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Linear switched systems in Banach spaces

Consider ẋ = Aσx in a Banach space X. The linear operators
Aσ̄, σ̄ ∈ Ξ, might be unbounded and have different domains
(example: network of linear hyperbolic conservation laws with
switching topology).
A simple definition of solution for such a switched system is:

Definition

Assume Aξ generates a strongly continuous semigroup Tσ̄(·),
∀σ̄ ∈ Ξ.
For σ : [0,∞)→ Ξ piecewise constant left-continuous with
switching times 0 = t0 < t1 < · · · < tk < · · · and for
t ∈ [tk, tk + 1), let

x(t;σ, x0) = Tσ(tk)(t− tk) ◦ Tσ(tk−1)(tk − tk−1) ◦ · · · ◦ Tσ(t0)(t1)x0.

When solutions are well defined for σ : [0,∞)→ Ξ measurable,
one may use more general propagators



A more abstract nonlinear framework: forward
complete dynamical system

Definition (A. Mironchenko & F. Wirth, 2019)

The triplet Σ = (X,S, φ), with S a shift-invariant and closed by
concatenation class of signals σ : [0,∞)→ Ξ, and
φ : R+ ×X × S → X (the transition map), is said to be a
forward complete dynamical system if:

i) ∀ (x0, σ) ∈ X × S: φ(0, x0, σ) = x0

ii) ∀ (x0, σ) ∈ X × S, ∀ t ≥ 0, ∀ σ̃ ∈ S: σ̃ = σ over [0, t] then
φ(t, x0, σ̃) = φ(t, x0, σ);

iii) ∀ (x0, σ) ∈ X × S: the map t 7→ φ(t, x0, σ) is continuous

iv) ∀ t, τ ≥ 0, ∀ (x0, σ) ∈ X × S:
φ(τ, φ(t, x0, σ), σ(t+ ·)) = φ(t+ τ, x0, σ)

Linear case: S = PC([0,+∞),Ξ) and t 7→ φ(t, ·, ξ) strongly
continuous linear semigroup for every ξ ∈ Ξ



The switching paradigm

The switching signal σ(·) is known only to belong to some
known class S and cannot be chosen.
t 7→ σ(t) may be used to model:

logical (= discrete valued) uncontrolled variables affecting
the dynamics

disturbances or time-varying uncertainties

in both the above cases, the time-evolution may be difficult
to model or not known: one may prefer to embed the
dynamics of a time-dependent equation corresponding to
t 7→ Aσ(t) into a parametric family of non-autonomous
systems (and S is autonomous)

relaxations of dynamical systems ẋ(t) = Aσ(x(t))x(t) with σ
possibly discontinuous → remove Zeno complications, take
into account sector constraints

not discussed today: the class S may encode constraints
such as dwell-time, persistent excitation, periodicity, . . .



Uniform exponential stability

Uniform exponential stability (UES) of Σ = (X,S, φ): ∃C, ν > 0
such that ‖φ(t, x0, σ)‖ ≤ Ce−νt‖x0‖, ∀t ≥ 0, ∀σ ∈ S

The (exponential/asymptotic/. . . ) stability of each semigroup
Tσ̄(·) does not imply the stability of the switched system (“too
many cooks spoil the broth”)

Main goal:

direct Lyapunov theorems with as few conditions on the
Lyapunov function as possible

converse Lyapunov theorems (stability =⇒ existence of a
Lyapunov function) (idea going back to Filippov’s Selection
Lemma for differential inclusions)

use Lyapunov functions to deduce robustness and
interconnect switching dynamics



Part I: Linear case



Converse Lyapunov theorem in Banach spaces [Hante,
S., 2011]

Σ linear. The following three conditions are equivalent:

(A) UES

(B) There exists V : X → [0,∞) such that
√
V (·) is a norm on

X,
c‖x‖2X ≤ V (x) ≤ C‖x‖2X , x ∈ X

lim sup
t→0+

V (Tσ̄(t)x)− V (x)

t
≤ −‖x‖2X , σ̄ ∈ Ξ, x ∈ X.

(C) There exist M ≥ 1 and ω > 0 such that, ∀σ ∈ S, ∀x0,

‖x(t;σ, x0)‖X ≤Meωt‖x0‖X , t ≥ 0,

and there exists V : X → [0,∞) such that
√
V (·) is a norm

in X,
V (x) ≤ C‖x‖2X , x ∈ X

lim inf
t→0+

V (Tσ̄(t)x)− V (x)

t
≤ −‖x‖2X , σ̄ ∈ Ξ, x ∈ X.



Remarks and open problems

V squared norm is equivalent to: positive definite,
homogeneous of degree 2, continuous, and convex

The result allows to exploit Lyapunov functions also when
the stability has been deduced by non-Lyapunov methods
(motivating example: S. Amin, F. M. Hante, and A. M.
Bayen, 2008 - switched linear hyperbolic conservation laws
with reflecting boundaries)

(C) =⇒ (B) can be used to pass from a constructive
non-coercive Lyapunov function to a coercive one (even in
the unswitched case Ξ = {σ̄}, without contradicting the
existence of exponentially stable dynamics without coercive
quadratic Lyapunov functions [Chernoff 1976])



Idea of the proof

(A) =⇒ (C) obtained taking

V (x) = sup
σ∈S

∫ ∞
0
‖Tσ(t)x‖2dt

(alternative choice: V (x) =
∫∞

0 supσ∈S ‖Tσ(t)x‖2dt)
well-posedness is a direct consequence of UES
positive-definiteness and 2-homogeneity by construction
decay along trajectories:

V (Tσ̄(t)x)− V (x) ≤ V (Tσ̄(t)x)− sup
σ∈S,σ|[0,t]≡σ̄

∫ ∞
0
‖Tσ(t)x‖2dt

= −
∫ t

0
‖Tσ̄(τ)x‖2dτ

(underlying property: S closed under concatenation)

(A) =⇒ (B): do as above replacing Ξ by Ξ ∪ {−νIX} for some
ν > 0 (the corresponding Lyapunov function is not quadratic
even in the unswitched case Ξ = {σ̄})
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(C)=⇒ (A): a Datko-type lemma

Adaptation of [Triggiani, 1994]

Assume that

(a) there exist M ≥ 1 and w > 0 such that ∀σ ∈ S, ∀x ∈ X,

‖Tσ(t)x‖X ≤Meωt‖x‖X , t ≥ 0,

(b) there exist c ≥ 0 and p ∈ [1,+∞) such that∫ +∞

0
‖Tσ(t)x‖pX ≤ c‖x‖

p
X ,

for every x ∈ X and every σ ∈ S.

Then there exist K ≥ 1 and µ > 0 such that

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ ∈ S



The uniform exponential boundedness cannot be
removed

Ξ = N, X = Lp(0, 1), p ∈ [1,∞),

(Tj(t)x) (s) =


2

1
px(s+ t), if s ∈ [0, 1− t] ∩ [4−j − t, 4−j),
x(s+ t), if s ∈ [0, 1− t]\[4−j − t, 4−j),
0, if s ∈ (1− t, 1] ∩ [0, 1]

j ∈ Ξ

One can check that V (x) = supσ∈S
∫∞

0 ‖Tσ(t)x‖2X dt ≤
3
2‖x‖

2
X

and lim inft→0+
V (Tj(t)x)−V (x)

t ≤ −‖x‖2
However, the system is not UES (but Tσ(t)x = 0 ∀t ≥ 1 ∀x ∈ X)



The Hilbert case

Proposition

X separable Hilbert space, Σ linear and UES. Then there exists
B ⊂ L(X) compact for the weak operator topology, made of
self-adjoint operators, such that the function V : X → R given
by

V (x) = max
B∈B
〈x,Bx〉

is a Lyapunov function that is directionally differentiable in the
sense of Fréchet with

V ′(x, ψ) = max
B̂∈S(x)

2
〈
ψ, B̂x

〉
, S(x) = argmaxB∈B 〈x,Bx〉

Idea: B is of the form Bx =
∫∞

0 T ∗σ (t)Tσ(t)xdt, σ ∈ S (plus
limit points)

when dim(X) <∞ one can further smoothen V . Open
problem: do the same in the Hilbert case



Retarded systems

Consider

ẋ(t) =

p∑
i=1

Aσ(t),ix
(
t− τi

(
σ(t)

))
, x(t) ∈ Rd

or, more generally,
ẋ = Γ(t)xt

where xt : [−r, 0]→ Rd is the history function xt(θ) = x(t+ θ),
and Γ(·) is piecewise constant or measurable in a set Ξ of
bounded operators

L : C([−r, 0],Rd)→ Rd.

Strongly continuous semigroup for every L ∈ Ξ → e.g. [Hale,
Lunel, 1993]
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Converse Lyapunov theorem for retarded systems
[Haidar, Mason, S., 2015]

Ξ ⊂ L(C([−r, 0],Rd),Rd) bounded. The following statements
are equivalent:

(i) The system is UES in C([−r, 0],Rd)
(ii) The system is UES in H1([−r, 0],Rd)

(iii) There exists V : C([−r, 0],Rd)→ [0,∞) such that
√
V (·) is

a norm on C([−r, 0],Rd),

c‖ψ‖2C ≤ V (ψ) ≤ c‖ψ‖2C

lim sup
t→0+

V (Tσ̄(t)ψ)− V (ψ)

t
≤ −‖ψ‖2C , σ̄ ∈ Ξ, ψ ∈ C([−r, 0],Rd)

(iv) There exists a directionally Fréchet differentiable function
V : H1([−r, 0],Rd)→ [0,∞) such that

√
V (·) is a norm on

H1([−r, 0],Rd),

c‖ψ‖2H1 ≤ V (ψ) ≤ c‖ψ‖2H1

lim sup
t→0+

V (Tσ̄(t)ψ)− V (ψ)

t
≤ −‖ψ‖2H1 , σ̄ ∈ Ξ, ψ ∈ H1



Converse Lyapunov theorem for retarded systems
[Haidar, Mason, S., 2015]

(v) There exists a continuous function

V : C([−r, 0],Rd)→ [0,∞)

such that
V (ψ) ≤ c‖ψ‖2C

lim inf
t→0+

V (Tσ̄(t)ψ)− V (ψ)

t
≤ −|ψ(0)|2, σ̄ ∈ Ξ, ψ ∈ C([−r, 0],Rd)

(vi) There exists a continuous function

V : H1([−r, 0],Rd)→ [0,∞)

such that
V (ψ) ≤ c‖ψ‖2H1

for some constant c > 0 and

lim inf
t→0+

V (Tσ̄(t)ψ)− V (ψ)

t
≤ −|ψ(0)|2, σ̄ ∈ Ξ, ψ ∈ H1



Remarks

uniform exponential boundedness not assumed but always
true

for retarded equations measurable signals can be
considered, giving rise to equivalent UES conditions

bound on the derivative depending only on ψ(0) → one
recovers ‖ψ‖C by integration and ‖ψ‖H1 by boundedness of
the operators in Ξ

exponential stability in L2 norm: following [Curtain,
Zwart, 1995] the solutions are well-defined in
X = L2([−r, 0],Rn)× Rn. In this case, however, the
uniform exponential boundedness of the solutions is not
guaranteed



Robustness

C = C([−r, 0],Rd)

Lemma

Ξ,Θ ⊂ L(C,Rd) bounded. Let V : C → R be the square of a
norm such that V (ψ) ≤ c‖ψ‖2C for some c > 0 and for every
ψ ∈ C. Then there exists K > 0 such that

DL+ΛV (ψ) ≤ DLV (ψ) +K‖ψ‖2C ∀L ∈ Ξ, ∀Λ ∈ Θ, ∀ψ ∈ C

Hence small perturbations of Σ UES are still UES.
Example: ẋ(t) = −x(t− τ(t)), τ ∈ [0, r], known to be UES for
r < 3/2 [Myshkis, 1951]. Hence

ẋ(t) = −x(t− τ(t)) +

∫ 0

−r̄
a(s)x(t+ s)ds

with a ∈ L1([−r̄, 0],R) and r̄ ≥ r is still UES for ‖a‖L1 small
enough



Interconnection

X1 = C([−r, 0],Rn1), X2 = C([−r, 0],Rn2), X = X1 ×X2

Let Ξi be a bounded subset of L (X,Rni) , i = 1, 2, and consider

Σ1 : ẋ(t) = Γ1(t)(xt, 0), Γ1(t) ∈ Ξ1,

Σ2 : ẏ(t) = Γ2(t)(0, yt), Γ2(t) ∈ Ξ2

and the interconnected system Σ : ż(t) = Γ(t)zt, Γ(t) ∈ Ξ1 × Ξ2

Theorem

Assume that Σ1 and Σ2 are UES. Let Vi : Xi → [0,∞), i = 1, 2,
be coercive Lyapunov functionals for Σ1 and Σ2. Let c1, c2 be
the upper-bound constants for V1 and V2, respectively. Let

µ = sup

{
‖(L1(0, ψ2), L2(ψ1, 0))‖

‖ψ‖X
| (L1, L2) ∈ Ξ1 × Ξ2, 0 6= ψ ∈ X

}
If 2 max(c̄1, c̄2)µ < 1 then the interconnected system Σ is UES



Part II: Nonlinear case



Datko-type theorem

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system Σ = (X,S, φ).
Let t1 > 0 and G0 ≥ 1 be such that

‖φ(t, x, σ)‖ ≤ G0‖x‖, ∀ t ∈ [0, t1], ∀ x ∈ X, ∀ σ ∈ S

The following statements are equivalent

i) Σ is UES

ii) there exist p, k > 0 such that∫ +∞

0
‖φ(t, x, σ)‖pdt ≤ kp‖x‖p, ∀ x ∈ X, ∀ σ ∈ S

Nonlinear version of Datko (unswitched): [Ichikawa, 1984]



Semi-global Datko-type theorem

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system Σ = (X,S, φ).
Let t1 > 0 and let G0 be a class K∞ function such that

‖φ(t, x, σ)‖ ≤ G0(‖x‖), ∀ t ∈ [0, t1], ∀ x ∈ X, ∀ σ ∈ S

The following statements are equivalent

i) Σ is uniformly semiglobally exponentially stable
(USGES)

ii) there exist p > 0 and k : R+ → R+ such that∫ +∞

0
‖φ(t, x, σ)‖pdt ≤ k(‖x‖)‖x‖p, ∀ x ∈ X, ∀ σ ∈ S



Exponential stability characterizations: global
non-coercive

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system Σ = (X,S, φ).
Let t1 > 0, G0 ≥ 1 such that

‖φ(t, x, σ)‖ ≤ G0‖x‖, ∀ t ∈ [0, t1], ∀ x ∈ X, ∀ σ ∈ S

and V : X → R+, p, c > 0 such that

V (x) ≤ c‖x‖p, ∀x ∈ X
DσV (x) ≤ −‖x‖p, ∀x ∈ X,∀σ ∈ S

and the map t 7→ V (φ(t, x, σ)) is continuous from the left, then
Σ is UES



Exponential stability characterizations: global coercive

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system Σ = (X,S, φ)
and p > 0. Assume that the transition map φ is uniformly
continuous. If Σ is UES then there exists V : X → R+

continuous and c, C > 0 such that

c‖x‖p ≤ V (x) ≤ C‖x‖p, ∀x ∈ X
DσV (x) ≤ −‖x‖p, ∀x ∈ X,∀σ ∈ S



Non-coercive Lyapunov theorem: comparison with
related results

Definition (A. Mironchenko & F. Wirth, 2019)

(RFC) if for any C > 0 and any τ > 0:
sup

‖x‖≤C,t∈[0,τ ],σ∈S
‖φ(t, x, σ)‖ <∞

(REP) for every ε, h > 0, there exists δ > 0:
‖x‖ ≤ δ =⇒ sup

t∈[0,h],σ∈S
‖φ(t, x, σ)‖ ≤ ε

Theorem (A. Mironchenko & F. Wirth, 2019)

Consider a forward complete dynamical system Σ = (X,S, φ)
and assume that Σ satisfies the RFC and REP conditions. If Σ
admits a non-coercive Lyapunov functional, then it is uniformly
globally asymptotically stable.



Exponential stability characterizations: semi-global
non-coercive

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system Σ = (X,S, φ).
Let t1 > 0 and let G0 be a class K∞ function such that

‖φ(t, x, σ)‖ ≤ G0(‖x‖), ∀ t ∈ [0, t1], ∀ x ∈ X, ∀ σ ∈ S.

If for every r > 0 there exists Vr : X → R+ and pr, cr > 0 such
that

Vr(x) ≤ cr‖x‖pr , ∀x ∈ BX(0, r)

DσVr(x) ≤ −‖x‖pr , ∀x ∈ BX(0, r),∀σ ∈ S

Vr(φ(·, x, σ)) is continuous from the left, and, moreover,

lim sup
r→+∞

G0
−1(r) min

{
1,

(
t1
cr

) 1
pr

}
= +∞, then system Σ is

USGES



Exponential stability characterizations: semi-global
coercive

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system Σ = (X,S, φ)
and assume that the transition map φ is uniformly continuous.
If Σ is USGES then for every r > 0 there exist cr, cr > 0 and a
continuous functional Vr : X → R+, such that

cr‖x‖ ≤ Vr(x) ≤ cr‖x‖, ∀ x ∈ BX(0, r),

DσVr(x) ≤ −‖x‖, ∀ x ∈ BX(0, r), ∀ σ ∈ S.

Moreover, if the transition map Φ is uniformly Lipschitz
continuous (respectively, uniformly Lipschitz continuous on
bounded sets), Vr can be taken Lipschitz continuous
(respectively, Lipschitz continuous on bounded sets).



Example: retarded switching control systems

Consider the uncertain retarded functional differential equation

Σ :
ẋ(t) = fσ(t)(xt), a.e. t ≥ 0,

x(θ) = x0(θ), θ ∈ [−∆, 0],

x(t) ∈ Rn; n is a positive integer;

xt : [−∆, 0]→ Rn is the history of x(t) defined by

xt(θ) = x(t+ θ), ∀ θ ∈ [−∆, 0];

x0 ∈ C := C([−∆, 0],Rn) is the initial condition.



Example: retarded switching control systems

Theorem

Assume that fq, q ∈ Ξ, are uniformly globally Lipschitz, i.e.,

‖fq(φ1)− fq(φ2)‖ ≤ l‖φ1 − φ2‖, ∀ φ1, φ2 ∈ C, ∀ q ∈ Ξ,

for some l > 0. The following statements are equivalent:

i) Σ is UES

ii) there exists a continuous functional V : C → R+ and
p, c > 0 such that

V (φ) ≤ c‖φ‖p, ∀ φ ∈ C,

and
DV (φ) ≤ −‖φ‖p, ∀ φ ∈ C

iii) coercive version



Sampling data control for semilinear switching systems

Σ : ẋ(t) = Ax(t) + fσ(t)(x(t), u(t))

with A generator of a linear C0-group, fq : X × U → X
uniformly Lipschitz continuous, fq(0, 0) = 0
Suppose that Σ in closed-loop with u(t) = K(x(t)) is UES, with
K : X → U Lipschitz and K(0) = 0
Only discrete output measurements are available

y(t) = x(tk), ∀ t ∈ [tk, tk+1), ∀ k ≥ 0.

Theorem (Haidar, Chitour, Mason and S., 2021)

Let A, f , and K as above. There exists δ? > 0 such that Σ in
closed loop with the predictor-based sampled data controller

u(t) = K(T (t− tk)x(tk)), ∀ t ∈ [tk, tk+1), ∀ k ≥ 0,

is UES provided that supk≥0(tk+1 − tk) ≤ δ?



Example: switching damped wave equation

Ω ⊂ Rn regular
∂2ψ
∂t2
−∆ψ + ρσ(t)(u) = 0 in Ω× R+

ψ = 0 on ∂Ω× R+

ψ(0) = ψ0ψ
′(0) = ψ1 on Ω

(1)

where ρq : R→ R, for q ∈ Ξ, is a uniformly Lipschitz continuous
function satisfying

ρq(0) = 0, α|v| ≤ |ρq(v)| ≤ |v|
α
, ∀ v ∈ R, ∀ q ∈ Ξ

for some α > 0.
UES of the system with feedback u = ∂ψ

∂t → [Martinez, 2000]
The previous theorem may be applied.



ISS of semilinear switching control systems

Σ : ẋ(t) = Ax(t) + fσ(t)(x(t), u(t))

A infinitesimal generator of a C0-semigroup (Tt)t≥0 on X,
σ ∈ PC, fq : X × U → X uniformly Lipschitz continuous,
fq(0, 0) = 0

Theorem

Assume that Σ is UES. Then for every 1 ≤ p ≤ +∞ and
σ ∈ PC, the input-to-state map u 7→ φu(·, 0, σ) is well defined as
a map from Lp(U) to Lp(X) and has a finite Lp-gain
independent of σ, i.e., there exists cp > 0 such that

‖φu(·, 0, σ)‖Lp(X) ≤ cp‖u‖Lp(U), ∀ u ∈ Lp(U), ∀ σ ∈ PC


	Part I: Linear case
	Part II: Nonlinear case

