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Linear switched systems in Banach spaces

Consider £ = A,z in a Banach space X. The linear operators
Az, & € E, might be unbounded and have different domains
(example: network of linear hyperbolic conservation laws with
switching topology).

A simple definition of solution for such a switched system is:

Definition

Assume A¢ generates a strongly continuous semigroup T5(-),
Vo € =

For ¢ : [0,00) — E piecewise constant left-continuous with
switching times 0 =ty < t; < --- <t < --- and for

t € [ty tr+ 1), let

z(t;0,20) = To(1,) (t — ) © To(ey_y) (tk — th—1) © - 0 Tr40) (t1) o

When solutions are well defined for o : [0, 00) — = measurable,
one may use more general propagators



A more abstract nonlinear framework: forward

complete dynamical system

Definition (A. Mironchenko & F. Wirth, 2019)

The triplet ¥ = (X, S, @), with S a shift-invariant and closed by
concatenation class of signals o : [0,00) — =, and
¢:Ry Xx X x 8 — X (the transition map), is said to be a
forward complete dynamical system if:
1) V (xg,0) € X X S: ¢(0,20,0) = x0
i) V(zg,0) € X xS, Vt>0,V5€S: =0 over [0,t] then
¢(t, 0, 6) = ¢(t, o, 0);
i) Y (zg,0) € X x S: the map t — ¢(t, zg,0) is continuous
i) Vit,7>0,V (zg,0) € X X S:
o(1,9(t, x0,0),0(t+ ) = d(t + ,20,0)

Linear case: § = PC([0,+00),Z) and t — ¢(t, -, &) strongly
continuous linear semigroup for every £ € =



The switching paradigm

The switching signal o(+) is known only to belong to some
known class S and cannot be chosen.
t — o(t) may be used to model:
m logical (= discrete valued) uncontrolled variables affecting
the dynamics
m disturbances or time-varying uncertainties
m in both the above cases, the time-evolution may be difficult
to model or not known: one may prefer to embed the
dynamics of a time-dependent equation corresponding to
t — Ag(y) into a parametric family of non-autonomous
systems (and S is autonomous)
= relaxations of dynamical systems #(t) = A, (51))7(t) with o
possibly discontinuous — remove Zeno complications, take
into account sector constraints
m 1ot discussed today: the class & may encode constraints
such as dwell-time, persistent excitation, periodicity, ...



Uniform exponential stability

Uniform exponential stability (UES) of ¥ = (X, S,¢): 3C,v >0
such that [|¢(¢, g, 0)| < Ce™|zo|, V¢t >0, Vo € S
The (exponential /asymptotic/...) stability of each semigroup

T5(-) does not imply the stability of the switched system (“too
many cooks spoil the broth”)

Main goal:

m direct Lyapunov theorems with as few conditions on the
Lyapunov function as possible

m converse Lyapunov theorems (stability = existence of a
Lyapunov function) (idea going back to Filippov’s Selection
Lemma for differential inclusions)

m use Lyapunov functions to deduce robustness and
interconnect switching dynamics



Part I: Linear case




Converse Lyapunov theorem in Banach spaces [Hante,

S., 2011]

> linear. The following three conditions are equivalent:
(A) UES
(B) There exists V : X — [0, 00) such that y/V(-) is a norm on
X,
dlzk <V(z) <Cllalk, zeX
T5(t)x) —
o ¥ T(02) = V(z)
t—0t t
(C) There exist M > 1 and w > 0 such that, Vo € S, Vzy,

< —||lz|%, FEE, z€X.

l=(t; 0, o)l x < Me[|lzollx, t>0,
and there exists V' : X — [0, 00) such that y/V(-) is a norm
in X,
V(@) <Cllalk, zeX

lim inf V(T5(t)x) — V(z)
t—0+ t

< —||lz|%, G€E, x€X.



Remarks and open problems

m V squared norm is equivalent to: positive definite,
homogeneous of degree 2, continuous, and convex

m The result allows to exploit Lyapunov functions also when
the stability has been deduced by non-Lyapunov methods
(motivating example: S. Amin, F. M. Hante, and A. M.
Bayen, 2008 - switched linear hyperbolic conservation laws
with reflecting boundaries)

m (C) = (B) can be used to pass from a constructive
non-coercive Lyapunov function to a coercive one (even in
the unswitched case = = {7}, without contradicting the
existence of exponentially stable dynamics without coercive
quadratic Lyapunov functions [Chernoff 1976])



Idea of the proof

(A) == (C) obtained taking
V(o) =sup [ 17 (0|
ceSJo

(alternative choice: V(z) = [i~ sup,cs || T (t)z||*dt)
m well-posedness is a direct consequence of UES
m positive-definiteness and 2-homogeneity by construction
m decay along trajectories:

V(T5(t)z) = V(x) < V(Ts(t)x) —  sup - /00 | T, ()| *dt

UGS,O‘“O’t]

t
=—/nnvnﬁm
0

(underlying property: S closed under concatenation)



Idea of the proof

(A) == (C) obtained taking

V(xz) = sup /000 | Ty (£) || *dt

cES
(alternative choice: V(z) = [i~ sup,cs || T (t)z||*dt)
m well-posedness is a direct consequence of UES
m positive-definiteness and 2-homogeneity by construction
m decay along trajectories:

V(T5(t)z) = V(x) < V(Ts(t)x) —  sup - /00 | T, ()| *dt

UGS,O‘“O’t]

t
_ / Ty (r)e|2dr
0

(underlying property: S closed under concatenation)
(A) = (B): do as above replacing = by ZU {—vIx} for some
v > 0 (the corresponding Lyapunov function is not quadratic
even in the unswitched case = = {7})



(C)= (A): a Datko-type lemma

Adaptation of [Triggiani, 1994]
Assume that
(a) there exist M > 1 and w > 0 such that Vo € S, Vo € X,

ITo (2] x < Me'|lzllx, ¢2>0,

(b) there exist ¢ > 0 and p € [1,400) such that

400
/O IT ()% < el

for every x € X and every o € S.
Then there exist K > 1 and p > 0 such that

1Ty llex) < Ke ™, t>0,0€8



The uniform exponential boundedness cannot be

removed

E=N, X =171r70,1), p € [1,00),
(s +1), ifsel0,1—tN[4—t47),
(Tj(t)x) (s) = S z(s + 1), ifse0,1—¢\[a47 —¢,479), J€E
0, if se(1—1t1n[0,1]

One can check that V(z) = sup,es [o° 1T (t)z|% dt < 3|z|%
and lim inf; 04 w < —|lz||?
However, the system is not UES (but T, (t)x =0Vt > 1 Vx € X)



The Hilbert case

Proposition

X separable Hilbert space, ¥ linear and UES. Then there exists
B C L(X) compact for the weak operator topology, made of
self-adjoint operators, such that the function V : X — R given
by

V(z) = B

(¢) = max (z, Bz)

is a Lyapunov function that is directionally differentiable in the
sense of Fréchet with

V'(z,¢) = max 2 <1/J, Ex>, S(x) = argmaxpgcp (x, Bx)
BeS(z)

= Idea: B is of the form Bx = [;° Tx(t)T,(t)zdt, o € S (plus
limit points)

m when dim(X) < oo one can further smoothen V. Open
problem: do the same in the Hilbert case



Retarded systems

Consider

OEDY Ag(t),ix(t — 7 (a(t))>, x(t) € R?



Retarded systems

Consider
P
i(t) = Y Apyia(t—mi(o®)), =(t) € R?
i=1
or, more generally,

T = F(t)$t

where x; : [-r,0] — R? is the history function x;(6) = x(t + 6),
and I'(-) is piecewise constant or measurable in a set Z of
bounded operators

L:C([-r0],R?) — RY,

Strongly continuous semigroup for every L € E — e.g. [Hale,
Lunel, 1993]



Converse Lyapunov theorem for retarded systems

[Haidar, Mason, S., 2015]

= C L(O([-r,0],R?),R%) bounded. The following statements
are equivalent:
(i) The system is UES in C([—r,0],R%)
(ii) The system is UES in H'([-r, 0], R%)
(iii) There exists V : C([—r,0],R%) — [0, 00) such that /V(-) is
a norm on C([—r,0],R9),

clpllz < V(@) <ellvlE
T _
eV T(000) = V()
t—0+ t
(iv) There exists a directionally Fréchet differentiable function

V . HY([~r,0],RY) — [0,00) such that \/V(-) is a norm on
Hl([_ra O]v Rd)v
it < V(@) <elvlin
imeup V(T (00) ~ V()

t—0t+ t

< _‘|¢||%’v o€ Eﬂb € C([_Ta O]aRd)

< —|¥l34, GeEpeH!



Converse Lyapunov theorem for retarded systems

[Haidar, Mason, S., 2015]

(v) There exists a continuous function

V : C([-r,0],RY) — [0, 00)

such that
V() < c|vlz
timint PO =LE) < o), o ez e offor, 0B

(vi) There exists a continuous function
V: Hl([_r7 0]’Rd) - [Oa OO)
such that
V(¥) < c|lvl2n
for some constant ¢ > 0 and

fo g VT (09) = V()

t—0+ t

< —[9(0)]*, 7€E,¢eH



Remarks

m uniform exponential boundedness not assumed but always
true

m for retarded equations measurable signals can be
considered, giving rise to equivalent UES conditions

m bound on the derivative depending only on 1(0) — one
recovers |||/ by integration and ||¢|| g1 by boundedness of
the operators in =

m exponential stability in L? norm: following [Curtain,
Zwart, 1995] the solutions are well-defined in
X = L%*([-r,0],R") x R™. In this case, however, the
uniform exponential boundedness of the solutions is not
guaranteed



Robustness

C =C([-r,0],R9

Lemma

2,0 C L(C,RY) bounded. Let V : C — R be the square of a
norm such that V(1) < ¢€||y||2 for some € > 0 and for every
1 € C. Then there exists K > 0 such that

DriaAV(Y) <DLV(y) + K|l VLEE, VA€ O, Vi €C

Hence small perturbations of % UES are still UES.
Example: &(t) = —z(t — 7(t)), 7 € [0,7], known to be UES for
r < 3/2 [Myshkis, 1951]. Hence

0

z(t) = —z(t —7(t)) + / a(s)z(t + s)ds

with @ € L'([-7,0],R) and 7 > 7 is still UES for |al/;: small
enough



Interconnection

X1 = C([—T’, 0],Rn1), X2 = C([—T}O],an), X = X1 X X2

Let Z; be a bounded subset of £ (X,R™) , ¢ = 1,2, and consider
Y :L‘(t) = Fl(t)(:l?t,()), Fl(t) € El,
Do 1 g(t) =T2(t)(0,3), Ta(t) € E2

and the interconnected system X : 2(t) = I'(t)z, I'(t) € E1 x 2o

Assume that X1 and Xy are UES. Let V; : X; — [0,00), i = 1,2,
be coercive Lyapunov functionals for 31 and o. Let ¢1,¢o be
the upper-bound constants for Vi and Va, respectively. Let

— sy [(L1(0,2), L2(31,0))
o p{ Tl

If 2max(¢1, é2)p < 1 then the interconnected system ¥ is UES

| | (L1, L2) € E1 x B, 07&¢€X}



Part II: Nonlinear case




Datko-type theorem

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system ¥ = (X, S, ¢).
Let t1 > 0 and Gy > 1 be such that

ot z,0)[| < Gollzll, Vi€ [0,ta], VeeX, VoeS

The following statements are equivalent
i) ¥ is UES
i) there exist p,k > 0 such that

+oo
/ |6(t, 2, 0)|Pdt < KP||lPP, Yz € X, Vo € S
0

Nonlinear version of Datko (unswitched): [Ichikawa, 1984]



Semi-global Datko-type theorem

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system ¥ = (X, S, ¢).
Let t1 > 0 and let Gy be a class Koo function such that

lp(t,z,0)|| < Golllz]]), Vte[0,t1], Ve X, VoeS

The following statements are equivalent

i) X is uniformly semiglobally exponentially stable
(USGES)

i) there exist p > 0 and k : Ry — R4 such that

+o0
/ lo(t, @, o) [Pt < k(l|lz[)]|«][”, V2 € X, Vo €8
0



Exponential stability characterizations: global
non-coercive

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system ¥ = (X, S, ¢).
Let t1 > 0, Gy > 1 such that

lp(t, z,0)|| < Gollz||, Vtel0,t1], VzeX, VoeS
andV : X - Ry, p,c> 0 such that

V(z) <clz|lP, VzeX
D, V(z)<—|z|’, VzeX,VoeS

and the map t — V(4(t,x,0)) is continuous from the left, then
Y s UES



Exponential stability characterizations: global coercive

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system ¥ = (X, S, @)
and p > 0. Assume that the transition map ¢ is uniformly
continuous. If ¥ is UES then there exists V : X — Ry
continuous and ¢, C > 0 such that

clzl|P < V(z) < Clz|P, VzeX
D,V(z) < —||z|lP, VzeX,VoeS



Non-coercive Lyapunov theorem: comparison with
related results

Definition (A. Mironchenko & F. Wirth, 2019)

(RFC) if for any C' > 0 and any 7 > 0:

sup 16(t, 2, 0)|| < oo
[|z]|<CLtel0,7],0€S
(REP) for every e, h > 0, there exists § > 0:

|z]| <6 = sup |¢(t z,0) <e
te[0,h],0€S

Theorem (A. Mironchenko & F. Wirth, 2019)

Consider a forward complete dynamical system ¥ = (X, S, @)
and assume that 3 satisfies the RFC and REP conditions. If
admits a non-coercive Lyapunov functional, then it is uniformly
globally asymptotically stable.



Exponential stability characterizations: semi-global
non-coercive

Theorem (Haida‘r.‘ Chitour, Mason and S., 2021)

Consider a forward complete dynamical system ¥ = (X, S, ¢).
Let t1 > 0 and let Gy be a class Koo function such that

lo(t,z,0)|| < Go(||z]]), VEte[0,t1], Ve e X, VoeS.

If for every r > 0 there exists V. : X — Ry and p,,c, > 0 such
that

Vi(z) < c|lz|fPr, V€ Bx(0,r)
D V. (z) < —|jz||Pr, Vaze Bx(0,r),YoeS§

Vi(o(-,x,0)) is continuous from the left, and, moreover,

lim sup Gy~ ! (r) min {1, (t—l

r—+o0 Cr

USGES

1
) ” } = 400, then system X is



Exponential stability characterizations: semi-global
coercive

Theorem (Haidar, Chitour, Mason and S., 2021)

Consider a forward complete dynamical system ¥ = (X, S, ¢)
and assume that the transition map ¢ is uniformly continuous.
If ¥ is USGES then for every r > 0 there exist c,,¢, >0 and a
continuous functional V. : X — Ry, such that

o llrl <Ve(z) <ellzf, Ve Bx(0,r),
D,Vi(z) < —|z||, V€ Bx(0,r),Voecs.

Moreover, if the transition map ® is uniformly Lipschitz
continuous (respectively, uniformly Lipschitz continuous on
bounded sets), V. can be taken Lipschitz continuous
(respectively, Lipschitz continuous on bounded sets).



Example: retarded switching control systems

Consider the uncertain retarded functional differential equation

5. ) = fow(@), aet>0,
Ca(f) = wo(0), 0 € [-A,0],

m z(t) € R"; n is a positive integer;

m 2 : [—A,0] = R" is the history of z(t) defined by
z(0) =z(t+0), VOe[-A,0;

m 29 € C:=C([-A,0],R") is the initial condition.



Example: retarded switching control systems

Theorem

Assume that fq, g € B, are uniformly globally Lipschitz, i.e.,

1fa(@1) = (@)l < U1 — @all, V é1,¢2 €C, V g €E,

for some l > 0. The following statements are equivalent:
i) ¥ is UES
ii) there exists a continuous functional V : C — R4 and
p,c > 0 such that

V(¢) <clloll’, VoeC,

and

DV(¢) < —lolP, VgoecC

iii) coercive version



Sampling data control for semilinear switching systems

i a(t) = Ax(t) + for (x(t), u(t))
with A generator of a linear Cy-group, f,: X xU = X
uniformly Lipschitz continuous, f,(0,0) =0
Suppose that ¥ in closed-loop with u(t) = K(z(t)) is UES, with
K : X — U Lipschitz and K(0) =0
Only discrete output measurements are available

y(t) = :If(tk), Vite [tk,tk+1), Y k>0.

Theorem (Haidar, Chitour, Mason and S., 2021)

Let A, f, and K as above. There exists 6* > 0 such that 3 in

closed loop with the predictor-based sampled data controller
u(t) = K(T(t — tp)z(tk)), VtE [tr,tes1), VE>0,

is UES provided that supy>q(tg+1 —tr) < 0*



Example: switching damped wave equation

Q C R” regular

O A+ popy(u) =0 in QxR
=0 on 0F) x R4 (1)
¥(0) = b’ (0) = 21 on {2

where p, : R = R, for ¢ € &, is a uniformly Lipschitz continuous
function satisfying

v _
pq(0) =0, a\v|§]pq(v)]_| | VveR, VqgekE

o
for some o > 0.
UES of the system with feedback u = %—f — [Martinez, 2000]
The previous theorem may be applied.



ISS of semilinear switching control systems

S (t) = An(t) + fogo (a(t), u(t))

A infinitesimal generator of a Cy-semigroup (7})i>0 on X,
o€ PC, fg: X x U — X uniformly Lipschitz continuous,

£4(0,0) =0

Theorem

Assume that 3 is UES. Then for every 1 < p < 400 and

o € PC, the input-to-state map u — ¢y (-,0,0) is well defined as
a map from LP(U) to LP(X) and has a finite LP-gain
independent of o, i.e., there exists ¢, > 0 such that

|

[6u(+,0,0)llLe(x) < cpllulley, YV ue LP(U), Vo ePC
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