Repetitive control for nonlinear systems

Daniele Astolfi

LAGEPP, CNRS, Université Lyon 1, Lyon, France

EDP COSY & ODISSE - October 17, 2023

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Outline				

1 Introduction

- 2 Repetitive control
- 3 Finite dimensional realization
- 4 Numerical Example
- 5 Conclusions

D. Astolfi

Introduction	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Outline				

1 Introduction

- 2 Repetitive control
- 3 Finite dimensional realization
- 4 Numerical Example
- 5 Conclusions

D. Astolfi

Introduction t	to Output Regulation	n		
Introduction	Repetitive control	Finite dimensional realization	Numerical Example	Conclusions
••••••••		000000000	0000	0000

Consider the following plant

$$\begin{cases} \dot{z} = f(z, w, u) \\ e = h(z, w) \\ y = r(z, w) \end{cases}$$

Robust output regulation: design

$$\begin{cases} \dot{\eta} &= \varphi(\eta, e, y) \\ u &= \beta(\eta, e, y) \end{cases}$$

such that robustly with respect to model uncertainties f, h:

i) bounded trajectories

ii) asymptotic regulation $\lim_{t o\infty} e(t)=0$

Standing assumption: we know a model generator for w

$$\dot{w} = s(w)$$

which is "neutrally/critically stable"

Introduction 000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Introduction	to Output Regulatior	ı		

Consider the following plant

$$\begin{cases} \dot{z} = f(z, w, u) \\ e = h(z, w) \\ y = r(z, w) \end{cases}$$

Robust output regulation: design

$$\begin{cases} \dot{\eta} = \varphi(\eta, e, y) \\ u = \beta(\eta, e, y) \end{cases}$$

such that robustly with respect to model uncertainties f, h:

i) bounded trajectories

ii) asymptotic regulation $\lim_{t\to\infty} e(t) = 0$

Standing assumption: we know a model generator for w

$$\dot{w} = s(w)$$

which is "neutrally/critically stable"

Introduction 000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Introduction	to Output Regulatio	on		

Consider the following plant

$$\begin{cases} \dot{z} = f(z, w, u) \\ e = h(z, w) \\ y = r(z, w) \end{cases}$$

Robust output regulation: design

$$\begin{cases} \dot{\eta} = \varphi(\eta, \mathbf{e}, \mathbf{y}) \\ u = \beta(\eta, \mathbf{e}, \mathbf{y}) \end{cases}$$

such that robustly with respect to model uncertainties f, h:

i) bounded trajectories

ii) asymptotic regulation $\lim_{t\to\infty} e(t) = 0$

Standing assumption: we know a model generator for w

$$\dot{w} = s(w)$$

which is "neutrally/critically stable"

Introduction	
000000000	С

Repetitive control

inite dimensional realization

Numerical Examp

Conclusions 0000

An Illustration

- Many applications can be put in this context:
 - Tracking
 - Disturbance rejection

Example: helicopter landing on a boat

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
The concept	tual formulation			

Output regulation: stabilization to a non-trivial unknown manifold

regulator equations:
$$\begin{cases} \frac{\partial \pi(w)}{\partial w} s(w) &= f(\pi(w), w, c(w)) \\ 0 &= h(\pi(w), w) \end{cases}$$

• $\pi(w)$: the steady-state manifold on which e = 0

• c(w): the "friend", i.e. the steady-state input which makes π invariant

Peculiarity: characterization of the class of all possible exogenous inputs (disturbances/ references) as the set of all possible solutions of a fixed known differential equation

The exosystem-generated disturbances/references is a trade-off between:

- worst case disturbance (H_{∞} control): too pessimistic
- exact knowledge of w (inversion-based control): too optimistic

Introduction 000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
The concept	ual formulation			

Output regulation: stabilization to a non-trivial unknown manifold

regulator equations:
$$\begin{cases} \frac{\partial \pi(w)}{\partial w} s(w) &= f(\pi(w), w, c(w)) \\ 0 &= h(\pi(w), w) \end{cases}$$

• $\pi(w)$: the steady-state manifold on which e = 0

• c(w): the "friend", i.e. the steady-state input which makes π invariant

Peculiarity: characterization of the class of all possible exogenous inputs (disturbances/ references) as the set of all possible solutions of a fixed known differential equation

The exosystem-generated disturbances/references is a trade-off between:

- worst case disturbance (H_{∞} control): too pessimistic
- exact knowledge of w (inversion-based control): too optimistic

The solution in the linear case

The solution in the linear case

1) Design an Internal Model Unit containing a copy of the exosystem: $\sigma(\Phi) = \sigma(S)$

The solution in the linear case

1) Design an Internal Model Unit containing a copy of the exosystem: $\sigma(\Phi) = \sigma(S)$

2) Design a Stabilizer Unit stabilizing the extended plant

Finite dimensional realization

Numerical Exam

Conclusions 0000

The solution in the linear case

- 1) Design an Internal Model Unit containing a copy of the exosystem: $\sigma(\Phi) = \sigma(S)$
- 2) Design a Stabilizer Unit stabilizing the extended plant
- Magically, steady-state solutions satisfy e = 0 even with model parameter uncertainties

The internal model principle for linear systems

The internal model principle (Francis and Wonham 1976)

The robust output regulation problem is solved IFF the regulator "incorporates a copy of the dynamic structure of the disturbance and reference signals".

Examples:

Remarks:

This principle was proved for finite-dimensional linear systems and extended afterwards to infinite-dimensional linear operators

[Paunonen, Pohjolainen, SIAM 2010]

- Robustness is referred to parametric uncertainties
- For (finite-dimensional) nonlinear systems, the theory is still incomplete and things are more complicated!

The internal model principle for linear systems

The internal model principle (Francis and Wonham 1976)

The robust output regulation problem is solved IFF the regulator "incorporates a copy of the dynamic structure of the disturbance and reference signals".

Examples:

Remarks:

- This principle was proved for finite-dimensional linear systems and extended afterwards to infinite-dimensional linear operators
 [Paunonen, Pohjolainen, SIAM 2010]
- Robustness is referred to parametric uncertainties
- For (finite-dimensional) nonlinear systems, the theory is still incomplete and things are more complicated!

Interpretation	of the internal-mode	el principle		
Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000

The eigenvalues of the internal-model unit becomes zeros in the transfer function: zero-blocking effect

$$e(s) = H(s)w(s),$$
 $H(s) = \frac{s(s^2 + \omega^2)(\cdots)}{s^d + a_1s^{d-1} + \cdots + sa_{d-1} + a_d},$

Since the closed-loop system is stable with w = 0, the closed-loop system has bounded trajectories with $w \neq 0$: analysis of steady-state trajectories of

$$\dot{\eta}=e, \qquad \dot{\eta}=egin{pmatrix} 0 & \omega\ -\omega & 0 \end{pmatrix}\eta+egin{pmatrix} 0\ 1 \end{pmatrix}e$$

implies e = 0 based on resonance arguments

Introduction 00000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
A simple nor	nlinear example			

Consider a system

$$\dot{z} = -z^3 - z + u$$
$$e = z - r(t)$$

and suppose that the reference is given by

 $r(t) = \sin(\omega t)$

Then the steady-state pair $\pi(t), c(t)$ is computed as

$$\pi(t) = \sin(\omega t)$$

$$c(t) = \cos(\omega t) + \frac{7}{4}\sin(\omega t) - \frac{1}{4}\sin(3\omega t)$$

The cubic term z^3 adds a high-order harmonic in c(t)!!!

D. Astolfi

Introduction ○0000000●0	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Conceptual c	lifficulties			

- Nonlinearities introduces high-order deformations that may be not present in the exosystem
- Nonlinearities may be introduced by model uncertainties and/or by the Stabilizer Unit

Introduction ○0000000●0	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Conceptual d	ifficulties			

- Nonlinearities introduces high-order deformations that may be not present in the exosystem
- Nonlinearities may be introduced by model uncertainties and/or by the Stabilizer Unit
- Chicken-egg dilemma: first design Stabilizer Unit and then Internal Model Unit or vice-versa?

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Conceptual d	ifficulties			

- Nonlinearities introduces high-order deformations that may be not present in the exosystem
- Nonlinearities may be introduced by model uncertainties and/or by the Stabilizer Unit
- Chicken-egg dilemma: first design Stabilizer Unit and then Internal Model Unit or vice-versa?

Introduction ○00000000●	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Some Milest	ones			

Linear output regulation and internal model principle

- Francis, Wonham (1976), The internal model principle of control theory, Automatica
- Davison (1976), The robust control of a servomechanism problem for linear time-invariant multivariable systems, IEEE TAC
- Paunonen, Pohjolainen (2010), Internal model theory for distributed parameter systems, SICON

Necessary conditions, regulator equations and design of asymptotic regulators

- Byrnes, Isidori (2003), Limit Sets, Zero Dynamics, and Internal Models in the Problem of Nonlinear Output Regulation, IEEE TAC
- Byrnes, Isidori (2004), Nonlinear internal models for output regulation, IEEE TAC
- Marconi, Praly, Isidori (2007), Output stabilization via nonlinear Luenberger observers, SICON

Outline

1 Introduction

2 Repetitive control

3 Finite dimensional realization

4 Numerical Example

5 Conclusions

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
The context	t of periodic signals			

- Let's focus on signals w which are **T**-periodic, with **T** known
- Our regulation problem becomes:

$$\begin{cases} \dot{z} = f(z, w, u) \\ e = h(z, w) \end{cases}$$

Goal:

Find a dynamical regulator such that, for all **T**-periodic signals w, closed-loop trajectories are bounded and $\lim_{t\to\infty} e(t) = 0$.

Main idea

The regulator must be able to generate any possible T-periodic signal at steady-state

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
The contex	t of periodic signals			

- Let's focus on signals w which are **T**-periodic, with **T** known
- Our regulation problem becomes:

$$\begin{cases} \dot{z} = f(z, w, u) \\ e = h(z, w) \end{cases}$$

Goal:

Find a dynamical regulator such that, for all **T**-periodic signals w, closed-loop trajectories are bounded and $\lim_{t\to\infty} e(t) = 0$.

Main idea:

The regulator must be able to generate any possible **T**-periodic signal at steady-state

Introduction 0000000000	Repetitive control 00●0000000000000000000000000000000000	Finite dimensional realization	Numerical Example 0000	Conclusions 0000	
Repetitive control: some background					

Introduced by Hara, Yamamoto, Omata, Nakano in the 1988 for linear systems

It consists of introducing the transfer function

$$R(s) = \frac{\exp(-\mathbf{T}s)}{1 - \exp(-\mathbf{T}s)}$$

in the closed-loop system

• R(s) is a universal generator of **T**-periodic signals

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Repetitive Co	ontrol: some commen	ts		

- X Repetitive control schemes have been developed mostly for linear systems: the proof is based on transfer function analysis (Nyquist..)
- It is shown to work only for systems with zero relative degree between input and regulated output
- How to analyse the interconnection with a nonlinear system ?

Some bibliography:

- Hara, Yamamoto, Omata, Nakano (1988), Repetitive control system: A new type servo system for periodic exogenous signals, IEEE TAC
- Weiss, Häfele (1999), Repetitive control of MIMO systems using H_{∞} design, Automatica
- Verrelli, Tomei (2023), Adaptive learning control for nonlinear systems: A single learning estimation scheme is enough, Automatica.

A delay

v(t) = e(t - T)

can be equivalently expressed with a transport equation of the form:

$$egin{aligned} &\partial_t\eta(t,x) = -rac{1}{T}\partial_x\eta(t,x) & & \forall (t,x)\in\mathbb{R}_+ imes [0,1], \ &\eta(t,0) = e(t) & & \forall t\in\mathbb{R}_+, \ &\eta(0,x) = 0 & & \forall x\in[0,1], \ &v(t) = \eta(t,1) & & \forall t\in\mathbb{R}_+. \end{aligned}$$

Indeed, the general solution to such a hyperbolic PDE is given by

$$\eta(t + (x - x')\mathbf{T}, x) = \eta(t, x')$$

from which we obtain

$$v(t+\mathbf{T}) = \eta(t+\mathbf{T},1) = \eta(t,0) = e(t)$$

D. Astolfi

A delay

v(t) = e(t - T)

can be equivalently expressed with a transport equation of the form:

$$egin{aligned} \partial_t\eta(t,x)&=-rac{1}{T}\partial_x\eta(t,x) &&orall (t,x)\in\mathbb{R}_+ imes[0,1],\ \eta(t,0)&=e(t) &&orall t\in\mathbb{R}_+,\ \eta(0,x)&=0 &&orall t\in\mathbb{R}_+,\ v(t)&=\eta(t,1) &&orall t\in\mathbb{R}_+. \end{aligned}$$

Indeed, the general solution to such a hyperbolic PDE is given by

$$\eta(t + (x - x')\mathbf{T}, x) = \eta(t, x')$$

from which we obtain

$$v(t+T) = \eta(t+T,1) = \eta(t,0) = e(t)$$

D. Astolfi

Transfer function RC

Transport equation RC

D. Astolfi

Repetitive control for nonlinear systems

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
The context	of periodic signals -	rephrased		

Our regulation problem becomes:

$$\begin{cases} \dot{z} = f(z, w, u) \\ e = h(z, w) \end{cases}$$

where w is generated as

$$\partial_t w(t,x) + rac{1}{T} \partial_x w(t,x) = 0, \quad (t,x) \in \mathbb{R}_{\geq 0} \times [0,1],$$

 $w(t,0) = w(t,1),$
 $w(0,x) = w_0(x).$

Internal model property: we need to incorporate such a PDE in the control scheme

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusio 0000

The overall-scheme

Open problem:

- Design of the internal model unit
- Design of the stabilizer

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Design of the	internal-model unit			

- We need an interconnection term
- Boundary interconnection:

$$\begin{aligned} \partial_t \eta(t, x) &= -\frac{1}{7} \partial_x \eta(t, x) & \forall (t, x) \in \mathbb{R}_+ \times [0, 1], \\ \eta(t, 0) &= \eta(t, 1) + \gamma e(t) & \forall t \in \mathbb{R}_+, \\ \eta(0, x) &= 0 & \forall x \in [0, 1], \end{aligned}$$

Distributed interconnection:

$$\begin{aligned} \partial_t \eta(t, x) &= -\frac{1}{T} \partial_x \eta(t, x) + \gamma(x) e(t) & \forall (t, x) \in \mathbb{R}_+ \times [0, 1], \\ \eta(t, 0) &= \eta(t, 1) & \forall t \in \mathbb{R}_+, \\ \eta(0, x) &= 0 & \forall x \in [0, 1], \end{aligned}$$

Both designs are possible

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Design of the	e stabilizer unit ???			

The resulting extended system reads

$$\begin{split} \dot{z} &= f(w, z, u) \\ e &= h(w, z) \\ \partial_t \eta(t, x) &= -\frac{1}{T} \partial_x \eta(t, x) \qquad \forall (t, x) \in \mathbb{R}_+ \times [0, 1], \\ \eta(t, 0) &= \eta(t, 1) + e(t) \qquad \forall t \in \mathbb{R}_+, \\ \eta(0, x) &= 0 \qquad \forall x \in [0, 1], \end{split}$$

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Design of the	e stabilizer unit ???			

The resulting extended system reads

$$\begin{split} \dot{z} &= f(w, z, u) \\ e &= h(w, z) \\ \partial_t \eta(t, x) &= -\frac{1}{T} \partial_x \eta(t, x) \qquad \forall (t, x) \in \mathbb{R}_+ \times [0, 1], \\ \eta(t, 0) &= \eta(t, 1) + e(t) \qquad \forall t \in \mathbb{R}_+, \\ \eta(0, x) &= 0 \qquad \forall x \in [0, 1], \end{split}$$

• There exists a feedback $u = \alpha(z, e, \eta)$ such that the closed-loop system is..??

Which property do we need?

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Transient ar	nd asymptotic behavi	iours		

• When w = 0 for all $t \ge 0$ we would like the closed-loop system origin to be asymptotically stable

When $w \neq 0$ and w(t + T) = w(t) we would like the closed-loop trajectories to converge to a T periodic solution

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Transient and	l asymptotic behavio	urs		

- When w = 0 for all $t \ge 0$ we would like the closed-loop system origin to be asymptotically stable
- When $w \neq 0$ and w(t + T) = w(t) we would like the closed-loop trajectories to converge to a T periodic solution

Resonance arguments:

$$egin{aligned} &\partial_t\eta(t,x) = -rac{1}{\overline{7}}\partial_x\eta(t,x) & orall (t,x) \in \mathbb{R}_+ imes [0,1], \ &\eta(t,0) = \eta(t,1) + e(t) & orall t \in \mathbb{R}_+, \end{aligned}$$

if both η and e are **T**-periodic and bounded, then e(t) = 0 for all t

Equivalently, the corresponding solution $\bar{\eta}$ at any instants $t, t + T, \dots, t + NT$ is given by

$$\bar{\eta}(k+1) = \bar{\eta}(k) + \bar{e}(k)$$

with $\bar{e}(k) = \bar{e}_0$ for all k, which implies $\bar{e}_0 = 0$.

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000	
Transient and asymptotic behaviours					

• When w = 0 for all $t \ge 0$ we would like the closed-loop system origin to be asymptotically stable

When w ≠ 0 and w(t + T) = w(t) we would like the closed-loop trajectories to converge to a T periodic solution

In finite dimensional literature the aformentioned property is also referred to as entrainment to periodic inputs Repetitive control

Finite dimensional realization 000000000

Entrainment to periodic inputs property: a sufficient condition

Incremental input-to-state stability (δ ISS)

A system

$$\dot{z} = f(w, z)$$

is δ ISS with respect to w if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that for any two initial conditions z_a, z_b and pair of inputs w_a, w_b then the corresponding solutions satisfy

$$|Z(t,x_a) - Z(t,x_b)| \leq \beta(t,|z_a - z_b|) + \sup_{s \in [0,t]} \gamma(|w_a(s) - w_b(s)|_\infty)$$

$\delta \mathsf{ISS} \implies \mathsf{Entrainment}$ to periodic inputs

Suppose the system

$$\dot{z} = f(w, z)$$

is δ ISS w.r.t. w. Then, it has the Entrainment to periodic inputs property, namely, for any *T*-periodic w, then z has an asymptotically stable *T*-periodic trajectory.

Repetitive control

Finite dimensional realization

Entrainment to periodic inputs property: a sufficient condition

Incremental input-to-state stability (δ ISS)

A system

$$\dot{z} = f(w, z)$$

is δ ISS with respect to w if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that for any two initial conditions z_a, z_b and pair of inputs w_a, w_b then the corresponding solutions satisfy

$$|Z(t,x_a) - Z(t,x_b)| \leq \beta(t,|z_a - z_b|) + \sup_{s \in [0,t]} \gamma(|w_a(s) - w_b(s)|_\infty)$$

$\delta ISS \implies$ Entrainment to periodic inputs

Suppose the system

$$\dot{z}=f(w,z)$$

is δ ISS w.r.t. w. Then, it has the Entrainment to periodic inputs property, namely, for any *T*-periodic w, then z has an asymptotically stable *T*-periodic trajectory.

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Design of the	e stabilizer unit			

The resulting extended system reads

$$\begin{split} \dot{z} &= f(w, z, u) \\ e &= h(w, z) \\ \partial_t \eta(t, x) &= -\frac{1}{T} \partial_x \eta(t, x) + \gamma(x) e(t) \qquad \forall (t, x) \in \mathbb{R}_+ \times [0, 1], \\ \eta(t, 0) &= \eta(t, 1) \qquad \forall t \in \mathbb{R}_+, \\ \eta(0, x) &= 0 \qquad \forall x \in [0, 1], \end{split}$$

How to design a feedback to stabilize the previous system to obtain the desired property?

Few design techniques for nonlinear ODE - PDE interconnections..

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Design of the	e stabilizer unit			

The resulting extended system reads

$$\begin{split} \dot{z} &= f(w, z, u) \\ e &= h(w, z) \\ \partial_t \eta(t, x) &= -\frac{1}{T} \partial_x \eta(t, x) + \gamma(x) e(t) \qquad \forall (t, x) \in \mathbb{R}_+ \times [0, 1], \\ \eta(t, 0) &= \eta(t, 1) \qquad \forall t \in \mathbb{R}_+, \\ \eta(0, x) &= 0 \qquad \forall x \in [0, 1], \end{split}$$

- How to design a feedback to stabilize the previous system to obtain the desired property?
- Few design techniques for nonlinear ODE PDE interconnections..

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000		
Minimum-phase systems						

We focus on systems in the following form

$$\dot{\zeta} = f(w,\zeta,e)$$

 $\dot{e} = q(w,\zeta,e) + u$

with $z = (\zeta, e) \in \mathbb{R}^{n-1} \times \mathbb{R}$ and satisfying the following:

ASS 1: Minimum phase: the system $\dot{\zeta} = f(w, \zeta, e)$ is δ ISS with respect to w and e ASS 2: Lipschitzness: the function q is globally Lipschitz

Step 1: Under the previous assumptions, the feedback law

$$u = -\sigma e + v, \qquad \sigma > 0$$

makes the (ζ, e) dynamics δ ISS with respect to w and v

Introduction 000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Feedback des	sign			

We have an extended system

$$\begin{split} \dot{\zeta} &= f(w,\zeta,e) & \partial_t \eta(t,x) = -\frac{1}{7} \partial_x \eta(t,x) \\ \dot{e} &= q(w,\zeta,e) - \sigma e + v & \eta(t,0) = e(t) + \eta(t,1) \end{split}$$

Step 2: we add a second stabilizing term for the η -dynamics designed as

$$v(t) = \mu \int_0^1 \left[\eta(t, x) - M(x) e(t) \right] M(x) \, dx$$

with $M:[0,1]\to\mathbb{R}$ defined as solution to the following two-boundary value problem

$$\begin{pmatrix} M'(x) = \sigma TM(x), \\ M(0) = M(1) + 1, \end{pmatrix} \qquad M(x) = \frac{\exp(\sigma Tx)}{1 - \exp(\sigma T)}$$

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Feedback design				

The feedback law

$$v(t) = \mu \int_0^1 \left[\eta(t, x) - M(x)e(t) \right] M(x) \, dx$$

is inspired by the forwarding-approach developed in the 90's for cascade of nonlinear systems

 \blacksquare The e-dynamics is fast and we aim at stabilizing the $\eta\text{-dynamics}$ to a manifold that depends on e

We build on a Lyapunov functional of the form

$$\int_0^1 (\eta(t,x) - M(x)e(t))^2 dx$$

in order to stabilize η on the manifold M(x)e(t)..

If e goes to zero we can hope that $\eta(t, x)$ goes to zero as well!

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Feedback design				

The feedback law

$$v(t) = \mu \int_0^1 \left[\eta(t, x) - M(x)e(t) \right] M(x) \, dx$$

is inspired by the forwarding-approach developed in the 90's for cascade of nonlinear systems

- \blacksquare The e-dynamics is fast and we aim at stabilizing the $\eta\text{-dynamics}$ to a manifold that depends on e
- We build on a Lyapunov functional of the form

$$\int_0^1 (\eta(t,x) - M(x)e(t))^2 dx$$

in order to stabilize η on the manifold M(x)e(t)..

If e goes to zero we can hope that $\eta(t, x)$ goes to zero as well!

Introduction 0000000000 Repetitive control

Finite dimensional realization 000000000

Numerical Example

Conclusions

Robust Asymptotic Regulation with Repetitive Control

$$\dot{\zeta} = f(w, \zeta, e) \qquad \qquad \partial_t \eta(t, x) = -\frac{1}{T} \partial_x \eta(t, x) \quad x \in [0, 1]$$
$$\dot{e} = q(w, \zeta, e) + u \qquad \qquad \eta(t, 1) = \eta(t, 0) + e(t)$$
$$u = -\sigma e + \mu \int_0^1 (\eta(t, x) - M(t, x)e) M(x) dx$$

Theorem (Repetitive Control)

Select $\sigma > 0$ large enough and $\mu > 0$. Then, for any initial conditions in $\mathbb{R}^n \times \mathbb{R} \times L^2(0,1)$ and $w \in C^2([0,T], \mathbb{R}^{n_w})$:

- Stability Requirement: $(\zeta(t), e(t), \eta(t))$ bounded in $\mathbb{R}^n \times \mathbb{R} \times L^2(0, 1)$
- **Steady-State: T** periodic $(\bar{\zeta}, \bar{e}, \bar{\eta})$ asymptotically stable
- Asymptotic Behavior: $\bar{e} = 0$
- **Robustness Requirement:** for any (f, q) "close" to the nominal one

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Sketch of the	e proof			

Step 1: show the existence of the internal-model property:

orall T-periodic function $q(t, \bar{z}(t), 0) \exists$ an initial condition $\bar{\eta}(x)$ such that

$$\begin{split} \partial_t \bar{\eta}(t,x) &= -\frac{1}{\bar{\tau}} \partial_x \bar{\eta}(t,x) & \forall (t,x) \in \mathbb{R}_+ \times [0,1] \\ \bar{\eta}(t,0) &= \bar{\eta}(t,1) & \forall t \in \mathbb{R}_+, \\ \bar{\eta}(0,x) &= \bar{\eta}(x) & \forall x \in [0,1], \\ q(t,\bar{z}(t),0) &= -\mu \int_0^1 \bar{\eta}(t,x) M(x) dx \end{split}$$

Step 2: Show the stability of $(\bar{z}(t), 0, \bar{\eta}(t, x))$ via the Lyapunov functional

$$V(z, e, \eta) = W(z, \bar{z}(t)) + e^2 + \mu \int_0^1 (\eta(t, x) - \bar{\eta}(t, x) - M(x)e(t))^2 dx$$

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Sketch of the	e proof			

- Step 1: show the existence of the internal-model property:
 - orall T-periodic function $q(t, \bar{z}(t), 0) \exists$ an initial condition $\bar{\eta}(x)$ such that

$$\begin{split} \partial_t \bar{\eta}(t,x) &= -\frac{1}{\bar{\tau}} \partial_x \bar{\eta}(t,x) & \forall (t,x) \in \mathbb{R}_+ \times [0,1], \\ \bar{\eta}(t,0) &= \bar{\eta}(t,1) & \forall t \in \mathbb{R}_+, \\ \bar{\eta}(0,x) &= \bar{\eta}(x) & \forall x \in [0,1], \\ q(t,\bar{z}(t),0) &= -\mu \int_0^1 \bar{\eta}(t,x) M(x) dx \end{split}$$

Step 2: Show the stability of $(\bar{z}(t), 0, \bar{\eta}(t, x))$ via the Lyapunov functional

$$V(z, e, \eta) = W(z, \bar{z}(t)) + e^2 + \mu \int_0^1 (\eta(t, x) - \bar{\eta}(t, x) - M(x)e(t))^2 dx$$

D. Astolfi

Introduction	Repetitive control	Finite dimensional realization	N
0000000000	0000000000000000000	00000000	0

Outline

1 Introduction

2 Repetitive control

3 Finite dimensional realization

4 Numerical Example

5 Conclusions

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization 00000000	Numerical Example 0000	Conclusions 0000
Some comments				

X Infinite-dimensional controllers are not implementable

V Using a delay in the feedback loop may generate instability in the presence of input-delays (e.g. physical actuator with some delay)

X The "realization" of the controller can achieve only practical regulation

Finite-dimensional continous-time realization						
Introduction 000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000		

Given a system of the form

$$\dot{\zeta} = f(w, \zeta, e)$$

 $\dot{e} = q(w, \zeta, e) + u$

we look for a controller of the form

$$\dot{\eta}_n = \Phi_n \eta_n + G_n e$$

 $u = -\sigma e + \mu M_n^\top (\eta_n - M_n e)$

with $\eta_n \in \mathbb{R}^n$ in which the matrices (Φ_n, G_n, M_n) to be chosen such that

 $\lim_{t\to\infty}|e(t)|\leq\varepsilon$

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
How to chose	e the realization?			

System

$$\dot{\eta}_n = \Phi_n \eta_n + G_n e$$

 $u = -\sigma e + \mu M_n^\top (\eta_n - M_n e)$

is an approximation of

$$\begin{split} &\frac{\partial}{\partial t}\eta(t,x) = \frac{1}{7}\frac{\partial}{\partial x}\eta(t,x) \\ &\eta(t,1) = \eta(t,0) + e(t) \\ &u(t) = -\sigma e(t) + \mu \int_0^1 M(x)(\eta(t,x) - M(x)e(t))dx \;, \end{split}$$

• Note that the objective is not to approximate as better as possible the PDE but to minimize ε for closed-loop solutions

$$\lim_{t\to\infty}|e(t)|\leq\varepsilon$$

D. Astolfi

000000000		00000000	0000	0000
An approxir	nation based on Foul	rier series		

We select the following approximation based on Fourier series:

$$\begin{split} \Phi_{2L+1} &= \mathrm{blkdiag}(0, S, \dots, LS), \qquad S = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}, \quad \omega = \frac{2\pi}{T} \\ G_{2L+1} &= \mathrm{col}(1, G, \dots, G) \qquad G = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{split}$$

that is:

$$\dot{\eta}_0 = 0$$

 $\dot{\eta}_k = kS\eta_k + Ge \quad k \in \{1, 2, \dots, L\}$

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Harmonic internal model property				

Consider the internal model unit

$$\dot{\eta} = S\eta + Ge, \qquad S = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}, \quad \omega = rac{2\pi}{7}, \quad G = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

and suppose that both (η, e) have a steady-state **T**-periodic trajectory (η_{ss}, e_{ss}) . They satisfy:

$$\eta_{ss}(t+T) = \exp(ST)\eta(t) + \int_t^{t+T} \exp(S(T+t-s))Ge(s)ds$$

Using exp(ST) = I it yields:

$$0 = \int_0^T \cos(\omega t) e_{ss}(t) = \int_0^T \sin(\omega t) e_{ss}(t)$$

The Fourier coefficient of e_{ss} associated to the harmonic of S is zero!

Introduction Rep	etitive control	Finite dimensional realization	Numerical Example	Conclusions
0000000000 000	0000000000000000		0000	0000
Harmonic intern	al model property			

Consider the internal model unit

$$\dot{\eta} = S\eta + Ge, \qquad S = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}, \quad \omega = rac{2\pi}{7}, \quad G = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

and suppose that both (η, e) have a steady-state T-periodic trajectory (η_{ss}, e_{ss}) . They satisfy:

$$\eta_{ss}(t+T) = \exp(ST)\eta(t) + \int_t^{t+T} \exp(S(T+t-s))Ge(s)ds$$

Using exp(ST) = I it yields:

$$0 = \int_0^T \cos(\omega t) e_{ss}(t) = \int_0^T \sin(\omega t) e_{ss}(t)$$

The Fourier coefficient of e_{ss} associated to the harmonic of S is zero!

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Harmonic int	ernal model property			

Consider the internal model unit

$$\dot{\eta} = S\eta + Ge, \qquad S = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}, \quad \omega = rac{2\pi}{7}, \quad G = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

and suppose that both (η, e) have a steady-state **T**-periodic trajectory (η_{ss}, e_{ss}) . They satisfy:

$$\eta_{ss}(t+T) = \exp(ST)\eta(t) + \int_t^{t+T} \exp(S(T+t-s))Ge(s)ds$$

Using exp(ST) = I it yields:

$$0 = \int_0^T \cos(\omega t) e_{ss}(t) = \int_0^T \sin(\omega t) e_{ss}(t)$$

The Fourier coefficient of e_{ss} associated to the harmonic of S is zero!

Introduction 0000000000	Repetitive control 000000000000000000000000000000000000	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Towards Ha	rmonic Regulation			

• Suppose e_{ss} is C^1 ... then it can be expressed as a Fourier series

$$e_{ss}(t) = c_0 + \sum_{k=1}^{\infty} c_k^s \sin(k\omega t) + c_k^c \cos(k\omega t)$$

and we now that $c_1^s=c_1^c=0$

If enough Fourier coefficients are zero, we can reduce the L^2 norm of e_{ss} ...

Parseval's theorem:
$$\frac{1}{T} \int_0^T e_{ss}^2(t) dt = \frac{c_0^2}{2} + \sum_{k=1}^\infty ((c_k^s)^2 + (c_k^c)^2)$$

 Harmonic Regulation Objective: we try to nullify the Fourier coefficients of the steady-state error output

Introduction 0000000000	Repetitive control	Finite dimensional realization 0000000000	Numerical Example 0000	Conclusions 0000
Harmonic I	Regulation			
	$\dot{\zeta}=f(w,\zeta,e)$	$\dot{\eta}_0=e$		
	$\dot{e} = q(w,\zeta,e) + u$	$\dot{\eta}_k = k S \eta_k + G e$ k	$\in \{1,2,\ldots,\textit{\textbf{L}}\}$	
	$-\sigma M_k = kSM_k + G$	$u = -\sigma e + \mu \sum_{k=0}^{L} N$	$M_k^ op (\eta_k - M_k e)$	

Select σ large enough and $\mu > 0$. For any L > 0 all trajectories starting inside $Z \times E \times \Xi$ with any $w \in C^2([0, T], W)$ satisfy

- **Stability Requirement:** $(\zeta(t), e(t), \eta(t))$ bounded for all $t \ge 0$
- Steady-State: T periodic (ζ^o_i, e^o_i, η^o_i) asymptotically stable
- Harmonic Regulation Requirement: the Fourier coefficients of e_L° at $k\frac{2\pi}{T}$, k = 0, 1, ..., L, are zero
- Practical Regulation: for any $\mathbf{b} > 0$ there exists $\mathbf{L} > 0$ so that $\int_0^T |\mathbf{e}_{\mathbf{L}}^{\circ}(t)|^2 dt \leq \mathbf{b}$
- Asymptotic Behavior: $\lim_{L\to\infty} \limsup_{t\to\infty} |e_L^{\circ}(t)| = 0$
- **Robustness Requirement**: for any f, q C¹ "close enough" to a nominal one

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Harmonic R	legulation			
	$\dot{\zeta} = f(w,\zeta,e)$	$\dot{\eta}_0=e$		
	$\dot{e} = q(w,\zeta,e) + u$	$\dot{\eta}_k = kS\eta_k + Ge$	$k \in \{1, 2, \ldots, L\}$	

$$\dot{e} = q(w, \zeta, e) + u \qquad \dot{\eta}_k = kS\eta_k + Ge \quad k \in \{1, 2, \dots, L\}$$
$$-\sigma M_k = kSM_k + G \qquad u = -\sigma e + \mu \sum_{k=0}^{L} M_k^{\top}(\eta_k - M_k e)$$

Select σ large enough and $\mu > 0$. For any L > 0 all trajectories starting inside $Z \times E \times \Xi$ with any $w \in C^2([0, T], W)$ satisfy

- Stability Requirement: $(\zeta(t), e(t), \eta(t))$ bounded for all $t \ge 0$
- Steady-State: T periodic (ζ^ο_L, e^ο_L, η^ο_L) asymptotically stable
- Harmonic Regulation Requirement: the Fourier coefficients of e_L° at $k\frac{2\pi}{T}$, k = 0, 1, ..., L, are zero
- Practical Regulation: for any $\boldsymbol{b} > 0$ there exists $\boldsymbol{L} > 0$ so that $\int_0^T |e_{\boldsymbol{L}}^{\circ}(t)|^2 dt \leq \boldsymbol{b}$
- Asymptotic Behavior: $\lim_{L\to\infty} \limsup_{t\to\infty} |e_L^{\circ}(t)| = 0$
- **Robustness Requirement**: for any f, q C¹ "close enough" to a nominal one

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Harmonic R	Regulation			
	$\dot{\zeta} = f(w,\zeta,e)$	$\dot{\eta}_0=e$		
	$\dot{e} = q(w,\zeta,e) + u$	$\dot{\eta}_k = kS\eta_k + Ge$	$k \in \{1, 2, \dots, L\}$	

$$\dot{\varphi} = q(w, \zeta, e) \qquad \eta_0 = e$$

$$\dot{e} = q(w, \zeta, e) + u \qquad \dot{\eta}_k = kS\eta_k + Ge \quad k \in \{1, 2, \dots, L\}$$

$$-\sigma M_k = kSM_k + G \qquad u = -\sigma e + \mu \sum_{k=0}^{L} M_k^{\top}(\eta_k - M_k e)$$

Select σ large enough and $\mu > 0$. For any L > 0 all trajectories starting inside $Z \times E \times \Xi$ with any $w \in C^2([0, T], W)$ satisfy

- Stability Requirement: $(\zeta(t), e(t), \eta(t))$ bounded for all $t \ge 0$
- Steady-State: **T** periodic $(\zeta_{I}^{\circ}, e_{I}^{\circ}, \eta_{I}^{\circ})$ asymptotically stable
- Harmonic Regulation Requirement: the Fourier coefficients of e_L° at $k\frac{2\pi}{T}$, k = 0, 1, ..., L, are zero
- Practical Regulation: for any $\mathbf{b} > 0$ there exists $\mathbf{L} > 0$ so that $\int_0^T |\mathbf{e}_{\mathbf{L}}^{\circ}(t)|^2 dt \leq \mathbf{b}$

• Asymptotic Behavior: $\lim_{L\to\infty} \limsup_{t\to\infty} |e^{\circ}_{L}(t)| = 0$

Robustness Requirement: for any f, q C¹ "close enough" to a nominal one

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions 0000
Harmonic R	legulation			
	$\dot{\zeta} = f(w,\zeta,e)$	$\dot{\eta}_0=e$		
	$\dot{e} = q(w,\zeta,e) + u$	$\dot{\eta}_k = k S \eta_k + G e$	$k \in \{1, 2, \dots, L\}$	

$$\dot{e} = q(w,\zeta,e) + u \qquad \dot{\eta}_k = kS\eta_k + Ge \quad k \in \{1,2,\ldots,L\}$$
$$-\sigma M_k = kSM_k + G \qquad u = -\sigma e + \mu \sum_{k=0}^{L} M_k^{\top}(\eta_k - M_k e)$$

Select σ large enough and $\mu > 0$. For any L > 0 all trajectories starting inside $Z \times E \times \Xi$ with any $w \in C^2([0, T], W)$ satisfy

- Stability Requirement: $(\zeta(t), e(t), \eta(t))$ bounded for all $t \ge 0$
- Steady-State: **T** periodic $(\zeta_{I}^{\circ}, e_{I}^{\circ}, \eta_{I}^{\circ})$ asymptotically stable
- Harmonic Regulation Requirement: the Fourier coefficients of e_L° at $k\frac{2\pi}{T}$, k = 0, 1, ..., L, are zero
- Practical Regulation: for any $\mathbf{b} > 0$ there exists $\mathbf{L} > 0$ so that $\int_0^T |\mathbf{e}_{\mathbf{L}}^{\circ}(t)|^2 dt \leq \mathbf{b}$
- Asymptotic Behavior: $\lim_{L\to\infty} \limsup_{t\to\infty} |e_L^{\circ}(t)| = 0$
- **Robustness Requirement:** for any $f, q C^1$ "close enough" to a nominal one

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization 00000000●	Numerical Example 0000	Conclusions 0000
Some comn	nents			

- \blacksquare First we fix σ to make the closed-loop dynamics $\delta {\rm ISS}$ on some given compact set $Z\times E$
- All the values (domain of attraction, size of w, gain σ) are then uniform in L (e.g. they don't depend on L)
- We don't need to modify our pre-stabilizer when we add oscillators
- The L^2 norm of e_L° satisfies

$$\int_0^{\boldsymbol{\mathsf{T}}} |\boldsymbol{e}_{\boldsymbol{\mathsf{L}}}^{\circ}(t)|^2 dt \leq \frac{\gamma}{\boldsymbol{\mathsf{L}}}$$

with $\gamma > {\rm 0}$ independent of ${\it L}$

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example ●○○○	Conclusions 0000
Outline				

1 Introduction

2 Repetitive control

3 Finite dimensional realization

4 Numerical Example

5 Conclusions

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example ○●○○	Conclusions 0000
Numerical S	Simulation			

$$\dot{z} = -z + z^2 - z^3 + e + \delta(t) \qquad \qquad \delta(t) = 2 \exp(\sin(2t)) + 10 \sin(t + 0.1)$$

$$\dot{e} = \arctan(z) + e + u + \rho(t) \qquad \qquad \rho(t) = 0.5 + 5 \sin(t - 0.3)^3 + \cos(2t)$$

✓ Minimum-phase assumption verified: 0-GES when e = 0, $\delta(t) = 0$

✓ δ, ρ are T = 1 periodic and smooth

Introduction	Repetitive control	Finite dimensional realization	Numerical Example	Conclusions
0000000000	00000000000000000000		○○○●	0000
Numerical Si	imulation			

$$\dot{z} = -z + z^2 - z^3 + e + \delta(t) \qquad \qquad \delta(t) = 2 \exp(\sin(2t)) + 10 \sin(t + 0.1)$$

$$\dot{e} = \arctan(z) + e + u + \rho(t) \qquad \qquad \rho(t) = 0.5 + 5 \sin(t - 0.3)^3 + \cos(2t)$$

$$u = -\sigma e + \sigma \sum_{k=0}^{L} M_k^{\top}(\eta_k - M_k e), \qquad \sigma = 3, \qquad L < \infty$$

L (number oscillators)	$ \limsup_{t o \infty} e(t) $
0	2.8613
1	0.7240
2	0.3420
3	0.0566
5	0.0210
10	0.0024
15	0.0004

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions ●○○○
Outline				

1 Introduction

- 2 Repetitive control
- 3 Finite dimensional realization
- 4 Numerical Example

5 Conclusions

D. Astolfi

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions ○●○○
Conclusions	and Takeaway mess	ages:		

- We investigated the problem of robust asymptotic output regulation for periodic signals (references/disturbances)
- We proposed an infinite-dimensional regulator (repetitive-controller) solving the problem
- The realization of such a large-scale controller has to be done according to the properties that we want to achieve on the regulated output
- Using the Fourier basis provides better results than other basis (e.g. Tau-Legendre model/ Padé approximation or Chebyshev model)
- Comparison with low-pass filter based implementation or pure discrete-time realization?

Introduction 0000000000	Repetitive control 0000000000000000000	Finite dimensional realization	Numerical Example 0000	Conclusions ○●○○
Conclusions	and Takeaway mess	ages:		

- We investigated the problem of robust asymptotic output regulation for periodic signals (references/disturbances)
- We proposed an infinite-dimensional regulator (repetitive-controller) solving the problem
- The realization of such a large-scale controller has to be done according to the properties that we want to achieve on the regulated output
- Using the Fourier basis provides better results than other basis (e.g. Tau-Legendre model/ Padé approximation or Chebyshev model)
- Comparison with low-pass filter based implementation or pure discrete-time realization?

Introduction 0000000000	Repetitive control	Finite dimensional realization	Numerical Example 0000	Conclusions ○O●O
Future pers	pectives			

 Other infinite-dimensional controllers for output regulation (different properties of the disturbances/references)

Incremental stabilization techniques for interconnected (nonlinear) ODEs-PDEs

Model reduction of PDE regulators with regulation objectives

000000000000000000000000000000000000000	00000000000000000000000000000000000000	OOOOOOOOO	0000	
Some Refe	rences			
∎ Baj rea	odek Astolii, 'Compari lizations based on the	son between different tau method of a nonli	continuous-time near repetitive	
001	, obo 2020			

Astolfi, Praly, Marconi, ''Nonlinear Robust Periodic Output Regulation of Minimum Phase Systems'', MCSS 2022

Astolfi, Praly, Marconi, ''Harmonic Internal Models for Structurally Robust Periodic Output Regulation'', S&CL 2022

Astolfi, Marx, van de Wouw, ''Repetitive control design based on forwarding for nonlinear minimum-phase systems'', Automatica 2021