On classical and modern approximations for neutron transport in a unified framework

Matthias Schlottbom

October 26th, 2023

Mathematics for Nuclear Applications Seminar Port-au-rocs, le Croisic October 23–27, 2023

UNIVERSITY OF TWENTE.

Outline

The neutron transfer equation (NTE)

Perfectly matched layers for NTE

Discretization of PML formulation

Variational formulation Galerkin approximation Numerical examples The neutron transfer equation (NTE)

Perfectly matched layers for NTE

Discretization of PML formulation

Variational formulation Galerkin approximation Numerical examples

Recall: NTE on bounded domains

- $\mathcal{R} \subset \mathbb{R}^3$ bounded convex domain
- ▶ $\operatorname{supp}(q) \subset \mathcal{R}$
- $\operatorname{supp}(\sigma) \subset \mathcal{R}$

Inflow boundary

$$\Gamma_{-} = \{(\mathbf{r}, \mathbf{s}) \in \partial \mathcal{R} \times \mathbb{S}^2 : \mathbf{s} \cdot \mathbf{n}(\mathbf{r}) < 0\}$$

$$\begin{split} \mathbf{s} \cdot \nabla_{\mathbf{r}} \phi + \sigma \phi &= \sigma_{s} \mathcal{K} \phi + q \quad \text{in } \mathcal{R} \times \mathbb{S}^{2} \\ \phi &= 0 \qquad \text{on } \Gamma_{-} \end{split}$$

Half-space integrals

Recall the boundary functional of the variational formulation:

$$\langle |\mu|\phi^+,\psi^+
angle_{\Gamma}=\int_{-1}^1\phi^+(z,\mu)\psi^+|\mu|d\mu.$$

For Legendre expansions $\phi^+(z,\mu) = \sum_{l=0}^{\infty} c_{2l}(z) P_{2l}(\mu)$ this led to a dense coupling, because

$$\int_{-1}^1 extsf{P}_{2l}(\mu) extsf{P}_{2k}(\mu) |\mu| d\mu
eq 0$$
 in general.

Half-space integrals

Recall the boundary functional of the variational formulation:

$$\langle |\mu|\phi^+,\psi^+
angle_{\Gamma}=\int_{-1}^1\phi^+(z,\mu)\psi^+|\mu|d\mu.$$

For Legendre expansions $\phi^+(z,\mu) = \sum_{l=0}^{\infty} c_{2l}(z) P_{2l}(\mu)$ this led to a dense coupling, because

$$\int_{-1}^1 \mathcal{P}_{2l}(\mu)\mathcal{P}_{2k}(\mu)|\mu|d\mu
eq 0$$
 in general.

The same issue occurs in 3D for spherical harmonics Y_1^m expansions:

$$\int_{\Gamma_{-}} Y_{l}^{m} Y_{k}^{n} \mathbf{s} \cdot \mathbf{n} \, d\mathbf{s} \neq 0 \quad \text{in general.}$$

Moreover, the integration over **s** depends on $\mathbf{n}(\mathbf{r})$, recall

$$\Gamma_-=\{(\textbf{r},\textbf{s})\in\partial\mathcal{R}\times\mathbb{S}^2:\textbf{s}\cdot\textbf{n}(\textbf{r})<0\}.$$

The neutron transfer equation (NTE)

Perfectly matched layers for NTE

Discretization of PML formulation

Variational formulation Galerkin approximation Numerical examples

Perfectly matched layers for NTE

Beer-Lambert law: $\phi(\mathbf{r} + h\mathbf{s}, \mathbf{s}) = e^{-ha}\phi(\mathbf{r}, \mathbf{s}) \ll 1$ for $ha \gg 1$

Expectation: Modification of boundary conditions is a minor perturbation

cf. [Bérenger, 94] [Bécache Fauqueux Joly, 2003] [Appelö Hagstrom Kreiss, 2006]

Reflection boundary condition

$$\begin{split} \mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_a + \sigma^a \phi_a &= \sigma_s \mathcal{K} \phi_a + q \quad \text{in } \mathcal{R}^\ell \times \mathbb{S}^2 \\ \phi_a &= \mathcal{R} \phi_a \qquad \text{ on } \Gamma_-^\ell \end{split}$$

Reflection operator

$$R\phi(\mathbf{r},\mathbf{s}) =
ho(\mathbf{r},\mathbf{s})\phi(\mathbf{r},\mathbf{s}) = rac{|\mathbf{s}\cdot\mathbf{n}|-1}{|\mathbf{s}\cdot\mathbf{n}|+1}\phi(\mathbf{r},-\mathbf{s})$$

Т

Т

M. Schlottbom (U Twente)

Numerical Methods for Transport

Well-posedness of PML formulation

Theorem [Egger, S (2019)]: For $q \in L^2(\mathcal{R} \times \mathbb{S}^2)$, the PML problem has a unique solution $\phi_a \in L^2(\mathcal{R}^\ell \times \mathbb{S}^2)$ with $\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_a \in L^2(\mathcal{R}^\ell \times \mathbb{S}^2)$

$$\|\phi_a\|_{L^2(\Gamma^\ell)} \leq Ce^{-2a\ell} \|q\|_{L^2(\mathcal{R}^\ell imes \mathbb{S}^2)}.$$

Furthermore,

$$\|\mathbf{s}\cdot\nabla_{\mathbf{r}}(\phi_{a}-\phi)\|_{L^{2}(\mathcal{R}\times\mathbb{S}^{2})}+|\|\phi_{a}-\phi\|_{L^{2}(\mathcal{R}\times\mathbb{S}^{2})}\leq Ce^{-2a\ell}\|q\|_{L^{2}(\mathcal{R}\times\mathbb{S}^{2})}.$$

The neutron transfer equation (NTE)

Perfectly matched layers for NTE

Discretization of PML formulation

Variational formulation Galerkin approximation Numerical examples

Recall: Even-odd splitting

Even-odd parities

$$\phi^{\pm}(\mathbf{r},\mathbf{s}) = \frac{1}{2}(\phi(\mathbf{r},\mathbf{s}) \pm \phi(\mathbf{r},-\mathbf{s}))$$

Observations

- $\phi = \phi^+ + \phi^-$ is an $L^2(\mathcal{R}^\ell imes \mathbb{S}^2)$ -orthogonal splitting
- Parity transformation

$$\mathbf{s} \cdot
abla_{\mathbf{r}} \phi^+$$
 is odd, $\mathbf{K} \phi^+$ is even

Reflection boundary conditions

$$\phi_a^+ = \mathbf{s} \cdot \mathbf{n} \phi_a^- \quad \text{on } \Gamma_-^\ell$$

[Vladimirov ('61)]

Splitting of the NTE

NTE with reflection b.c. is equivalent to the system

$$\begin{split} \mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{-} + \mathcal{C}_{a} \phi_{a}^{+} &= q^{+} & \text{in } \mathcal{R}^{\ell} \times \mathbb{S}^{2} \\ \mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{+} + \mathcal{C}_{a} \phi_{a}^{-} &= q^{-} & \text{in } \mathcal{R}^{\ell} \times \mathbb{S}^{2} \\ \phi_{a}^{+} &= \mathbf{s} \cdot \mathbf{n} \phi_{a}^{-} & \text{on } \Gamma_{-}^{\ell} \end{split}$$

where $C_a \phi_a = \sigma^a \phi_a - \sigma_s K \phi_a$.

Splitting of the NTE

NTE with reflection b.c. is equivalent to the system

$$\begin{split} \mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{-} + \mathcal{C}_{a} \phi_{a}^{+} &= q^{+} & \text{ in } \mathcal{R}^{\ell} \times \mathbb{S}^{2} \\ \mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{+} + \mathcal{C}_{a} \phi_{a}^{-} &= q^{-} & \text{ in } \mathcal{R}^{\ell} \times \mathbb{S}^{2} \\ \phi_{a}^{+} &= \mathbf{s} \cdot \mathbf{n} \phi_{a}^{-} & \text{ on } \Gamma_{-}^{\ell} \end{split}$$

where $C_a \phi_a = \sigma^a \phi_a - \sigma_s K \phi_a$.

Integration-by-parts:

$$(\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{-}, \psi^{+}) = -(\phi_{a}^{-}, \mathbf{s} \cdot \nabla_{\mathbf{r}} \psi^{+}) + \langle \mathbf{s} \cdot \mathbf{n} \phi_{a}^{-}, \psi^{+} \rangle_{\partial \mathcal{R}^{\ell} \times \mathbb{S}^{2}}$$

Key observation: $s\mapsto {f s}\cdot {f n}\phi_a^-\psi^+$ is even

$$\langle \mathbf{s} \cdot \mathbf{n} \phi_a^-, \psi^+ \rangle_{\partial \mathcal{R}^\ell \times \mathbb{S}^2} = 2 \langle \mathbf{s} \cdot \mathbf{n} \phi_a^-, \psi^+ \rangle_{\Gamma_-^\ell} = 2 \langle \phi_a^+, \psi^+ \rangle_{\Gamma_-^\ell} = \langle \phi_a^+, \psi^+ \rangle_{\Gamma^\ell}$$

Mixed variational framework

Find $\phi_a = \phi_a^+ + \phi_a^-$ such that for all sufficiently smooth $\psi = \psi^+ + \psi^ \langle \phi_a^+, \psi^+ \rangle_{\Gamma^\ell} - (\phi_a^-, \mathbf{s} \cdot \nabla_r \psi^+) + (\mathbf{s} \cdot \nabla_r \phi_a^+, \psi^-) + (\mathcal{C}_a \phi_a, \psi) = (q, \psi)$

Observations

- odd part $\phi_a^- \in \mathbb{V}^-$ with $\mathbb{V} := L^2(\mathcal{R}^\ell \times \mathbb{S}^2)$
- ► even part $\phi_a^+ \in \mathbb{W}^+ := \{ \psi \in \mathbb{V}^+ : \mathbf{s} \cdot \nabla_{\mathbf{r}} \psi \in \mathbb{V}, \ \psi \mid_{\Gamma^{\ell}} \in L^2(\Gamma^{\ell}) \}$
- boundary conditions are incorporated naturally
- boundary bilinear form has tensor product structure

Theorem [Egger, S (2018)]: For every $q \in L^2(\mathcal{R} \times \mathbb{S}^2)$ the mixed variational problem has a unique solution $\phi_a = \phi_a^+ + \phi_a^- \in \mathbb{W}^+ \oplus \mathbb{V}^-$.

Galerkin approximation

Let
$$\mathbb{W}_{h}^{+} \subset \mathbb{W}^{+}$$
 and $\mathbb{V}_{h}^{-} \subset \mathbb{V}^{-}$ be finite dimensional spaces
Find $\phi_{a,h} \in \mathbb{W}_{h}^{+} \oplus \mathbb{V}_{h}^{-}$ such that for all $\psi_{h} \in \mathbb{W}_{h}^{+} \oplus \mathbb{V}_{h}^{-}$
 $\langle \phi_{a,h}^{+}, \psi_{h}^{+} \rangle_{\Gamma^{\ell}} - (\phi_{a,h}^{-}, \mathbf{s} \cdot \nabla_{\mathbf{r}} \psi_{h}^{+}) + (\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a,h}^{+}, \psi_{h}^{-}) + (\mathcal{C}_{a} \phi_{a,h}, \psi_{h}) = (q, \psi_{h})$

Theorem [Egger & S (2019)]: If $\mathbf{s} \cdot \nabla_{\mathbf{r}} \mathbb{W}_h^+ \subset \mathbb{V}_h^-$ and $\mathcal{C}_a : \mathbb{V}^- \to \mathbb{V}^-$ is boundedly invertible, then the Galerkin problem is well-posed and

$$\|\phi - \phi_{a,h}\|_{\mathbb{W}^+ \oplus \mathbb{V}^-} \leq C'(a) \underbrace{e^{-a\ell} \|q\|_{L^2(\mathcal{R} \times \mathbb{S}^2)}}_{\text{model error}} + C(a) \underbrace{\inf_{a = 1}^{\infty} \|\phi_a - v_h\|_{\mathbb{W}^+ \oplus \mathbb{V}^-}}_{\text{approx. error}},$$

where the infimum is taken over all $(v_h^+, v_h^-) \in \mathbb{W}_h^+ \times \mathbb{V}_h^-$.

P_N FEM

Even approximation space

$$\blacktriangleright \mathbb{X}_h^+ = P_1(T_h) \cap H^1(\mathcal{R}^\ell)$$

- ▶ $\mathbb{S}_N^+ = \operatorname{span}\{H_{2I}^m : |m| \le I, 0 \le I \le (N-1)/2\}$ even spher. harm.
- Approximation space $\mathbb{W}_h^+ = \mathbb{S}_N^+ \otimes \mathbb{X}_h^+$, i.e.,

$$\phi_{a,h}^+(r,s) = \sum_{j=1}^{\dim \mathbb{X}_h^+} \sum_{l=0}^{(N-1)/2} \sum_{m=-l}^l p_{2l,m}^j \varphi_j(r) H_{2l}^m(s) \in \mathbb{S}_N^+ \otimes \mathbb{X}_h^+$$

Odd approximation space

▶
$$\mathbb{X}_h^- = P_0(T_h) \subset L^2(\mathcal{R}^\ell)$$

▶ $\mathbb{S}_N^- = \operatorname{span}\{H_{2l+1}^m : |m| \le l; 0 \le l \le (N-1)/2\}$ odd spher. harm.
▶ $\mathbb{V}_h^- = \mathbb{S}_N^- \otimes \mathbb{X}_h^-$, i.e.,

$$\phi_{a,h}^{-}(r,s) = \sum_{j=1}^{\dim \mathbb{X}_{h}^{-}} \sum_{l=0}^{(N-1)/2} \sum_{l=-m}^{m} p_{2l+1,m}^{j} \chi_{j}(r) H_{2l+1}^{m}(s) \in \mathbb{S}_{N}^{-} \otimes \mathbb{X}_{h}^{-}$$

P_N FEM: Properties

• If *N* is odd, then
$$\mathbf{s} \cdot
abla_{\mathbf{r}} \mathbb{W}_{h}^{+} \subset \mathbb{V}_{h}^{-}$$

- Number of dofs $O(h^{-2}N^2)$
- Computational complexity for MatVec $O(h^{-2}N^2)$
- Galerkin approximation leads to linear system

$$\begin{pmatrix} \mathtt{M} + \mathtt{R} & -\mathtt{B}^\top \\ \mathtt{B} & \mathtt{C} \end{pmatrix} \begin{pmatrix} \mathtt{p}^+ \\ \mathtt{p}^- \end{pmatrix} = \begin{pmatrix} \mathtt{q}^+ \\ \mathtt{q}^- \end{pmatrix}$$

Schur complement is symmetric positive definite

$$(B^{\top}C^{-1}B + M + R)p^+ = q^+ + B^{\top}C^{-1}q^-$$

- Numerical solution: Preconditioned CG
- Preconditioner: Spatial multigrid

Example 1: Constant coefficients

Setup

- Computational domain $\mathcal{R} = B_1(0) \subset \mathbb{R}^2$
- Model parameters: $k(\mathbf{r}, \mathbf{s} \cdot \mathbf{s}') = \frac{1}{4\pi}, \sigma_s = 10, \sigma_a = \frac{1}{10}$
- ► Isotropic source $q(\mathbf{r}, \mathbf{s}) = \exp(-5|\mathbf{r} \mathbf{r}_0|^2)$, $\mathbf{r}_0 = (\frac{3}{4}, 0)$
- Extended domain $\mathcal{R}^{\ell} = B_{6/5}(0)$

Reference solution $\widetilde{\phi}=\phi_{{\rm a},{\rm h}}$ computed for

177 761 vertices, i.e., h = 0.005

• dim
$$\mathbb{W}_h^+ = 11732226$$

• dim \mathbb{W}_{h}^{+} + dim \mathbb{W}_{h}^{-} = 39 367 938

Error measure

$$\boldsymbol{e}_{h}^{2} = \|\widetilde{\phi} - \phi_{h,a}\|_{L^{2}(\mathcal{R} \times \mathbb{S}^{2})}^{2} + \|\mathbf{s} \cdot \nabla_{\mathbf{r}}(\widetilde{\phi}^{+} - \phi_{h,a}^{+})\|_{L^{2}(\mathcal{R} \times \mathbb{S}^{2})}^{2}$$

Error table

	N = 9				<i>N</i> = 11			
$e^{-a\ell}$	h = 0.02	<i>h</i> = 0.01	<i>h</i> = 0.005		h = 0.02	<i>h</i> = 0.01	<i>h</i> = 0.005	
15/16	0.085	0.072	0.068		0.082	0.068	0.0643	
7/8	0.073	0.059	0.054		0.071	0.055	0.0500	
3/4	0.061	0.042	0.035		0.059	0.038	0.0296	
2/3	0.057	0.036	0.028		0.055	0.031	0.0204	
1/2	0.054	0.031	0.021		0.052	0.025	0.0090	
1/4	0.054	0.029	0.019		0.051	0.023	0.0023	
1/8	0.054	0.029	0.019		0.051	0.023	0.0012	
1/16	0.055	0.030	0.019		0.052	0.023	0.0005	

 e_h for different h and a and N

Iteration counts and runtime

	<i>N</i> = 9				N = 11			
$e^{-a\ell}$	h = 0.02	h = 0.01	h = 0.005		h = 0.02	h = 0.01	h = 0.005	
15/16	277 (104)	305 (518)	315 (2926)		316 (184)	350 (993)	364 (5214)	
7/8	195 (75)	215 (394)	222 (2079)		220 (134)	246 (205)	256 (3611)	
3/4	137 (51)	149 (259)	154 (1434)		153 (89)	172 (478)	179 (2475)	
2/3	117 (44)	127 (224)	131 (1203)		132 (75)	146 (400)	152 (2087)	
1/2	90 (35)	99 (178)	103 (947)		102 (62)	115 (324)	119 (1675)	
1/4	68 (27)	73 (124)	75 (716)		76 (47)	85 (234)	87 (1231)	
1/8	56 (23)	64 (116)	68 (647)		62 (39)	73 (210)	79 (1124)	
1/16	57 (23)	70 (126)	77 (725)		63 (40)	78 (217)	88 (1248)	
dofs	0.51M	2.01M	8.00M		0.74M	2.94M	11.73M	

Iteration counts (runtime in sec) for different h and a and N

Example 2: Lattice problem

Left: Extended absorption coefficient. Right: Extended scattering coefficient

Reference solution $\widetilde{\phi}=\phi_{\textit{a},\textit{h}}$ computed for

- N = 31, 332 929 vertices
- dim $\mathbb{W}_{h}^{+} = 165\,132\,784$
- dim \mathbb{W}_{h}^{+} + dim \mathbb{W}_{h}^{-} = 515 488 240
- 4GB storage requirements for the reference solution

M. Schlottbom (U Twente)

Numerical Methods for Transport

Results

 \log_{10} -plot of the angular average of the reference solution.

M. Schlottbom (U Twente)

Numerical Methods for Transport

Conclusion

Analysis

- Developed perfectly matched layer approach for NTE
- Well-posedness and error analysis of the PML approach Numerics
 - Stable variational formulation with error bounds
 - Variational framework that leads to sparse linear systems with Kronecker product structure

for details see [Egger & S (2019)]