An introduction to Uncertainty Quantification

Olivier Zahm
olivier.zahm@inria.fr
INRIA-AIRSEA
https://team.inria.fr/airsea/en/

GdR MaNu,
October 27, 2023

Motivating example: climate change simulation

Input

Motivating example: climate change simulation

Motivating example: climate change simulation

Motivating example: climate change simulation

Another example: computational mechanics

- Mean of the VonMises stress
- Probability of failure
- Lifespan
- ...

Cars

Airplanes

Ships

Another example: computational mechanics

- Geometry
- Mean of the VonMises stress
- Probability of failure
- Lifespan
- ...

Another example: computational mechanics

- Geometry
- External forcing
- Mean of the VonMises stress
- Probability of failure
- Lifespan

Another example: computational mechanics

- Geometry
- External forcing
- Material property
- Mean of the VonMises stress
- Probability of failure
- Lifespan
- ...

Snow

Sand

Input uncertainty

Two types of uncertain inputs:

- Stochastic uncertainties. These variables exhibit inherent variability due to random phenomena (typically, a quantity subject to random fluctuations like wind, rain etc).
- Epistemic uncertainties. These variables have a value, but it is unknown to us due to a lack of knowledge (typically, a constant in a physical law).

In both cases, we model the uncertainties with the probability theory: we consider $X=\left(X_{1}, \ldots, X_{d}\right)$ as a continuous random vector with probability density function π_{X} so that the probability of an event $A \subset \mathbb{R}^{d}$ is given by

$$
\mathbb{P}(X \in A)=\int_{A} \pi_{X}(x) \mathrm{d} x \quad \in[0,1]
$$

Remark: alternative modelling of uncertainties using fuzzy sets and possibility theory (Zadeh, 1978) or the theory of evidence (Dempster 1967, Shafer 1976)...

Independent input variables

$$
\pi_{X}\left(x_{1}, \ldots, x_{d}\right)=\pi_{x_{1}}\left(x_{1}\right) \ldots \pi_{x_{d}}\left(x_{d}\right)
$$

where $\pi_{x_{i}}$ is the i-th marginal density.

(a) Uniform X_{1}

(b) Exponential X_{2}

(c) Gaussian X_{3}

We can identify π_{X} by maximizing the entropy (the "lack of information") under some prescribed contraints, like support, mean, variance...

To identify the density from a sample $\left\{X^{(1)}, X^{(2)}, \ldots\right\}$, we can

- compute histograms or use kernel methods (non-parametric methods)
- maximize the likelihood of the sample over a given class of densities (parametric method)
[Hastie, Tibshirani and Friedman: The Elements of Statistical Learning, Springer, 2001.]

Dependent input variables via:

- the copula of X

$$
\pi_{X}\left(x_{1}, \ldots, x_{d}\right)=\pi_{x_{1}}\left(x_{1}\right) \ldots \pi_{x_{d}}\left(x_{d}\right) c\left(x_{1}, \ldots, x_{d}\right)
$$

- the conditional marginals of X (directed graphical model)

$$
\pi_{X}\left(x_{1}, \ldots, x_{d}\right)=\pi_{x_{1}}\left(x_{1}\right) \pi_{x_{2} \mid x_{1}}\left(x_{2} \mid x_{1}\right) \pi_{x_{3} \mid x_{1}, x_{2}}\left(x_{3} \mid x_{1}, x_{2}\right) \ldots
$$

- the conditional independence structure of X (undirected graphical model)

$$
\pi_{X}\left(x_{1}, \ldots, x_{d}\right) \propto \exp \left(V_{1}\left(x_{1}\right)+V_{2}\left(x_{2}\right)+V_{12}\left(x_{1}, x_{2}\right)+V_{13}\left(x_{1}, x_{3}\right)+\ldots\right)
$$

- a transport map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, ideally invertible

$$
\pi_{X}(x)=T_{\sharp} \pi_{Z}(x) \quad \Leftrightarrow \quad X=T(Z), \quad Z \sim \pi_{Z}
$$

- a hierarchical model $\pi_{x, z}(x, z)=\pi_{x \mid Z}(x \mid z) \pi_{z}(z)$ so that

$$
\pi_{X}(x)=\int \pi_{X, Z}(x, z) \mathrm{d} z \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\text { first } Z \sim \pi_{Z}(\cdot) \\
\text { then } X \sim \pi_{X \mid Z}(\cdot \mid Z)
\end{array}\right.
$$

Most of the time, we use the multivariate Gaussian density $X \sim \mathcal{N}(m, \Sigma)$

$$
\pi_{X}(x) \propto \exp \left(-\frac{1}{2}\|x-m\|_{\Sigma-1}^{2}\right)
$$

Input as a random field $(d=\infty)$

- Gaussian random field $X \sim \mathcal{N}(\mu, c)$ are such that, for any set of points $s_{1}, \ldots, s_{k} \in \Omega$, we have $\left(X\left(s_{1}\right), \ldots, X\left(s_{n}\right)\right) \sim \mathcal{N}(m, \Sigma)$ with

$$
m=\left(\begin{array}{c}
\mu\left(s_{1}\right) \\
\vdots \\
\mu\left(s_{n}\right)
\end{array}\right), \quad \Sigma=\left(\begin{array}{ccc}
c\left(s_{1}, s_{1}\right) & \cdots & c\left(s_{1}, s_{n}\right) \\
\vdots & \ddots & \vdots \\
c\left(s_{n}, s_{1}\right) & \cdots & c\left(s_{n}, s_{n}\right)
\end{array}\right)
$$

Valid bivariate functions $c(\cdot, \cdot)$ such that $\Sigma \succeq 0$ are called kernels.

- Karhunen-Loève decomposition ($=$ Singular Value Decomposition)

$$
X(s)=\sum_{i=1}^{\infty} \underbrace{\sigma_{i}}_{\rightarrow 0} \underbrace{X_{i}}_{\text {random }} \underbrace{\varphi_{i}(s)}_{\text {deterministic }} \approx X_{d}(s)=\sum_{i=1}^{d} \sigma_{i} X_{i} \varphi_{i}(s)
$$

Back to finite dimension, but in practice, $d \gg 1$ can be large...

Uncertainty propagation

Most of the time, the goal is to compute an expectation of the form

$$
\mathbb{E}[\psi(Y)]=\int F(x) \pi_{x}(x) \mathrm{d} x, \quad F(x)=\psi \circ u(x)
$$

- $\psi(t)=t$: mean of Y, i.e. $\mathbb{E}[Y]=\int u(x) \pi_{X}(x) \mathrm{d} x$
- $\psi(t)=t^{2}$: variance of Y, i.e. $\operatorname{Var}(Y)=\mathbb{E}\left[(Y-\mathbb{E}[Y])^{2}\right]=\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}$
- $\psi(t)=\mathbf{1}_{[\alpha, \infty)}(t)$: probability of exceeding a threshold α, i.e.

$$
\mathbb{P}(Y \geq \alpha)=\int \mathbf{1}_{[\alpha, \infty)}(u(x)) \pi_{x}(x) \mathrm{d} x
$$

Unless in the exceptional situation where the integral can be computed analytically (see later), the expectation $\mathbb{E}[\psi(Y)]$ need to be approximated numerically...

Where to evaluate the model $u(x)$ in order to best approximate $\mathbb{E}[\psi(Y)]$?

Deterministic Gaussian quadrature in dimension $d=1$

$$
\int F(x) \pi_{X}(x) \mathrm{d} x \approx \sum_{i=1}^{n} \omega_{i} F\left(x^{(i)}\right)
$$

where $x^{(1)}, \ldots, x^{(n)}$ are the roots of the n-th orthogonal polynomial P_{n} of degree n such that $\int P_{m} P_{n} \pi_{x} \mathrm{~d} x=\delta_{m n}$, and $\omega_{i}>0$ the corresponding weights.

Legendre polynomials P_{1}, \ldots, P_{4}, orthogonal on $\pi_{x}=\mathcal{U}([-1,1])$

- Exact for polynomials F with degree $\leq 2 n-1$
- If $F(x)=\psi \circ u(x)$ is analytic, quadrature error decays in $\mathcal{O}\left(\rho^{n}\right)$
- If we only have $F \in \mathcal{C}^{1}$, then error decays in $\mathcal{O}(1 / n)$
- But $n \leftarrow n+1$ requires re-evaluating u at new points (no recycling)

Deterministic quadrature in dimension $\mathbf{d}>1$

Full tensorization requires $N=n^{d}$ model evaluations

$$
\int F(x) \pi_{X}(x) \mathrm{d} x \approx \sum_{i_{1}=1}^{n} \ldots \sum_{i_{d}=1}^{n} \omega_{i_{1}} \ldots \omega_{i_{d}} F\left(x_{1}^{\left(\alpha_{1}\right)}, \ldots, x_{d}^{\left(\alpha_{d}\right)}\right)
$$

Sparse tensorization using Smolyak grid permits to avoid the exponential increase $d \mapsto n^{d} \ldots$ but still limited to reasonable dimensions $d=\mathcal{O}(50)$.

$$
\int F(x) \pi_{X}(x) \mathrm{d} x \approx \sum_{\substack{\alpha \in \Lambda_{N} \subset\{1, \ldots, n\}^{d} \\ \# \Lambda_{N}=N}} \omega_{\alpha} F\left(x_{1}^{\left(\alpha_{1}\right)}, \ldots, x_{d}^{\left(\alpha_{d}\right)}\right)
$$

Full tensorization

Sparse tensorizations

If F admits an holomorphic extension, and if its Taylor coefficients are ℓ^{p}-summable for some $p<1$, then error in $\mathcal{O}\left(1 / N^{1+\varepsilon}\right)$ with $\varepsilon=2\left(\frac{1}{p}-1\right)>0$

ESAIM:M2AN (2020)]

Monte Carlo (MC) method

Draw N independent samples $X^{(1)}, \ldots, X^{(N)}$ from π_{X} and

$$
\mathrm{I}=\int F(x) \pi_{X}(x) \mathrm{d} x \quad \approx \frac{1}{N} \sum_{i}^{N} F\left(X^{(i)}\right)=\widehat{\mathrm{I}}_{N}
$$

- Constant weights: $\omega_{i}=1 / N$
- Unbiased estimator: $\mathbb{E}\left[\widehat{\mathrm{I}}_{N}\right]=\mathrm{I}$ for all N
- Converging estimator: $\widehat{\mathrm{I}}_{N} \underset{N \rightarrow \infty}{\longrightarrow}$ I with probability 1
- Variance of the estimator

$$
\operatorname{Var}\left(\widehat{\mathrm{I}}_{N}\right) \stackrel{\substack{\text { independance } \\ \text { of the } \\ X^{(i)}}}{\operatorname{Var}(F(X))} \underset{N}{ }
$$

- Relative quadratic error

$$
\frac{\mathbb{E}\left[\left(\mathrm{I}-\widehat{\mathrm{I}}_{N}\right)^{2}\right]^{1 / 2}}{\mathrm{I}}=\frac{1}{\sqrt{N}} \frac{\sqrt{\operatorname{Var}(F(X))}}{\mathrm{I}}
$$

The convergence is independent on the dimension, requires no regularity assumption on $F(x)=\psi \circ u(x)$, permits recycling when $N \leftarrow N+1 \ldots$ but convergence is terribly slow $\mathcal{O}\left(1 / N^{1 / 2}\right)$.

Bonus: confidence intervals

Let $\sigma=\operatorname{Var}(F(X))$. The central limit theorem states that

$$
\mathbb{P}\left\{\frac{\widehat{\mathrm{I}}_{N}-\mathrm{I}}{\sigma / \sqrt{N}}\right\} \quad \underset{N \rightarrow \infty}{\longrightarrow} \mathbb{P}[Z<t], \quad Z \sim \mathcal{N}(0,1)
$$

Then, for N "sufficiently large", we have $\widehat{\mathrm{I}}_{N} \approx \mathcal{N}(\mathrm{I}, \sigma / N)$ and then

$$
\mathbb{P}\left\{\mathrm{I} \in\left[\widehat{\mathrm{I}}_{N}-\frac{1.96 \sigma}{\sqrt{N}}, \widehat{\mathrm{I}}_{N}+\frac{1.96 \sigma}{\sqrt{N}}\right]\right\} \approx 0.95
$$

We can estimate σ via the (unbiased) estimator

$$
\widehat{\sigma}_{N}=\left(\frac{1}{N-1} \sum_{i=1}^{N} F\left(X^{(i)}\right)^{2}-\widehat{\mathrm{I}}_{N}^{2}\right)^{1 / 2}
$$

Take-away message: we cannot provide any interval which surely contains I... but we can give confidence intervals which we know they contains I with high probability.

Alternative: Determinantal Point Process (DPP)

Idea: construct a stochastic Point Process (PP) which exhibits repulsion.

(a) PP, independent (MC)

(b) PP with attraction

(c) DPP exhibits repulsion

DPP: given a kernel $c(\cdot, \cdot)$, the density of the sample $\mathcal{X}_{N}=\left\{X^{(1)}, \ldots, X^{(N)}\right\}$ is

$$
\pi\left(\mathcal{X}_{N}\right) \propto \operatorname{det}(K), \quad K_{i, j}=c\left(X^{(i)}, X^{(j)}\right)
$$

- The points $X^{(i)}$ are not independent, and the weights ω_{i} are not constant
- Sample from a DPP is not trivial: you'll have a lot of fun to implement it!
- Recycling for $N \leftarrow N+1$? I don't think so...
- Convergence: $\mathcal{O}\left(1 / N^{\frac{1+1 / d}{2}}\right)$ for $f \in \mathcal{C}^{1}\left([0,1]^{d}\right)$.

[^0]
Another alternative: Quasi Monte Carlo (QMC)

Idea: construct a deterministic sequence of points with low discrepancy.
For the uniform $\pi_{X}=\mathcal{U}\left([0,1]^{d}\right)$, the discrepancy of $\mathcal{X}_{N}=\left\{X^{(1)}, \ldots, X^{(N)}\right\}$ is a measure of how well $\frac{\#\{B \cap X\}}{\# X}$ approximates the volume of any box B, that is

$$
D\left(\mathcal{X}_{N}\right)=\sup _{B \in \text { boxes of }[0,1]^{d}}\left|\frac{\#\{B \cap X\}}{\# X}-\int_{B} \mathrm{~d} \pi_{X}\right|
$$

The Koksma-Hlawka theorem states

$$
\left|\mathrm{I}-\widehat{\mathrm{I}}_{N}\right| \leq V(F) D\left(\mathcal{X}_{N}\right)
$$

where $V(F)$ is the Hardy-Krause variation of F. The Halton sequence, the Sobol sequence, or the Faure sequence permits to construct \mathcal{X} such that

$$
D\left(\mathcal{X}_{N}\right)=\mathcal{O}\left\{\frac{\log (N)^{d}}{N}\right\}
$$

- "Almost" $\mathcal{O}(1 / N)$ convergence!
- But the constant in \mathcal{O} depends on d : works well in moderate dimension (comparable to sparse grids)
[Caflisch: Monte carlo and quasi-monte carlo methods, Acta numerica 7 (1998): 1-49.]

$N=10$

$N=50$

$N=100$

$$
N=500
$$

Variance reduction for Monte Carlo

$$
\frac{\mathbb{E}\left[\left(\mathrm{I}-\widehat{\mathrm{I}}_{N}\right)^{2}\right]^{1 / 2}}{\mathrm{I}}=\frac{1}{\sqrt{N}} \frac{\sqrt{\operatorname{Var}(F(X))}}{\mathrm{I}}
$$

Instead of trying to improve the convergence rate $1 / \sqrt{N}$ of Monte Carlo, variance reduction techniques aim at reducing the constant in front.

- Latin Hypercube Sampling
- Importance Sampling
- Control Variables
- ...

[^1]
Latin hypercube sample (LHS) for $\pi_{X}=\mathcal{U}\left([0,1]^{d}\right)$

Idea: create a sample which represents well all 1D marginals X_{1}, \ldots, X_{d}

The resulting estimator $\hat{\mathrm{I}}_{N}^{\text {LHS }}$ is still unbiased and convergent with

$$
\frac{\mathbb{E}\left[\left(\mathrm{I}-\widehat{\mathrm{I}}_{N}^{L H S}\right)^{2}\right]^{1 / 2}}{\mathrm{I}}=\frac{1}{\sqrt{N}} \frac{\sqrt{\operatorname{Var}\left(F(X)-F_{\text {add }}(X)\right)}}{\mathrm{I}}+o\left(\frac{1}{\sqrt{N}}\right)
$$

where $F_{\text {add }}(X)=F_{1}\left(X_{1}\right)+\ldots+F_{d}\left(X_{d}\right)$ is the ℓ^{2}-best additive approximation to $F(X)$. No recycling for $N \leftarrow N+1$... still, super popular!
More generally, space filling designs consist typically in
[Stein: Large sample properties of simulations using LHS, Technometrics 1987]
[Pronzato: Minimax and maximin space-filling designs: some properties and methods for construction, J-SFdS 2017]

Importance Sampling using an importance density ρ

Idea: estimate

$$
\mathrm{I}=\int F(x) \pi_{x}(x) \mathrm{d} x=\int F(x) \frac{\pi_{x}(x)}{\rho(x)} \rho(x) \mathrm{d} x
$$

with

$$
\widehat{\mathrm{I}}_{N}^{\mathrm{S}}=\frac{1}{N} \sum_{i=1}^{N} F\left(X^{(i)}\right) \frac{\pi_{X}\left(X^{(i)}\right)}{\rho\left(X^{(i)}\right)}, \quad \text { where } X^{(i)} \sim \rho
$$

This is an unbiased and convergent estimator with

$$
\frac{\mathbb{E}\left[\left(\mathrm{I}-\widehat{\mathrm{I}}_{N}^{\mathrm{S}}\right)^{2}\right]^{1 / 2}}{\mathrm{I}}=\frac{1}{\sqrt{N}} \frac{\sqrt{\operatorname{Var}_{X \sim \rho}\left(\frac{F(X) \pi_{X}(X)}{\rho(X)}\right)}}{\mathrm{I}}
$$

Observe that, if $F(X) \geq 0$, the optimal choice

$$
\rho^{\text {opt }}(x)=\frac{F(x) \pi_{x}(x)}{\mathrm{I}} \Rightarrow \frac{\mathbb{E}\left[\left(\mathrm{I}-\widehat{\mathrm{I}}_{N}^{\mathrm{S}}\right)^{2}\right]^{1 / 2}}{\mathrm{I}}=0
$$

... but $\rho^{\text {opt }}$ depends on I: sequential/adaptive methods to approximate $\rho^{\text {opt }}$.

Illustration for rare event estimation $\mathbb{P}[u(X) \geq \alpha]$

For $F(x)=\mathbf{1}_{[\alpha, \infty)}(u(x))$ we have

$$
\frac{\mathbb{E}\left[\left(\mathrm{I}-\widehat{\mathrm{I}}_{N}^{\mathrm{MC}}\right)^{2}\right]^{1 / 2}}{\mathrm{I}}=\sqrt{\frac{1-\mathrm{I}}{N \mathrm{I}}}
$$

We need at least $N=\mathcal{O}\left(\mathrm{I}^{-1}\right)$ to hit the failure domaine $\{x: u(x) \geq \alpha\}$

Illustration for rare event estimation $\mathbb{P}[u(X) \geq \alpha]$

For $F(x)=\mathbf{1}_{[\alpha, \infty)}(u(x))$ we have

$$
\frac{\mathbb{E}\left[\left(\mathrm{I}-\widehat{\mathrm{I}}_{N}^{\mathrm{MC}}\right)^{2}\right]^{1 / 2}}{\mathrm{I}}=\sqrt{\frac{1-\mathrm{I}}{N \mathrm{I}}}
$$

We need at least $N=\mathcal{O}\left(\mathrm{I}^{-1}\right)$ to hit the failure domaine $\{x: u(x) \geq \alpha\}$

A simple importance sampling

 scheme: first, find the most probable failure point x^{*} by solving$$
\max _{u(x) \geq \alpha} \pi_{x}(x)
$$

Illustration for rare event estimation $\mathbb{P}[u(X) \geq \alpha]$

For $F(x)=\mathbf{1}_{[\alpha, \infty)}(u(x))$ we have

$$
\frac{\mathbb{E}\left[\left(\mathrm{I}-\widehat{\mathrm{I}}_{N}^{\mathrm{MC}}\right)^{2}\right]^{1 / 2}}{\mathrm{I}}=\sqrt{\frac{1-\mathrm{I}}{N \mathrm{I}}}
$$

We need at least $N=\mathcal{O}\left(\mathrm{I}^{-1}\right)$ to hit the failure domaine $\{x: u(x) \geq \alpha\}$

A simple importance sampling

scheme: first, find the most probable failure point x^{*} by solving

$$
\max _{u(x) \geq \alpha} \pi_{X}(x)
$$

Then use $\rho(x)=\pi_{X}\left(x-x^{*}\right)$ as an importance density.

Control variable for variance reduction

Idea: assuming we are given $\widetilde{F}(x)$ such that $\mathbb{E}[\widetilde{F}(X)]$ is known, we estimate

$$
\mathrm{I}=\mathbb{E}[F(X)]=\mathbb{E}[F(X)-\widetilde{F}(X)]+\mathbb{E}[\widetilde{F}(X)]
$$

with

$$
\left.\widehat{\mathrm{I}}_{N}^{\mathrm{CV}}=\left\{\frac{1}{N} \sum_{i=1}^{N} F\left(X^{(i)}\right)-\widetilde{F}\left(X^{(i)}\right)\right)\right\}+\mathbb{E}[\widetilde{F}(X)]
$$

This is again an unbiased and convergent estimator with

$$
\frac{\mathbb{E}\left[\left(\mathrm{I}-\widehat{\mathrm{I}}_{N}^{\mathrm{CV}}\right)^{2}\right]^{1 / 2}}{\mathrm{I}}=\frac{1}{\sqrt{N}} \frac{\sqrt{\operatorname{Var}(F(X)-\tilde{F}(X))}}{\mathrm{I}}
$$

In practice, we ${ }^{*}$ just* need to find a $\widetilde{F}(x) \approx F(x)$ such that

$$
\operatorname{Var}(F(X)-\widetilde{F}(X)) \leq \operatorname{Var}(F(X))
$$

or equivalently $\mathbb{E}\left[\|F(X)-\widetilde{F}(X)\|^{2}\right] \leq \mathbb{E}\left[\|F(X)\|^{2}\right] \quad(\rightarrow$ surrogate models)

Control variable and its variants...

- Replace $\widetilde{F}(x)$ with $\theta \widetilde{F}(x)$ and optimize over $\theta \in \mathbb{R}$:

$$
\min _{\theta \in \mathbb{R}} \operatorname{Var}(F(X)-\theta \widetilde{F}(X))=\operatorname{Var}(F(X))-\frac{\operatorname{Cov}(F(X), \widetilde{F}(X))^{2}}{\operatorname{Var}(\widetilde{F}(X))}
$$

- If $\mathbb{E}[\widetilde{F}(X)]$ is unknown but $x \mapsto \widetilde{F}(x)$ is cheap-to-evaluate, then:

$$
\widehat{\mathrm{I}}_{N}^{\mathrm{CV}}=\left\{\frac{1}{N} \sum_{i=1}^{N} F\left(X^{(i)}\right)-\widetilde{F}\left(X^{(i)}\right)\right\}+\left\{\frac{1}{M} \sum_{i=N+1}^{N+M} \widetilde{F}\left(X^{(i)}\right)\right\}, \quad M \gg N
$$

- Multiple control variables $\widetilde{F}_{1}(x), \widetilde{F}_{2}(x), \ldots$: use telescoping sums

$$
\widehat{\mathrm{I}}_{N}^{\mathrm{ML}}=\left\{\frac{1}{N_{1}} \sum_{i=1}^{N} F\left(X^{(i)}\right)-\widetilde{F}_{1}\left(X^{(i)}\right)\right\}+\left\{\frac{1}{N_{2}} \sum_{i=N_{1}}^{N_{1}+N_{2}} \widetilde{F}_{1}\left(X^{(i)}\right)-\widetilde{F}_{2}\left(X^{(i)}\right)\right\}+\ldots
$$

Depending on the context, this is called multi-level or multi-index or multi-fidelity. In some cases, we know the optimal balance between the levels N_{1}, N_{2}, \ldots, see:

[Giles: Multilevel monte carlo methods, Acta numerica 2015]

[^2]

Uncertainty propagation via a surrogate models

Idea: replace the model u with an approximation \widetilde{u} and Y with

$$
\widetilde{Y}=\widetilde{u}(X)
$$

Alternatively, use $\psi(\widetilde{Y})$ as a control variable for $\psi(Y)$.

- If \widetilde{u} is simple (linear, quadratic) then analytic computation of $\mathbb{E}[\psi(\widetilde{Y})]$
- If \widetilde{u} is cheap to evaluate, then use the preceding methods with $N \gg 1$

Constructing \widetilde{u} is an art: depending on the context, such \widetilde{u} are readily available (e.g. crude mesh, simplified physics etc). If not, there is a zoology of methods to construct \widetilde{u} from either

- point evaluations of u,
- residual of the equation solved by u,
- prior knowledge on u,
- ...

Local approximation via Taylor expansion

Taylor expansion of $u(X)$ around $m=\mathbb{E}[X]$

$$
\widetilde{Y}=u(m)+\nabla u(m)^{\top}(X-m)
$$

We just need to compute $u(m)$ and $\nabla u(m)$, which requires at most $N=d+1$ evaluations of the model (using finite differences). Permits to rapidely sketch the trends of Y via

$$
\mathbb{E}[Y] \approx \mathbb{E}[\widetilde{Y}]=u(m)
$$

and

$$
\operatorname{Var}(Y) \approx \operatorname{Var}(\widetilde{Y})=\nabla u(m)^{\top} \operatorname{Cov}(X) \nabla u(m)
$$

Basic: works for models which can be linearized...

Taylor expansion for rare event estimation $\mathbb{P}[u(X) \geq \alpha]$

First, find the most probable failure point x^{*} by solving

$$
\max _{u(x) \geq \alpha} \pi_{X}(x)
$$

Then, compute $\mathbb{P}(\widetilde{Y} \geq \alpha)$ analytically with

$$
\widetilde{Y}=\underbrace{u\left(x^{*}\right)+\nabla u\left(x^{*}\right)^{\top}\left(X-x^{*}\right)}_{\text {FORM }}+\underbrace{\frac{1}{2}\left(X-x^{*}\right)^{\top} \nabla^{2} u\left(x^{*}\right)\left(X-x^{*}\right)}_{\text {SORM }}
$$

- FORM (First-Order Reliability Method): we have

$$
\mathbb{P}(\tilde{Y} \geq \alpha) \quad \pi_{x}=\mathcal{N}\left(0, l_{d}\right) \quad \frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{\left\|x^{*}\right\|}{\sqrt{2}}\right)
$$

- SORM (Second-Order): $\mathbb{P}(\tilde{Y} \geq \alpha)=$ Breitung's formula.

Towards global approximation: the curse of dimensionality

- Q: I want to construct an approximation \widetilde{u} to $u\left(x_{1}, \ldots, x_{d}\right)$ such that

$$
\|u-\widetilde{u}\|_{\infty} \leq \varepsilon\|u\|_{\infty}
$$

How many point evaluations of u do I need?

- A: Well, if u is linear, then $N=d+1$ evaluations are enough.
- Q: Okay... what if u is *just* extremely regular, say,

$$
\sup _{\alpha \in \mathbb{N}^{d}}\left\|\frac{\partial^{|\alpha|} u}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{d}^{\alpha_{d}}}\right\|_{\infty}<\infty
$$

- A: Sorry: for any algorithms you can ever think of, there exists such a u which would require at least

$$
N \geq 2^{\lfloor d / 2\rfloor}
$$

- Q: Come one! I remember that with polynomial interpolations, I can reach

$$
\left\|u-\widetilde{u}_{\text {interpolation }}\right\|_{\infty}=\mathcal{O}\left(\rho^{N}\right)
$$

- A: Sure! But the constant hidden in \mathcal{O} depends in d. You'll need at least $N \geq 2^{\lfloor d / 2\rfloor}$ to be sure to reach the asymptotic regime.

[^3]
Exploit some low-dimensional structure that u can have

- Sparsity

$$
u(x) \approx \sum_{\alpha \in \Lambda_{N}} u_{\alpha} \varphi_{\alpha}(x), \quad \# \Lambda_{N}=N
$$

- Low-rank structure

$$
u(x) \approx \sum_{i=1}^{r} u_{1}^{i}\left(x_{1}\right) \ldots u_{d}^{i}\left(x_{d}\right)
$$

- Low-effective dimension

$$
u(x) \approx f\left(z_{1}, \ldots, z_{m}\right), \quad\left\{\begin{array}{l}
z=g(x) \\
g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m} \\
m \ll d
\end{array}\right.
$$

Prototypical example: parametrized elliptic PDE

Find $u(x) \in H^{1}(\Omega)$ solution to

$$
-\operatorname{div}(\kappa(x) \nabla u(x))=f \quad \text { in } \Omega \subset \mathbb{R}^{2} \text { or } \mathbb{R}^{3}
$$

where the diffusion coefficient writes

$$
\kappa(x, s)=\kappa_{0}(s)+\sum_{i=1}^{\infty} x_{i} \kappa_{i}(s), \quad\left\{\begin{array}{l}
x_{1}, x_{2}, \ldots \in[-1,1] \\
s \in \Omega
\end{array}\right.
$$

Assume

$$
\left(\left\|\kappa_{i}\right\|_{\infty}\right)_{i \geq 1} \in \ell^{p} \quad \text { for some } p<1
$$

then there exists

$$
\widetilde{u}(x, s)=\sum_{i=1}^{n} \varphi_{i}(x) v_{i}(s), \quad\left\{\begin{array}{l}
v_{i} \in H^{1}(\Omega) \\
\varphi_{i} \in L^{\infty}([-1,1])
\end{array}\right.
$$

such that

$$
\sup _{x \in[-1,1]^{\mathbb{N}}}\|u(x)-\widetilde{u}(x)\|_{H^{1}(\Omega)} \leq C n^{-s}, \quad \text { where } s=p^{-1}-1>0
$$

for some constant C : no curse of dimensionality!
[Cohen\&DeVore: Approximation of high-dimensional parametric PDEs, Acta Numerica 2015]

Near-optimal approximations can be obtained using

- sparse polynomial expansions:

$$
\widetilde{u}(x, s)=\sum_{\substack{\alpha \in \Lambda_{n} \\
\# \Lambda_{n}=n}} \varphi_{\alpha}(x) v_{\alpha}(s) \quad\left\{\begin{array}{l}
\varphi_{\alpha}(x) \text { : given multivariate polynomials } \\
\Lambda_{n}: \text { Greedy algorithm } \Lambda_{n+1}=\Lambda_{n} \cup\left\{\alpha_{n+1}^{*}\right\} \\
v_{\alpha}(s) \text { : least-squares, interpolation, } \ldots
\end{array}\right.
$$

- the Reduced Basis method:

$$
\widetilde{u}(x, s)=\sum_{i=1}^{n} \varphi_{i}(x) u\left(x_{i}, s\right)
$$

$$
\left\{\begin{array}{c}
x_{1}, \ldots, x_{n}: \text { Greedy algorithm } n \leftarrow n+1 \\
\varphi_{i}(x): \text { Galerkin projection of } u(x) \text { on } \\
\operatorname{span}\left(u\left(x_{1}\right), \ldots, u\left(x_{n}\right)\right)
\end{array}\right.
$$

[^4]
The Reduced Basis method

For $A(x) \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^{m}$ with $m \gg 1$, compute $u(x) \in \mathbb{R}^{m}$ solution to

$$
A(x) u(x)=b
$$

- Offline phase: compute $n \ll m$ solutions $u\left(x^{(1)}\right), \ldots, u\left(x^{(n)}\right)$ and

$$
V_{n}=\left[u\left(x^{(n)}\right), \ldots, u\left(x^{(n)}\right)\right] \in \mathbb{R}^{m \times n}
$$

- Online phase: given a new parameter x, compute the Galerkin projection $u_{n}(x)$ of $u(x)$ onto range $\left(V_{n}\right)$ by computing $\widetilde{u}_{n}(x) \in \mathbb{R}^{n}$ solution to

$$
\left[V_{n}^{\top} A(x) V_{n}\right] \widetilde{u}_{n}(x)=\left[V_{n}^{\top} b\right] \quad \Rightarrow \quad u_{n}(x)=V_{n} \widetilde{u}_{n}(x)
$$

Remarks:

$-V_{n} \leftarrow \operatorname{qr}\left(V_{n}\right)$ for numerical stability

- Greedy enrichment $n \leftarrow n+1$ via $x^{(n+1)} \in \arg \max _{x}\left\|A(x) u_{n}(x)-b\right\|$
- If $A(x)=\sum_{i=1}^{r} c_{i}(x) A_{i}$ admits an affine parametric decomposition then

$$
\left[V_{n}^{\top} A(x) V_{n}\right]=\sum_{i=1}^{r} c_{i}(x) \underbrace{\left[V_{n}^{\top} A_{i} V_{n}\right]}_{\begin{array}{c}
\text { precompute for } \\
\text { online efficieny }
\end{array}}
$$

Kriging: surrogate models via Gaussian processes (GP)

- Goal: approximate $u(x)$

Kriging: surrogate models via Gaussian processes (GP)

- Goal: approximate $u(x)$
- Idea: model u as a realization of a GP in the variable x

$$
Z \sim \mathcal{N}(0, c)
$$

Kriging: surrogate models via Gaussian processes (GP)

- Goal: approximate $u(x)$
- Idea: model u as a realization of a GP in the variable x

$$
Z \sim \mathcal{N}(0, c)
$$

- Evaluate the model at $x^{\text {obs }}=\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ and condition Z on $Z^{\text {obs }}=u\left(x^{\text {obs }}\right)$

$$
Z \mid Z^{\mathrm{obs}} \sim \mathcal{N}\left(m^{\prime}, c^{\prime}\right)
$$

Kriging: surrogate models via Gaussian processes (GP)

- Goal: approximate $u(x)$
- Idea: model u as a realization of a GP in the variable x

$$
Z \sim \mathcal{N}(0, c)
$$

- Evaluate the model at $x^{\text {obs }}=\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ and condition Z on $Z^{\text {obs }}=u\left(x^{\text {obs }}\right)$

$$
Z \mid Z^{\mathrm{obs}} \sim \mathcal{N}\left(m^{\prime}, c^{\prime}\right)
$$

- Use the mean as a surrogate $\widetilde{u}(x)=m^{\prime}(x)$ where

$$
m^{\prime}(x)=c\left(x, x^{\mathrm{obs}}\right)\left[c\left(x^{\mathrm{obs}}, x^{\mathrm{obs}}\right)\right]^{-1} u\left(x^{\mathrm{obs}}\right)
$$

Kriging: surrogate models via Gaussian processes (GP)

- Goal: approximate $u(x)$
- Idea: model u as a realization of a GP in the variable x

$$
Z \sim \mathcal{N}(0, c)
$$

- Evaluate the model at $x^{\text {obs }}=\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ and condition Z on $Z^{\text {obs }}=u\left(x^{\text {obs }}\right)$

$$
Z \mid Z^{\mathrm{obs}} \sim \mathcal{N}\left(m^{\prime}, c^{\prime}\right)
$$

- Use the mean as a surrogate $\widetilde{u}(x)=m^{\prime}(x)$ where

$$
m^{\prime}(x)=c\left(x, x^{\mathrm{obs}}\right)\left[c\left(x^{\mathrm{obs}}, x^{\mathrm{obs}}\right)\right]^{-1} u\left(x^{\mathrm{obs}}\right)
$$

- Confidence intervals via the conditional variance c^{\prime}

$$
c^{\prime}(x, y)=c(x, y)-c\left(x, x^{\mathrm{obs}}\right)\left[c\left(x^{\mathrm{obs}}, x^{\mathrm{obs}}\right)\right]^{-1} c\left(x^{\mathrm{obs}}, y\right)
$$

Kriging: surrogate models via Gaussian processes (GP)

- Goal: approximate $u(x)$
- Idea: model u as a realization of a GP in the variable x

$$
Z \sim \mathcal{N}(0, c)
$$

- Evaluate the model at $x^{\text {obs }}=\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ and condition Z on $Z^{\text {obs }}=u\left(x^{\text {obs }}\right)$

$$
Z \mid Z^{\mathrm{obs}} \sim \mathcal{N}\left(m^{\prime}, c^{\prime}\right)
$$

- Use the mean as a surrogate $\widetilde{u}(x)=m^{\prime}(x)$ where

$$
m^{\prime}(x)=c\left(x, x^{\mathrm{obs}}\right)\left[c\left(x^{\mathrm{obs}}, x^{\mathrm{obs}}\right)\right]^{-1} u\left(x^{\mathrm{obs}}\right)
$$

- Confidence intervals via the conditional variance c^{\prime}

$$
c^{\prime}(x, y)=c(x, y)-c\left(x, x^{\mathrm{obs}}\right)\left[c\left(x^{\mathrm{obs}}, x^{\mathrm{obs}}\right)\right]^{-1} c\left(x^{\mathrm{obs}}, y\right)
$$

Remarks:

- There exists (infinitely) many ways to enrich $x^{\text {obs }} \leftarrow x^{\mathrm{obs}} \cup\left\{x^{(N+1)}\right\}$.
- Requires solving a $N \times N$ linear system,
- $u \sim \mathcal{N}(0, c)$ is a very strong assumption (how to choose c ?)
- Still, extremely popular!!
$c(x, y)=\exp \left(-\|x-y\|^{2} / 2 \ell^{2}\right)$ with a wrong length scale ℓ

$$
\ell=0.5 \text { too small } \rightarrow \text { "swiss cheese" }
$$

$\ell=5$ too large \rightarrow polynomial interpolation

Global Sensitivity Analysis

$$
Y=u\left(X_{1}, \ldots, X_{d}\right)
$$

- $X \sim \pi_{X}$: input parameter, typically with product density π_{X}
- Y : output of interest, generally scalar $Y \in \mathbb{R}$
- u : expensive numerical model

Goal: determine the relative influence of the inputs X_{1}, \ldots, X_{d} on Y. Formally, for any $\tau \subset\{1, \ldots, d\}$, we want to define and compute a sensitivity index which measures how well

$$
u\left(X_{1}, \ldots, X_{d}\right) \approx f\left(X_{\tau_{1}}, \ldots, X_{\tau_{m}}\right)
$$

Remark: super useful to construct low-dimensional meta models f later on!
[Da Veiga, Gamboa, looss, and Prieur: Basics and trends in sensitivity analysis SIAM 2021.]

The function approximation perspective

Let $L_{\pi_{X}}^{2}$ be the space of square-integrable functions endowed with the norm

$$
\|u\|^{2}=\int u(x)^{2} \mathrm{~d} \pi x(x)
$$

Expectations and conditional expectations are orthogonal projections in $L_{\pi_{X}}^{2}$:

- The constant $c \in \mathbb{R}$ which best approximates u in $L_{\pi_{X}}^{2}$ is the expectation $c=\mathbb{E}[u(X)]$

$$
\min _{c \in \mathbb{R}}\|u-c\|^{2}=: \operatorname{Var}(u(X))
$$

- For any $\tau \subset\{1, \ldots, d\}$, the function $f: x \mapsto f\left(x_{\tau_{1}}, \ldots, x_{\tau_{m}}\right)$ which best approximates u in $L_{\pi_{X}}^{2}$

$$
\min _{f: x \mapsto f\left(x_{\tau}\right)}\|u-f\|^{2}=: \mathbb{E}\left[\operatorname{Var}\left(u(X) \mid X_{\tau}\right)\right]
$$

is the conditional expectation $f\left(x_{\tau}\right)=\mathbb{E}\left[u(X) \mid X_{\tau}=x_{\tau}\right]$.

The total variance formula: Pythagorean theorem in $L_{\pi_{x}}^{2}$

$$
\begin{aligned}
\|u-\mathbb{E}[u(X)]\|^{2} & =\left\|\left(u-\mathbb{E}\left[u(X) \mid X_{\tau}\right]\right)+\left(\mathbb{E}\left[u(X) \mid X_{\tau}\right]-\mathbb{E}[u(X)]\right)\right\|^{2} \\
& =\left\|u-\mathbb{E}\left[u(X) \mid X_{\tau}\right]\right\|^{2}+\left\|\mathbb{E}[u(X)]-\mathbb{E}\left[u(X) \mid X_{\tau}\right]\right\|^{2}
\end{aligned}
$$

Put in statistical language:

$$
\operatorname{Var}(u(X))=\underbrace{\mathbb{E}\left[\operatorname{Var}\left(u(X) \mid X_{\tau}\right)\right]}_{\min _{f: x \mapsto f\left(x_{\tau}\right)}\|u-f\|^{2}}+\operatorname{Var}\left(\mathbb{E}\left[u(X) \mid X_{\tau}\right]\right)
$$

Connection with the Sobol' indices

The closed Sobol' indices writes

$$
S_{\tau}(u):=\frac{\operatorname{Var}\left(\mathbb{E}\left[u(X) \mid X_{\tau}\right]\right)}{\operatorname{Var}(u(X))} \stackrel{(\star)}{=} 1-\frac{\min _{f: x \mapsto f\left(x_{\tau}\right)}\|u-f\|^{2}}{\operatorname{Var}(u(X))}
$$

$$
\begin{aligned}
S_{\tau}(u) \approx 1 & \Leftrightarrow \quad u(X) \approx f\left(X_{\tau}\right) \\
& \Leftrightarrow \quad X_{\tau} \text { "explains" well } Y=u(X)
\end{aligned}
$$

Similarly, the total Sobol' indices writes

$$
\begin{aligned}
T_{\tau}(u):=1- & \frac{\operatorname{Var}\left(\mathbb{E}\left[u(X) \mid X_{-\tau}\right]\right)}{\operatorname{Var}(u(X))} \stackrel{(\star)}{=} \frac{\min _{f: x \mapsto f\left(x_{-\tau}\right)}\|u-f\|^{2}}{\operatorname{Var}(u(X))} \\
T_{\tau}(u) \approx 0 & \Leftrightarrow \quad u(X) \approx f\left(X_{-\tau}\right) \\
& \Leftrightarrow \quad X_{\tau} \text { is useless to "explain" } Y=u(X)
\end{aligned}
$$

Link with the ANOVA decomposition

Assuming π_{X} is a product density, the ANalysis Of VAriance of u reads

$$
u(x)=u_{0}+\sum_{i=1}^{d} u_{i}\left(x_{i}\right)+\sum_{i \neq j}^{d, d} u_{i, j}\left(x_{i}, x_{j}\right)+\sum_{i \neq j \neq k}^{d, d, d} u_{i, j, k}\left(x_{i}, x_{j}, x_{k}\right)+\ldots
$$

where all above terms are pairwise orthogonals in $L_{\pi_{x}}^{2}$.

- Closed Sobol' index

$$
S_{\tau}(u)=\sum_{\alpha \subset \tau} \operatorname{Var}\left(u_{\alpha}\right)
$$

- Total Sobol' index

$$
T_{\tau}(u)=\sum_{\alpha \cap \tau \neq \emptyset} \operatorname{Var}\left(u_{\alpha}\right)
$$

- Superset importance

$$
\Upsilon_{\tau}^{2}(u)=\sum_{\alpha \supset \tau} \operatorname{Var}\left(u_{\alpha}\right)
$$

- Shapley-Owen value

$$
\phi_{\tau}(u)=\sum_{\alpha \supset \tau} \frac{\operatorname{Var}\left(u_{\alpha}\right)}{|\alpha|-|\tau|+1}
$$

Pick \& freeze estimators of Sobol' indices

Assuming π_{X} is a product density, the following identities hold

$$
\begin{aligned}
\operatorname{Var}\left(\mathbb{E}\left[u(X) \mid X_{\tau}\right]\right) & =\operatorname{Cov}\left(u(X), u\left(X_{\tau}, X_{-\tau}^{\prime}\right)\right) \\
\mathbb{E}\left[\operatorname{Var}\left(u(X) \mid X_{-\tau}\right)\right] & =\frac{1}{2} \mathbb{E}\left[\left(u(X)-u\left(X_{-\tau}, X_{\tau}^{\prime}\right)\right)^{2}\right]
\end{aligned}
$$

where X^{\prime} is an independent copy of X.

- Estimation of closed Sobol' indices

$$
S_{\tau}(u) \approx \frac{\frac{1}{N} \sum_{i=1}^{N} u\left(X^{(i)}\right) u\left(X_{\tau}^{(i)}, X_{-\tau}^{\prime(i)}\right)-\left(\frac{1}{N} \sum_{i=1}^{N} u\left(X^{(i)}\right)\right)\left(\frac{1}{N} \sum_{i=1}^{N} u\left(X_{\tau}^{(i)}, X_{-\tau}^{\prime(i)}\right)\right)}{\frac{1}{N} \sum_{i=1}^{N} u\left(X^{(i)}\right)^{2}-\left(\frac{1}{N} \sum_{i=1}^{N} u\left(X^{(i)}\right)\right)^{2}}
$$

- Estimation of total Sobol' indices

$$
T_{\tau}(u) \approx \frac{\frac{1}{2 N} \sum_{i=1}^{N}\left(u\left(X^{(i)}\right)-u\left(X_{-\tau}^{(i)}, X_{\tau}^{\prime(i)}\right)\right)^{2}}{\frac{1}{N} \sum_{i=1}^{N} u\left(X^{(i)}\right)^{2}-\left(\frac{1}{N} \sum_{i=1}^{N} u\left(X^{(i)}\right)\right)^{2}}
$$

Remarks: Requires $2 N$ model evaluations. No recycling possible for estimating the indices for another τ : estimating all first order indices $\# \tau=1$ would require $(d+1) N$ evaluations.

Gradient-based global sensitivity analysis

Suppose we have access to

$$
x \mapsto \nabla u(x)=\left(\begin{array}{c}
\partial_{1} u(x) \\
\vdots \\
\partial_{d} u(x)
\end{array}\right)
$$

via e.g. adjoint models, automatic differentiation...

- $\left|\partial_{i} u(x)\right|$ gives a local sensitivity measure of the i-th variable around x.
- Global sensitivity measure can be obtained e.g. using the Derivative Based Sensitivity Measure (DGSM)

$$
\nu_{i}(u)=\mathbb{E}\left[\partial_{i} u(X)^{2}\right]
$$

- The Monte Carlo estimator requires N evaluations of ∇u to estimate simultaneously all $\nu_{i}(u)$'s:

$$
\left(\begin{array}{c}
\nu_{1}(u) \\
\vdots \\
\nu_{d}(u)
\end{array}\right) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla u\left(X^{(i)}\right)^{\circ 2}
$$

- Assuming π_{x} is a product density and let $C\left(\pi_{x_{i}}\right)$ be the Poincaré constant of X_{i}. Then

$$
T_{i}(u) \leq C\left(\pi x_{i}\right) \nu_{i}(u)
$$

Active subspaces: rotation in the parameter space

Instead of $u(X) \approx f\left(X_{\tau}\right)$, we seek

$$
u(X) \approx f\left(U_{m}^{\top} X\right)
$$

for some function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ and some matrix $U_{m} \in \mathbb{R}^{d \times m}$ with $U_{m}^{\top} U_{m}=I_{m}$.

- The optimal f for a given U_{m} is the conditional expectation

$$
\left\|u-\mathbb{E}\left[u(X) \mid U_{m}^{T} X\right]\right\|^{2}=\min _{f: \mathbb{R}^{m} \rightarrow \mathbb{R}}\left\|u-f\left(U_{m}^{T} \cdot\right)\right\|^{2}
$$

- Bound the error using subspace Poincaré inequality

$$
\left\|u-\mathbb{E}\left[u(X) \mid U_{m}^{T} X\right]\right\|^{2} \leq \bar{C}\left(\pi_{X}\right)\left(\mathbb{E}\left[\|\nabla u(X)\|^{2}\right]-\mathbb{E}\left[\left\|U_{m}^{\top} \nabla u(X)\right\|^{2}\right]\right)
$$

- Minimizing the bound yields the active subspace: $U_{m}=\left[v_{1}, \ldots, v_{m}\right]$ contains the m-largest eigenvectors of

$$
H=\mathbb{E}\left[\nabla u(X) \nabla u(X)^{\top}\right]=\sum_{i=1}^{d} \lambda_{i} v_{i} v_{i}^{\top}
$$

and the error becomes

$$
\left\|u-\mathbb{E}\left[u(X) \mid U_{r}^{T} X\right]\right\|^{2} \leq \bar{C}\left(\pi_{X}\right) \sum_{i=m+1}^{d} \lambda_{i}
$$

[Constantine, Dow and Wang: Active subspace methods in theory and practice: applications to kriging surfaces, SIAM-SISC 2014]

Two examples

Assume $u(x)=f\left(A_{r}^{T} x\right)$ is a ridge function for some $A_{r} \in \mathbb{R}^{d \times m}$. Since $\nabla u(x)=A_{r} \nabla f\left(A_{r}^{\top} x\right)$, we have

$$
H=\mathbb{E}\left[\nabla u(X) \nabla u(X)^{\top}\right]=A_{r} \mathbb{E}\left[\nabla f\left(A_{r}^{T} X\right) \nabla f\left(A_{r}^{T} X\right)^{T}\right] A_{r}^{T}
$$

Then $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}, 0, \ldots, 0\right)$ and range $\left(U_{m}\right)=\operatorname{range}\left(A_{r}\right)$.

Assume $u(x)=f(\|x\|)$ and $\pi_{x}(x) \propto \rho(\|x\|)$ are isotropic functions, then

$$
H=\mathbb{E}\left[\nabla u(X) \nabla u(X)^{\top}\right] \propto I_{d}
$$

No decay in the spectrum $\lambda=(1, \ldots, 1)$: no dimension reduction.

Extensions (part of my current research)

- Joint input-output reduction of $u: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ [Chen et al, 2023]

$$
\mathbb{E}\left[\left\|u(X)-V_{s} f\left(U_{m}^{\top} X\right)\right\|^{2}\right] \leq \overline{\mathbb{C}}(\pi x)\left(\mathbb{E}\left[\|\nabla u(X)\|_{F}^{2}\right]-\mathbb{E}\left[\left\|V_{s}^{\top} \nabla u(X) U_{m}\right\|_{F}^{2}\right]\right)
$$

where $\nabla u(x) \in \mathbb{R}^{m \times d}$ is the Jacobian of $u(x)$

- Nonlinear version [Bigoni et al, 2022]: for "any" $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$ we have

$$
\mathbb{E}\left[(u(X)-f(g(X)))^{2}\right] \leq \overline{\mathbb{C}}\left(\pi_{X} \mid \mathcal{G}\right) \mathbb{E}\left[\left\|\Pi_{\operatorname{ker}(\nabla g(X))} \nabla u\right\|^{2}\right]
$$

where $\Pi_{\operatorname{ker}(\nabla g(X))}$ is the orthogonal projector onto $\operatorname{ker}(\nabla g(X))$.

- Minimizing the RHS over g corresponds to aligning the Jacobian of g with the gradient of u.
- The function g must have path-connected level sets, which is not trivial to impose, unless (work in progress [Verdière et al, 2023])

$$
g(x)=\left(\varphi_{1}(x), \ldots, \varphi_{m}(x)\right), \quad \varphi \in \operatorname{Diff}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)
$$

■ Many connections with machine learning: deep approximation, autoencoders, normalizing flows,...

Inverse problem

$$
Y=u\left(X_{1}, \ldots, X_{d}\right)+\varepsilon
$$

$-X \in \mathbb{R}^{d}$: input parameter

- $u: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$: expensive computer model
- $Y \in \mathbb{R}^{m}$: observable output, corrupted by noise $\varepsilon \sim \mathcal{N}\left(0, \Sigma_{\text {obs }}\right)$

Question: given an observation $y_{\text {obs }}$ of Y, how to identify the parameter X which could have produced this observation?

The Bayesian perspective: from prior to posterior update

Variational V.S. Bayesian

$$
\min _{x} \underbrace{\frac{1}{2}\left\|y_{\text {obs }}-u(x)\right\|_{\Sigma_{\text {obs }}^{-1}}^{2}}_{\text {data mismatch }}+\underbrace{\lambda \mathcal{R}(x)}_{\text {regularization }}
$$

Variational V.S. Bayesian

$$
\min _{x} \underbrace{\frac{1}{2}\left\|y_{\text {obs }}-u(x)\right\|_{\Sigma_{\text {obs }}^{2}}^{2}}_{\text {data mismatch }}+\underbrace{\lambda \mathcal{R}(x)}_{\text {regularization }}
$$

$$
\underbrace{\pi X Y(x, y)}_{\text {joint }}=\underbrace{\pi Y \mid X(y \mid x)}_{\text {likelihood }} \underbrace{\pi x(x)}_{\text {prior }}
$$

Variational V.S. Bayesian

$$
\min _{x} \underbrace{\frac{1}{2}\left\|y_{\text {obs }}-u(x)\right\|_{\Sigma_{\text {obs }}^{-1}}^{2}}_{\text {data mismatch }}+\underbrace{\lambda \mathcal{R}(x)}_{\text {regularization }}
$$

$$
\underbrace{\pi_{X Y}(x, y)}_{\text {joint }}=\underbrace{\pi_{Y \mid X}(y \mid x)}_{\text {likelihood }} \underbrace{\pi_{X}(x)}_{\text {prior }}
$$

Given $y_{o b s}$, the posterior is given by

$$
\pi_{X \mid y_{\mathrm{obs}}}(x)=\frac{\pi_{Y \mid X}\left(y_{\mathrm{obs}} \mid x\right) \pi_{X}(x)}{\pi_{Y}\left(y_{\mathrm{obs}}\right)}
$$

Variational V.S. Bayesian

$$
\underbrace{\pi_{X Y}(x, y)}_{\text {joint }}=\underbrace{\pi_{Y \mid X}(y \mid x)}_{\text {likelihood }} \underbrace{\pi_{X}(x)}_{\text {prior }}
$$

Given $y_{o b s}$, the posterior is given by

$$
\pi_{X \mid y_{\mathrm{obs}}}(x)=\frac{\pi_{Y \mid X}\left(y_{\mathrm{obs}} \mid x\right) \pi_{X}(x)}{\pi_{Y}\left(y_{\mathrm{obs}}\right)}
$$

Conceptually different, but not that far:

$$
\pi_{X \mid y_{\mathrm{obs}}}(x) \propto \exp \left(-\frac{1}{2}\left\|y_{\mathrm{obs}}-u(x)\right\|_{\Sigma_{\mathrm{obs}}^{-1}}^{2}-\lambda \mathcal{R}(x)\right)
$$

Importance of the model error $\varepsilon=\mathcal{N}\left(0, \Sigma_{\text {obs }}\right)$

Small $\Sigma_{\text {obs }}$
Varying $\Sigma_{\text {obs }}(x)$

The case of linear Gaussian problems $u(x)=A x$

Gaussian prior

$$
\pi_{x}(x) \propto \exp \left(-\frac{1}{2}\|x-m\|_{\Sigma-1}^{2}\right)
$$

and linear Gaussian likelihood

$$
\pi_{Y \mid X}(y \mid x) \propto \exp \left(-\frac{1}{2}\|y-A x\|_{\Sigma_{\text {obs }}^{-1}}^{2}\right)
$$

yield Gaussian posterior

$$
\pi_{X \mid Y}\left(x \mid y_{\mathrm{obs}}\right) \propto \exp \left(-\frac{1}{2}\left\|x-m_{\mathrm{pos}}\left(y_{\mathrm{obs}}\right)\right\|_{\Sigma_{\text {pos }}^{-1}}^{2}\right)
$$

where

$$
\begin{aligned}
\Sigma_{\text {pos }}^{-1} & =\Sigma^{-1}+A^{\top} \Sigma_{\text {obs }}^{-1} A \\
m_{\text {pos }}\left(y_{\text {obs }}\right) & =\Sigma_{\text {pos }} \Sigma^{-1} m+\underbrace{\Sigma_{\text {pos }} H^{\top} \Sigma_{\text {obs }}^{-1}}_{\text {Kalman Gain }} y_{\text {obs }}
\end{aligned}
$$

Ensemble Kalman Filters (EnKF) methods for time-dependent data assimilation problems with $d \gg 1$: replace the above covariances with sampled covariances. Works well for nonlinear/nonGaussian filtering problems... and we don't really know why. Square Root EnKF, Ensemble Transform Kalman filter (ETKF), Extended Kalman Filter,...

The Laplace approximation of $\pi_{X \mid y_{\text {obs }}}$

Taylor expansions around the Maximum A Posteriori (MAP) point

$$
x^{\mathrm{MAP}} \in \underset{x \in \mathbb{R}^{d}}{\arg \max } \pi_{X \mid y_{\text {obs }}}(x)
$$

Compute the Hessian at the MAP and

$$
\widetilde{\Sigma}_{\text {pos }}^{-1}=-\nabla^{2} \log \pi_{X \mid y_{\text {obs }}}\left(x^{\mathrm{MAP}}\right)
$$

and then

$$
\pi_{X \mid y_{\text {obs }}} \approx \mathcal{N}\left(x^{\mathrm{MAP}}, \widetilde{\Sigma}_{\mathrm{pos}}\right)
$$

Alternatively, if Gaussian prior + Gaussian likelihood

$$
\pi_{X \mid y_{\text {obs }}}(x) \propto \exp \left(-\frac{1}{2}\left\|y_{\mathrm{obs}}-u(x)\right\|_{\Sigma_{\mathrm{obs}}^{-1}}^{2}-\frac{1}{2}\|x-m\|_{\Sigma^{-1}}^{2}\right)
$$

then linearize the model $u(x) \approx u\left(x^{\mathrm{MAP}}\right)+\nabla u\left(x^{\mathrm{MAP}}\right)\left(x-x^{\mathrm{MAP}}\right)$ and

$$
\widetilde{\Sigma}_{\text {pos }}^{-1}=\Sigma^{-1}+\nabla u\left(x^{\mathrm{MAP}}\right)^{\top} \Sigma_{\text {obs }}^{-1} \nabla u\left(x^{\mathrm{MAP}}\right)
$$

How to sample from a nonGaussian density $\pi_{x y_{\text {obs }}}$?

Rejection method: draw points uniformly on $\operatorname{supp}\left(\pi_{X \mid y_{\text {obs }}}\right) \times\left[0, \max \left(\pi_{X \mid y_{\text {obs }}}\right)\right]$ and reject the points which have landed above the graph of $\pi_{X \mid y_{\text {obs }}}$

1. Draw $X \sim \mathcal{U}\left(\operatorname{supp}\left(\pi_{X \mid y_{\text {obs }}}\right)\right)$
2. $\operatorname{Draw} Z \sim \mathcal{U}\left(\left[0, \max \left(\pi_{x \mid y_{\text {obs }}}\right)\right]\right)$
3. If $Z \leq \pi_{X \mid y_{\text {obs }}}(X)$: accept
4. Otherwise, reject and $\rightarrow 1$.

If the acceptance rate $\frac{\text { blue }}{\text { red }+ \text { blue }}$ is too small, use a given $\rho_{X} \approx \pi_{X \mid y_{\text {obs }}}$ and

1. Draw $X \sim \rho_{X}$
2. Draw $Z \sim \mathcal{U}\left(\left[0, \max \frac{\left.\pi_{X}\right|_{\text {obs }}}{\rho_{X}}\right]\right)$
3. If $Z \leq \frac{\pi_{X} \mid y_{\text {obs }}(X)}{\rho_{X}(X)}$: accept
4. Otherwise, reject and $\rightarrow 1$.

In practice $\max \left(\pi_{X \mid y_{\text {obs }}}\right)$ and/or $\max \left(\pi_{X \mid y_{\text {obs }}} / \rho_{X}\right)$ might not be accessible!!

Markov Chain Monte Carlo (MCMC)

Idea: use an iterative rejection scheme to define a Markov chain

$$
\pi_{X} \rightarrow X^{(0)} \rightarrow X^{(1)} \rightarrow X^{(2)} \rightarrow \ldots \rightarrow X^{(\infty)} \sim \pi_{X \mid y_{\mathrm{obs}}}
$$

For a given a proposal density $\rho_{X}(\cdot \mid \cdot)$, compute $X^{(t)} \rightarrow X^{(t+1)}$ as follow:

1. Draw a candidate $X^{\dagger} \sim \rho_{X}\left(\cdot \mid X^{t}\right)$ compute the acceptance probability

$$
\alpha\left(X^{\dagger} \mid X^{t}\right)=\min \left\{1 ; \frac{\pi_{X \mid y_{\text {obs }}}\left(X^{\dagger}\right) \rho_{X}\left(X^{t} \mid X^{\dagger}\right)}{\pi_{X \mid y_{\text {obs }}}\left(X^{t}\right) \rho_{X}\left(X^{\dagger} \mid X^{t}\right)}\right\}
$$

2. Draw $Z \sim \mathcal{U}([0,1])$
3. If $Z \leq \alpha\left(X^{\dagger} \mid X^{t}\right)$, accept $X^{t+1}=X^{\dagger}$
4. Otherwise, reject X^{\dagger} and $X^{t+1}=X^{t}$

This accept/reject step is called the Metropolis-Hastings correction: $\pi_{X \mid y_{\text {obs }}}$ can be known only up to a multiplicative constant! Under mild assumptions on $\rho_{X}(\cdot \mid \cdot)$, we have convergence $X^{(\infty)} \sim \pi_{X y_{\text {obs }}}$. However, designing a proposal $\rho_{X}(\cdot \mid \cdot)$ which yields fast convergence is an art...
[Hastings: Monte Carlo sampling methods using Markov chains and their applications, 1970]

Some popular proposals for MCMC

- Random walk (RW) proposal

$$
X^{\dagger}=X^{t}+\delta \varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, I_{d}\right)
$$

- Preconditioned Crank-Nicolson (pCN) proposal

$$
X^{\dagger}=\sqrt{1-\beta^{2}} X^{t}+\beta^{2} \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, P)
$$

- Metropolis-adjusted Langevin algorithm (MALA): based on the discretization of the Langevin SDE

$$
X^{\dagger}=X^{t}+\nabla \log \pi_{X \mid y_{\text {obs }}}\left(X^{t}\right) \Delta t+\sqrt{2 \Delta t} \varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, I_{d}\right)
$$

- Hamiltonian Monte Carlo (HMC) and its variant No U-Turn Sampler (NUTS):

$$
X^{\dagger}=x(L \delta t)
$$

where $x(t)$ solves the Hamilton's equations (gradient based) with initial position $x(0)=X^{t}$ and random initial momentum.

Importance sampling correction

$$
\mathrm{I}=\int F(x) \pi_{x \mid y_{\text {obs }}}(x) \mathrm{d} x=\int F(x) \frac{\pi_{x \mid y_{\text {obs }}}(x)}{\pi_{x}(x)} \pi_{x}(x) \mathrm{d} x
$$

Draw $X^{(1)}, \ldots, X^{(N)} \sim \pi_{X}(x)$ and

$$
\mathrm{I}_{N}^{\text {IS }}=\frac{1}{N} \sum_{i=1}^{N} F\left(X^{(i)}\right) \omega_{i}, \quad \omega_{i}=\frac{\pi_{X \mid y_{\mathrm{obs}}}\left(X^{(i)}\right)}{\pi_{X}\left(X^{(i)}\right)}
$$

If $\pi_{x \mid y_{\text {obs }}}$ known up to a constant, then use self-normalized weights

$$
\mathrm{I}_{N}^{\mathrm{IS}}=\sum_{i=1}^{N} F\left(X^{(i)}\right) \frac{\omega_{i}}{\omega_{1}+\ldots+\omega_{N}}, \quad \omega_{i} \propto \frac{\pi_{X \mid y_{\mathrm{obs}}}\left(X^{(i)}\right)}{\pi_{X}\left(X^{(i)}\right)}
$$

Weight degeneracy when π_{X} is too far from $\pi_{X \mid y_{\text {obs }}}$:

$$
\text { Effective Sample Size }=\sum_{i=1}^{N}\left(\frac{\omega_{i}}{\omega_{1}+\ldots+\omega_{N}}\right)^{2} \longrightarrow 1
$$

Importance sampling + Sequential Monte Carlo (SMC)

Consider a sequence of bridging densities with "increasing complexity"

$$
\pi_{X}=: \rho_{X, 0} \rightarrow \rho_{X, 1} \rightarrow \ldots \rightarrow \rho_{X, L}:=\pi_{X \mid y_{\mathrm{obs}}}
$$

For instance, modify the data noise $\Sigma_{\text {obs }}$ (\approx tempering or annealing)

Idea: use Important Sampling across two consecutive bridging densities.

Importance sampling + Sequential Monte Carlo (SMC)

Draw N particles from $X_{0}^{(1)}, \ldots, X_{0}^{(N)} \sim \rho_{X, 0}$ and

$$
\begin{aligned}
\rho_{X, 1}(x) & \approx \sum_{i=1}^{N} \delta_{x_{0}^{(i)}}(x) \frac{\omega_{i}^{0}}{\omega_{1}^{0}+\ldots+\omega_{N}^{0}}, \quad \omega_{i}^{0} \propto \frac{\rho_{X, 1}\left(X_{0}^{(i)}\right)}{\rho_{X, 0}\left(X_{0}^{(i)}\right)} \\
& \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{0}^{(i)^{\prime}}}(x)
\end{aligned}
$$

where $X_{0}^{(1)^{\prime}}, \ldots, X_{0}^{(N)^{\prime}}$ are re-sampled from $\left\{X_{0}^{(1)}, \ldots, X_{0}^{(N)}\right\}$ with probability

$$
\mathbb{P}\left(X_{0}^{\prime}=X_{0}^{(i)}\right)=\frac{\omega_{i}^{0}}{\omega_{1}^{0}+\ldots+\omega_{N}^{0}}
$$

Next, we draw $X_{1}^{(i)} \sim \rho_{X}\left(\cdot \mid X_{0}^{(i)^{\prime}}\right)$ according to some given proposal and

$$
\begin{aligned}
\rho_{x, 2}(x) & \approx \sum_{i=1}^{N} \delta_{x_{1}^{(i)}}(x) \frac{\omega_{i}^{1}}{\omega_{1}^{1}+\ldots+\omega_{N}^{1}}, \quad \omega_{i}^{1} \propto(\text { some expression } \ldots) \\
& \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{2}^{(i)}}(x) \quad(\text { re-sample })
\end{aligned}
$$

The rest $\ell \rightarrow \ell+1$ follows.

Sequential Monte Carlo (SMC) for rare event

$$
\pi_{X \mid \alpha}(x) \propto \mathbf{1}_{[\alpha, \infty)}(u(x)) \pi_{x}(x)
$$

Sequential Monte Carlo (SMC) for rare event

$$
\pi_{X \mid \alpha}(x) \propto \mathbf{1}_{[\alpha, \infty)}(u(x)) \pi_{x}(x)
$$

Increase the threshold α :

Conclusion: there are lots of things in UQ...

Questions?

[^0]: [Bardenet, Hardy: Monte Carlo with DPP, Ann. Appl. Probab. 2020]

[^1]: [Rubinstein and Kroese: Simulation and the Monte Carlo method, Wiley 2016]

[^2]: [Peherstorfer, Willcox and Gunzburger: Survey of multifidelity methods in uncertainty propagation, inference, and optimization, Siam Review 2018]

[^3]: [Novak and Woźniakowski: Approximation of infinitely differentiable multivariate functions is intractable, Journal of Complexity 2009]

[^4]: Rozza, Huynh and Patera: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive PDE Arch. Comput. Methods Eng. 2008

