On classical and modern approximations for neutron transport in

 a unified frameworkMatthias Schlottbom

October 26th, 2023
Mathematics for Nuclear Applications Seminar
Port-au-rocs, le Croisic October 23-27, 2023

UNIVERSITY OF TWENTE.

Outline

The neutron transfer equation (NTE)

Perfectly matched layers for NTE

Discretization of PML formulation
Variational formulation
Galerkin approximation
Numerical examples

The neutron transfer equation (NTE)

Perfectly matched layers for NTE

Discretization of PML formulation
Variational formulation
Galerkin approximation
Numerical examples

Recall: NTE on bounded domains

Assumptions

- $\mathcal{R} \subset \mathbb{R}^{3}$ bounded convex domain
- $\operatorname{supp}(q) \subset \mathcal{R}$
- $\operatorname{supp}(\sigma) \subset \mathcal{R}$

Inflow boundary

$$
\Gamma_{-}=\left\{(\mathbf{r}, \mathbf{s}) \in \partial \mathcal{R} \times \mathbb{S}^{2}: \mathbf{s} \cdot \mathbf{n}(\mathbf{r})<0\right\}
$$

$$
\begin{aligned}
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi+\sigma \phi & =\sigma_{s} K \phi+q & & \text { in } \mathcal{R} \times \mathbb{S}^{2} \\
\phi & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Half-space integrals

Recall the boundary functional of the variational formulation:

$$
\langle | \mu\left|\phi^{+}, \psi^{+}\right\rangle_{\Gamma}=\int_{-1}^{1} \phi^{+}(z, \mu) \psi^{+}|\mu| d \mu .
$$

For Legendre expansions $\phi^{+}(z, \mu)=\sum_{l=0}^{\infty} c_{2 \prime}(z) P_{2 /}(\mu)$ this led to a dense coupling, because

$$
\int_{-1}^{1} P_{2 \prime}(\mu) P_{2 k}(\mu)|\mu| d \mu \neq 0 \quad \text { in general. }
$$

Half-space integrals

Recall the boundary functional of the variational formulation:

$$
\langle | \mu\left|\phi^{+}, \psi^{+}\right\rangle_{\Gamma}=\int_{-1}^{1} \phi^{+}(z, \mu) \psi^{+}|\mu| d \mu .
$$

For Legendre expansions $\phi^{+}(z, \mu)=\sum_{l=0}^{\infty} c_{2 \prime}(z) P_{2 /}(\mu)$ this led to a dense coupling, because

$$
\int_{-1}^{1} P_{2 \prime}(\mu) P_{2 k}(\mu)|\mu| d \mu \neq 0 \quad \text { in general. }
$$

The same issue occurs in 3D for spherical harmonics Y_{l}^{m} expansions:

$$
\int_{\Gamma_{-}} Y_{I}^{m} Y_{k}^{n} \mathbf{s} \cdot \mathbf{n} d \mathbf{s} \neq 0 \quad \text { in general. }
$$

Moreover, the integration over \mathbf{s} depends on $\mathbf{n}(\mathbf{r})$, recall

$$
\Gamma_{-}=\left\{(\mathbf{r}, \mathbf{s}) \in \partial \mathcal{R} \times \mathbb{S}^{2}: \mathbf{s} \cdot \mathbf{n}(\mathbf{r})<0\right\} .
$$

The neutron transfer equation (NTE)

Perfectly matched layers for NTE

Discretization of PML formulation
Variational formulation
Galerkin approximation
Numerical examples

Perfectly matched layers for NTE

Beer-Lambert law: $\phi(\mathbf{r}+h \mathbf{s}, \mathbf{s})=e^{-h a} \phi(\mathbf{r}, \mathbf{s}) \ll 1$ for $h a \gg 1$
Expectation: Modification of boundary conditions is a minor perturbation

[^0]
Reflection boundary condition

$$
\begin{aligned}
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}+\sigma^{a} \phi_{a} & =\sigma_{s} K \phi_{a}+q & & \text { in } \mathcal{R}^{\ell} \times \mathbb{S}^{2} \\
\phi_{a} & =R \phi_{a} & & \text { on } \Gamma_{-}^{\ell}
\end{aligned}
$$

Reflection operator $\quad R \phi(\mathbf{r}, \mathbf{s})=\rho(\mathbf{r}, \mathbf{s}) \phi(\mathbf{r}, \mathbf{s})=\frac{|\mathbf{s} \cdot \mathbf{n}|-1}{|\mathbf{s} \cdot \mathbf{n}|+1} \phi(\mathbf{r},-\mathbf{s})$

Well-posedness of PML formulation

Theorem [Egger, \mathbf{S} (2019)]: For $q \in L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)$, the PML problem has a unique solution $\phi_{a} \in L^{2}\left(\mathcal{R}^{\ell} \times \mathbb{S}^{2}\right)$ with $\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a} \in L^{2}\left(\mathcal{R}^{\ell} \times \mathbb{S}^{2}\right)$

$$
\left\|\phi_{a}\right\|_{L^{2}\left(\Gamma^{\ell}\right)} \leq C e^{-2 a \ell}\|q\|_{L^{2}\left(\mathcal{R}^{\ell} \times \mathbb{S}^{2}\right)}
$$

Furthermore,

$$
\left\|\mathbf{s} \cdot \nabla_{\mathbf{r}}\left(\phi_{a}-\phi\right)\right\|_{L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)}+\mid\left\|\phi_{a}-\phi\right\|_{L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)} \leq C e^{-2 a \ell}\|q\|_{L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)} .
$$

Perfectly matched layers for NTE

Discretization of PML formulation
Variational formulation
Galerkin approximation
Numerical examples

Recall: Even-odd splitting

Even-odd parities

$$
\phi^{ \pm}(\mathbf{r}, \mathbf{s})=\frac{1}{2}(\phi(\mathbf{r}, \mathbf{s}) \pm \phi(\mathbf{r},-\mathbf{s}))
$$

Observations

- $\phi=\phi^{+}+\phi^{-}$is an $L^{2}\left(\mathcal{R}^{\ell} \times \mathbb{S}^{2}\right)$-orthogonal splitting
- Parity transformation

$$
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi^{+} \text {is odd, } \quad K \phi^{+} \text {is even }
$$

- Reflection boundary conditions

$$
\phi_{a}^{+}=\mathbf{s} \cdot \mathbf{n} \phi_{a}^{-} \quad \text { on } \Gamma_{-}^{\ell}
$$

Splitting of the NTE

NTE with reflection b.c. is equivalent to the system

$$
\begin{aligned}
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{-}+\mathcal{C}_{a} \phi_{a}^{+} & =q^{+} & & \text {in } \mathcal{R}^{\ell} \times \mathbb{S}^{2} \\
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{+}+\mathcal{C}_{a} \phi_{a}^{-} & =q^{-} & & \text {in } \mathcal{R}^{\ell} \times \mathbb{S}^{2} \\
\phi_{a}^{+} & =\mathbf{s} \cdot \mathbf{n} \phi_{a}^{-} & & \text {on } \Gamma_{-}^{\ell}
\end{aligned}
$$

where $\mathcal{C}_{a} \phi_{a}=\sigma^{a} \phi_{a}-\sigma_{s} K \phi_{a}$.

Splitting of the NTE

NTE with reflection b.c. is equivalent to the system

$$
\begin{aligned}
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{-}+\mathcal{C}_{a} \phi_{a}^{+} & =q^{+} & & \text {in } \mathcal{R}^{\ell} \times \mathbb{S}^{2} \\
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{+}+\mathcal{C}_{a} \phi_{a}^{-} & =q^{-} & & \text {in } \mathcal{R}^{\ell} \times \mathbb{S}^{2} \\
\phi_{a}^{+} & =\mathbf{s} \cdot \mathbf{n} \phi_{a}^{-} & & \text {on } \Gamma_{-}^{\ell}
\end{aligned}
$$

where $\mathcal{C}_{a} \phi_{a}=\sigma^{a} \phi_{a}-\sigma_{s} K \phi_{a}$.
Integration-by-parts:

$$
\left(\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{-}, \psi^{+}\right)=-\left(\phi_{a}^{-}, \mathbf{s} \cdot \nabla_{\mathbf{r}} \psi^{+}\right)+\left\langle\mathbf{s} \cdot \mathbf{n} \phi_{a}^{-}, \psi^{+}\right\rangle_{\partial \mathcal{R}^{\ell} \times \mathbb{S}^{2}}
$$

Key observation: $\boldsymbol{s} \mapsto \mathbf{s} \cdot \mathbf{n} \phi_{a}^{-} \psi^{+}$is even
$\left\langle\mathbf{s} \cdot \mathbf{n} \phi_{a}^{-}, \psi^{+}\right\rangle_{\partial \mathcal{R}^{\ell} \times \mathbb{S}^{2}}=2\left\langle\mathbf{s} \cdot \mathbf{n} \phi_{a}^{-}, \psi^{+}\right\rangle_{\Gamma_{-}^{\ell}}=2\left\langle\phi_{a}^{+}, \psi^{+}\right\rangle_{\Gamma_{-}^{\ell}}=\left\langle\phi_{a}^{+}, \psi^{+}\right\rangle_{\Gamma^{\ell}}$

Mixed variational framework

Find $\phi_{a}=\phi_{a}^{+}+\phi_{a}^{-}$such that for all sufficiently smooth $\psi=\psi^{+}+\psi^{-}$

$$
\left\langle\phi_{a}^{+}, \psi^{+}\right\rangle_{\mathbf{r}^{\ell}}-\left(\phi_{a}^{-}, \mathbf{s} \cdot \nabla_{\mathbf{r}} \psi^{+}\right)+\left(\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a}^{+}, \psi^{-}\right)+\left(\mathcal{C}_{a} \phi_{a}, \psi\right)=(q, \psi)
$$

Observations

- odd part $\phi_{a}^{-} \in \mathbb{V}^{-}$with $\mathbb{V}:=L^{2}\left(\mathcal{R}^{\ell} \times \mathbb{S}^{2}\right)$
- even part $\phi_{a}^{+} \in \mathbb{W}^{+}:=\left\{\psi \in \mathbb{V}^{+}: \mathbf{s} \cdot \nabla_{\mathbf{r}} \psi \in \mathbb{V},\left.\psi\right|_{\left.\Gamma^{\ell} \in L^{2}\left(\Gamma^{\ell}\right)\right\}}\right.$
- boundary conditions are incorporated naturally
- boundary bilinear form has tensor product structure

Theorem [Egger, \mathbf{S} (2018)]: For every $q \in L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)$ the mixed variational problem has a unique solution $\phi_{a}=\phi_{a}^{+}+\phi_{a}^{-} \in \mathbb{W}^{+} \oplus \mathbb{V}^{-}$.

Galerkin approximation

Let $\mathbb{W}_{h}^{+} \subset \mathbb{W}^{+}$and $\mathbb{V}_{h}^{-} \subset \mathbb{V}^{-}$be finite dimensional spaces
Find $\phi_{a, h} \in \mathbb{W}_{h}^{+} \oplus \mathbb{V}_{h}^{-}$such that for all $\psi_{h} \in \mathbb{W}_{h}^{+} \oplus \mathbb{V}_{h}^{-}$

$$
\left\langle\phi_{a, h}^{+}, \psi_{h}^{+}\right\rangle_{\Gamma^{\ell}}-\left(\phi_{a, h}^{-}, \mathbf{s} \cdot \nabla_{\mathbf{r}} \psi_{h}^{+}\right)+\left(\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi_{a, h}^{+}, \psi_{h}^{-}\right)+\left(\mathcal{C}_{a} \phi_{a, h}, \psi_{h}\right)=\left(q, \psi_{h}\right)
$$

Theorem [Egger \& S (2019)]: If $\mathbf{s} \cdot \nabla_{\mathbf{r}} \mathbb{W}_{h}^{+} \subset \mathbb{V}_{h}^{-}$and $\mathcal{C}_{a}: \mathbb{V}^{-} \rightarrow \mathbb{V}^{-}$is boundedly invertible, then the Galerkin problem is well-posed and

$$
\left\|\phi-\phi_{a, h}\right\|_{\mathbb{W}^{+} \oplus \mathbb{V}^{-}} \leq C^{\prime}(a) \underbrace{e^{-a \ell}\|q\|_{L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)}}_{\text {model error }}+C(a) \underbrace{\inf \left\|\phi_{a}-v_{h}\right\|_{\mathbb{W}+}+\mathbb{V}^{-}}_{\text {approx. error }},
$$

where the infimum is taken over all $\left(v_{h}^{+}, v_{h}^{-}\right) \in \mathbb{W}_{h}^{+} \times \mathbb{V}_{h}^{-}$.

P_{N} FEM

Even approximation space

- $\mathbb{X}_{h}^{+}=P_{1}\left(T_{h}\right) \cap H^{1}\left(\mathcal{R}^{\ell}\right)$
- $\mathbb{S}_{N}^{+}=\operatorname{span}\left\{H_{2 l}^{m}:|m| \leq I, 0 \leq I \leq(N-1) / 2\right\}$ even spher. harm.
- Approximation space $\mathbb{W}_{h}^{+}=\mathbb{S}_{N}^{+} \otimes \mathbb{X}_{h}^{+}$, i.e.,

$$
\phi_{a, h}^{+}(r, s)=\sum_{j=1}^{\operatorname{dim} \mathbb{X}_{h}^{+}} \sum_{l=0}^{(N-1) / 2} \sum_{m=-1}^{l} p_{2 l, m}^{j} \varphi_{j}(r) H_{2 l}^{m}(s) \in \mathbb{S}_{N}^{+} \otimes \mathbb{X}_{h}^{+}
$$

Odd approximation space

- $\mathbb{X}_{h}^{-}=P_{0}\left(T_{h}\right) \subset L^{2}\left(\mathcal{R}^{\ell}\right)$
- $\mathbb{S}_{N}^{-}=\operatorname{span}\left\{H_{2 l+1}^{m}:|m| \leq I ; 0 \leq I \leq(N-1) / 2\right\}$ odd spher. harm.
- $\mathbb{V}_{h}^{-}=\mathbb{S}_{N}^{-} \otimes \mathbb{X}_{h}^{-}$, i.e.,

$$
\phi_{a, h}^{-}(r, s)=\sum_{j=1}^{\operatorname{dim} \mathbb{X}_{h}^{-}} \sum_{l=0}^{(N-1) / 2} \sum_{l=-m}^{m} p_{2 l+1, m}^{j} \chi_{j}(r) H_{2 l+1}^{m}(s) \in \mathbb{S}_{N}^{-} \otimes \mathbb{X}_{h}^{-}
$$

P_{N} FEM: Properties

- If N is odd, then $\mathbf{s} \cdot \nabla_{\mathbf{r}} \mathbb{W}_{h}^{+} \subset \mathbb{V}_{h}^{-}$
- Number of dofs $O\left(h^{-2} N^{2}\right)$
- Computational complexity for MatVec $O\left(h^{-2} N^{2}\right)$
- Galerkin approximation leads to linear system

$$
\left(\begin{array}{cc}
M+R & -B^{\top} \\
B & C
\end{array}\right)\binom{p^{+}}{p^{-}}=\binom{q^{+}}{q^{-}}
$$

- Schur complement is symmetric positive definite

$$
\left(B^{\top} C^{-1} B+M+R\right) p^{+}=q^{+}+B^{\top} C^{-1} q^{-}
$$

- Numerical solution: Preconditioned CG
- Preconditioner: Spatial multigrid

Example 1: Constant coefficients

Setup

- Computational domain $\mathcal{R}=B_{1}(0) \subset \mathbb{R}^{2}$
- Model parameters: $k\left(\mathbf{r}, \mathbf{s} \cdot \mathbf{s}^{\prime}\right)=\frac{1}{4 \pi}, \sigma_{s}=10, \sigma_{a}=\frac{1}{10}$
- Isotropic source $q(\mathbf{r}, \mathbf{s})=\exp \left(-5\left|\mathbf{r}-\mathbf{r}_{0}\right|^{2}\right), \mathbf{r}_{0}=\left(\frac{3}{4}, 0\right)$
- Extended domain $\mathcal{R}^{\ell}=B_{6 / 5}(0)$

Reference solution $\widetilde{\phi}=\phi_{a, h}$ computed for

- $N=11$
- 177761 vertices, i.e., $h=0.005$
- $\operatorname{dim} \mathbb{W}_{h}^{+}=11732226$
- $\operatorname{dim} \mathbb{W}_{h}^{+}+\operatorname{dim} \mathbb{W}_{h}^{-}=39367938$

Error measure

$$
e_{h}^{2}=\left\|\widetilde{\phi}-\phi_{h, a}\right\|_{L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)}^{2}+\left\|\mathbf{s} \cdot \nabla_{\mathbf{r}}\left(\widetilde{\phi}^{+}-\phi_{h, a}^{+}\right)\right\|_{L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)}^{2}
$$

Error table

	$N=9$				$N=11$		
$e^{-a \ell}$	$h=0.02$	$h=0.01$	$h=0.005$		$h=0.02$	$h=0.01$	$h=0.005$
$15 / 16$	0.085	0.072	0.068		0.082	0.068	0.0643
$7 / 8$	0.073	0.059	0.054		0.071	0.055	0.0500
$3 / 4$	0.061	0.042	0.035		0.059	0.038	0.0296
$2 / 3$	0.057	0.036	0.028		0.055	0.031	0.0204
$1 / 2$	0.054	0.031	0.021		0.052	0.025	0.0090
$1 / 4$	0.054	0.029	0.019		0.051	0.023	0.0023
$1 / 8$	0.054	0.029	0.019		0.051	0.023	0.0012
$1 / 16$	0.055	0.030	0.019		0.052	0.023	0.0005

e_{h} for different h and a and N

Iteration counts and runtime

	$N=9$					$N=11$		
$e^{-a \ell}$	$h=0.02$	$h=0.01$	$h=0.005$		$h=0.02$	$h=0.01$	$h=0.005$	
$15 / 16$	$277(104)$	$305(518)$	$315(2926)$		$316(184)$	$350(993)$	$364(5214)$	
$7 / 8$	$195(75)$	$215(394)$	$222(2079)$		$220(134)$	$246(205)$	$256(3611)$	
$3 / 4$	$137(51)$	$149(259)$	$154(1434)$		$153(89)$	$172(478)$	$179(2475)$	
$2 / 3$	$117(44)$	$127(224)$	$131(1203)$		$132(75)$	$146(400)$	$152(2087)$	
$1 / 2$	$90(35)$	$99(178)$	$103(947)$		$102(62)$	$115(324)$	$119(1675)$	
$1 / 4$	$68(27)$	$73(124)$	$75(716)$		$76(47)$	$85(234)$	$87(1231)$	
$1 / 8$	$56(23)$	$64(116)$	$68(647)$		$62(39)$	$73(210)$	$79(1124)$	
$1 / 16$	$57(23)$	$70(126)$	$77(725)$		$63(40)$	$78(217)$	$88(1248)$	
dofs	0.51 M	2.01 M	8.00 M		0.74 M	2.94 M	11.73 M	

Iteration counts (runtime in sec) for different h and a and N

Example 2: Lattice problem

Left: Extended absorption coefficient. Right: Extended scattering coefficient
Reference solution $\widetilde{\phi}=\phi_{a, h}$ computed for

- $N=31,332929$ vertices
- $\operatorname{dim} \mathbb{W}_{h}^{+}=165132784$
- $\operatorname{dim} \mathbb{W}_{h}^{+}+\operatorname{dim} \mathbb{W}_{h}^{-}=515488240$
- 4GB storage requirements for the reference solution

Results

$e^{-a \ell}$	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$
$e_{h} \times 1000$	1.463	0.681	0.346	0.141

$\log _{10}$-plot of the angular average of the reference solution.

Conclusion

Analysis

- Developed perfectly matched layer approach for NTE
- Well-posedness and error analysis of the PML approach

Numerics

- Stable variational formulation with error bounds
- Variational framework that leads to sparse linear systems with Kronecker product structure
for details see [Egger \& S (2019)]

[^0]: cf. [Bérenger, 94] [Bécache Fauqueux Joly, 2003] [Appelö Hagstrom Kreiss, 2006]

