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Purpose of optimisation

Find an optimum: the best level or state that it could achieve (Collins).
What for ?

� Location of warehouse: best location to minimise shipping cost
� Vehicle: minimise weight and air resistance through design
� Game strategy: find the best bet you can do given your hand and statistics
� Medicine: optimise insulin delivery to minimise blood sugar deviation
� Energy: optimise the usage of available resource to meet the energy request at lowest cost.
� Machine learning: get the best value for hyper-parameters

Ù And many more. . .
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How to formalise this ? (1/2)

Seeking for the maximum of f ⇔ Seeking for the minimum of −f

Ù Optimisation problem is always discussed as minimisation problem

Generic notations [1, 2, 3]
The aim is to obtain

min
x∈X

f(x), where f : Rn → Rq (1)

knowing that X is a subset of Rn (X ⊆ Rn).
One can have also aside equations to obey

h(x) = 0, where h : Rn → Rm (2)

g(x) ≤ 0, where g : Rn → Rp (3)

Hereafter, when q = 1, the real value of x that minimise the f function is called x∗.
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In the generic case (1/2)

Definitions

Ù Decision variables:
� variables that can be changed to modify the system behaviour;
� notation: x = (x1 . . . xn)T ∈ X, (X ⊆ Rn), n being the input dimension space (n ≥ 1);
� aim: find their best value x∗ = (x∗1 . . . x

∗
n)T

Ù Objectives / criteria:
� variables that are the measurement to be minimised
� notation: function f : Rn → Rq , q ≥ 1
� aim: get their lowest values

Ù Problem is single-objective (SO) when q = 1 and multi-objectives (MO) when q > 1

Ù Constraints:
� functions that affect decision variables/objectives (represent the context of the problem)
� notation:

� h : Rn → Rm called equality constraints (m ≥ 0)
� g : Rn → Rp called inequality constraints (p ≥ 0)

� aim: final solution(s) must respect these conditions

Ù Problem is unconstrained when p = m = 0 and constrained when p+m > 0
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In the generic case (2/2)

Nature of the optimum
� Local minimum : the x0 defined so that

∃ neighbourhood Vx0 so that ∀x ∈ Vx0

⋂
X, f(x) ≥ f(x0)

� Global minimum : the x0 defined so that
∀x ∈ X, f(x) ≥ f(x0)
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Consequences : nature of the method
� Local algorithm: starts from a candidate solution and then iteratively

moves to a neighbour solution until convergence to a minimum.
� Global algorithm: finds the global minima, through the use of numerical

solution strategies (as analytical methods are not applicable). Generally
more complex and costly.
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Main hypothesis and their consequences

Underlying hypothesis, used in the next few slides, are described along with their
consequences

Ù Continuity: both constraints and objectives are modelled by continuous function.

Ù No optimisation with only integers (called discrete optimisation or combinatory).
Ù Using floating-point algorithms [4] leads to the need of having:

� a tolerance ε to state whether a candidate xC is valid (|xC − x∗| < ε)⇔ stopping criteria
In real x∗ rarely known. Tolerance is used as a convergence measurement between iteration

� a reasonable accuracy on values (particularly for gradient-based methods, approximated by finite differences)

Ù Deterministic: constraints and objectives do not contain a stochastic part: identical configurations give same
results.

Ù Uncertainty modelisation or intrinsic stochastic phenomena can be taken into account with robust optimisation, not
discussed here.

Ù Differentiability: Not compulsory in the rest of the slides, but for some algorithm:

Ù gradient-based: functions need to be differentiable

Ù hessian-based: functions need to be doubly-differentiable
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One of many usual test function

Introduced by Rosenbrock to show the superiority of one its algorithm [5]

f(x1, x2) = 100× (x2 − x21)2 + (1.0− x1)2
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Simple function (n = 2, q = 1, p = m = 0)

� Single-objective, unconstrained, deterministic,
differentiable

� Does not provide ∇f nor ∇2f
⇒ Can use finite differences approximation

� Min value expected for (x1, x2) = (1, 1)

Will start by discussing the historical Newton method
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Sufficient Optimality Conditions (unconstrained)

For unconstrained problem
Given a candidate x̂ ∈ X

� First order SOC: cancellation of the gradient

∇f(x̂) =


∂f(x̂)

∂x1
∂f(x̂)

∂x2

 =

(
0
0

)

Ù x̂ is a minimum, a maximum or a saddle point
� Second order SOC: the hessian is positive definite

∇2f(x̂) =


∂2f(x̂)

∂x21

∂2f(x̂)

∂x1∂x2
∂2f(x̂)

∂x1∂x2

∂2f(x̂)

∂x22

 is positive definite

Ù x̂ is a local minimum
� GSOC: On X, f is (convex / strictly convex)

Ù x̂ is (a / the) global minimum
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Newton’s method: principle

The principle is too approximate locally, around xk, the function with a quadratic model

mk(x) = f(xk) + (x− xk)T∇f(xk) +
1

2
(x− xk)T∇2f(xk)(x− xk),

By setting d = x− xk, one can write this as

mk(xk + d) = f(xk) + dT∇f(xk) +
1

2
dT∇2f(xk)d,

The aim is then to apply First order SOC

mk(xk + d) = ∇f(xk) +∇2f(xk)d = 0

which means
d = −∇2f(xk)−1∇f(xk)⇔ x = xk −∇2f(xk)−1∇f(xk)

If hessian in xk is invertible, an iteration of the local Newton method is a minimisation of the model

xk+1 = min
x∈Rn

mk(x)

This process is repeated until converge.
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Newton’s method: application

Never used like this, because:
1 Need to get a function that provide analytic gradient

2 It is long and complicated to get a proper analytic estimation of the hessian

3 The resulting Hessian might not be invertible

4 Constant step variation strategy is highly unstable, one might want to use

xk+1 = xk − αk∇2f(xk)−1∇f(xk),

where many smart ways are available to define αk so that it respect Wolfe’s conditions

5 It converges quickly but only if the chosen initial value x0 is close to the real x∗

Many existing variations to circumvent these issues
� Quasi-Newton algorithms rely on gradient information but do not request Hessian
� Direct algorithms do not require hessian nor gradient

Many packages provide a bunch of algorithms to handle these SO issues. We’ll been
showing few examples from NLOPT [6].
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Application with few techniques
The names in bold font are the name from the NLOPT package

Direct methods
� NELDERMEAD (generally known as SIMPLEX):

� compute a bloc B (n+ 1 estimations) and its barycentre bk
� test solutions along line from bk to B’s worst solution (wk)
� include best solution in the bloc instead of wk and start over

� BOBYQA: trust-region method
� model approximating the objective mk(s) ' f(xk + s) (for small s) while

maintaining ∆k > 0 (trust-region radius)
� mk is constructed by interpolating quadratic approximation for f(x) at several

points close to xk
� compute a trial step sk if it is good, move to xk+1 = xk + sk, if not stay put (xk)

Gradient-descent methods
Both solutions below get the gradient information from finite-difference with
approximate Hessian
� BFGS:

� combine secant method and Broyden update to get Hk matrix
� inverse it with Cholesky factorisation

� NEWTON: Preconditioned truncated Newton
� use conjuguate gradient method to define conjuguate direction that cancel the

gradient in the quadratic approximation
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Not discussed here

Parallelisation:
Iterative methods means open loops: iteration k + 1 needs result of k to be defined
Ù Cannot distribute computations
Ù Stopping criteria: maximal number of iterations / function calls (avoid infinite loop)
Ù Multi-start: use as many resources as starting points and optimise them independently

Ù Will make the result (a bit more) robust toward local minimum sensitivity

Constraints:
Solutions might depend on: their kind (equality/inequality), nature of the problem (linear/convex). . .
There are several strategies to deal with these:

� rewrite the problem: when possible, introduce the constraints into the objective
� investigate the dual problem: write the Lagrangian L(x, λ, µ) = f(x) + λT h(x) + µT g(x), λ ∈ Rm and µ ∈ Rp

being called Lagrange’s multipliers
� use the Augmented Lagrangian method

Lc(x, λ) = L(x, λ) +
c

2
||h(x)||2,

where c ∈ R+ (or general penalty method for inequality constraints as well).
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Other possibilities

SO strategy not based on Newton:
Heuristic: family of methods not supported by rigorous theoretical framework but might be a good solution anyhow [7]

� Neighbourhood local search
� Variable neighbourhood search
� Simulated annealing

Other solutions might include surrogate models to get helpful information, see next slides

Numerical optimisation issues - JB Blanchard Uncertainty and HPC 15



Efficient Global Optimisation

Combining surrogate models and optimisation techniques [8]

Efficient Global Optimisation (EGO)
From a small database (here 8 points)

� Construct a kriging model [9]
� Compute the Expected Improvement with the kriging model
Ù using genetic algorithm to get the minimum t∗

� Compute the real new value with the code at t∗

� Reconstruct the kriging on the database + t∗

� Continue this process iteratively. . .

Ongoing work to parallelise this process
Typically used for very time/cpu consuming code. Investigating
different approaches to estimate the new points.
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Multi-objective optimisation vocabulary

� When several criteria must be taken into consideration, the solution kept is always a
compromise.

� Multi-criteria optimisation consists in finding a set of "acceptable" solutions according to
criteria and constraints posed.

� In the top-right plot, we search the values of x which optimise the criteria f1 and f2 .
� Let x1/2 be the minima of f1/2, and ∀xi, xj ∈ R, if
• xi < xj < x2 ⇒ f1(xj) < f1(xi) and f2(xj) < f2(xi)
• x1 < xj < xi ⇒ same conclusions hold.
Ù In both cases, xj dominates xi.

� However for x2 < xi < x1 no value of xj does improve both criteria simultaneously
(previous equation).

� Compromise solutions are to be found in the area x2 < x < x1 called the Pareto zone.
� The group of corresponding solutions in the space of criteria (listed below opposite) is called

the Pareto front.
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Example of multi-objective optimisation

With two antagonist criteria (crit1, crit2) depending both on x and y

General Methodology

Generate a first family of N people
� Evaluate criteria for all people
� Rank them according to criteria
� Test convergence, if converged : stop.
� Create new people from the best λN
� Start all over
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Discussing the Pareto Front

Quantifying the quality of the fronts
� convergence: be as close as possible to the “real” Pareto front

usually called the Pareto-optimal front;
� coverage: coverage the widest range possible;
� density: elements of the set should be distributed as evenly as

possible on the obtained coverage.

What’s impacting these fronts
� the size of the requested population;
� the number of objectives to be minimised.

Many algorithms to investigate this
� genetic one discussed previously;
� MOEAD [10];
� many others. . .
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Summary

Optimisation is a complex problematic with, unfortunately no magical solutions to work
with

It depends a lot on

Ù Your aim:
� Single / Multi objective case ?
� constrains or not
� deterministic / stochastic / combinatory

Ù Your code / function:
� what you know about its behaviour (linear, smooth, noised. . . )
� the time it needs to run
� the information it provides (precision, gradient, more ?)

You might need to restart often, so it might be wise to always save the results of a run for
bookkeeping
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Thanks! Any questions?



Backup outline

Vizir genetic in a nutshell The expected improvement definition



Genetic evolution in a drawing
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The expected improvement definition

E[I(x)] = (fmin − ŷ(x))Φ

(
fmin − ŷ(x)

σ̂(x)

)
+ σ̂(x)φ

(
fmin − ŷ(x)

σ̂(x)

)

φ(.) and Φ(.) are respectively the standard normal density and its cumulative distribution.
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