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Reminder: uncertainty quantification
Workflow: breakdown into steps

Main steps:
A: problem definition

Ù Uncertain input variables
Ù Variable/quantity of interest
Ù Model construction

B: uncertainty quantification
Ù Choice of pdfs
Ù Choice of correlations

B’: quantification of sources
Ù Inverse methods using data

to constrain input values and
uncertainties
C: uncertainty propagation

Ù Evolution of output variability
w.r.t input uncertainty
C’: sensitivity analysis

Ù Uncertainty source sorting

These steps are usually model dependent, it might be useful to iterate
to help converging to proper conclusions
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Focusing on Uranie: Schematic workflow examples
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Main distribution principle

For every random variable X : Ω→ R
� PDF (Probability Density Function): if the random variable X has a density fX , where fX is a non-negative

Lebesgue-integrable function, then

P {a ≤ X ≤ b} =

∫ b

a
fX(s)ds

� CDF (Cumulative Distribution Function): the function FX : R→ [0, 1] , given by

FX(a) =

∫ a

−∞
fX(s)ds, a ∈ R
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From probability to statistics

So far we focus on probabilistic approaches:
� What is a probability and in which space does it lives
� The axioms that govern them
� How to interpret them as well as describe probabilities
� What might link different realisations

What we’re usually handing
In real life, we’re handling a sample meaning a restricted set of information

� What can we learn from a sample
� How to describe it ? Represent it ?
� Can we test some hypothesis about what might have provided this sample ?

This branch dealing with these issues is the statistics
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1�
Descriptive statistics
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Uni-variate case: “location” parameters

The effect of the "location" parameter is to translate the graph relative to the standard distribution

� Mean µ:

µ =
1

nS

nS∑
i=1

xi

� Mode M: Value where the probability is the greatest value
� α-Quantile qα with α ∈ [0, 1]: defined as

P[X ≤ qα] = α

� Median q0.5: it is the 0.5-quantile defined as

P[X ≤ q0.5] = 0.5 = P[X ≥ q0.5]

� Quartiles: q0.25, q0.5, q0.75

� Extreme values : Min and Max
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Uni-variate case: “dispersion” parameters

The effect of a "dispersion" parameter is to stretch/shrink the standard distribution

� Variance Var(X): measure of spread in the data about the mean Var(X) = E[(X − E(X))2], and can be
estimated by:

Var(X) =
1

nS − 1

nS∑
i=1

(xi − µ)2

� Standard Deviation σ: to have an information in the same unit as the variable

σ =
√

Var(X)

� Coefficient of Variation δ: σ does not indicate the degree (%) of dispersion around the mean value µ, a
non-dimensional term can be introduced:

δ =
σ

µ

� Range R:
R = Max−Min

� Inter-quartile interval H:
H = q0.75 − q0.25
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Uni-variate case: “shape” parameters

Any parameter of a PDF that affect the shape of a distribution rather than simply shifting it or
stretching/shrinking it.

� Moment order p: µp = E[(X − E(X))p]

µp =
1

nS

nS∑
i=1

(xi − µ)p

� Skewness: γ1 is a measure of the asymmetry of the PDF

γ1 = E

[(
X − µ
σ

)3
]

=
µ3

σ3
=

E(X3)− 3µσ2 − µ3

σ3

� Kurtosis: γ2 is a measure of the "peakedness" of the PDF

γ2 =
µ4

σ4
;

Ù Normalised γ2: sometimes -3.0 is added to it as γ2 = 3.0 for N (µ, σ)
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Uni-variate case: illustration of some parameters
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Uni-variate case: usual graphical representation

Usual convention
� X is a random variable (RV), whose realisation is noted x
� x is a vector of realisation of size nS , xi being its i-th element.

Many possible ways to represent data, among which:
� Histograms

∀a, b ∈ R2 with a < b,H[a,b](x) =

nS∑
i=1

1[a,b](xi)

Normalised w.r.t total number of events, weights. . .
� Sturges: Nbin = log2(nS) + 1
� Scott: Nbin = (xmax − xmin)× 3

√
nS/(3.5× σ̂x). . .

� Empirical Cumulative Density Function (eCDF)

FnS (x) =
1

nS

nS∑
i=1

1(xi ≤ x)

� BoxPlot: Simple way to look at many information:
� Minimum and maximum (arrows)
� quartiles: 0.25, 0.5, 0.75 quantiles (black lines)
� Mean: green line
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Bi-variate case: graphics

Detect and describe statistical dependencies between variables
� independent variables⇒ uncorrelated variables
� uncorrelated variables ; independent variables

The covariance is a measure of how much two RV change together:

Cov(X,Y ) = E[X − E[X]]× E[Y − E[Y ]]

and the covariance estimated from a sample (xi, yi) is defined as

Ĉov(x, y) =
1

nS

nS∑
i=1

(xi − x̄)(yi − ȳ)

The sign of this coefficient is the tendency of the linear relationship between the variables, but
the magnitude is not easy to interpret.
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Pearson correlation coefficient

The Pearson coefficient (ρ or ρP ) is a normalised version of the covariance as it is divided by the
standard deviations.

It is a measure of the linear correlation (dependence) between two RV X and Y ,

ρP (X,Y ) =
Cov(X,Y )

σXσY
.

It’s estimation on a sample (xi, yi) can be written as r̂P :

r̂P =

∑nS
i=1(xi − x̄)(yi − ȳ)√∑nS

i=1(xi − x̄)2
√∑nS

i=1(yi − ȳ)2

Properties of this coefficient
� r̂P ∈ [−1, 1]
� r̂P = ±1⇔ perfect linear description between X and Y , the data points lying exactly on a positive (negative)

identity line.
� r̂P = 0, X and Y are said to be (linearly) uncorrelated (but not necessary independents !!)
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One step toward the law of large number I

Let’s consider an i.i.d. sequence (independent and identically distributed) X1,. . . , Xn from
distribution function F with expectation µ and variance σ2.

Investigating the average

Let’s call Xn = n−1
∑n
i=1Xi. This is a RV, so

� E[Xn] = n−1E
[ n∑
i=1

Xi

]
= n−1

( n∑
i=1

µ

)
= µ

� Var[Xn] = n−2Var

[ n∑
i=1

Xi

]
= n−2

( n∑
i=1

σ2

)
= n−1σ2

Ù With increasing number of samples, n, Xn deviates less and less from µ.

Chebyshev’s inequality
For an arbitrary RV Y and any a ∈ R+

P(|Y − E[Y ]| ≥ a) ≤
1

a2
Var(Y )
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One step toward the law of large number II

Applying Chebyshev’s inequality to our example, with E[Xn] = µ,Var[Xn] = σ2/n and ε > 0,
leads to

P(|Xn − µ| ≥ ε) ≤
σ2

nε2

The law of large numbers

If Xn is the average of n independent random variables with expectation µ, and variance σ2, then for ε ∈ R+

lim
n→∞

P(|Xn − µ| ≥ ε) = 0 (weak)

Another formulation can be found :

P( lim
n→∞

Xn = µ) = 1 (strong)
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Central Limit Theorem (CLT)

Many mathematicians have contributed to the CLT and its proof⇔ many different statements of
the theorem are accepted.

Formulation

Suppose X1, X2, . . . , Xn are i.i.d. with mean µ and a finite variance σ2. Then,

Sn − nµ√
nσ2

→ N (0, 1),

where Sn = X1 +X2 + ...+Xn, n ≥ 1 and→ represents convergence in distribution.

This can help providing

� Confidence interval
� test-of-hypothesis

Illustration of this (next few slides)

Sample of 10000 points for 200 random variables: exponential (e) / normal (n) / uniform (u) laws
Ù Their properties are chosen so that µ = 0 and σ = 1

� Check the laws
� Check the distribution of Sn = ΣnXn when increasing n
� Check the distribution of Stn = ΣnXt

n for all t = e/n/u
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CLT illustration: RV one-by-one
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CLT illustration: summing laws of all types
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CLT illustration: sums split by types

30− 20− 10− 0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

Entries  10000

Mean   0.0208

Std Dev         8

Skewness 0.03455− 

Kurtosis 0.03145− 

sum of 64 n laws

30− 20− 10− 0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Entries  10000

Mean  0.1091− 

Std Dev     8.575

Skewness 0.02208− 

Kurtosis 0.006259− 

sum of 73 u laws

30− 20− 10− 0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

sum of 63 e laws

Entries  10000

Mean  0.001466− 

Std Dev      7.91

Skewness  0.2049

Kurtosis  0.02506

sum of 63 e laws

Uncertainty quantification - JB Blanchard Uncertainty and HPC 20



Application: test-of-hypothesis
The aim of a test-of-hypothesis is to check the validity of a given hypothesis, providing a certain

chosen confidence level (1− α).
Principle in few key steps

Ù Purpose: significance, goodness-of-fit, independence, conformity. . .
A factory build tubes whose lifetime∼ N (1200, 300). 100 tubes are produced with a new process x̄ = 1265. Is this significant ? Is the new µN greater than
1200 ?

Ù Hypothesis

1 H0 is the null-hypothesis (to be tested): µ0 = 1200

2 H1 is the alternative hypothesis: µ1 > 1200

Ù Confidence level: choose probability α
A usual choice is to set α = 0.05, resulting in a 95% CL

Ù Statistical test to be computed

Use classical test Ẑ =
x̄− µ0

σ/
√
N

=
1265− 1200

30
= 2.17

Ù Result interpretation

1 Look at table and see that Ẑ > Z0.05 (=1.64)⇒ H0 rejected !

2 Look at table and see that Ẑ = 2.17⇔ Pc = 0.015⇒ H0 rejected !

3 Look at table and see that to get ẐC = 1.64⇔ x̄c = 1249⇒ H0 rejected !

Example of tables: https://www.statisticshowto.com/tables/z-table/
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Pearson’s correlation test of independence

Assuming that X,Y ∼ N (µ1, µ2, σ1, σ2, ρ) a bi-variate normal distribution
1 H0: test whether X and Y are independent, meaning ρ = 0

2 H1: it exists a relation between X and Y , meaning ρ 6= 0

Ù Statistical test to be computed Use t-statistic test t̂ =
ρ
√
nS − 2√
1− ρ2

Using a 15-sample database showing weight and height for 2-year old children.
X: Height (cm) 82.9 83.4 82.4 82.1 84.8 86.7 84. 89. 85. 85.4 87.7 87.7 86.4 86.4 86.9
Y: Weight (kg) 8.7 9.2 9.5 10.1 10.4 10.5 10.8 11. 11.5 11.6 12.4 13.6 13.8 13.9 14.6

Setting the test

t̂ =
0.6786×

√
15− 2

√
1− 0.67862

= 3.33067

Interpret these results

� For a chosen α = 0.05, t5%(13) = 2.16
⇒ t̂ > t5%(13)⇔ H0 rejected !
⇒ It exists a relation between X and Y at 5% significance level
� For a chosen α = 0.01, t1%(13) = 3.012
⇒ t̂ > t1%(13)⇔ H0 rejected !
⇒ It exists a relation between X and Y at 1% significance level
� Looking at table, 3.01 < t̂ < 3.37
⇒ Critical probability 0.005 < Pc < 0.01
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Another test to illustrate few points

122-points sample.

Setting the test
1 nS = 122⇒ degree of freedom = 120 (nS − 2)

2 ρ̂ = 0.0668

t̂ =
0.0668×

√
120

√
1− 0.06682

= 0.733

https://archimede.mat.ulaval.ca/stt1920/STT-1920-Loi-de-Student.pdf

Interpret these results

� For α = 0.05, t5%(120) = 1.98 and for α = 0.01, t1%(120) = 2.62
⇒ H0 accepted !

� Looking at table assuming student→ normal.
⇒ Critical probability is 0.46 < PP

c < 0.47

⇔ You know nothing Jon Snow !
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Interpret these results
� For α = 0.05, t5%(120) = 1.98 and for α = 0.01, t1%(120) = 2.62
⇒ H0 accepted !

� Looking at table assuming student→ normal.
⇒ Critical probability is 0.46 < PP

c < 0.47

⇔ You know nothing Jon Snow !
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2� Data modelisation with PDF
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Parametric estimation of parameters

Problem
� Let (x1, . . . , xnS ) an i.i.d sample of a PDF f(x, θ) where θ ∈ Θ is a vector of parameters for this family
� The true value of the parameters θ∗, from which the data come from, is unknown
� Build an estimator θ̂ which would be as close to the true value θ∗ as possible.

Two usual methods are:
1 Maximum Likelihood (MLE)

The method of maximum likelihood selects the set of values of the model parameters that maximizes the likelihood
function. This function measures the "agreement" of the selected model with the observed data.

2 Moments Method (MM)
� One starts with deriving equations that relate the population moments to the parameters θ
� The moments are estimated from the given sample
� The equations are then solved for the parameters θ, using the sample moments in place of the (unknown) population moments

Uncertainty quantification - JB Blanchard Uncertainty and HPC 26



Maximum likelihood (MLE)

Build an estimator θ̂ for the model’s parameters of the f(x, θ) from the data (xi)1≤i≤nS

We use the Likelihood function L(θ;x1, . . . , xnS ):

L(θ;x1, . . . , xnS ) = f(x1, . . . , xnS |θ) =

nS∏
i=1

f(xi|θ)

In practice it is often more convenient to work with the logarithm of the likelihood function, called the log-likelihood:

ln(L(θ;x1, . . . , xnS )) =

nS∑
i=1

ln(f(xi|θ))

or the average log-likelihood:

l̂(θ;x1, . . . , xnS ) =
1

nS
ln(L(θ;x1, . . . , xnS ))

MLE estimates θ̂MLE by finding the value of θ that maximizes the l̂ function

θ̂MLE = arg max
θ∈Θ

l̂(θ;x1, . . . , xnS )

. . . if any maximum exists
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Maximum likehood, application

Let (x1, . . . , xnS
) be an i.i.d sample from a normal law N (µ, σ)

If one defines θ = (µ, σ) the unknown parameters, the density can be written:

f(x|θ) =
1

σ
√

2π
exp
−

(x− µ)2

2σ2

The Likelihood is : L(θ;x1, . . . , xnS ) =

nS∏
i=1

f(xi|θ) =

(
1

2πσ2

)nS
2 exp

−

∑nS
i=1(x− µ)2

2σ2

The average log-likelihood l̂(θ;x1, . . . , xnS ) can be written as:

l̂(θ;x1, . . . , xnS ) = −
1

2
ln 2π − lnσ −

1

2nSσ2

nS∑
i=1

(xi − µ)2

� MLE for the mean parameter :
∂l̂

∂µ
=

1

nSσ2

∑nS
i=1(xi − µ) = 0⇔ µ̂MLE = x̄ =

1

nS

∑nS
i=1 xi

� MLE for the variance parameter :

∂l̂

∂σ
= −

1

σ
+

1

nSσ3

nS∑
i=1

(xi − µ)2 = 0⇔ σ̂2
MLE =

1

nS

nS∑
i=1

(xi − µ̂MLE)2
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Moments method (MM) (1/2)

Build an estimator θ̂ for the model’s parameters of f(x, θ) using data (xi)1≤i≤nS

Suppose the first k moments of the true PDF can be expressed as functions of θ:

µ1 = E[X] = g1(θ1, θ2, . . . , θk)

µ2 = E[X2] = g2(θ1, θ2, . . . , θk)

. . .

µk = E[Xk] = gk(θ1, θ2, . . . , θk)

We compute the same first k moments from the sample (xi)1≤i≤nS

µ̂j =
1

nS

nS∑
i=1

xji

The moments method estimator for (θj) denoted by θ̂MM is defined as the solution (if there is one) to the system of
equations:

µ̂1 = g1(θ̂1, θ̂2, . . . , θ̂k)

µ̂2 = g2(θ̂1, θ̂2, . . . , θ̂k)

. . .

µ̂k = gk(θ̂1, θ̂k, . . . , θ̂k)
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Moments method (MM) (2/2)

Comments
� The moments method is fairly simple and yields consistent estimators (under very weak assumptions), though these

estimators are often biased
� Estimates by the moments method may be used as the first approximation to the solutions of the likelihood

equations, and successive improved approximations may then be found by the Newton Raphson method. In this way
the moments method and the method of maximum likelihood are symbiotic

� In some cases, as in the example of the gamma distribution, the likelihood equations may be intractable without
computers, whereas the moments method estimators can be quickly and easily calculated by hand
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Moments method, application

Gamma distribution

Given an i.i.d sample (xi)1≤i≤nS
from a Gamma law, where θ = (α, β) unknown f(x) =

xα−1e−βxβα

Γ(α)

1 first moment:
µ =

α

β

2 second moment:
σ2 = Var[X] = E[X2]− E[X]2 =

α

β2

Looking for (α̂, β̂), for which µ̂1 =
∑nS
i=1 xi =

α̂

β̂
and µ̂2 =

∑nS
i=1 x

2
i =

α̂

β̂2

From 1⇒ α̂ = µ̂1β̂

Injecting this into 2⇒ β̂ =
µ̂1

µ̂2 − µ̂1
2

α̂ =
µ̂1

2

µ̂2 − µ̂1
2 and β̂ =

µ̂1

µ̂2 − µ̂1
2
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Kernel methodsKernel Methods
From the point of view of the histogramm,

f(x) = F
′(x) ' F (x+ h)− F (x− h)

2× h ∀h > 0 , h ”small”

Then Rosenblatt (1956) suggests the estimator :

f̂nS,h(x) = F̂nS(x+ h)− F̂nS(x− h)
2× h

which has another representation Parzen (1962)

f̂nS,h(x) = 1
nS

nS∑

i=1

1
h
K(x− xi

h
)

with K(u) = 1
2 × 1I[−1.,1.](u)
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Kernel estimators - definitionsKernel Estimators - Definitions
• A function K : IR→ IR is said a Kernel if∫

K(u) du = 1.

• Often, but not necessarily,

− K is symmetric around the origin: K(−u) = K(u) ∀u
− K is positive: K(u) > 0 ∀u

• ∀h > 0,

f̂nS,h(x) = 1
nS

nS∑

i=1

1
h
K(Xi − x

h
)

is a kernel estimator of the density f (
∫
f̂nS,h(x) dx = 1 )

• Kernel approach is a histogram which, for estimating the density of f(x), has been
shifted so that x, say, lies at the center of a mesh interval. And For evaluating the
density at another point, say y, the mesh is shifted again, so that y is at the center
of a mesh interval.

• The parameter h is a smoothing parameter called bandwidth; More greater h is,
more the estimation f̂nS,h is smooth.
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Kernel estimators - exemplesKernel Estimators - Exemples

• Rectangular (Rosenblatt) (black) K(u) = 1
2 × 1I[−1.,1.](u)

• Triangular (red) K(u) = (1− |u|)× 1I[−1.,1.](u)

• Epanechnikov (blue) K(u) = 3
4(1− x2)× 1I[−1.,1.](u)

• Biweight (green) K(u) = 15
16(1− x2)2 × 1I[−1.,1.](u)

• Gaussian (yellow) K(u) = exp−x
2/2

√
2π

• Silverman (magenta) K(u) = 1
2 exp−|u|/

√
2 sin (|u|/

√
2 + π/4)
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Kernel estimators - applicationsKernel Methods - Application
• Optimal bandwidth with the Silverman Rule (1996)

hnS = 1.364× αK ×Min{σ̂, iqr
1.349} × nS−1/5

with

1. σ̂ is the sample standard deviation
2. iqr is the "InterQuartile Range" (iqr = q0.75 − q0.25)
3. αK is a constant that only depends on the used kernel

Kernel k(x) σK

Rectangular 1/2 , |x| < 1 1.3510
Triangular 1− |x| , |x| < 1 1.8882
Epanechnikov 3

4(1− x2) , |x| < 1 1.7188
Biweight 15

16(1− x2)2 , |x| < 1 2.0362

Gaussian exp−x2/2
√

2π 0.7764

Geyser database for Gaussian
Kernel (left) waiting b = 4.70,

(right) duration b = 0.39
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Goodness-of-fit techniquesGoodness-of-Fits techniques
• Graphical methods

− QQPlot

• Statistical Tests

− Chi-Squared

− Tests based on EDF Statistics

? Kolmogorov-Smirnov

? Cramer-von Misses

? Anderson-Darling
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QQ-plot Graphical method : QQ-plot
• a QQ-plot ("Q" stands for quantile) is a probability plot to compare two probability

distributions by plotting their quantiles against each other
• A point (x, y) on the plot corresponds to one of the quantiles of the second dis-

tribution (y-coordinate) plotted against the same quantile of the first distribution
(x-coordinate).

• If the two distributions being compared are similar, the points in the QQ-plot will
approximately lie on the line y = x

• If the distributions are linearly related, the points in the QQ-plot will approximately
lie on a line, but not necessarily on the line y = x.

• Select one axe for the theoretical distribution for Goodness-of-Fit test
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Commonly used statistical testsCommonly Used Statistical Tests
In Goodness-of-Fit work, the commonly used statistical tests are:

• Chi-Squared (χ2)

• Tests based on EDF Statistics

− Kolmogorov-Smirnov (D)

− Cramer-von Mises (W 2)

− Anderson-Darling (A2)
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The chi-squared test (χ2)The Chi-Squared χ2 Test
• The χ2 test is used to test if a sample (xi) came from a specific distribution

• Useful when data are discrete, and applied to continous distribution with a large
number of observations

• The basic idea is to partitioned the range of the sample into k cells, and compare
the observed frequency Oi with the expected frequency Ei in each cell i

• The statistic test is:

χ2 =
k∑

i=1

(Oi − Ei)2

Ei

which follows a χ2 distribution with (k −
1 − t) degrees of freedom, where t is the
number of parameters of the distribution
to estimate

• The ratio nS/k must verify nS/k ≥ 5

• The value of the χ2 test statistic are dependent on how the data is binned

• χ2 test is generally less powerful than EDF tests
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Tests based on EDF statistics (1/2)The tests based on EDF Statistics (1/2)

• Graphical methods have a wide appeal in deciding if a random sample appears to
come from a given PDF

• We consider now tests of fit based on the Empirical Distribution Function ("EDF")
• EDF statistics are measures of the discrepancy between the empirical CDF and the

theorical CDF of the PDF
• They are based on the vertical differences between FnS(x) and F (x), and divided

into two classes :
1. the supremum statistics : select the lar-

gest vertical difference between the two CDF;
it is the Kolmogorov-Smirnov test D

D = sup
x
|FnS(x)− F (x)|

2. the quadratic statistics : measure of dis-
crepancy given by the Cramer-von Mises
family

Q = nS

∫ +∞

−∞
(FnS(x)− F (x))2ψ(x)dx

where ψ is a weight function
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Tests based on EDF statistics (2/2)The tests based on EDF Statitics (2/2)

− For ψ(x) = 1 we obtain the Cramer-von Mises Tests, denoted as W 2:

W 2 = nS

∫ +∞

−∞
(FnS(x)− F (x))2dx

− For ψ(x) = 1.
F (x)(1.0−F (x)) we obtain theAnderson-

Darling test, denoted A2:

A2 = nS

∫ +∞

−∞

(FnS(x)− F (x))2

F (x)(1.0− F (x)) dx

• To compute these statistics, we use the Probability
Integral Transformation ("PIT")
− Let X ∼ F with F is the true CDF
− If Z = F (X), then Z ∼ U [0., 1.]
− For The sample (x1, x2, · · · , xnS), compute zi = F (xi) and compare the empirical

CDF of the zi with the CDF of the uniform distribution
F ?(z) = z , 0 ≤ z ≤ 1

− EDF statistics computed from the EDF of the zi compared with the uniform
distribution will take the same values as if they were computed from the EDF
of the xi compared with F
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Comparison of the goodness-of-fit testsComparaisons of the Goodness-of-Fit tests
• The χ2 statistic is the lower powerfull for continous PDF

• EDF statistics are usually much more powerfull than the χ2 statistic (where data
must be grouped, then loss of informations)

• the D statistic is the most well-known of the EDF statistics, but it is often much
less powerfull than the quadratic statistics W 2 and A2

• A2 and W 2 give often similarly values, but A2 is on the whole more powerfull when
the distribution F departs from the true distribution in the tails (weight function)

• In Goodness-of-Fit work, departure in the tails is often important to detect, so A2

is the recommanded statistic
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Thanks! Any questions?
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