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Introduction to Output Regulation

Consider the following plant  ż = f (z,w , u)
e = h(z,w)
y = r(z,w)

Robust output regulation: design{
η̇ = φ(η, e, y)
u = β(η, e, y)

such that robustly with respect to model uncertainties f , h:

i) bounded trajectories
ii) asymptotic regulation limt→∞ e(t) = 0

Standing assumption: we know a model generator for w

ẇ = s(w)

which is “neutrally/critically stable”
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An Illustration

Many applications can be put in this context:
Tracking
Disturbance rejection

Example: helicopter landing on a boat

Plant

ż = f (z,w , u)
e = h(z,w)

Exosystem
ẇ = s(w)

Regulator

eu

w

Regulation goals:
• e → 0
• robustly

D. Astolfi
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The conceptual formulation

Output regulation: stabilization to a non-trivial unknown manifold

regulator equations:

{
∂π(w)
∂w

s(w) = f (π(w),w , c(w))
0 = h(π(w),w)

π(w): the steady-state manifold on which e = 0

c(w): the “friend”, i.e. the steady-state input which makes π invariant

Peculiarity: characterization of the class of all possible exogenous inputs
(disturbances/ references) as the set of all possible solutions of a fixed known
differential equation

The exosystem-generated disturbances/references is a trade-off between:

worst case disturbance (H∞ control): too pessimistic

exact knowledge of w (inversion-based control): too optimistic

D. Astolfi
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The solution in the linear case

Plant

ż = Az + Bu + Pw
e = Cz + Qw
y = Dz + Rw

u

Exosystem

ẇ = Sw

w

e

y

Internal Model
Unit

η̇ = Φη + Γe

η

Stabilizer Unit

ξ̇ = Fξ +My + Ne
u = Kξ + Lη

1) Design an Internal Model Unit containing a copy of the exosystem: σ(Φ) = σ(S)

2) Design a Stabilizer Unit stabilizing the extended plant

3) Magically, steady-state solutions satisfy e = 0 even with model parameter
uncertainties
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The internal model principle for linear systems

The internal model principle (Francis and Wonham 1976)

The robust output regulation problem is solved IFF the regulator “incorporates a copy
of the dynamic structure of the disturbance and reference signals”.

Examples:

Integral action
1

s
to track/reject constant signals w(t) = w0

Linear oscillator
1

s2 + ω2
to track/reject sinusoidal signals w(t) = a sin(ωt + φ)

Remarks:

This principle was proved for finite-dimensional linear systems and extended
afterwards to infinite-dimensional linear operators

[Paunonen, Pohjolainen, SIAM 2010]

Robustness is referred to parametric uncertainties

For (finite-dimensional) nonlinear systems, the theory is still incomplete and
things are more complicated!

D. Astolfi
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Interpretation of the internal-model principle

The eigenvalues of the internal-model unit becomes zeros in the transfer function:
zero-blocking effect

e(s) = H(s)w(s), H(s) =
s(s2 + ω2)(· · · )

sd + a1sd−1 + · · ·+ sad−1 + ad
,

Since the closed-loop system is stable with w = 0, the closed-loop system has
bounded trajectories with w ̸= 0: analysis of steady-state trajectories of

η̇ = e, η̇ =

(
0 ω
−ω 0

)
η +

(
0
1

)
e

implies e = 0 based on resonance arguments

D. Astolfi
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A simple nonlinear example

Consider a system
ż = −z3 − z + u

e = z − r(t)

and suppose that the reference is given by

r(t) = sin(ωωωt)

Then the steady-state pair π(t), c(t) is computed as

π(t) = sin(ωωωt)

c(t) = cos(ωωωt) + 7
4
sin(ωωωt)− 1

4
sin(3ωωωt)

The cubic term z3 adds a high-order harmonic in c(t)!!!

D. Astolfi
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Conceptual difficulties

Nonlinearities introduces high-order deformations that may be not present in the
exosystem

Nonlinearities may be introduced by model uncertainties and/or by the Stabilizer
Unit

✗ Chicken-egg dilemma: first design Stabilizer Unit and then Internal Model Unit or
vice-versa?

✗ Robustness to model uncertainties in which sense?

D. Astolfi
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Some Milestones

Linear output regulation and internal model principle

Francis, Wonham (1976), The internal model principle of control theory,
Automatica

Davison (1976), The robust control of a servomechanism problem for linear
time-invariant multivariable systems, IEEE TAC

Paunonen, Pohjolainen (2010), Internal model theory for distributed parameter
systems, SICON

Necessary conditions, regulator equations and design of asymptotic regulators

Byrnes, Isidori (2003), Limit Sets, Zero Dynamics, and Internal Models in the
Problem of Nonlinear Output Regulation, IEEE TAC

Byrnes, Isidori (2004), Nonlinear internal models for output regulation, IEEE TAC

Marconi, Praly, Isidori (2007), Output stabilization via nonlinear Luenberger
observers, SICON
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The context of periodic signals

Let’s focus on signals w which are TTT -periodic, with TTT known

Our regulation problem becomes:{
ż = f (z,w , u)
e = h(z,w)

Goal:

Find a dynamical regulator such that, for all TTT -periodic signals w , closed-loop
trajectories are bounded and limt→∞ e(t) = 0.

Main idea:

The regulator must be able to generate any possible TTT -periodic signal at steady-state

D. Astolfi
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Repetitive control: some background

Introduced by Hara, Yamamoto, Omata, Nakano in the 1988 for linear systems

It consists of introducing the transfer function

R(s) =
exp(−TTTs)

1− exp(−TTTs)

in the closed-loop system

R(s) is a universal generator of TTT -periodic signals

D. Astolfi
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Repetitive Control: some comments

✗ Repetitive control schemes have been developed mostly for linear systems: the
proof is based on transfer function analysis (Nyquist..)

✗ It is shown to work only for systems with zero relative degree between input and
regulated output

• How to analyse the interconnection with a nonlinear system ?

Some bibliography:

Hara, Yamamoto, Omata, Nakano (1988), Repetitive control system: A new type
servo system for periodic exogenous signals, IEEE TAC

Weiss, Häfele (1999), Repetitive control of MIMO systems using H∞ design,
Automatica

Verrelli, Tomei (2023), Adaptive learning control for nonlinear systems: A single
learning estimation scheme is enough, Automatica.

D. Astolfi
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Repetitive Control as a transport equation

A delay
v(t) = e(t −TTT )

can be equivalently expressed with a transport equation of the form:

∂tη(t, x) =− 1
TTT
∂xη(t, x) ∀ (t, x) ∈ R+ × [0, 1],

η(t, 0) = e(t) ∀ t ∈ R+,

η(0, x) = 0 ∀ x ∈ [0, 1],

v(t) = η(t, 1) ∀ t ∈ R+.

Indeed, the general solution to such a hyperbolic PDE is given by

η(t + (x − x ′)TTT , x) = η(t, x ′)

from which we obtain

v(t +TTT ) = η(t +TTT , 1) = η(t, 0) = e(t)

D. Astolfi

Repetitive control for nonlinear systems 15 / 42



Introduction Repetitive control Finite dimensional realization Numerical Example Conclusions

Repetitive Control as a transport equation

A delay
v(t) = e(t −TTT )

can be equivalently expressed with a transport equation of the form:

∂tη(t, x) =− 1
TTT
∂xη(t, x) ∀ (t, x) ∈ R+ × [0, 1],

η(t, 0) = e(t) ∀ t ∈ R+,

η(0, x) = 0 ∀ x ∈ [0, 1],

v(t) = η(t, 1) ∀ t ∈ R+.

Indeed, the general solution to such a hyperbolic PDE is given by

η(t + (x − x ′)TTT , x) = η(t, x ′)

from which we obtain

v(t +TTT ) = η(t +TTT , 1) = η(t, 0) = e(t)

D. Astolfi

Repetitive control for nonlinear systems 15 / 42



Introduction Repetitive control Finite dimensional realization Numerical Example Conclusions

Repetitive Control: equivalent representations

Transfer function RC

+ exp(−TTTs)
e(t) y(t)

Transport equation RC

+ ∂tη(t, x) = − 1
TTT
∂xη(t, x)

e(t) η(t, 0) η(t, 1)

D. Astolfi
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The context of periodic signals - rephrased

Our regulation problem becomes:{
ż = f (z,w , u)
e = h(z,w)

where w is generated as

∂tw(t, x) + 1
TTT
∂xw(t, x) = 0, (t, x) ∈ R≥0 × [0, 1],

w(t, 0) = w(t, 1),

w(0, x) = w0(x).

Internal model property: we need to incorporate such a PDE in the control
scheme

D. Astolfi
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The overall-scheme

Plant

ż = f (z,w , u)
e = h(z,w)

u

Exosystem

TTTwt + wx = 0
w(t, 0) = w(t, 1)

w

e

y

Internal Model
Unit

ηt = ...

η

Stabilizer Unit

u = ...

Open problem:

Design of the internal model unit

Design of the stabilizer

D. Astolfi
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Design of the internal-model unit

We need an interconnection term

Boundary interconnection:

∂tη(t, x) = − 1
TTT
∂xη(t, x) ∀ (t, x) ∈ R+ × [0, 1],

η(t, 0) = η(t, 1)+ γe(t) ∀ t ∈ R+,

η(0, x) = 0 ∀ x ∈ [0, 1],

Distributed interconnection:

∂tη(t, x) = − 1
TTT
∂xη(t, x)+ γ(x)e(t) ∀ (t, x) ∈ R+ × [0, 1],

η(t, 0) = η(t, 1) ∀ t ∈ R+,

η(0, x) = 0 ∀ x ∈ [0, 1],

Both designs are possible

D. Astolfi
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Design of the stabilizer unit ???

The resulting extended system reads

ż = f (w , z, u)

e = h(w , z)

∂tη(t, x) = − 1
TTT
∂xη(t, x) ∀ (t, x) ∈ R+ × [0, 1],

η(t, 0) = η(t, 1) + e(t) ∀ t ∈ R+,

η(0, x) = 0 ∀ x ∈ [0, 1],

There exists a feedback u = α(z, e, η) such that the closed-loop system is..??

Which property do we need?

D. Astolfi
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Transient and asymptotic behaviours

When w = 0 for all t ≥ 0 we would like the closed-loop system origin to be
asymptotically stable

When w ̸= 0 and w(t +TTT ) = w(t) we would like the closed-loop trajectories to
converge to a TTT periodic solution

D. Astolfi

Repetitive control for nonlinear systems 21 / 42



Introduction Repetitive control Finite dimensional realization Numerical Example Conclusions

Transient and asymptotic behaviours

When w = 0 for all t ≥ 0 we would like the closed-loop system origin to be
asymptotically stable

When w ̸= 0 and w(t +TTT ) = w(t) we would like the closed-loop trajectories to
converge to a TTT periodic solution

Resonance arguments:

∂tη(t, x) = − 1
TTT
∂xη(t, x) ∀ (t, x) ∈ R+ × [0, 1],

η(t, 0) = η(t, 1) + e(t) ∀ t ∈ R+,

if both η and e are TTT -periodic and bounded, then e(t) = 0 for all t

Equivalently, the corresponding solution η̄ at any instants t, t +TTT , . . . , t + NTTT is
given by

η̄(k + 1) = η̄(k) + ē(k)

with ē(k) = ē0 for all k, which implies ē0 = 0.
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Transient and asymptotic behaviours

When w = 0 for all t ≥ 0 we would like the closed-loop system origin to be
asymptotically stable

When w ̸= 0 and w(t +TTT ) = w(t) we would like the closed-loop trajectories to
converge to a TTT periodic solution

In finite dimensional literature the aformentioned property is also referred to as
entrainment to periodic inputs
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Entrainment to periodic inputs property: a sufficient condition

Incremental input-to-state stability (δISS)

A system
ż = f (w , z)

is δISS with respect to w if there exist β ∈ KL and γ ∈ K such that for any two initial
conditions za, zb and pair of inputs wa,wb then the corresponding solutions satisfy

|Z(t, xa)− Z(t, xb)| ≤ β(t, |za − zb|) + sup
s∈[0,t]

γ(|wa(s)− wb(s)|∞)

δISS =⇒ Entrainment to periodic inputs

Suppose the system
ż = f (w , z)

is δISS w.r.t. w . Then, it has the Entrainment to periodic inputs property, namely, for
any T -periodic w , then z has an asymptotically stable T -periodic trajectory.

D. Astolfi
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Design of the stabilizer unit

The resulting extended system reads

ż = f (w , z, u)

e = h(w , z)

∂tη(t, x) = − 1
TTT
∂xη(t, x) + γ(x)e(t) ∀ (t, x) ∈ R+ × [0, 1],

η(t, 0) = η(t, 1) ∀ t ∈ R+,

η(0, x) = 0 ∀ x ∈ [0, 1],

How to design a feedback to stabilize the previous system to obtain the desired
property?

Few design techniques for nonlinear ODE - PDE interconnections..

D. Astolfi
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ż = f (w , z, u)

e = h(w , z)

∂tη(t, x) = − 1
TTT
∂xη(t, x) + γ(x)e(t) ∀ (t, x) ∈ R+ × [0, 1],

η(t, 0) = η(t, 1) ∀ t ∈ R+,

η(0, x) = 0 ∀ x ∈ [0, 1],

How to design a feedback to stabilize the previous system to obtain the desired
property?

Few design techniques for nonlinear ODE - PDE interconnections..

D. Astolfi

Repetitive control for nonlinear systems 23 / 42



Introduction Repetitive control Finite dimensional realization Numerical Example Conclusions

Minimum-phase systems

We focus on systems in the following form

ζ̇ = f (w , ζ, e)

ė = q(w , ζ, e) + u

with z = (ζ, e) ∈ Rn−1 × R and satisfying the following:

ASS 1: Minimum phase: the system ζ̇ = f (w , ζ, e) is δISS with respect to w and e

ASS 2: Lipschitzness: the function q is globally Lipschitz

Step 1: Under the previous assumptions, the feedback law

u = −σσσe + v , σσσ > 0

makes the (ζ, e) dynamics δISS with respect to w and v

D. Astolfi
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Feedback design

We have an extended system

ζ̇ = f (w , ζ, e)

ė = q(w , ζ, e)− σσσe + v

∂tη(t, x) = − 1
TTT
∂xη(t, x)

η(t, 0) = e(t) + η(t, 1)

Step 2: we add a second stabilizing term for the η-dynamics designed as

v(t) = µ

∫ 1

0

[
η(t, x)−M(x)e(t)

]
M(x) dx

with M : [0, 1] → R defined as solution to the following two-boundary value
problem {

M′(x) = σσσTM(x) ,

M(0) = M(1) + 1 ,
M(x) =

exp(σσσTTTx)

1− exp(σσσTTT )
.

D. Astolfi
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Feedback design

The feedback law

v(t) = µ

∫ 1

0

[
η(t, x)−M(x)e(t)

]
M(x) dx

is inspired by the forwarding-approach developed in the 90’s for cascade of
nonlinear systems

The e-dynamics is fast and we aim at stabilizing the η-dynamics to a manifold
that depends on e

We build on a Lyapunov functional of the form∫ 1

0
(η(t, x)−M(x)e(t))2dx

in order to stabilize η on the manifold M(x)e(t)..

If e goes to zero we can hope that η(t, x) goes to zero as well!

D. Astolfi
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is inspired by the forwarding-approach developed in the 90’s for cascade of
nonlinear systems

The e-dynamics is fast and we aim at stabilizing the η-dynamics to a manifold
that depends on e

We build on a Lyapunov functional of the form∫ 1

0
(η(t, x)−M(x)e(t))2dx
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Robust Asymptotic Regulation with Repetitive Control

ζ̇ = f (w , ζ, e) ∂tη(t, x) = − 1
T
∂xη(t, x) x ∈ [0, 1]

ė = q(w , ζ, e) + u η(t, 1) = η(t, 0) + e(t)

u = −σσσe + µ

∫ 1

0
(η(t, x)−M(t, x)e)M(x)dx

Theorem (Repetitive Control)

Select σσσ > 0 large enough and µ > 0. Then, for any initial conditions in
Rn × R× L2(0, 1) and w ∈ C2([0,T ],Rnw ):

Stability Requirement: (ζ(t), e(t), η(t)) bounded in Rn × R× L2(0, 1)

Steady-State: TTT periodic (ζ̄, ē, η̄) asymptotically stable

Asymptotic Behavior: ē = 0

Robustness Requirement: for any (f , q) “close” to the nominal one
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Sketch of the proof

Step 1: show the existence of the internal-model property:

∀T -periodic function q(t, z̄(t), 0) ∃ an initial condition η̄(x) such that

∂t η̄(t, x) = − 1
T
∂x η̄(t, x) ∀ (t, x) ∈ R+ × [0, 1],

η̄(t, 0) = η̄(t, 1) ∀ t ∈ R+,

η̄(0, x) = η̄(x) ∀ x ∈ [0, 1],

q(t, z̄(t), 0) = −µ

∫ 1

0
η̄(t, x)M(x)dx

Step 2: Show the stability of (z̄(t), 0, η̄(t, x)) via the Lyapunov functional

V (z, e, η) = W (z, z̄(t)) + e2 + µ

∫ 1

0
(η(t, x)− η̄(t, x)−M(x)e(t))2dx
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Some comments

✗ Infinite-dimensional controllers are not implementable

✗ Using a delay in the feedback loop may generate instability in the presence of
input-delays (e.g. physical actuator with some delay)

✗ The “realization” of the controller can achieve only practical regulation
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Finite-dimensional continous-time realization

Given a system of the form
ζ̇ = f (w , ζ, e)

ė = q(w , ζ, e) + u

we look for a controller of the form

η̇n = Φnηn + Gne

u = −σe + µM⊤
n (ηn −Mne)

with ηn ∈ Rn in which the matrices (Φn,Gn,Mn) to be chosen such that

lim
t→∞

|e(t)| ≤ ε
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How to chose the realization?

System
η̇n = Φnηn + Gne

u = −σe + µM⊤
n (ηn −Mne)

is an approximation of

∂
∂t

η(t, x) = 1
T

∂
∂x

η(t, x)

η(t, 1) = η(t, 0) + e(t)

u(t) = −σe(t) + µ

∫ 1

0
M(x)(η(t, x)−M(x)e(t))dx ,

Note that the objective is not to approximate as better as possible the PDE but
to minimize ε for closed-loop solutions

lim
t→∞

|e(t)| ≤ ε
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An approximation based on Fourier series

We select the following approximation based on Fourier series:

Φ2LLL+1 = blkdiag(0, S, . . . ,LLLS), S =

(
0 ω
−ω 0

)
, ω =

2π

TTT

G2LLL+1 = col(1,G , . . . ,G) G =

(
0
1

)
that is:

η̇0 = 0

η̇k = kSηk + Ge k ∈ {1, 2, . . . ,LLL}

D. Astolfi

Repetitive control for nonlinear systems 32 / 42



Introduction Repetitive control Finite dimensional realization Numerical Example Conclusions

Harmonic internal model property

Consider the internal model unit

η̇ = Sη + Ge, S =

(
0 ω
−ω 0

)
, ω =

2π

TTT
, G =

(
0
1

)
,

and suppose that both (η, e) have a steady-state TTT -periodic trajectory (ηss , ess).

They satisfy:

ηss(t + T ) = exp(ST )η(t) +

∫ t+T

t
exp(S(T + t − s))Ge(s)ds

Using exp(ST ) = I it yields:

0 =

∫ T

0
cos(ωt)ess(t) =

∫ T

0
sin(ωt)ess(t)

The Fourier coefficient of ess associated to the harmonic of S is zero!
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Towards Harmonic Regulation

Suppose ess is C1.. then it can be expressed as a Fourier series

ess(t) = c0 +
∞∑
k=1

csk sin(kωt) + cck cos(kωt)

and we now that cs1 = cc1 = 0

If enough Fourier coefficients are zero, we can reduce the L2 norm of ess ..

Parseval’s theorem:
1

TTT

∫ TTT

0
e2ss(t)dt =

c20
2

+
∞∑
k=1

(
(csk )

2 + (cck )
2
)

Harmonic Regulation Objective: we try to nullify the Fourier coefficients of the
steady-state error output
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Harmonic Regulation

ζ̇ = f (w , ζ, e) η̇0 = e

ė = q(w , ζ, e) + u η̇k = kSηk + Ge k ∈ {1, 2, . . . ,LLL}

−σσσMk = kSMk + G u = −σσσe + µ
LLL∑

k=0

M⊤
k (ηk −Mke)

Theorem (Uniform approximate regulation and asymptotic regulation)

Select σσσ large enough and µ > 0. For any LLL > 0 all trajectories starting inside
Z × E × Ξ with any w ∈ C2([0,T ],W ) satisfy

Stability Requirement: (ζ(t), e(t), η(t)) bounded for all t ≥ 0

Steady-State: TTT periodic (ζ◦LLL , e
◦
LLL , η

◦
LLL ) asymptotically stable

Harmonic Regulation Requirement: the Fourier coefficients of e◦LLL at k 2π
TTT
,

k = 0, 1, . . . ,LLL, are zero

Practical Regulation: for any bbb > 0 there exists LLL > 0 so that
∫ T
0 |e◦LLL (t)|

2dt ≤ bbb

Asymptotic Behavior: lim
LLL→∞

lim sup
t→∞

|e◦LLL (t)| = 0

Robustness Requirement: for any f , q C1 “close enough” to a nominal one
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Some comments

First we fix σσσ to make the closed-loop dynamics δISS on some given compact set
Z × E

All the values (domain of attraction, size of w , gain σσσ) are then uniform in LLL
(e.g. they don’t depend on LLL)

We don’t need to modify our pre-stabilizer when we add oscillators

The L2 norm of eLLL
◦ satisfies ∫ TTT

0
|e◦LLL (t)|

2dt ≤
γ

LLL

with γ > 0 independent of LLL
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Numerical Simulation

ż = −z + z2 − z3 + e + δ(t) δ(t) = 2 exp(sin(2t)) + 10 sin(t + 0.1)

ė = arctan(z) + e + u + ρ(t) ρ(t) = 0.5 + 5 sin(t − 0.3)3 + cos(2t)

✓ Minimum-phase assumption verified: 0-GES when e = 0, δ(t) = 0

✓ δ, ρ are TTT = 1 periodic and smooth
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Numerical Simulation

ż = −z + z2 − z3 + e + δ(t) δ(t) = 2 exp(sin(2t)) + 10 sin(t + 0.1)

ė = arctan(z) + e + u + ρ(t) ρ(t) = 0.5 + 5 sin(t − 0.3)3 + cos(2t)

u = −σσσe + σσσ
LLL∑

k=0

M⊤
k (ηk −Mke), σσσ = 3, LLL < ∞

• LLL = 1 (num-
ber oscillators)

• LLL = 2 (num-
ber oscillators)

• LLL = 3 (num-
ber oscillators)
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Numerical Simulation

ż = −z + z2 − z3 + e + δ(t) δ(t) = 2 exp(sin(2t)) + 10 sin(t + 0.1)

ė = arctan(z) + e + u + ρ(t) ρ(t) = 0.5 + 5 sin(t − 0.3)3 + cos(2t)

u = −σσσe + σσσ
LLL∑

k=0

M⊤
k (ηk −Mke), σσσ = 3, LLL < ∞

LLL (number oscillators) lim supt→∞ |e(t)|

0 2.8613

1 0.7240

2 0.3420

3 0.0566

5 0.0210

10 0.0024

15 0.0004
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Conclusions and Takeaway messages:

• We investigated the problem of robust asymptotic output regulation for periodic
signals (references/disturbances)

• We proposed an infinite-dimensional regulator (repetitive-controller) solving the
problem

• The realization of such a large-scale controller has to be done according to the
properties that we want to achieve on the regulated output

• Using the Fourier basis provides better results than other basis (e.g.
Tau-Legendre model/ Padé approximation or Chebyshev model)

Comparison with low-pass filter based implementation or pure discrete-time
realization?
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Tau-Legendre model/ Padé approximation or Chebyshev model)

Comparison with low-pass filter based implementation or pure discrete-time
realization?

D. Astolfi

Repetitive control for nonlinear systems 40 / 42



Introduction Repetitive control Finite dimensional realization Numerical Example Conclusions

Future perspectives

Other infinite-dimensional controllers for output regulation (different properties of
the disturbances/references)

Incremental stabilization techniques for interconnected (nonlinear) ODEs-PDEs

Model reduction of PDE regulators with regulation objectives
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