-\tau_{1}) + bz_{2}(t-\tau_{2}) + \int_{0}^{\tau_{1}} H_{21}(v)\overline{V}(t-v)dv + \int_{0}^{\tau_{2}} H_{22}(v)z_{2}(t-v)dv.$$

We consider the following candidate control law

$$\overline{V}(t) = \int_0^{\tau_2} f(\mathbf{v}) z_2(t-\mathbf{v}) d\mathbf{v} + \int_0^{\tau_1} g(\mathbf{v}) \overline{V}(t-\mathbf{v}) d\mathbf{v},$$

with f and g piecewise continuous matrix-valued functions.

Objective

Find *f* and *g* such that the control law \overline{V} stabilizes the system.

$$z_2(t) = a\bar{V}(t-\tau_1) + bz_2(t-\tau_2) + \int_0^{\tau_1} H_{21}(v)\bar{V}(t-v)dv + \int_0^{\tau_2} H_{22}(v)z_2(t-v)dv.$$

We consider the following candidate control law

$$\bar{V}(t) = \int_0^{\tau_2} f(v) z_2(t-v) dv + \int_0^{\tau_1} g(v) \bar{V}(t-v) dv,$$

with f and g piecewise continuous matrix-valued functions.

Objective

Find *f* and *g* such that the control law \overline{V} stabilizes the system.

We can show that

$$z_{2}(t) = bz_{2}(t-\tau_{2}) + \int_{0}^{\tau_{2}} l_{1}(v)z_{2}(t-v)dv + \int_{\tau_{2}}^{\tau_{1}} l_{2}(v)z_{2}(t-v)dv + \int_{\tau_{1}}^{\tau_{1}+\tau_{2}} l_{3}(v)z_{2}(t-v)dv$$

where

$$\begin{split} & l_1(\mathbf{v}) = g(\mathbf{v}) + H_{22}(\mathbf{v}) - \int_0^{\mathbf{v}} f(\eta) H_{21}(\mathbf{v} - \eta) d\eta - \int_0^{\mathbf{v}} g(\eta) H_{22}(\mathbf{v} - \eta) d\eta, \\ & l_2(\mathbf{v}) = g(\mathbf{v}) - bg(\mathbf{v} - \tau_2) - \int_0^{\tau_2} f(\eta) H_{21}(\mathbf{v} - \eta) d\eta - \int_{\mathbf{v} - \tau_2}^{\mathbf{v}} g(\eta) H_{22}(\mathbf{v} - \eta) d\eta, \\ & l_3(\mathbf{v}) = af(\mathbf{v} - \tau_1) - bg(\mathbf{v} - \tau_2) - \int_{\mathbf{v} - \tau_1}^{\tau_2} f(\eta) H_{21}(\mathbf{v} - \eta) d\eta - \int_{\mathbf{v} - \tau_2}^{\tau_1} g(\eta) H_{22}(\mathbf{v} - \eta) d\eta, \end{split}$$

$$z_2(t) = a\overline{V}(t-\tau_1) + bz_2(t-\tau_2) + \int_0^{\tau_1} H_{21}(v)\overline{V}(t-v)dv + \int_0^{\tau_2} H_{22}(v)z_2(t-v)dv.$$

We consider the following candidate control law

$$\bar{V}(t) = \int_0^{\tau_2} f(v) z_2(t-v) dv + \int_0^{\tau_1} g(v) \bar{V}(t-v) dv,$$

with f and g piecewise continuous matrix-valued functions.

Objective

Find *f* and *g* such that the control law \overline{V} stabilizes the system.

We can show that

$$z_{2}(t) = bz_{2}(t-\tau_{2}) + \int_{0}^{\tau_{2}} l_{1}(v)z_{2}(t-v)dv + \int_{\tau_{2}}^{\tau_{1}} l_{2}(v)z_{2}(t-v)dv + \int_{\tau_{1}}^{\tau_{1}+\tau_{2}} l_{3}(v)z_{2}(t-v)dv.$$

If $l_1 = 0$, $l_2 = 0$, and $l_3 = 0$, then z_2 will exponentially converge to zero (since |b| < 1).

Objective

Find f and g such that $I_1 = 0$, $I_2 = 0$ and $I_3 = 0$.

• Introduce g_k defined on $[0, \tau_2]$ s.t. for all $\nu \in [k\tau_2, (k+1)\tau_2], g_k(\nu) = g(\nu + k\tau_2)$.

Objective

Find f and g such that $I_1 = 0$, $I_2 = 0$ and $I_3 = 0$.

- Introduce g_k defined on $[0, \tau_2]$ s.t. for all $\nu \in [k\tau_2, (k+1)\tau_2], g_k(\nu) = g(\nu + k\tau_2)$.
- The system $l_1(v) = 0$, $l_2(v) = 0$, $l_3(v) = 0$ is equivalent to

$$\begin{aligned} af(v) - bg_{N}(v) - \int_{v}^{\tau_{2}} g_{N}(\eta) H_{22}(v + \tau_{2} - \eta) d\eta - \int_{v}^{\tau_{2}} f(\eta) H_{21}(v + \tau_{1} - \eta) d\eta &= 0, \\ g_{k}(v) - bg_{k-1}(v) - \int_{v}^{\tau_{2}} g_{k-1}(\eta) H_{22}(v - \eta + \tau_{2}) d\eta - \int_{0}^{v} g_{k}(\eta) H_{22}(v - \eta) d\eta \\ - \int_{0}^{\tau_{2}} f(\eta) H_{21}(v + k\tau_{2} - \eta) d\eta &= 0, \\ g_{0}(v) - \int_{0}^{v} g_{0}(\eta) H_{22}(v - \eta) d\eta - \int_{0}^{v} f(\eta) H_{21}(v - \eta) d\eta &= -H_{22}(v), \end{aligned}$$

which can be rewritten as

 $\mathcal{T}_0(f, g_N, \ldots, g_0) = (-H_{22}, 0, \ldots, 0), o$ Fredholm integral equation ($a \neq 0$)

Fredholm equation and invertibility of a Fredholm operator

Consider the **Fredholm integral operator** $\mathcal{T} : L^2([a,b],\mathbb{R}^n) \to L^2([a,b],\mathbb{R}^n)$ defined by

$$\mathcal{T}(z(\cdot)) = Mz(\cdot) - \int_{a}^{b} K(\cdot, y) z(y) dy,$$

where M is an invertible matrix and K is bounded piecewise continuous.

Consider the **Fredholm integral operator** $\mathcal{T} : L^2([a,b],\mathbb{R}^n) \to L^2([a,b],\mathbb{R}^n)$ defined by

$$\mathcal{T}(z(\cdot)) = Mz(\cdot) - \int_a^b K(\cdot, y) z(y) dy,$$

where M is an invertible matrix and K is bounded piecewise continuous.

Invertibility of the operator \mathcal{T} [Coron]

Consider two linear operators \mathcal{A}, \mathcal{B} , such that $D(\mathcal{A}) = D(\mathcal{B}) \subset L^2([a, b], \mathbb{R}^n)$. Assume that

- 1. ker $(\mathcal{T}) \subset D(\mathcal{A})$,
- 2. $\ker(\mathcal{T}) \subset \ker(\mathcal{B})$,
- 3. $\forall z \in \ker(\mathcal{T}), \ \mathcal{T}\mathcal{A}z = 0$,
- 4. $\forall s \in \mathbb{C}$, ker $(sld \mathcal{A}) \cap ker(\mathcal{B}) = \{0\}$.

Then, the operator \mathcal{T} is invertible.

Consider the **Fredholm integral operator** $\mathcal{T} : L^2([a,b],\mathbb{R}^n) \to L^2([a,b],\mathbb{R}^n)$ defined by

$$\mathcal{T}(z(\cdot)) = Mz(\cdot) - \int_a^b K(\cdot, y) z(y) dy,$$

where M is an invertible matrix and K is bounded piecewise continuous.

Invertibility of the operator \mathcal{T} [Coron]

Consider two linear operators \mathcal{A}, \mathcal{B} , such that $D(\mathcal{A}) = D(\mathcal{B}) \subset L^2([a, b], \mathbb{R}^n)$. Assume that

- 1. ker $(\mathcal{T}) \subset D(\mathcal{A})$,
- 2. $\ker(\mathcal{T}) \subset \ker(\mathcal{B})$,
- 3. $\forall z \in \ker(\mathcal{T}), \ \mathcal{T}\mathcal{A}z = 0$,
- 4. $\forall s \in \mathbb{C}$, ker $(sld \mathcal{A}) \cap ker(\mathcal{B}) = \{0\}$.

Then, the operator \mathcal{T} is invertible.

<u>Proof:</u> Since the integral part of \mathcal{T} is a compact operator, the Fredholm alternative implies that dim ker(\mathcal{T}) < ∞ . The different conditions imply that ker(\mathcal{T}) = {0} and \mathcal{T} is injective. Using the Fredholm alternative, we obtain that \mathcal{T} is invertible.

We want to show that the operator \mathcal{T}_0 is invertible.

We want to show that the operator \mathcal{T}_0 is invertible.

• Introduce the operators A_T defined on $D(A_T) \subset L^2([0, \tau_2], \mathbb{R})^{N+2}$ by

$$\begin{aligned} \mathcal{A}_{\mathcal{T}} &: \mathcal{D}(\mathcal{A}_{\mathcal{T}}) \to \mathcal{L}^{2}([0,\tau_{2}],\mathbb{R})^{N+2} \\ & \begin{pmatrix} \phi \\ \psi_{N} \\ \vdots \\ \psi_{0} \end{pmatrix} \longmapsto \begin{pmatrix} \partial_{x}\phi + \phi(0)\mathcal{H}_{22}(\cdot) \\ \partial_{x}\psi_{N} + \phi(0)\mathcal{H}_{21}(\cdot + N\tau_{2}) \\ \vdots \\ \partial_{x}\psi_{0} + \phi(0)\mathcal{H}_{21}(\cdot) \end{pmatrix}, \end{aligned}$$

where $D(A_{\mathcal{T}}) = \{(\phi, \psi_N, \dots, \psi_0) \in (H^1([0, \tau_2], \mathbb{R}))^{N+2}, \ \phi(\tau_2) = b\phi(0), \ \psi_N(\tau_2) = a\phi(0), \psi_k(\tau_2) = \psi_{k+1}(0), \ 0 \le k < N\}.$

We want to show that the operator \mathcal{T}_0 is invertible.

• Introduce the operators A_T defined on $D(A_T) \subset L^2([0, \tau_2], \mathbb{R})^{N+2}$ by

$$\begin{array}{c} \mathcal{A}_{\mathcal{T}} : \mathcal{D}(\mathcal{A}_{\mathcal{T}}) \to \mathcal{L}^{2}([0,\tau_{2}],\mathbb{R})^{N+2} \\ \begin{pmatrix} \phi \\ \psi_{N} \\ \vdots \\ \psi_{0} \end{pmatrix} \longmapsto \begin{pmatrix} \partial_{x}\phi + \phi(0)\mathcal{H}_{22}(\cdot) \\ \partial_{x}\psi_{N} + \phi(0)\mathcal{H}_{21}(\cdot + N\tau_{2}) \\ \vdots \\ \partial_{x}\psi_{0} + \phi(0)\mathcal{H}_{21}(\cdot) \end{pmatrix}, \end{array}$$

where $D(A_{\mathcal{T}}) = \{(\phi, \psi_N, \dots, \psi_0) \in (H^1([0, \tau_2], \mathbb{R}))^{N+2}, \ \phi(\tau_2) = b\phi(0), \ \psi_N(\tau_2) = a\phi(0), \psi_k(\tau_2) = \psi_{k+1}(0), \ 0 \le k < N\}.$

• Define the operator $B_{\mathcal{T}}: D(A_{\mathcal{T}}) o (L^2([0,\tau_2],\mathbb{R}))^{N+2}$, by

$$B_{\mathcal{T}}(\begin{pmatrix} \phi & \psi_N & \cdots & \psi_0 \end{pmatrix}^\top) = \psi_0(0)$$

We want to show that the operator \mathcal{T}_0 is invertible.

• Introduce the operators A_T defined on $D(A_T) \subset L^2([0, \tau_2], \mathbb{R})^{N+2}$ by

$$\begin{array}{c} \mathcal{A}_{\mathcal{T}} : \mathcal{D}(\mathcal{A}_{\mathcal{T}}) \to \mathcal{L}^{2}([0,\tau_{2}],\mathbb{R})^{N+2} \\ \begin{pmatrix} \phi \\ \psi_{N} \\ \vdots \\ \psi_{0} \end{pmatrix} \longmapsto \begin{pmatrix} \partial_{x}\phi + \phi(0)\mathcal{H}_{22}(\cdot) \\ \partial_{x}\psi_{N} + \phi(0)\mathcal{H}_{21}(\cdot + N\tau_{2}) \\ \vdots \\ \partial_{x}\psi_{0} + \phi(0)\mathcal{H}_{21}(\cdot) \end{pmatrix}, \end{array}$$

where $D(A_{\mathcal{T}}) = \{(\phi, \psi_N, \dots, \psi_0) \in (H^1([0, \tau_2], \mathbb{R}))^{N+2}, \phi(\tau_2) = b\phi(0), \psi_N(\tau_2) = a\phi(0), \psi_k(\tau_2) = \psi_{k+1}(0), 0 \le k < N\}.$

• Define the operator $B_{\mathcal{T}}: D(A_{\mathcal{T}}) o (L^2([0,\tau_2],\mathbb{R}))^{N+2}$, by

$$B_{\mathcal{T}}(\begin{pmatrix} \phi & \psi_N & \cdots & \psi_0 \end{pmatrix}^\top) = \psi_0(0).$$

• The operators T_0 , A_T and B_T satisfy the assumptions of the invertibility theorem. Therefore T_0 is invertible, which concludes the proof.

We want to show that the operator \mathcal{T}_0 is invertible.

• Introduce the operators A_T defined on $D(A_T) \subset L^2([0, \tau_2], \mathbb{R})^{N+2}$ by

$$\begin{array}{c} \mathcal{A}_{\mathcal{T}} : \mathcal{D}(\mathcal{A}_{\mathcal{T}}) \to \mathcal{L}^{2}([0,\tau_{2}],\mathbb{R})^{N+2} \\ \begin{pmatrix} \phi \\ \psi_{\mathcal{N}} \\ \vdots \\ \psi_{0} \end{pmatrix} \longmapsto \begin{pmatrix} \partial_{x}\phi + \phi(0)\mathcal{H}_{22}(\cdot) \\ \partial_{x}\psi_{\mathcal{N}} + \phi(0)\mathcal{H}_{21}(\cdot + \mathcal{N}\tau_{2}) \\ \vdots \\ \partial_{x}\psi_{0} + \phi(0)\mathcal{H}_{21}(\cdot) \end{pmatrix}, \end{array}$$

where $D(A_{\mathcal{T}}) = \{(\phi, \psi_N, \dots, \psi_0) \in (H^1([0, \tau_2], \mathbb{R}))^{N+2}, \ \phi(\tau_2) = b\phi(0), \ \psi_N(\tau_2) = a\phi(0), \psi_k(\tau_2) = \psi_{k+1}(0), \ 0 \le k < N\}.$

• Define the operator $B_{\mathcal{T}}:~ D(\mathcal{A}_{\mathcal{T}})
ightarrow (L^2([0, au_2],\mathbb{R}))^{N+2},$ by

$$B_{\mathcal{T}}(\begin{pmatrix} \phi & \psi_N & \cdots & \psi_0 \end{pmatrix}^\top) = \psi_0(0).$$

• The operators \mathcal{T}_0 , $A_{\mathcal{T}}$ and $B_{\mathcal{T}}$ satisfy the assumptions of the invertibility theorem. Therefore \mathcal{T}_0 is invertible, which concludes the proof.

Existence of f and g

There exist unique piecewise continuous functions *f* and *g* such that $l_1(v) = 0$, $l_2(v) = 0$, and $l_3(v) = 0$.

Consider the functions l_1 , l_2 and l_3 and let f and g be the unique piecewise continuous functions that lead to $l_1(v) = 0$, $l_2(v) = 0$, and $l_3(v) = 0$. Then, the closed-loop system with the control law

$$V(t) = -\rho_{11}q_{11}z_1(t-\tau_1) - \rho_{12}\rho_{22}z_2(t-\tau_2) + \bar{V}(t) -\int_0^{\tau_1} H_{11}(v)z_1(t-v)dv - \int_0^{\tau_2} H_{12}(v)z_2(t-v)dv$$

Consider the functions l_1 , l_2 and l_3 and let f and g be the unique piecewise continuous functions that lead to $l_1(v) = 0$, $l_2(v) = 0$, and $l_3(v) = 0$. Then, the closed-loop system with the control law

$$V(t) = -\rho_{11}q_{11}z_1(t-\tau_1) - \rho_{12}\rho_{22}z_2(t-\tau_2) + \bar{V}(t) -\int_0^{\tau_1} H_{11}(v)z_1(t-v)dv - \int_0^{\tau_2} H_{12}(v)z_2(t-v)dv$$

- An observer with in-between measurement can be obtained using an analogous approach
 - \rightarrow Output-feedback controller.

Consider the functions l_1 , l_2 and l_3 and let f and g be the unique piecewise continuous functions that lead to $l_1(v) = 0$, $l_2(v) = 0$, and $l_3(v) = 0$. Then, the closed-loop system with the control law

$$V(t) = -\rho_{11}q_{11}z_1(t-\tau_1) - \rho_{12}\rho_{22}z_2(t-\tau_2) + \bar{V}(t) -\int_0^{\tau_1} H_{11}(v)z_1(t-v)dv - \int_0^{\tau_2} H_{12}(v)z_2(t-v)dv$$

- An observer with in-between measurement can be obtained using an analogous approach
 Output-feedback controller.
- Same kind of IDEs for underactuated PDE.

Consider the functions l_1 , l_2 and l_3 and let f and g be the unique piecewise continuous functions that lead to $l_1(v) = 0$, $l_2(v) = 0$, and $l_3(v) = 0$. Then, the closed-loop system with the control law

$$V(t) = -\rho_{11}q_{11}z_1(t-\tau_1) - \rho_{12}\rho_{22}z_2(t-\tau_2) + \bar{V}(t) -\int_0^{\tau_1} H_{11}(v)z_1(t-v)dv - \int_0^{\tau_2} H_{12}(v)z_2(t-v)dv$$

- An observer with in-between measurement can be obtained using an analogous approach
 → Output-feedback controller.
- Same kind of IDEs for underactuated PDE.
- Non-scalar systems? More than two subsystems?

• Key idea: rewriting hyperbolic systems as IDEs using backstepping

- Key idea: rewriting hyperbolic systems as IDEs using backstepping
- $\bullet\,$ Chains with actuation at the extremity \rightarrow cascade structure
 - Recursive dynamics interconnection framework: combines backstepping, predictions, tracking.
 - Possibility to add ODEs in the chain.
 - Computational effort? Model reduction?

- Key idea: rewriting hyperbolic systems as IDEs using backstepping
- $\bullet\,$ Chains with actuation at the extremity \rightarrow cascade structure
 - Recursive dynamics interconnection framework: combines backstepping, predictions, tracking.
 - Possibility to add ODEs in the chain.
 - Computational effort? Model reduction?
- Chains with actuation at one of the junction \rightarrow Not always controllable
 - IDE with a distributed effect of the actuation.
 - Controller obtained by solving a Fredholm equation.
 - More than two subsystems? Non-scalar subsystems? Cycle?
 - Actuators at several nodes?

Extension to systems with a more complex graph structure

Extension to systems with a more complex graph structure

Controllability and control design

Does a given configuration of actuators makes the system controllable? How to design appropriate modular, scalable, and numerically implementable control laws?

Extension to systems with a more complex graph structure

Controllability and control design

Does a given configuration of actuators makes the system controllable? How to design appropriate modular, scalable, and numerically implementable control laws?

Actuators placement

Considering a given number of actuators, what are the admissible locations that guarantee controllability?

Qualitative analysis to understand the links between the structure of the network (e.g., number of cycles, incidence matrix) and its **controllability/observability** properties.

• In-domain stabilization of hyperbolic systems

$$\begin{aligned} \partial_t u(t,x) + \lambda \partial_x u(t,x) &= \sigma^+(x) v(t,x) + h_u(x) V(t), \\ \partial_t v(t,x) - \mu \partial_x v(t,x) &= \sigma^-(x) v(t,x) + h_v(x) V(t), \end{aligned}$$

with the boundary conditions

$$u(t,0) = qv(t,0), v(t,1) = \rho u(t,1),$$

• In-domain stabilization of hyperbolic systems

$$\partial_t u(t,x) + \lambda \partial_x u(t,x) = \sigma^+(x)v(t,x) + h_u(x)V(t),$$

$$\partial_t v(t,x) - \mu \partial_x v(t,x) = \sigma^-(x)v(t,x) + h_v(x)V(t),$$

with the boundary conditions

$$u(t,0) = qv(t,0), v(t,1) = \rho u(t,1),$$

Can be rewritten as the following IDE

$$z(t) = \rho q z(t-\tau) + \int_0^{\tau} N_z(v) z(t-v) dv + \int_0^{\tau} N_V(v) V(t-v) dv,$$

• Control design for the general class of IDEs, links with the structural properties?

General class of IDEs

$$z(t) = \sum_{k=1}^{N} A_k z(t-\tau_k) + \int_0^{\tau_N} f(v) z(t-v) dv + \sum_{k=1}^{N} B_k V(t) + \int_0^{\tau_N} g(v) V(t-v) dv,$$