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Another example: computational mechanics

Input −−−−−−−−−−−−−−−−−−−−−→ Output

▶

▶

▶ Material property

▶ Mean of the VonMises stress

▶ Probability of failure

▶ Lifespan

▶ ...

Cars Airplanes Ships
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Step 1
Input uncertainty

X ∼ ???

Step 0
Model

Y
$$$
= u(X )

Step 2
Output uncertainty

E[Y ] = . . .
Cov(Y ) = . . .
P[Y ≥ α] = . . .

Step 0-bis
Surrogate model

Ỹ
$
= ũ(X )

Uncertainty propagation X → Y

Step 3
Sensitivity analysis

X = (X1,��X2 ,X3,��X4 )

Step 4
Inverse problem X |Y = yobs

Reverse propagation X ← Y
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Input uncertainty

Two types of uncertain inputs:

▶ Stochastic uncertainties. These variables exhibit inherent variability due
to random phenomena (typically, a quantity subject to random
fluctuations like wind, rain etc).

▶ Epistemic uncertainties. These variables have a value, but it is unknown
to us due to a lack of knowledge (typically, a constant in a physical law).

In both cases, we model the uncertainties with the probability theory: we
consider X = (X1, . . . ,Xd) as a continuous random vector with probability
density function πX so that the probability of an event A ⊂ Rd is given by

P(X ∈ A) =

∫
A

πX (x)dx ∈ [0, 1]

Remark: alternative modelling of uncertainties using fuzzy sets and possibility
theory (Zadeh, 1978) or the theory of evidence (Dempster 1967, Shafer 1976)...
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Independent input variables

πX (x1, . . . , xd) = πX1(x1) . . . πXd (xd)

where πXi is the i-th marginal density.

(a) Uniform X1 (b) Exponential X2 (c) Gaussian X3

We can identify πX by maximizing the entropy (the “lack of information”)
under some prescribed contraints, like support, mean, variance...

To identify the density from a sample {X (1),X (2), . . .}, we can
▶ compute histograms or use kernel methods (non-parametric methods)
▶ maximize the likelihood of the sample over a given class of densities

(parametric method)

[Hastie, Tibshirani and Friedman: The Elements of Statistical Learning, Springer, 2001.]
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Dependent input variables via:
▶ the copula of X

πX (x1, . . . , xd) = πX1(x1) . . . πXd (xd)c(x1, . . . , xd)

▶ the conditional marginals of X (directed graphical model)

πX (x1, . . . , xd) = πX1(x1)πX2|X1
(x2|x1)πX3|X1,X2

(x3|x1, x2) . . .
▶ the conditional independence structure of X (undirected graphical model)

πX (x1, . . . , xd) ∝ exp (V1(x1) + V2(x2) + V12(x1, x2) + V13(x1, x3) + ...)

▶ a transport map T : Rd → Rd , ideally invertible

πX (x) = T ♯πZ (x) ⇔ X = T (Z), Z ∼ πZ

▶ a hierarchical model πX ,Z (x , z) = πX |Z (x |z)πZ (z) so that

πX (x) =

∫
πX ,Z (x , z)dz ⇔

{
first Z ∼ πZ (·)
then X ∼ πX |Z (·|Z)

▶ ...

Most of the time, we use the multivariate Gaussian density X ∼ N (m,Σ)

πX (x) ∝ exp

(
−1

2
∥x −m∥2Σ−1

)
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Input as a random field (d = ∞)

X = (X1, . . . ,Xd)︸ ︷︷ ︸
random vector

↪→ X = {X (s), s ∈ Ω}︸ ︷︷ ︸
random field
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▶ Gaussian random field X ∼ N (µ, c) are such that, for any set of points
s1, . . . , sk ∈ Ω, we have (X (s1), . . . ,X (sn)) ∼ N (m,Σ) with

m =

µ(s1)...
µ(sn)

 , Σ =

c(s1, s1) · · · c(s1, sn)
...

. . .
...

c(sn, s1) · · · c(sn, sn)


Valid bivariate functions c(·, ·) such that Σ ⪰ 0 are called kernels.

▶ Karhunen-Loève decomposition (= Singular Value Decomposition)

X (s) =
∞∑
i=1

σi︸︷︷︸
→0

Xi︸︷︷︸
random

φi (s)︸ ︷︷ ︸
deterministic

≈ Xd(s) =
d∑

i=1

σi Xiφi (s)

Back to finite dimension, but in practice, d ≫ 1 can be large...
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Uncertainty propagation

Most of the time, the goal is to compute an expectation of the form

E[ψ(Y )] =

∫
F (x)πX (x)dx , F (x) = ψ ◦ u(x)

▶ ψ(t) = t : mean of Y , i.e. E[Y ] =
∫
u(x)πX (x)dx

▶ ψ(t) = t2 : variance of Y , i.e. Var(Y ) = E[(Y −E[Y ])2] = E[Y 2]−E[Y ]2

▶ ψ(t) = 1[α,∞)(t) : probability of exceeding a threshold α, i.e.

P(Y ≥ α) =
∫

1[α,∞)(u(x))πX (x)dx

Unless in the exceptional situation where the integral can be computed
analytically (see later), the expectation E[ψ(Y )] need to be approximated
numerically...

Where to evaluate the model u(x) in order to best approximate E[ψ(Y )]?
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Deterministic Gaussian quadrature in dimension d = 1

∫
F (x)πX (x)dx ≈

n∑
i=1

ωi F (x
(i))

where x (1), . . . , x (n) are the roots of the n-th orthogonal polynomial Pn of
degree n such that

∫
PmPnπXdx = δmn, and ωi > 0 the corresponding weights.

Legendre polynomials P1, . . . ,P4,
orthogonal on πX = U([−1, 1])

▶ Exact for polynomials F with degree ≤ 2n − 1

▶ If F (x) = ψ ◦ u(x) is analytic, quadrature error decays in O(ρn)
▶ If we only have F ∈ C1, then error decays in O(1/n)
▶ But n← n + 1 requires re-evaluating u at new points (no recycling)
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Deterministic quadrature in dimension d>1
Full tensorization requires N = nd model evaluations∫

F (x)πX (x)dx ≈
n∑

i1=1

. . .

n∑
id=1

ωi1 . . . ωid F
(
x
(α1)
1 , . . . , x

(αd )
d

)
Sparse tensorization using Smolyak grid permits to avoid the exponential
increase d 7→ nd ... but still limited to reasonable dimensions d = O(50).∫

F (x)πX (x)dx ≈
∑

α∈ΛN⊂{1,...,n}d
#ΛN=N

ωα F
(
x
(α1)
1 , . . . , x

(αd )
d

)

Full tensorization Sparse tensorizations

If F admits an holomorphic extension, and if its Taylor coefficients are
ℓp-summable for some p < 1, then error in O(1/N1+ε) with ε = 2( 1

p
− 1) > 0

[Zech and Schwab: Convergence rates of high dimensional Smolyak quadrature,

ESAIM:M2AN (2020)]
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Monte Carlo (MC) method
Draw N independent samples X (1), . . . ,X (N) from πX and

I =

∫
F (x)πX (x)dx ≈ 1

N

N∑
i

F
(
X (i)

)
= ÎN

▶ Constant weights: ωi = 1/N

▶ Unbiased estimator: E[̂IN ] = I for all N

▶ Converging estimator: ÎN −→
N→∞

I with probability 1

▶ Variance of the estimator

Var(̂IN)

independance

of the X (i)

=
Var(F (X ))

N

▶ Relative quadratic error

E[(I− ÎN)
2]1/2

I
=

1√
N

√
Var(F (X ))

I

The convergence is independent on the dimension, requires no regularity
assumption on F (x) = ψ ◦ u(x), permits recycling when N ← N + 1... but
convergence is terribly slow O(1/N1/2).
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Bonus: confidence intervals

Let σ = Var(F (X )). The central limit theorem states that

P

{
ÎN − I

σ/
√
N

}
−→
N→∞

P [Z < t] , Z ∼ N (0, 1)

Then, for N “sufficiently large”, we have ÎN ≈ N (I, σ/N) and then

P
{
I ∈

[̂
IN −

1.96σ√
N

, ÎN +
1.96σ√

N

]}
≈ 0.95

We can estimate σ via the (unbiased) estimator

σ̂N =

(
1

N − 1

N∑
i=1

F (X (i))2 − Î2N

)1/2

Take-away message: we cannot provide any interval which surely contains I...
but we can give confidence intervals which we know they contains I with high
probability.
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Alternative: Determinantal Point Process (DPP)
Idea: construct a stochastic Point Process (PP) which exhibits repulsion.

(a) PP, independent (MC) (b) PP with attraction (c) DPP exhibits repulsion

DPP: given a kernel c(·, ·), the density of the sample XN = {X (1), . . . ,X (N)} is

π(XN) ∝ det(K), Ki,j = c(X (i),X (j))

▶ The points X (i) are not independent, and the weights ωi are not constant

▶ Sample from a DPP is not trivial: you’ll have a lot of fun to implement it!

▶ Recycling for N ← N + 1? I don’t think so...

▶ Convergence: O(1/N
1+1/d

2 ) for f ∈ C1([0, 1]d).

[Bardenet, Hardy: Monte Carlo with DPP, Ann. Appl. Probab. 2020]
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Another alternative: Quasi Monte Carlo (QMC)
Idea: construct a deterministic sequence of points with low discrepancy.
For the uniform πX = U([0, 1]d), the discrepancy of XN = {X (1), . . . ,X (N)} is a
measure of how well #{B∩X}

#X
approximates the volume of any box B, that is

D(XN) = sup
B∈boxes of [0,1]d

∣∣∣∣#{B ∩ X}
#X

−
∫
B

dπX

∣∣∣∣
The Koksma-Hlawka theorem states

|I− ÎN | ≤ V (F )D(XN),

where V (F ) is the Hardy–Krause variation of F . The Halton sequence, the
Sobol sequence, or the Faure sequence permits to construct X such that

D(XN) = O
{
log(N)d

N

}

▶ “Almost” O(1/N) convergence!

▶ But the constant in O depends on d : works well in moderate dimension
(comparable to sparse grids)

[Caflisch: Monte carlo and quasi-monte carlo methods, Acta numerica 7 (1998): 1-49.]
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Variance reduction for Monte Carlo

E[(I− ÎN)
2]1/2

I
=

1√
N

√
Var(F (X ))

I

Instead of trying to improve the convergence rate 1/
√
N of Monte Carlo,

variance reduction techniques aim at reducing the constant in front.

▶ Latin Hypercube Sampling

▶ Importance Sampling

▶ Control Variables

▶ ...

[Rubinstein and Kroese: Simulation and the Monte Carlo method, Wiley 2016]
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Latin hypercube sample (LHS) for πX = U([0, 1]d)
Idea: create a sample which represents well all 1D marginals X1, . . . ,Xd

(a) Marginals

⇐

(b) MC (c) LHS

⇒

(d) Marginals

The resulting estimator ÎLHSN is still unbiased and convergent with

E[(I− ÎLHSN )2]1/2

I
=

1√
N

√
Var(F (X )− Fadd(X ))

I
+ o

(
1√
N

)
where Fadd(X ) = F1(X1) + . . .+ Fd(Xd) is the ℓ

2-best additive approximation
to F (X ). No recycling for N ← N + 1... still, super popular!
More generally, space filling designs consist typically in

max
X (1),...,X (N)

min
i ̸=j
∥X (i) − X (j)∥

[Stein: Large sample properties of simulations using LHS, Technometrics 1987]

[Pronzato: Minimax and maximin space-filling designs: some properties and methods for

construction, J-SFdS 2017] 20 / 60



Importance Sampling using an importance density ρ

Idea: estimate

I =

∫
F (x)πX (x)dx =

∫
F (x)

πX (x)

ρ(x)
ρ(x)dx

with

ÎISN =
1

N

N∑
i=1

F (X (i))
πX (X

(i))

ρ(X (i))
, where X (i) ∼ ρ

This is an unbiased and convergent estimator with

E[(I− ÎISN )
2]1/2

I
=

1√
N

√
VarX∼ρ

(
F (X )πX (X )

ρ(X )

)
I

Observe that, if F (X ) ≥ 0, the optimal choice

ρopt(x) =
F (x)πX (x)

I
⇒ E[(I− ÎISN )

2]1/2

I
= 0

... but ρopt depends on I: sequential/adaptive methods to approximate ρopt.
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Illustration for rare event estimation P[u(X ) ≥ α]

For F (x) = 1[α,∞)(u(x)) we have

E[(I− ÎMC
N )2]1/2

I
=

√
1− I

N I

We need at least N = O(I−1) to hit
the failure domaine {x : u(x) ≥ α}

A simple importance sampling
scheme: first, find the most probable
failure point x∗ by solving

max
u(x)≥α

πX (x)

Then use ρ(x) = πX (x − x∗) as an
importance density.

Failure
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Control variable for variance reduction

Idea: assuming we are given F̃ (x) such that E[F̃ (X )] is known, we estimate

I = E[F (X )] = E[F (X )− F̃ (X )] + E[F̃ (X )]

with

ÎCVN =

{
1

N

N∑
i=1

F (X (i))− F̃ (X (i)))

}
+ E[F̃ (X )]

This is again an unbiased and convergent estimator with

E[(I− ÎCVN )2]1/2

I
=

1√
N

√
Var(F (X )− F̃ (X ))

I

In practice, we *just* need to find a F̃ (x) ≈ F (x) such that

Var(F (X )− F̃ (X )) ≤ Var(F (X ))

or equivalently E[∥F (X )− F̃ (X )∥2] ≤ E[∥F (X )∥2] (→ surrogate models)
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Control variable and its variants...
▶ Replace F̃ (x) with θF̃ (x) and optimize over θ ∈ R:

min
θ∈R

Var(F (X )− θF̃ (X )) = Var(F (X ))− Cov(F (X ), F̃ (X ))2

Var(F̃ (X ))

▶ If E[F̃ (X )] is unknown but x 7→ F̃ (x) is cheap-to-evaluate, then:

ÎCVN =

{
1

N

N∑
i=1

F (X (i))− F̃ (X (i))

}
+

{
1

M

N+M∑
i=N+1

F̃ (X (i))

}
, M ≫ N

▶ Multiple control variables F̃1(x), F̃2(x), . . . : use telescoping sums

ÎML
N =

{
1

N1

N∑
i=1

F (X (i))− F̃1(X
(i))

}
+

 1

N2

N1+N2∑
i=N1

F̃1(X
(i))− F̃2(X

(i))

+. . .

Depending on the context, this is called multi-level or multi-index or
multi-fidelity. In some cases, we know the optimal balance between the
levels N1,N2, . . ., see:

[Giles: Multilevel monte carlo methods, Acta numerica 2015]

[Peherstorfer, Willcox and Gunzburger: Survey of multifidelity methods in uncertainty

propagation, inference, and optimization, Siam Review 2018]
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Uncertainty propagation via a surrogate models

Idea: replace the model u with an approximation ũ and Y with

Ỹ = ũ(X )

Alternatively, use ψ(Ỹ ) as a control variable for ψ(Y ).

▶ If ũ is simple (linear, quadratic) then analytic computation of E[ψ(Ỹ )]

▶ If ũ is cheap to evaluate, then use the preceding methods with N ≫ 1

Constructing ũ is an art: depending on the context, such ũ are readily available
(e.g. crude mesh, simplified physics etc). If not, there is a zoology of
methods to construct ũ from either

▶ point evaluations of u,

▶ residual of the equation solved by u,

▶ prior knowledge on u,

▶ ...

26 / 60



Local approximation via Taylor expansion

Taylor expansion of u(X ) around m = E[X ]

Ỹ = u(m) +∇u(m)⊤(X −m)

We just need to compute u(m) and ∇u(m), which requires at most N = d + 1
evaluations of the model (using finite differences). Permits to rapidely sketch
the trends of Y via

E[Y ] ≈ E[Ỹ ] = u(m)

and
Var(Y ) ≈ Var(Ỹ ) = ∇u(m)⊤Cov(X )∇u(m)

Basic: works for models which can be linearized...
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Taylor expansion for rare event estimation P[u(X ) ≥ α]
First, find the most probable failure point x∗ by solving

max
u(x)≥α

πX (x)

Then, compute P(Ỹ ≥ α) analytically with

Ỹ = u(x∗) +∇u(x∗)
⊤
(X − x∗)︸ ︷︷ ︸

FORM

+
1

2
(X − x∗)⊤∇2u(x∗)(X − x∗)︸ ︷︷ ︸

SORM

▶ FORM (First-Order Reliability Method): we have

P(Ỹ ≥ α) πX=N (0,Id )=
1

2
+

1

2
erf

(
∥x∗∥√

2

)
▶ SORM (Second-Order): P(Ỹ ≥ α) = Breitung’s formula.

Failure

FORM

Failure

Most Probable Point 

Failure

SORM

[Ditlevsen and Madsen: Structural reliability methods, Wiley 1996]
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Towards global approximation: the curse of
dimensionality

▶ Q: I want to construct an approximation ũ to u(x1, . . . , xd) such that

∥u − ũ∥∞ ≤ ε∥u∥∞
How many point evaluations of u do I need?

▶ A: Well, if u is linear, then N = d + 1 evaluations are enough.
▶ Q: Okay... what if u is *just* extremely regular, say,

sup
α∈Nd

∥∥∥∥ ∂|α|u

∂xα1
1 . . . ∂xαd

d

∥∥∥∥
∞
<∞

▶ A: Sorry: for any algorithms you can ever think of, there exists such a u
which would require at least

N ≥ 2⌊d/2⌋

▶ Q: Come one! I remember that with polynomial interpolations, I can reach

∥u − ũinterpolation∥∞ = O(ρN)

▶ A: Sure! But the constant hidden in O depends in d . You’ll need at least
N ≥ 2⌊d/2⌋ to be sure to reach the asymptotic regime.

[Novak and Woźniakowski: Approximation of infinitely differentiable multivariate functions is

intractable, Journal of Complexity 2009]
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Exploit some low-dimensional structure that u can have

▶ Sparsity

u(x) ≈
∑
α∈ΛN

uαφα(x), #ΛN = N

▶ Low-rank structure

u(x) ≈
r∑

i=1

ui
1(x1) . . . u

i
d(xd)

▶ Low-effective dimension

u(x) ≈ f (z1, . . . , zm),


z = g(x)

g : Rd → Rm

m≪ d

▶ ...
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Prototypical example: parametrized elliptic PDE

Find u(x) ∈ H1(Ω) solution to

−div(κ(x)∇u(x)) = f in Ω ⊂ R2 or R3

where the diffusion coefficient writes

κ(x , s) = κ0(s) +
∞∑
i=1

xi κi (s),

{
x1, x2, . . . ∈ [−1, 1]
s ∈ Ω

Assume
(∥κi∥∞)i≥1 ∈ ℓp for some p < 1

then there exists

ũ(x , s) =
n∑

i=1

φi (x)vi (s),

{
vi ∈ H1(Ω)

φi ∈ L∞([−1, 1])

such that

sup
x∈[−1,1]N

∥u(x)− ũ(x)∥H1(Ω) ≤ Cn−s , where s = p−1 − 1 > 0

for some constant C : no curse of dimensionality!

[Cohen&DeVore: Approximation of high-dimensional parametric PDEs, Acta Numerica 2015]
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Near-optimal approximations can be obtained using

▶ sparse polynomial expansions:

ũ(x , s) =
∑
α∈Λn
#Λn=n

φα(x)vα(s)


φα(x) : given multivariate polynomials

Λn : Greedy algorithm Λn+1 = Λn ∪ {α∗
n+1}

vα(s) : least-squares, interpolation, ...

▶ the Reduced Basis method:

ũ(x , s) =
n∑

i=1

φi (x)u(xi , s)


x1, . . . , xn : Greedy algorithm n← n + 1

φi (x) : Galerkin projection of u(x) on

span(u(x1), . . . , u(xn))

Rozza, Huynh and Patera: Reduced basis approximation and a posteriori error estimation for affinely

parametrized elliptic coercive PDE Arch. Comput. Methods Eng. 2008

Blatman and Sudret: Adaptive sparse polynomial chaos expansion based on least angle regression JCP, 2011

Chkifa, Cohen and Schwab: Breaking the curse of dimensionality in sparse polynomial approximation of

parametric PDEs Journal de Mathématiques Pures et Appliquées, 2015
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The Reduced Basis method

For A(x) ∈ Rm×m and b ∈ Rm with m≫ 1, compute u(x) ∈ Rm solution to

A(x)u(x) = b

▶ Offline phase: compute n≪ m solutions u(x (1)), . . . , u(x (n)) and

Vn = [u(x (n)), . . . , u(x (n))] ∈ Rm×n

▶ Online phase: given a new parameter x , compute the Galerkin projection
un(x) of u(x) onto range(Vn) by computing ũn(x) ∈ Rn solution to

[V⊤
n A(x)Vn]ũn(x) = [V⊤

n b] ⇒ un(x) = Vnũn(x)

Remarks:
▶ Vn ← qr(Vn) for numerical stability
▶ Greedy enrichment n← n + 1 via x (n+1) ∈ argmaxx ∥A(x)un(x)− b∥
▶ If A(x) =

∑r
i=1 ci (x)Ai admits an affine parametric decomposition then

[V⊤
n A(x)Vn] =

r∑
i=1

ci (x) [V
⊤
n AiVn]︸ ︷︷ ︸

precompute for
online efficieny
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Kriging: surrogate models via Gaussian processes (GP)

▶ Goal: approximate u(x)

▶ Idea: model u as a realization of a GP in the
variable x

Z ∼ N (0, c)

▶ Evaluate the model at xobs = {x (1), . . . , x (N)} and
condition Z on Z obs = u(xobs)

Z |Z obs ∼ N (m′, c ′)

▶ Use the mean as a surrogate ũ(x) = m′(x) where

m′(x) = c(x , xobs)[c(xobs, xobs)]−1u(xobs)

▶ Confidence intervals via the conditional variance c ′

c ′(x , y) = c(x , y)− c(x , xobs)[c(xobs, xobs)]−1c(xobs, y)

Remarks:
▶ There exists (infinitely) many ways to enrich xobs ← xobs ∪ {x (N+1)}.
▶ Requires solving a N × N linear system,
▶ u ∼ N (0, c) is a very strong assumption (how to choose c?)
▶ Still, extremely popular!!
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c(x , y) = exp(−∥x − y∥2/2ℓ2) with a wrong length scale ℓ

ℓ = 0.5 too small → “swiss cheese”

ℓ = 5 too large → polynomial interpolation
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Step 1
Input uncertainty

X ∼ ???

Step 0
Model

Y
$$$
= u(X )

Step 2
Output uncertainty

E[Y ] = . . .
Cov(Y ) = . . .
P[Y ≥ α] = . . .

Step 0-bis
Surrogate model

Ỹ
$
= ũ(X )

Uncertainty propagation X → Y

Step 3
Sensitivity analysis

X = (X1,��X2 ,X3,��X4 )

Step 4
Inverse problem X |Y = yobs

Reverse propagation X ← Y
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Global Sensitivity Analysis

Y = u(X1, . . . ,Xd)

▶ X ∼ πX : input parameter, typically with product density πX

▶ Y : output of interest, generally scalar Y ∈ R
▶ u: expensive numerical model

Goal: determine the relative influence of the inputs X1, . . . ,Xd on Y . Formally,
for any τ ⊂ {1, . . . , d}, we want to define and compute a sensitivity index
which measures how well

u(X1, . . . ,Xd) ≈ f (Xτ1 , . . . ,Xτm )

Remark: super useful to construct low-dimensional meta models f later on!

[Da Veiga, Gamboa, Iooss, and Prieur: Basics and trends in sensitivity analysis SIAM 2021.]
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The function approximation perspective

Let L2
πX

be the space of square-integrable functions endowed with the norm

∥u∥2 =
∫

u(x)2dπX (x)

Expectations and conditional expectations are orthogonal projections in L2
πX

:

▶ The constant c ∈ R which best approximates u in L2
πX

is the expectation
c = E[u(X )]

min
c∈R
∥u − c∥2=: Var(u(X ))

▶ For any τ ⊂ {1, . . . , d}, the function f : x 7→ f (xτ1 , . . . , xτm ) which best
approximates u in L2

πX

min
f :x 7→f (xτ )

∥u − f ∥2=: E[Var(u(X )|Xτ )]

is the conditional expectation f (xτ ) = E[u(X )|Xτ = xτ ].
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The total variance formula: Pythagorean theorem in L2πX

∥u − E[u(X )]∥2 = ∥(u − E[u(X )|Xτ ]) + (E[u(X )|Xτ ]− E[u(X )])∥2

= ∥u − E[u(X )|Xτ ]∥2 + ∥E[u(X )]− E[u(X )|Xτ ]∥2

Put in statistical language:

Var(u(X )) = E[Var(u(X )|Xτ )]︸ ︷︷ ︸
min

f :x 7→f (xτ )
∥u − f ∥2

+Var(E[u(X )|Xτ ]) (⋆)
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Connection with the Sobol’ indices

The closed Sobol’ indices writes

Sτ (u) :=
Var(E[u(X )|Xτ ])

Var(u(X ))

(⋆)
= 1−

min
f :x 7→f (xτ )

∥u − f ∥2

Var(u(X ))

Sτ (u) ≈ 1 ⇔ u(X ) ≈ f (Xτ )
⇔ Xτ “explains” well Y = u(X )

Similarly, the total Sobol’ indices writes

Tτ (u) := 1− Var(E[u(X )|X−τ ])

Var(u(X ))

(⋆)
=

min
f :x 7→f (x−τ )

∥u − f ∥2

Var(u(X ))

Tτ (u) ≈ 0 ⇔ u(X ) ≈ f (X−τ )
⇔ Xτ is useless to “explain” Y = u(X )
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Link with the ANOVA decomposition

Assuming πX is a product density, the ANalysis Of VAriance of u reads

u(x) = u0 +
d∑

i=1

ui (xi ) +

d,d∑
i ̸=j

ui,j(xi , xj) +

d,d,d∑
i ̸=j ̸=k

ui,j,k(xi , xj , xk) + . . .

where all above terms are pairwise orthogonals in L2
πX

.

▶ Closed Sobol’ index
Sτ (u) =

∑
α⊂τ

Var(uα)

▶ Total Sobol’ index
Tτ (u) =

∑
α∩τ ̸=∅

Var(uα)

▶ Superset importance

Υ2
τ (u) =

∑
α⊃τ

Var(uα)

▶ Shapley-Owen value

ϕτ (u) =
∑
α⊃τ

Var(uα)

|α| − |τ |+ 1

▶ ...
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Pick & freeze estimators of Sobol’ indices
Assuming πX is a product density, the following identities hold

Var(E[u(X )|Xτ ]) = Cov(u(X ), u(Xτ ,X
′
−τ ))

E[Var(u(X )|X−τ )] =
1

2
E[(u(X )− u(X−τ ,X

′
τ ))

2]

where X ′ is an independent copy of X .

▶ Estimation of closed Sobol’ indices

Sτ (u) ≈
1
N

∑N
i=1 u(X

(i))u(X
(i)
τ ,X

′(i)
−τ )−

(
1
N

∑N
i=1 u(X

(i))
)(

1
N

∑N
i=1 u(X

(i)
τ ,X

′(i)
−τ )
)

1
N

∑N
i=1 u(X

(i))2 −
(

1
N

∑N
i=1 u(X

(i))
)2

▶ Estimation of total Sobol’ indices

Tτ (u) ≈
1
2N

∑N
i=1(u(X

(i))− u(X
(i)
−τ ,X

′(i)
τ ))2

1
N

∑N
i=1 u(X

(i))2 −
(

1
N

∑N
i=1 u(X

(i))
)2

Remarks: Requires 2N model evaluations. No recycling possible for estimating
the indices for another τ : estimating all first order indices #τ = 1 would
require (d + 1)N evaluations.
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Gradient-based global sensitivity analysis
Suppose we have access to

x 7→ ∇u(x) =

∂1u(x)...
∂du(x)


via e.g. adjoint models, automatic differentiation...
▶ |∂iu(x)| gives a local sensitivity measure of the i-th variable around x .
▶ Global sensitivity measure can be obtained e.g. using the Derivative

Based Sensitivity Measure (DGSM)

νi (u) = E[∂iu(X )2]

▶ The Monte Carlo estimator requires N evaluations of ∇u to estimate
simultaneously all νi (u)’s:ν1(u)...

νd(u)

 ≈ 1

N

N∑
i=1

∇u(X (i))◦2

▶ Assuming πX is a product density and let C(πXi ) be the Poincaré constant
of Xi . Then

Ti (u) ≤ C(πXi )νi (u)
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Active subspaces: rotation in the parameter space
Instead of u(X ) ≈ f (Xτ ), we seek

u(X ) ≈ f (UT
mX )

for some function f : Rm → R and some matrix Um ∈ Rd×m with U⊤
m Um = Im.

▶ The optimal f for a given Um is the conditional expectation

∥u − E[u(X )|UT
mX ]∥2 = min

f :Rm→R
∥u − f (UT

m ·)∥2

▶ Bound the error using subspace Poincaré inequality

∥u − E[u(X )|UT
mX ]∥2 ≤ C(πX )(E[∥∇u(X )∥2]− E[∥U⊤

m∇u(X )∥2])

▶ Minimizing the bound yields the active subspace: Um = [v1, . . . , vm]
contains the m-largest eigenvectors of

H = E
[
∇u(X )∇u(X )⊤

]
=

d∑
i=1

λiviv
⊤
i

and the error becomes

∥u − E[u(X )|UT
r X ]∥2 ≤ C(πX )

d∑
i=m+1

λi

[Constantine, Dow and Wang: Active subspace methods in theory and practice: applications

to kriging surfaces, SIAM-SISC 2014]
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Two examples

Assume u(x) = f (AT
r x) is a ridge function for some Ar ∈ Rd×m. Since

∇u(x) = Ar∇f (AT
r x), we have

H = E
[
∇u(X )∇u(X )⊤

]
= ArE

[
∇f (AT

r X )∇f (AT
r X )T

]
AT

r

Then λ = (λ1, . . . , λr , 0, . . . , 0) and range(Um) = range(Ar ).

Assume u(x) = f (∥x∥) and πX (x) ∝ ρ(∥x∥) are isotropic functions, then

H = E
[
∇u(X )∇u(X )⊤

]
∝ Id

No decay in the spectrum λ = (1, . . . , 1): no dimension reduction.
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Extensions (part of my current research)
▶ Joint input–output reduction of u : Rd → Rm

[Chen et al, 2023]

E[∥u(X )− V s f (U
⊤
mX )∥2] ≤ C(πX )(E[∥∇u(X )∥2F ]− E[∥V⊤

s ∇u(X )Um∥2F ])

where ∇u(x) ∈ Rm×d is the Jacobian of u(x)

▶ Nonlinear version [Bigoni et al, 2022]: for “any” g : Rd → Rr we have

E[(u(X )− f (g(X )))2] ≤ C(πX |G)E[∥Πker(∇g(X ))∇u∥2]

where Πker(∇g(X )) is the orthogonal projector onto ker(∇g(X )).

■ Minimizing the RHS over g corresponds to aligning the Jacobian of g
with the gradient of u.

■ The function g must have path-connected level sets, which is not

trivial to impose, unless (work in progress [Verdière et al, 2023])

g(x) = (φ1(x), . . . , φm(x)), φ ∈ Diff(Rd ;Rd)

■ Many connections with machine learning: deep approximation,
autoencoders, normalizing flows,...
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Step 1
Input uncertainty

X ∼ ???

Step 0
Model

Y
$$$
= u(X )

Step 2
Output uncertainty

E[Y ] = . . .
Cov(Y ) = . . .
P[Y ≥ α] = . . .

Step 0-bis
Surrogate model

Ỹ
$
= ũ(X )

Uncertainty propagation X → Y

Step 3
Sensitivity analysis

X = (X1,��X2 ,X3,��X4 )

Step 4
Inverse problem X |Y = yobs

Reverse propagation X ← Y
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Inverse problem

Y = u(X1, . . . ,Xd) + ε

▶ X ∈ Rd : input parameter

▶ u : Rd → Rm: expensive computer model

▶ Y ∈ Rm: observable output, corrupted by noise ε ∼ N (0,Σobs)

Question: given an observation yobs of Y , how to identify the parameter X
which could have produced this observation?

The Bayesian perspective: from prior to posterior update

πX (x) −→ −→ πX |Y (x |yobs)
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Variational V.S. Bayesian

min
x

1
2
∥yobs − u(x)∥2

Σ−1
obs︸ ︷︷ ︸

data mismatch

+ λR(x)︸ ︷︷ ︸
regularization

πXY (x , y)︸ ︷︷ ︸
joint

= πY |X (y |x)︸ ︷︷ ︸
likelihood

πX (x)︸ ︷︷ ︸
prior

Given yobs, the posterior is given by

πX |yobs(x) =
πY |X (yobs|x)πX (x)

πY (yobs)
Conceptually different, but not that far:

πX |yobs(x) ∝ exp

(
−1

2
∥yobs − u(x)∥2

Σ−1
obs
− λR(x)

)
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Importance of the model error ε = N (0,Σobs)

Large Σobs Small Σobs Varying Σobs(x)
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The case of linear Gaussian problems u(x) = Ax
Gaussian prior

πX (x) ∝ exp

(
−1

2
∥x −m∥2Σ−1

)
and linear Gaussian likelihood

πY |X (y |x) ∝ exp

(
−1

2
∥y − Ax∥2

Σ−1
obs

)
yield Gaussian posterior

πX |Y (x |yobs) ∝ exp

(
−1

2
∥x −mpos(yobs)∥2Σ−1

pos

)
where

Σ−1
pos = Σ−1 + A⊤Σ−1

obsA

mpos(yobs) = ΣposΣ
−1m +ΣposH

⊤Σ−1
obs︸ ︷︷ ︸

Kalman Gain

yobs

Ensemble Kalman Filters (EnKF) methods for time-dependent data
assimilation problems with d ≫ 1: replace the above covariances with sampled
covariances. Works well for nonlinear/nonGaussian filtering problems... and we
don’t really know why. Square Root EnKF, Ensemble Transform Kalman filter
(ETKF), Extended Kalman Filter,...
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The Laplace approximation of πX |yobs
Taylor expansions around the Maximum A Posteriori (MAP) point

xMAP ∈ argmax
x∈Rd

πX |yobs(x)

Compute the Hessian at the MAP and

Σ̃−1
pos = −∇2 log πX |yobs(x

MAP)

and then

πX |yobs ≈ N (xMAP, Σ̃pos)

Alternatively, if Gaussian prior + Gaussian likelihood

πX |yobs(x) ∝ exp

(
−1

2
∥yobs − u(x)∥2

Σ−1
obs
− 1

2
∥x −m∥2Σ−1

)
then linearize the model u(x) ≈ u(xMAP) +∇u(xMAP)(x − xMAP) and

Σ̃−1
pos = Σ−1 +∇u(xMAP)⊤Σ−1

obs∇u(x
MAP)
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How to sample from a nonGaussian density πX |yobs ?

Rejection method: draw points uniformly on supp(πX |yobs)× [0,max(πX |yobs)]
and reject the points which have landed above the graph of πX |yobs

1. Draw X ∼ U(supp(πX |yobs))

2. Draw Z ∼ U([0,max(πX |yobs)])

3. If Z ≤ πX |yobs(X ): accept

4. Otherwise, reject and → 1.

If the acceptance rate
blue

red + blue
is too small, use a given ρX ≈ πX |yobs and

1. Draw X ∼ ρX
2. Draw Z ∼ U([0,max

πX|yobs
ρX

])

3. If Z ≤
πX|yobs

(X )

ρX (X )
: accept

4. Otherwise, reject and → 1.

In practice max(πX |yobs) and/or max(πX |yobs/ρX ) might not be accessible!!
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Markov Chain Monte Carlo (MCMC)
Idea: use an iterative rejection scheme to define a Markov chain

πX → X (0) → X (1) → X (2) → . . . → X (∞) ∼ πX |yobs

For a given a proposal density ρX (·|·), compute X (t) → X (t+1) as follow:

1. Draw a candidate X † ∼ ρX (·|X t) compute the acceptance probability

α(X †|X t) = min

{
1;
πX |yobs(X

†)ρX (X
t |X †)

πX |yobs(X
t)ρX (X †|X t)

}

2. Draw Z ∼ U([0, 1])
3. If Z ≤ α(X †|X t), accept X t+1 = X †

4. Otherwise, reject X † and X t+1 = X t

This accept/reject step is called the Metropolis-Hastings correction: πX |yobs
can be known only up to a multiplicative constant! Under mild assumptions
on ρX (·|·), we have convergence X (∞) ∼ πX |yobs . However, designing a
proposal ρX (·|·) which yields fast convergence is an art...

[Hastings: Monte Carlo sampling methods using Markov chains and their applications, 1970]
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Some popular proposals for MCMC

▶ Random walk (RW) proposal

X † = X t + δε, ε ∼ N (0, Id)

▶ Preconditioned Crank-Nicolson (pCN) proposal

X † =
√

1− β2X t + β2ε, ε ∼ N (0,P)

▶ Metropolis-adjusted Langevin algorithm (MALA): based on the
discretization of the Langevin SDE

X † = X t +∇ log πX |yobs(X
t)∆t +

√
2∆tε, ε ∼ N (0, Id)

▶ Hamiltonian Monte Carlo (HMC) and its variant No U-Turn Sampler
(NUTS):

X † = x(Lδt)

where x(t) solves the Hamilton’s equations (gradient based) with initial
position x(0) = X t and random initial momentum.

▶ ...
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Importance sampling correction

I =

∫
F (x)πX |yobs(x)dx =

∫
F (x)

πX |yobs(x)

πX (x)
πX (x)dx

Draw X (1), . . . ,X (N) ∼ πX (x) and

IISN =
1

N

N∑
i=1

F (X (i))ωi , ωi =
πX |yobs(X

(i))

πX (X (i))

If πX |yobs known up to a constant, then use self-normalized weights

IISN =
N∑
i=1

F (X (i))
ωi

ω1 + . . .+ ωN
, ωi ∝

πX |yobs(X
(i))

πX (X (i))

Weight degeneracy when πX is too far from πX |yobs :

Effective Sample Size =
N∑
i=1

(
ωi

ω1 + . . .+ ωN

)2

−→ 1
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Importance sampling + Sequential Monte Carlo (SMC)

Consider a sequence of bridging densities with “increasing complexity”

πX =: ρX ,0 → ρX ,1 → . . .→ ρX ,L := πX |yobs

For instance, modify the data noise Σobs (≈ tempering or annealing)

Idea: use Important Sampling across two consecutive bridging densities.
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Importance sampling + Sequential Monte Carlo (SMC)

Draw N particles from X
(1)
0 , . . . ,X

(N)
0 ∼ ρX ,0 and

ρX ,1(x) ≈
N∑
i=1

δ
X

(i)
0

(x)
ω0
i

ω0
1 + . . .+ ω0

N

, ω0
i ∝

ρX ,1(X
(i)
0 )

ρX ,0(X
(i)
0 )

≈ 1

N

N∑
i=1

δ
X

(i)′
0

(x)

where X
(1)′

0 , . . . ,X
(N)′

0 are re-sampled from {X (1)
0 , . . . ,X

(N)
0 } with probability

P(X ′
0 = X

(i)
0 ) =

ω0
i

ω0
1 + . . .+ ω0

N

Next, we draw X
(i)
1 ∼ ρX (·|X

(i)′

0 ) according to some given proposal and

ρX ,2(x) ≈
N∑
i=1

δ
X

(i)
1

(x)
ω1
i

ω1
1 + . . .+ ω1

N

, ω1
i ∝ (some expression...)

≈ 1

N

N∑
i=1

δ
X

(i)
2

(x) (re-sample)

The rest ℓ→ ℓ+ 1 follows.

[Del Moral, Doucet and Jasra: Sequential Monte Carlo Samplers 2006]
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Sequential Monte Carlo (SMC) for rare event

πX |α(x) ∝ 1[α,∞)(u(x))πX (x)
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Sequential Monte Carlo (SMC) for rare event

πX |α(x) ∝ 1[α,∞)(u(x))πX (x)

Increase the threshold α:
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Conclusion: there are lots of things in UQ...

Questions?
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