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Context

We consider

Y = f (X)

• f is a model (scientific simulation software, symbolic function ...)
• X = (X1, . . . ,Xd ) is the set of uncertain parameters modeled by a multivariate distribution of

dimension d
• Y is the quantity of interest evaluated by the model, supposed here to be scalar.

Why sensitivity analyses ?
The main objectives of sensitivity analyses may be :

1 remove some variables which are not influential on the quantity of interest, within a context of high
dimension : we need a relative quantification

2 prioritize variables in order to prioritize modeling efforts : we need a relative quantification
3 quantify the impact of a variable : we need an exact quantification
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Sensitivity : several notions

Several features can quantify the dependence.

Sensitivity = Dispersion = Variance
If we agree that the variance is a good way to quantify the dispersion, sensitivity analyses aim at determining
the most important contributors to the variance of Y .
We use the conditional expectation E (Y |Xi ) = Y ∗i which is the random variable function of Xi which
approximates Y the best in the least square sense :

Y ∗i = argmingE
(

[Y − g(Xi ))]2
)

No constraint on the nature of the link between Y and Xi .
We want to compare Var (Y ∗i ) to Var (Y ) :

1 in the case of independent variables Xi : Sobol indices,
2 in the case of dependent variables Xi : importance factors (Taylor decomposition variance), ANCOVA

indices.

Sensitivity = Distance from the independence
If Y and Xi are strongly correlated, the copula of (Y ,Xi ) is far away from the independent copula.
The Csiszàr divergence measures enable to quantify that distance.
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Dispersion - Independent Variables Sobol Indices

Sobol Indices

Variance decomposition
Generally, if Y = f (X) and X with independent components, then we can decompose the variance as follows :

Var(Y ) =
∑

i

Var (E (Y |Xi )) +
∑

i 6=j

Var (E (Y |Xi ,Xj )) + · · · + Var (E (Y |X1, . . . ,Xn))︸ ︷︷ ︸
=0

(1)

Sobol Indices
The Sobol indices of order k quantifies the part of the variance of Y explained by the variance of
(Xi1 , . . . ,Xik ) :

Si1,...,ik =
Var
(
E
(

Y |Xi1 , . . . ,Xik

))
Var (Y )

(2)

The total Sobol indices of order k quantifies the part of the variance of Y explained by the groups containing
the inputs (Xi1 , . . . ,Xik ) :

ST
i1,...,ik

=

∑
I
Var (E (Y |XI ))

Var (Y )
, {i1, . . . , ik} ⊂ I ⊂ {1, . . . , n} (3)
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Dispersion - Independent Variables Sobol Indices

The Hoeffding decomposition

The decomposition (1) of the variance of Y comes from the functional Hoeffding decomposition.

Hoeffding decomposition of a function integrable on [0, 1]n

If f is integrable on [0, 1]n, it admits a unique decomposition which can be written as :

f (x1, . . . , xn) = f0 +
i=n∑
i=1

fi (xi ) +
∑

1≤i<j≤n

fi,j (xi , xj ) + · · · + f1,...,n(x1, . . . , xn) (4)

where f0 = cst and the other functions are mutually orthogonal with respect to the Lebesgue measure on
[0, 1]n : ∫ 1

0

fi1,...,is (xi1 , . . . , xis )fj1,...,jk (xj1, . . . , xjk )dx = 0 (5)

as soon as (i1, . . . , is ) 6= (j1, . . . , jk ).
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Dispersion - Independent Variables Sobol Indices

Sobol indices

How can we use this result for Y = f (X) with X a random vector ?

How can we use this result
We would like to decompose f according to Hoeffding decomposition . . .but :

1 The inputs of f are not in [0, 1]n : generally, Y = f (X) where X is defined on R.
=⇒ If we note

U = (F1(X1), . . . , Fn(Xn))t ) = φ
−1(X) (6)

then U has uniform marges and its copula is the same as X , then we can use the Hoeffding decomposition on
f ◦ φ.

1 Are the Sobol indices w.r.t. the Ui the same as those w.r.t. the Xi ?
=⇒ If U = φ(X) where φ is a diffeomorphism and Y = f (X) then :

E (Y |φ(X)) = E (Y |X) (7)
As a matter of fact : E (Y |φ(X)) is the orthogonal projection (with L2) of Y on the space generated by φ(X),
which is the same as the one generated by X , thus we have the equality of the random variables (7).
As the transformation φ acts component by component, (Ui ↔ Xi ) then we have :

Span(Ui1 , . . . ,Uik ) = Span(Xi1 , . . . ,Xik )

and then :
E
(

Y |Ui1 , . . . ,Uik

)
= E
(

Y |Xi1 , . . . ,Xik

)
(8)

then the equality of the Sobol indices w.r.t. the Ui and to the Xi .
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Dispersion - Independent Variables Sobol Indices

Sobol indices
Probabilistic interpretation of the Hoeffding decomposition
Let’s suppose, without loss of generality, that the Xi are uniforms in [0, 1]. Then, using the Hoeffding
decomposition (4), we have :

Y = f (X) = f0 +
i=n∑
i=1

fi (Xi ) +
∑

1≤i<j≤n

fi,j (Xi ,Xj ) + · · · + f1,...,n(X1, . . . ,Xn) (9)

∫ 1

0

fi1,...,is (xi1 , . . . , xis )fj1,...,jk (xj1, . . . , xjk )dx = 0 for (i1, . . . , is ) 6= (j1, . . . , jk )

The orthogonal condition of the fi1,...,ik w.r.t. the Lebesgue measure on [0, 1]n can be interpreted as an
expectation calculus if the Xi are independent :∫ 1

0

fi1,...,is (xi1 , . . . , xis )fj1,...,jk (xj1, . . . , xjk )dx = E
(

fi1,...,is (Xi1 , . . . ,Xis )fj1,...,jk (Xj1, . . . ,Xjk )
)

=⇒ We suppose now that the Xi are independent. Then Y can be decomposed as :

Y = f (X) = z0 +
i=n∑
i=1

Zi +
∑

1≤i<j≤n

Zi,j + · · · + Z1,...,n (10)

where z0 = cst and Zi1,...,is⊥Zj1,...,jk : E
(

Zi1,...,is .Zj1,...,jk

)
= 0 and E

(
Zi1,...,is

)
= 0 as

E
(

z0Zi1,...,is

)
= 0
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Dispersion - Independent Variables Sobol Indices

Sobol indices

Y = f (X) = z0 +
i=n∑
i=1

Zi +
∑

1≤i<j≤n

Zi,j + · · · + Z1,...,n, z0 = cst, Zi1,...,is⊥Zj1,...,jk (11)

Y |Xi1 , . . . ,Xik = Zi1,...,ik (12)

Calculus of the Sobol indices
From the probabilistic decomposition (11), we calculate E (Y ) and Var (Y ) :

E (Y ) = z0 +
∑i=n

i=1
E (Zi )︸︷︷︸

=0

+
∑

1≤i<j≤n
E (Zi,j )︸ ︷︷ ︸

=0

+ · · · + E (Z1, . . . , n)︸ ︷︷ ︸
=0

= z0

E
(

(Y − z0)2
)

=
∑

I 6=J
E (ZI ZJ )︸ ︷︷ ︸

=0 since ⊥ the ZI

+
∑

I
E
(

Z 2
I

)

=⇒ Var (Y ) =
i=n∑
i=1

Vi +
∑

1≤i<j≤n

Vi,j + · · · + V1,...,n (13)

where Vi1,...,ik = Var
(

Zi1,...,ik

)
= Var

(
fi1,...,ik (Xi1 , . . . ,Xik )

)
.

The Sobol indices of order k : Si1,...,ik =
Vi1,...,ik
Var (Y )

The total Sobol indices of order k : ST
i1,...,ik

=

∑
I
VI

Var (Y )
, {i1, . . . , ik} ⊂ I ⊂ {1, . . . , n}
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Dispersion - Independent Variables An example

An example

Data base analysis of aerodynamical coefficients

Data
• We focus on a black box from R24 into R12

• We only know that function through a data base of size n = 377
• We have no information on the distribution followed by the input vector
• The objective is to identify, for each output component, the most influential inputs
• We only show the analysis on the first component.

How to proceed ?

• We tested the independence hypothesis of the input using the Spearmann coefficients : we can’t reject the
hypothesis with a level 95% : we assume the independence of the input variables.

• We built a meta model between the output and the inputs, using the penalized chaos polynomial
expansion : the model is built from 90% of the data base and tested on the remaining 10%

• We exploit the model to calculate the Sobol indices (total and of order 1).
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Dispersion - Independent Variables An example

Quality of the meta-model

Model validation
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Dispersion - Independent Variables An example

Sobol indices

Input contributions to the variance of the output

We notice that it seems important to keep the inputs 6, 7, 8, 11, 21 et 23, and it is very likely that we can
remove the inputs 3, 4, 5, 12, 13, 15, 16, 17, 18, 19, 20, 22 et 24 from the study. Doing that, we divided by 2
at least the input dimension.
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Dispersion - Independent Variables Particular cases : historical measures

Historical measures
Sobol indices were introduced by Sobol in 2001 ([Sobol2001]). But sensitivity indices were already existing ! :
• SRC, SRRC indices
• Pearson, Spearmann, PCC, PRCC indices
• importance factors from the Taylor decomposition

When the components Xi are independent, these indices are exactly particular cases of Sobol indices.

If the model f is linear w.r.t. the Xi : SRC
If Y = α0 +

∑
i
αi Xi , with Xi independent, then we define the Standard Regression Coefficient (SRC) :

SRC(Xi ) = αi

√
Var (Xi )
Var (Y )

(14)

Then SRC2 is the Sobol index of order 1 of Xi : SRC2(Y/Xi ) = S(Y/Xi ).

If the model f is linear w.r.t. the Xi : Pearson
If Y = α0 +

∑
i
αi Xi , then we define the Pearson correlation between Y and Xi as :

ρ(Y ,Xi ) =
cov [Y ,Xi ]√
Var (Xi ) Var (Y )

=
E ([Y − E (Y )][Xi − E (Xi )])√

Var (Xi ) Var (Y )
(15)

Moreover, if the Xi are independent, we show that

ρ(Y ,Xi ) =
αiVar (Xi )√

Var (Xi ) Var (Y )
=⇒ ρ(Y ,Xi ) = SRC(Y ,Xi )

Mathematically, both indices SRC2 and Pearson are the same. They differ by their estimators : the estimator of
SRC2 is based on the fitting of a linear regression while the estimator of the Pearson index is based on the
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Dispersion - Independent Variables Particular cases : historical measures

Historical measures

If the model rank(f ) is linear w.r.t. the rank(Xi ) : SRRC
If Y = f (X) with Xi independent, with U = (F1(X1), . . . , Fn(Xn))t ) = φ−1(X). As the Xi are independent,
then the Ui are independent too. We have Z = FY (Y ) = FY ◦ f ◦ φ(U).
If we assume in addition that

Z = α0 +
∑

i

αi Ui (16)

then we define the Standard Rank Regression Coefficient (SRRC) :

SRRC(Y/Xi ) = αi

√
Var (Ui )
Var (Z)

=⇒ SRRC2(Y/Xi ) = S(Z/Ui )

Then SRRC2 is a Sobol index of order 1 calculated on the ranks of Xi and Y .

If the model rank(f ) is linear w.r.t. the ranks rank(Xi ) : Spearmann
If we assume that (16), we define the rank Spearmann correlation between Y and Xi as :

ρS (Y ,Xi ) = ρ(FY (Y ), Fi (Xi ))

As previously, we show that in the case of independent variables Xi :

ρS (Y ,Xi ) = SRRC(Y/Xi ) =⇒ ρ
2
S(Y ,Xi ) = S(Z/Ui )
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Dispersion - Independent Variables Particular cases : historical measures

Historical measures
Importance factors from the Taylor decomposition have been defined in metrology first where :
• Y = f (X)
• X is a gaussian vector with independent components with low variation coefficient (σ/µ� 1)

=⇒ f is linearised at E (X)

Taylor approximation of order 1 at E (X)
Y = f (X) is approximated by its Taylor approximation of order 1 at E (X) :

Y ' f [E (X)]+ < ∇f [E (X)],X − E (X) >= f [E (X)] +
∑

i

[Xi − E
(

X i

)
]
∂f
∂Xi

∣∣∣
E(X)

(17)

Under the assumption of a linear model at E (X), and independent Xi , we have :

Var (Y ) '
∑

i

(
∂f
∂Xi

∣∣∣
E(X)

)2

Var (Xi ) (18)

We define the importance factor of Xi :

FI(Xi ) =

(
∂f
∂Xi

∣∣∣
E(X)

)2
Var (Xi )
Var (Y )

= SRC(Y/Xi ) = S(Y/Xi )

The FI are Sobol indices of order 1.
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Dispersion - Dependent variables Taylor decomposition

Taylor decomposition

In the case of dependent variables Xi , we take into account the covariance matrix only in order to calculate :
• the importance factors from the Taylor decomposition
• the ANCOVA indices

Taylor decomposition of order 1 at E (X)
Y = f (X) is approximated by its Taylor approximation of order 1 at E (X) :

Y ' f [E (X)]+ < ∇f [E (X)],X − E (X) >= f [E (X)] +
∑

i

[Xi − E (Xi )]
∂f
∂Xi

∣∣∣
E(X)

(19)

Under the assumption of a linear model at E (X), we have :

Var (Y ) ' t∇f [E (X)].Cov [X ] .∇f [E (X)] =
∑

i,j

∂f
∂Xi

∣∣∣
E(X)

Cov [Xi ,Xj ] .
∂f
∂Xj

∣∣∣
E(X)

(20)

We define the importance factor of Xi as :

FI(Xi ) =

(∑
j

∂f
∂Xj

∣∣∣
E(X)

Cov [Xi ,Xj ]

)
∂f

∂Xi

∣∣
E(X)

Var (Y )
(21)
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Dispersion - Dependent variables ANCOVA Indices

ANCOVA indices
The ANCOVA (ANalysis of COVAriance) method, is a variance-based method generalizing the ANOVA
(ANalysis Of VAriance) decomposition for models with correlated input parameters (see [Caniou2012]).
It is based on the Hoeffding decomposition of f that can be written as :

Y = f (x1, . . . , xn) = f0 +
∑

U⊂{1,n}

fU (XU ) (22)

where U is a non empty set of indices in {1, n}. Thus fU (XU ) is the combined contribution of XU to Y .

Definition
The total part of variance of Y due to XU can be written as :

SU =
Cov
(

Y , fU (XU )
)

Var (Y )
= S1

U + S2
U

where 
S1

U =
Var
(

fU (XU )
)

Var (Y )

S2
U =

Cov
(

fU (XU ),
∑

V |V∩U=∅
fV (XV )

)
Var (Y )

S1
U is the contribution to Var (Y ) of XU .

S1
U is the contribution to Var (Y ) of XU through its correlation to the other variables.
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Extensions Indices based on the Csiszàr divergence

Csisàr Divergence

Principle : The sensitivity of Y w.r.t. Xi is no more defined as the part of the variance of Y due to the variance
of Xi . We use a notion of distance between the real dependence between Y and Xi , and the independence.
We assume that Y and Xi are scalar to ease the notations of this presentation.

Indices based on the Csiszàr divergence
In [Borgonovo2016] and [DaVeiga2013], the authors compare the distribution of (Xi ,Y ), with pdf pXi ,Y to the
product distribution of Xi and Y (which assumes the independence), with pdf pY ⊗ pXi .
They define some sensitivity indices based on the Csiszàr divergence Df as :

S f
i = Df (pY⊗Xi ‖p(Y ,Xi ))

We show that this index :
• depends on the whole distribution and not on its first moments only
• is independent on the marges (and then on the scale of the components). This index depends on the

copula only as it can be written as :

S f
i = Df (Π‖c(Y ,Xi ))

Recall : The copula of (X ,Y ) is the same as the copula of (f (X), g(Y )) if f and g are some increasing
functions.
In particular, we can consider the uniform margins with f = FX et g = FY .
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Extensions Indices based on the Csiszàr divergence

Csiszàr Divergence

Definition
([Csiszar1963]) Let P and Q be two probability measures defined on the space Ω and f a convex positive
function defined at least on R+ such that f (1) = 0.
The f -Csiszár divergence of Q w.r.t. P is defined as :
• If P and Q are absolutely continuous w.r.t. the Lebesgue measure dx , with pdf p and q, and if P � Q,

then :

Df (P||Q) =

∫
Ω

f
(

p(x)
q(x)

)
q(x)dx ∈ [0,+∞] (23)

• If P and Q are absolutely continuous w.r.t. the counting measure defined on the (xk )k∈N (Dirac) and if
P � Q, then :

Df (P||Q) =
∞∑

k=0

f
(

p(xk )
q(xk )

)
q(xk ) (24)

Recall : P � Q means : q(x) = 0 =⇒ p(x) = 0 : the support of P is included in the support of Q
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Extensions Indices based on the Csiszàr divergence

Examples
Name Df (P||Q) Generator f (u) f (0) + f ∗(0)

Total Variation
1
2

∫
|p(x)− q(x)|dx

1
2
|u − 1| 1

Kullback-Liebler (q,p)

∫
p(x) log

p(x)
q(x)

dx − log u ∞

Hellinger (square)

∫ (√
p(x)−

√
q(x)
)2

dx
(√

u − 1
)2

2

Chi-2 Pearson

∫
(p(x)− q(x))2

p(x)
dx (u − 1)2 ∞

where f ∗ : u 7→ uf (1/u) the function ∗-conjugate of f

Properties

• Unicity : ∀(P,Q),Df1 (P||Q) = Df2 (P||Q)⇔ ∃c ∈ R, f1(u)− f2(u) = c(u − 1)
• The divergences Df1 and Df2 quantify the gaps between the distributions exactly the same way when

f1 and f2 differ from a linear function of (u − 1)
=⇒ The divergences based on Kullback-Liebler and Hellinger are different

• Symmetry : ∀(P,Q),Df (P||Q) = Df∗ (Q||P) and
∀(P,Q),Df∗ (P||Q) = Df (P||Q)⇔ ∃c ∈ R, f ∗(u)− f (u) = c(u − 1)

• Range : 0 = f (1) ≤ Df (P||Q) ≤ f (0) + f ∗(0)
• Convexity : ∀λ ∈ [0, 1], Df (λP1 + (1− λ)P2||λQ1 + (1− λ)Q2) ≤ λDf (P1||Q1) + (1− λ)Df (P2||Q2)
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Extensions Indices based on the Csiszàr divergence

Csiszàr Divergence
The sensitivity index can be written as :

S f
i = Df (Π‖c(Y ,Xi )) =

∫
[0,1]2

f
(

1
cXi ,Y (u, v)

)
cXi ,Y (u, v) dudv =

∫
[0,1]2

f ∗
(

cXi ,Y (u, v)
)

dudv

How to interpret these indices ?

• If Y ⊥ Xi ⇐⇒ S f
i = 0 (as soon as f is not constant around 1). In that case, Xi can be removed from the

study since it has no impact on Y . Then we can detect the independence between two variables.
• If Y = f (Xi ) then S f

i = f (0) + f ∗(0).
The characterisation of the range of the indices is the main result for the dependence analysis.

Methodology and numeric issues
Works are in progress on the following challenges :
• how to interpret the value of the index ? S f

i = 0.8 : if Sobol index, it means that 80% of the variance of Y
is explained by the variance of Xi ... but what if Csiszàr divergence ?

• which f to consider ? If S f
i > S f

j , do we still have Sg
i > Sg

j ? Answer : no... thus, the hierarchisation
depends on f .

• how to estimate a copula density c(Y ,Xi ) : Ŝ f
i = S f

i (ĉ) =⇒ use of the Bernstein copula ?

• how to create independence tests based on an estimation of S f
i , according to f ? : under the independence

assumption, which confidence interval do we have on the values of Ŝ f
i ?

Anne Dutfoy Sensitivity analysis PRACE 2023 24 / 29



Extensions Indices based on the Csiszàr divergence

Csiszàr Divergence - Independence Test

One Csiszàr Divergence based Independence Test
We build the test :

1 We get a sample of size n from (xi , y), generated under the independence assumption between xi and y ;
we build the copula density ĉ(xi , y) of (xi , y) thanks to the Bernstein copula ;

2 We repeat Step 1 N times ; we get (ĉk )1≤k≤N ;
3 We build 90% confidence domain point by point : we draw, at any point (xi , y), the quantile 5% and 95%

of the values of ĉk (xi , y), 1 ≤ k ≤ N ;
We use the test : From the new sample to be tested (of size n), we build the copula density : if it goes out of
the confidence domain, then we reject the independence assumption.

Example : Copula of (X19,Y1) (left) and of (X8,Y1) (right)

These graphs show that we can’t reject the assumption that Y1 is independent from X19, while Y is clearly
highly dependent on X8.
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Extensions Indices based on the Csiszàr divergence

Csiszàr Divergence - Independence Test
Another Csiszàr Divergence based Independence Test
According to the previous procedure, we calculate Ŝ f

i = S j
i (ĉ) for each f and we determine a distribution of Ŝ f

i
and a confidence interval under the independence assumption from the sample (S j

i (ĉk )1≤k≤N .

Example : Estimation of sensitivity indices, n = 1000, N = 104.

Anne Dutfoy Sensitivity analysis PRACE 2023 26 / 29



References

Sommaire

1 Dispersion - Independent Variables

2 Dispersion - Dependent variables

3 Extensions

4 References

Anne Dutfoy Sensitivity analysis PRACE 2023 27 / 29



References

Références I

Emanuele Borgonovo and Elmar Plischke.
Sensitivity analysis : A review of recent advances.
European Journal of Operational Research, 248(3) :869–887, 2016.

URL http://EconPapers.repec.org/RePEc:eee:ejores:v:248:y:2016:i:3:p:869-887

Yann Caniou.
Global sensitivity analysis for nested and multiscale modelling.
Theses, Université Blaise Pascal - Clermont-Ferrand II, November 2012.

URL https://tel.archives-ouvertes.fr/tel-00864175

Imen Csiszár.
Eine informationstheoretische ungleichung und ihre anwendung auf den beweis der egodizität
von markoffschen ketten.
Publ. Math. Inst. Hungar. Acad. Sci., 8 :85–107, 1963.

Sébastien Da Veiga.
Global Sensitivity Analysis with Dependence Measures.
working paper or preprint, November 2013.

URL https://hal.archives-ouvertes.fr/hal-00903283

Anne Dutfoy Sensitivity analysis PRACE 2023 28 / 29



References

Références II

I. M. Sobolá.
Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates.
Math. Comput. Simul., 55(1-3) :271–280, February 2001.

URL http://dx.doi.org/10.1016/S0378-4754(00)00270-6

Anne Dutfoy Sensitivity analysis PRACE 2023 29 / 29


	Dispersion - Independent Variables 
	Sobol Indices
	An example
	Particular cases: historical measures

	Dispersion - Dependent variables
	Taylor decomposition
	 ANCOVA Indices

	Extensions
	Indices based on the Csiszàr divergence

	References

