On classical and modern approximations for neutron transport in

 a unified frameworkMatthias Schlottbom

October 26th, 2023
Mathematics for Nuclear Applications Seminar
Port-au-rocs, le Croisic October 23-27, 2023

UNIVERSITY OF TWENTE.

Outline

Iterative solution for dG discretization
Source iteration for NTE in slab geometry
Accelerating the source iteration
Accelerated scheme in a variational context

Low-rank approximations
Overview of different approaches
Rank control
Preconditioning

Iterative solution for dG discretization Source iteration for NTE in slab geometry
Accelerating the source iteration
Accelerated scheme in a variational context

Low-rank approximations
Overview of different approaches
Rank control
Preconditioning

Recall: NTE in slab geometry

$$
\begin{array}{rlrl}
\mu \partial_{z} \phi+\sigma \phi & =\sigma_{s} \bar{\phi}+q & & \text { in }(0, Z) \times(-1,1) \\
\phi(0, \mu) & =g_{0}(\mu) & \mu>0 \\
\phi(Z, \mu) & =g_{z}(\mu) & \mu<0 \\
\text { with } \bar{\phi}(z, \mu)=\frac{1}{2} \int_{-1}^{1} \phi\left(z, \mu^{\prime}\right) \mathrm{d} \mu^{\prime} .
\end{array}
$$

Recall: NTE in slab geometry

$$
\begin{array}{rlrl}
\mu \partial_{z} \phi+\sigma \phi & =\sigma_{s} \bar{\phi}+q & & \text { in }(0, Z) \times(-1,1) \\
\phi(0, \mu) & =g_{0}(\mu) & & \mu>0 \\
\phi(Z, \mu) & =g_{z}(\mu) & & \mu<0 \\
\text { with } \bar{\phi}(z, \mu)=\frac{1}{2} \int_{-1}^{1} \phi\left(z, \mu^{\prime}\right) \mathrm{d} \mu^{\prime}
\end{array}
$$

Existence theory: Fixed-point iteration $T: L^{2} \rightarrow L^{2}, \phi^{n} \mapsto \phi^{n+1}$ with

$$
\begin{aligned}
\mu \partial_{z} \phi^{n+1}+\sigma \phi^{n+1} & =\sigma_{s} \bar{\phi}^{n}+q & & \text { in }(0, Z) \times(-1,1) \\
\phi^{n+1} & =g & & \text { on } \Gamma_{-}
\end{aligned}
$$

Recall: NTE in slab geometry

$$
\begin{array}{rlrl}
\mu \partial_{z} \phi+\sigma \phi & =\sigma_{s} \bar{\phi}+q & & \text { in }(0, Z) \times(-1,1) \\
\phi(0, \mu) & =g_{0}(\mu) & & \mu>0 \\
\phi(Z, \mu) & =g_{z}(\mu) & & \mu<0 \\
\text { with } \bar{\phi}(z, \mu)=\frac{1}{2} \int_{-1}^{1} \phi\left(z, \mu^{\prime}\right) \mathrm{d} \mu^{\prime}
\end{array}
$$

Existence theory: Fixed-point iteration $T: L^{2} \rightarrow L^{2}, \phi^{n} \mapsto \phi^{n+1}$ with

$$
\begin{aligned}
\mu \partial_{z} \phi^{n+1}+\sigma \phi^{n+1} & =\sigma_{s} \bar{\phi}^{n}+q & & \text { in }(0, Z) \times(-1,1) \\
\phi^{n+1} & =g & & \text { on } \Gamma_{-}
\end{aligned}
$$

For each μ : family of decoupled advection equations for ϕ^{n+1}.

Proof of convergence in L^{2}

Let $\phi, \psi \in L^{2}$. Then $w=T \phi-T \psi=T(\phi-\psi)$ satisfies

$$
\begin{aligned}
\mu \partial_{z} w+\sigma w & =\sigma_{s}(\overline{\phi-\psi)} & & \text { in }(0, z) \times(-1,1) \\
w & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Proof of convergence in L^{2}

Let $\phi, \psi \in L^{2}$. Then $w=T \phi-T \psi=T(\phi-\psi)$ satisfies

$$
\begin{aligned}
\mu \partial_{z} w+\sigma w & =\sigma_{s}(\overline{\phi-\psi)} & & \text { in }(0, z) \times(-1,1) \\
w & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Multiply by w and integrate over $(0, Z) \times(-1,1)$:

$$
\left(\mu \partial_{z} w, w\right)+\|\sqrt{\sigma} w\|_{L^{2}}^{2}=\left(\sigma_{s}(\overline{\phi-\psi}), w\right) .
$$

Proof of convergence in L^{2}

Let $\phi, \psi \in L^{2}$. Then $w=T \phi-T \psi=T(\phi-\psi)$ satisfies

$$
\begin{aligned}
\mu \partial_{z} w+\sigma w & =\sigma_{s}(\overline{\phi-\psi)} & & \text { in }(0, Z) \times(-1,1) \\
w & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Multiply by w and integrate over $(0, Z) \times(-1,1)$:

$$
\left(\mu \partial_{z} w, w\right)+\|\sqrt{\sigma} w\|_{L^{2}}^{2}=\left(\sigma_{s}(\overline{\phi-\psi}), w\right) .
$$

Observations. Integration-by-parts:
$\left(\mu \partial_{z} w, w\right)=-\left(w, \mu \partial_{z} w\right)+(w, w \mu)_{\Gamma}=-\left(w, \mu \partial_{z} w\right)+\langle w, w| \mu| \rangle_{\Gamma_{+}}$.

Proof of convergence in L^{2}

Let $\phi, \psi \in L^{2}$. Then $w=T \phi-T \psi=T(\phi-\psi)$ satisfies

$$
\begin{aligned}
\mu \partial_{z} w+\sigma w & =\sigma_{s}(\overline{\phi-\psi)} & & \text { in }(0, z) \times(-1,1) \\
w & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Multiply by w and integrate over $(0, Z) \times(-1,1)$:

$$
\left(\mu \partial_{z} w, w\right)+\|\sqrt{\sigma} w\|_{L^{2}}^{2}=\left(\sigma_{s}(\overline{\phi-\psi}), w\right) .
$$

Observations. Integration-by-parts:
$\left(\mu \partial_{z} w, w\right)=-\left(w, \mu \partial_{z} w\right)+(w, w \mu)_{\Gamma}=-\left(w, \mu \partial_{z} w\right)+\langle w, w| \mu| \rangle_{\Gamma_{+}}$.
Cauchy-Schwarz and $\sigma_{s} \leq \sigma$ and $\sigma>0$:

$$
\begin{aligned}
\left(\sigma_{s}(\overline{\phi-\psi}), w\right) & \leq\left\|\sqrt{\sigma_{s}} \overline{(\phi-\psi)}\right\|_{L^{2}}\left\|\sqrt{\sigma_{s}} w\right\|_{L^{2}} \\
& \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty}\|\sqrt{\sigma} \overline{(\phi-\psi)}\|_{L^{2}}\|\sqrt{\sigma} w\|_{L^{2}} .
\end{aligned}
$$

Proof of convergence in L^{2}

Let $\phi, \psi \in L^{2}$. Then $w=T \phi-T \psi=T(\phi-\psi)$ satisfies

$$
\begin{aligned}
\mu \partial_{z} w+\sigma w & =\sigma_{s}(\overline{\phi-\psi)} & & \text { in }(0, z) \times(-1,1) \\
w & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Conclusion:

$$
\|\sqrt{\sigma} w\|_{L^{2}} \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty}\|\sqrt{\sigma}(\phi-\psi)\|_{L^{2}}
$$

i.e., $T: L^{2} \rightarrow L^{2}$ is a contraction if $\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty}<1$.

Remarks: The iteration $\phi^{n} \mapsto \phi^{n+1}$

- converges slowly if $\sigma_{a} \ll \sigma_{s}$, i.e., $\sigma_{s} / \sigma \approx 1$.
- is also called source iteration.

Iterative solution for dG discretization

Source iteration for NTE in slab geometry

Accelerating the source iteration

Accelerated scheme in a variational context

Low-rank approximations
Overview of different approaches
Rank control
Preconditioning

Towards accelerating the iteration: error equation

Update equation.

$$
\begin{aligned}
\mu \partial_{z} \phi^{n+1}+\sigma \phi^{n+1} & =\sigma_{s} \bar{\phi}^{n}+q & & \text { in }(0, Z) \times(-1,1) \\
\phi^{n+1} & =g & & \text { on } \Gamma_{-}
\end{aligned}
$$

The error $e^{n}=\phi-\phi^{n}$ satisfies

$$
\begin{aligned}
\mu \partial_{z} e^{n+1}+\sigma e^{n+1} & =\sigma_{s} \overline{e^{n}} & & \text { in }(0, Z) \times(-1,1) \\
e^{n+1} & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Equivalently (using that $e^{n}-e^{n+1}=\phi^{n+1}-\phi^{n}$)

$$
\begin{aligned}
\mu \partial_{z} e^{n+1}+\sigma e^{n+1} & =\sigma_{s} \bar{e}^{n+1}+\sigma_{s}\left(\overline{\phi^{n+1}-\phi^{n}}\right) & & \text { in }(0, Z) \times(-1,1) \\
e^{n+1} & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Towards accelerating the iteration: error equation

Equivalently (using that $e^{n}-e^{n+1}=\phi^{n+1}-\phi^{n}$)

$$
\begin{aligned}
\mu \partial_{z} e^{n+1}+\sigma e^{n+1} & =\sigma_{s} \bar{e}^{n+1}+\sigma_{s}\left(\overline{\phi^{n+1}-\phi^{n}}\right) & & \text { in }(0, Z) \times(-1,1) \\
e^{n+1} & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Observations:

- The error satisfies the NTE with source term $\sigma_{s}\left(\overline{\phi^{n+1}-\phi^{n}}\right)$.
- Solving the error equation is as difficult as solving the NTE.

Idea:

- Approximate the error by $\phi_{e}^{n+1} \approx e^{n+1}$.
- New iterate $\phi^{n+1}+\phi_{e}^{n+1}$.

How to obtain a good and computable correction ϕ_{e}^{n+1} ?

Diffusion limit

Recall: Convergence is slow if scattering dominates absorption $\sigma_{s} \gg \sigma_{a}$.
Consider: $\sigma_{s}=\frac{\bar{\sigma}_{s}}{\varepsilon}, \sigma_{a}=\varepsilon \bar{\sigma}_{a}$ with $\bar{\sigma}_{s}, \bar{\sigma}_{a}>0$.
Denote ϕ^{ε} solution to scaled equations

$$
\begin{aligned}
\mu \partial_{z} \phi^{\varepsilon}+\frac{1}{\varepsilon}\left(\bar{\sigma}_{s}+\varepsilon^{2} \bar{\sigma}_{a}\right) \bar{\sigma} \phi^{\varepsilon} & =\frac{\sigma_{s}}{\varepsilon} \bar{\phi}^{\varepsilon}+\varepsilon \bar{q} & & \text { in }(0, Z) \times(-1,1) \\
\phi^{\varepsilon} & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

How to obtain a good and computable correction ϕ_{e}^{n+1} ?

Diffusion limit

Recall: Convergence is slow if scattering dominates absorption $\sigma_{s} \gg \sigma_{a}$.
Consider: $\sigma_{s}=\frac{\bar{\sigma}_{s}}{\varepsilon}, \sigma_{a}=\varepsilon \bar{\sigma}_{a}$ with $\bar{\sigma}_{s}, \bar{\sigma}_{a}>0$.
Denote ϕ^{ε} solution to scaled equations

$$
\begin{aligned}
\mu \partial_{z} \phi^{\varepsilon}+\frac{1}{\varepsilon}\left(\bar{\sigma}_{s}+\varepsilon^{2} \bar{\sigma}_{a}\right) \bar{\sigma} \phi^{\varepsilon} & =\frac{\sigma_{s}}{\varepsilon} \bar{\phi}^{\varepsilon}+\varepsilon \bar{q} & & \text { in }(0, Z) \times(-1,1) \\
\phi^{\varepsilon} & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Limit: $\phi^{\varepsilon} \rightarrow \bar{\phi}^{0}$ in L^{2} as $\varepsilon \rightarrow 0$, with $\bar{\phi}^{0} \in H_{0}^{1}(0, Z)$ solution to

$$
-\operatorname{div}\left(\frac{1}{3 \bar{\sigma}_{s}} \nabla \bar{\phi}^{0}\right)+\bar{\sigma}_{a} \bar{\phi}^{0}=\bar{q} \quad \text { in }(0, Z) .
$$

Idea: Solve the diffusion eq. with $\operatorname{RHS} \bar{\sigma}_{s}\left(\bar{\phi}^{n+1}-\bar{\phi}^{n}\right)$ to obtain ϕ_{e}^{n+1}.

Summary of DSA scheme

1. Given $\phi^{n} \in L^{2}$, compute $\phi^{n+1 / 2} \in L^{2}$ solution to

$$
\begin{aligned}
\mu \partial_{z} \phi^{n+1 / 2}+\sigma \phi^{n+1 / 2} & =\sigma_{s} \bar{\phi}^{n}+q & & \text { in }(0, z) \times(-1,1), \\
\phi^{n+1 / 2} & =g & & \text { on } \Gamma_{-} .
\end{aligned}
$$

2. Compute correction $\bar{\phi}_{c}^{n+1 / 2} \in H_{0}^{1}(0, Z)$ solution to

$$
-\operatorname{div}\left(\frac{1}{3 \sigma} \nabla \bar{\phi}_{c}^{n+1 / 2}\right)+\sigma_{a} \bar{\phi}_{c}^{n+1 / 2}=\sigma_{s}\left(\bar{\phi}^{n+1 / 2}-\bar{\phi}^{n}\right) \text { in }(0, Z) .
$$

3. Define new iterate $\phi^{n+1}=\phi^{n+1 / 2}+\bar{\phi}_{c}^{n+1 / 2}$.

Summary of DSA scheme

1. Given $\phi^{n} \in L^{2}$, compute $\phi^{n+1 / 2} \in L^{2}$ solution to

$$
\begin{aligned}
\mu \partial_{z} \phi^{n+1 / 2}+\sigma \phi^{n+1 / 2} & =\sigma_{s} \bar{\phi}^{n}+q & & \text { in }(0, z) \times(-1,1), \\
\phi^{n+1 / 2} & =g & & \text { on } \Gamma_{-} .
\end{aligned}
$$

2. Compute correction $\bar{\phi}_{c}^{n+1 / 2} \in H_{0}^{1}(0, Z)$ solution to

$$
-\operatorname{div}\left(\frac{1}{3 \sigma} \nabla \bar{\phi}_{c}^{n+1 / 2}\right)+\sigma_{a} \bar{\phi}_{c}^{n+1 / 2}=\sigma_{s}\left(\bar{\phi}^{n+1 / 2}-\bar{\phi}^{n}\right) \text { in }(0, z) .
$$

3. Define new iterate $\phi^{n+1}=\phi^{n+1 / 2}+\bar{\phi}_{c}^{n+1 / 2}$.

Remarks:

- Step 2 is also called diffusion synthetic acceleration (DSA).
- Amplification factor of the scheme is $\approx 0.2247\left\|\sigma_{s} / \sigma\right\|_{\infty}$ for unbounded domains/periodic boundary conditions, constant coefficients.
- Incompatible numerical schemes for 1. and 2. may imply divergence.

Iterative solution for dG discretization

Source iteration for NTE in slab geometry Accelerating the source iteration

Accelerated scheme in a variational context

Low-rank approximations
Overview of different approaches
Rank control
Preconditioning

DSA scheme in a variational context

Recall variational formulation: Find $\phi=\phi^{+}+\phi^{-} \in \mathbb{W}^{+} \oplus \mathbb{V}^{-}$such that for all $\psi=\psi^{+}+\psi^{-} \in \mathbb{W}^{+} \oplus \mathbb{V}^{-}$

$$
\begin{aligned}
&\langle | \mu\left|\phi^{+}, \psi^{+}\right\rangle_{\Gamma}-\left(\phi^{-}, \mu \partial_{z} \psi^{+}\right)+\left(\mu \partial_{z} \phi^{+}, \psi^{-}\right)+(\sigma \phi, \psi)=\left(\sigma_{s} \bar{\phi}, \psi^{+}\right) \\
&+(q, \psi)+2\langle | \mu\left|g, \psi^{+}\right\rangle_{\Gamma_{-}}
\end{aligned}
$$

DSA scheme in a variational context

Recall variational formulation: Find $\phi=\phi^{+}+\phi^{-} \in \mathbb{W}^{+} \oplus \mathbb{V}^{-}$such that for all $\psi=\psi^{+}+\psi^{-} \in \mathbb{W}^{+} \oplus \mathbb{V}^{-}$

$$
\begin{array}{r}
\langle | \mu\left|\phi^{+}, \psi^{+}\right\rangle_{\Gamma}-\left(\phi^{-}, \mu \partial_{z} \psi^{+}\right)+\left(\mu \partial_{z} \phi^{+}, \psi^{-}\right)+(\sigma \phi, \psi)=\left(\sigma_{s} \bar{\phi}, \psi^{+}\right) \\
+(q, \psi)+2\langle | \mu\left|g, \psi^{+}\right\rangle_{\Gamma_{-}}
\end{array}
$$

Testing with $\psi=\psi^{-}$yields

$$
\left(\mu \partial_{z} \phi^{+}, \psi^{-}\right)+\left(\sigma \phi^{-}, \psi^{-}\right)=+\left(q^{-}, \psi^{-}\right),
$$

i.e., $\phi^{-}=\left(q^{-}-\mu \partial_{z} \phi^{+}\right) / \sigma$.

Inserting ϕ^{-}yields a new variational principle:

DSA scheme in a variational context

Testing with $\psi=\psi^{-}$yields

$$
\left(\mu \partial_{z} \phi^{+}, \psi^{-}\right)+\left(\sigma \phi^{-}, \psi^{-}\right)=+\left(q^{-}, \psi^{-}\right),
$$

i.e., $\phi^{-}=\left(q^{-}-\mu \partial_{z} \phi^{+}\right) / \sigma$.

Inserting ϕ^{-}yields a new variational principle:
Even-parity equation: Find $u \in \mathbb{W}^{+}$such that

$$
a(u, v)=\ell(v) \quad \forall v \in \mathbb{W}^{+},
$$

where

$$
\begin{aligned}
a(u, v) & =b(u, v)-k(u, v), \\
b(u, v) & =\langle u, v\rangle_{\Gamma_{-}}+\left(\frac{\mu}{\sigma} \partial_{z} u, \mu \partial_{z} v\right)+(\sigma u, v) \\
k(u, v) & =\left(\sigma_{s} \bar{u}, v\right), \\
\ell(v) & =2\langle g, v\rangle_{\Gamma_{-}}+\left(q, v+\frac{\mu}{\sigma} \partial_{z} v\right) .
\end{aligned}
$$

DSA scheme in a variational context

Even-parity equation: Find $u \in \mathbb{W}^{+}$such that

$$
a(u, v)=\ell(v) \quad \forall v \in \mathbb{W}^{+},
$$

where

$$
\begin{aligned}
a(u, v) & =b(u, v)-k(u, v), \\
b(u, v) & =\langle u, v\rangle_{\Gamma_{-}}+\left(\frac{\mu}{\sigma} \partial_{z} u, \mu \partial_{z} v\right)+(\sigma u, v) \\
k(u, v) & =\left(\sigma_{s} \bar{u}, v\right), \\
\ell(v) & =2\langle g, v\rangle_{\Gamma_{-}}+\left(q, v+\frac{\mu}{\sigma} \partial_{z} v\right) .
\end{aligned}
$$

Observations:

- a is symmetric positive definite bilinear form on \mathbb{W}^{+}.
- Even-parity equations are well-posed.
- $\|v\|_{a}:=a(v, v)^{1 / 2}$ is a norm.
- $\phi^{+}=u$ and $\phi^{-}=\left(q^{-}-\mu \partial_{z} u\right) / \sigma$ can be retrieved from u.

Iterative scheme, without correction

Given $u^{n} \in \mathbb{W}^{+}$, find $u^{n+1} \in \mathbb{W}^{+}$such that

$$
b\left(u^{n+1}, v\right)=k\left(u^{n}, v\right)+\ell(v) \quad \forall v \in \mathbb{W}^{+}
$$

Error iteration: $e^{n}=u-u^{n}$,

$$
b\left(e^{n+1}, v\right)=k\left(e^{n}, v\right) \quad \forall v \in \mathbb{W}^{+}
$$

Convergence in L^{2} : Test with $v=e^{n+1}$, and use that

$$
\begin{aligned}
b\left(e^{n+1}, e^{n+1}\right) & =\left\|e^{n+1}\right\|_{\Gamma}^{2}+\left\|\frac{\mu}{\sqrt{\sigma}} \partial_{z} e^{n+1}\right\|_{L^{2}}^{2}+\left\|\sqrt{\sigma} e^{n+1}\right\|_{L^{2}}^{2}, \\
k\left(e^{n}, e^{n+1}\right) & \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty}\left\|\sqrt{\sigma} e^{n}\right\|_{L^{2}}\left\|\sqrt{\sigma} e^{n+1}\right\|_{L^{2}} .
\end{aligned}
$$

Hence

$$
\left\|\sqrt{\sigma} e^{n+1}\right\|_{L^{2}} \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty}\left\|\sqrt{\sigma} e^{n}\right\|_{L^{2}} .
$$

This result will turn out to be too weak for our purpose.

Convergence in stronger norm $\|\cdot\|_{a}$.

Eigenvalue problem: Find $\left(v_{j}, \lambda_{j}\right) \in \mathbb{W}^{+} \times \mathbb{R}$ such that

$$
a\left(v_{j}, v\right)=\lambda_{j} b\left(v_{j}, v\right) \quad \forall v \in \mathbb{W}^{+}, \quad \text { normalization: } b\left(v_{i}, v_{j}\right)=\delta_{i, j} .
$$

Expand errors in eigenvectors:

$$
e^{n}=\sum_{j=1}^{\infty} e_{j}^{n} v_{j} \quad \text { with } e_{j}^{n}=b\left(e^{n}, v_{j}\right)
$$

Convergence in stronger norm $\|\cdot\|_{a}$.

Eigenvalue problem: Find $\left(v_{j}, \lambda_{j}\right) \in \mathbb{W}^{+} \times \mathbb{R}$ such that

$$
a\left(v_{j}, v\right)=\lambda_{j} b\left(v_{j}, v\right) \quad \forall v \in \mathbb{W}^{+}, \quad \text { normalization: } b\left(v_{i}, v_{j}\right)=\delta_{i, j} .
$$

Expand errors in eigenvectors:

$$
e^{n}=\sum_{j=1}^{\infty} e_{j}^{n} v_{j} \quad \text { with } e_{j}^{n}=b\left(e^{n}, v_{j}\right)
$$

Error estimate:

$$
\left\|e^{n+1}\right\|_{a}^{2}=\sum_{j} \lambda_{j}\left|e_{j}^{n+1}\right|^{2}
$$

Convergence in stronger norm $\|\cdot\|_{a}$.

Eigenvalue problem: Find $\left(v_{j}, \lambda_{j}\right) \in \mathbb{W}^{+} \times \mathbb{R}$ such that

$$
a\left(v_{j}, v\right)=\lambda_{j} b\left(v_{j}, v\right) \quad \forall v \in \mathbb{W}^{+}, \quad \text { normalization: } b\left(v_{i}, v_{j}\right)=\delta_{i, j} .
$$

Expand errors in eigenvectors:

$$
e^{n}=\sum_{j=1}^{\infty} e_{j}^{n} v_{j} \quad \text { with } e_{j}^{n}=b\left(e^{n}, v_{j}\right)
$$

Error estimate:

$$
\left\|e^{n+1}\right\|_{a}^{2}=\sum_{j} \lambda_{j}\left|e_{j}^{n+1}\right|^{2}=\sum_{j}\left|1-\lambda_{j}\right|^{2} \lambda_{j}\left|e_{j}^{n}\right|^{2}
$$

Claim 1: $e_{j}^{n+1}=\left(1-\lambda_{j}\right) e_{j}^{n}$.

Convergence in stronger norm $\|\cdot\|_{a}$.

Eigenvalue problem: Find $\left(v_{j}, \lambda_{j}\right) \in \mathbb{W}^{+} \times \mathbb{R}$ such that

$$
a\left(v_{j}, v\right)=\lambda_{j} b\left(v_{j}, v\right) \quad \forall v \in \mathbb{W}^{+}, \quad \text { normalization: } b\left(v_{i}, v_{j}\right)=\delta_{i, j} .
$$

Expand errors in eigenvectors:

$$
e^{n}=\sum_{j=1}^{\infty} e_{j}^{n} v_{j} \quad \text { with } e_{j}^{n}=b\left(e^{n}, v_{j}\right)
$$

Error estimate:

$$
\left\|e^{n+1}\right\|_{a}^{2}=\sum_{j} \lambda_{j}\left|e_{j}^{n+1}\right|^{2}=\sum_{j}\left|1-\lambda_{j}\right|^{2} \lambda_{j}\left|e_{j}^{n}\right|^{2} \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty}^{2}\left\|e^{n}\right\|_{a}^{2}
$$

Claim 1: $e_{j}^{n+1}=\left(1-\lambda_{j}\right) e_{j}^{n}$.
Claim 2: $1-\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty} \leq \lambda_{j} \leq 1$.

Proof of claim 1: $e_{j}^{n+1}=\left(1-\lambda_{j}\right) e_{j}^{n}$

By definition $b\left(e^{n+1}, v_{j}\right)=e_{j}^{n+1}$.

Proof of claim 1: $e_{j}^{n+1}=\left(1-\lambda_{j}\right) e_{j}^{n}$

By definition $b\left(e^{n+1}, v_{j}\right)=e_{j}^{n+1}$.

Recall error equation

$$
b\left(e^{n+1}, v\right)=k\left(e^{n}, v\right) \quad \forall v \in \mathbb{W}^{+}
$$

Since $k=b-a$, we obtain that

$$
e_{j}^{n+1}=k\left(e^{n}, v_{j}\right)=b\left(e^{n}, v_{j}\right)-a\left(e^{n}, v_{j}\right)=\left(1-\lambda_{j}\right) e_{j}^{n} .
$$

Proof of claim 2: $1-\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty} \leq \lambda_{j} \leq 1$

By definition

$$
\lambda_{j}=\lambda_{j} b\left(v_{j}, v_{j}\right)=a\left(v_{j}, v_{j}\right)=b\left(v_{j}, v_{j}\right)-k\left(v_{j}, v_{j}\right)=1-k\left(v_{j}, v_{j}\right)
$$

Proof of claim 2: $1-\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty} \leq \lambda_{j} \leq 1$

By definition

$$
\lambda_{j}=\lambda_{j} b\left(v_{j}, v_{j}\right)=a\left(v_{j}, v_{j}\right)=b\left(v_{j}, v_{j}\right)-k\left(v_{j}, v_{j}\right)=1-k\left(v_{j}, v_{j}\right)
$$

Since for all $v \in \mathbb{W}^{+}$

$$
0 \leq k(v, v)=\left(\sigma_{s} \bar{v}, \bar{v}\right) \leq\left(\sigma_{s} v, v\right) \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty}(\sigma v, v) \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty} b(v, v)
$$

we obtain the claim.

Error equation and subspace correction

Error equation:

$$
b\left(e^{n+1}, v\right)=k\left(e^{n}, v\right) \quad \forall v \in \mathbb{W}^{+}
$$

NTE for error: Using $a=b-k$,

$$
a\left(e^{n+1}, v\right)=k\left(u^{n+1}-u^{n}, v\right) \quad \forall v \in \mathbb{W}^{+}
$$

Subspace: $\mathbb{W}_{0}^{+}=\left\{v \in \mathbb{W}^{+}: v(z, \mu)=\bar{v}(z)\right\}$.
Correction equation: Find $u_{e}^{n+1} \in \mathbb{W}_{0}^{+}$such that

$$
a\left(u_{e}^{n+1}, v\right)=k\left(u^{n+1}-u^{n}, v\right) \quad \forall v \in \mathbb{W}_{0}^{+} .
$$

New iterate: $u^{n+1}+u_{e}^{n+1}$.

Iterative scheme with correction

Given $u^{n} \in \mathbb{W}^{+}$, find $u^{n+1 / 2} \in \mathbb{W}^{+}$such that

$$
b\left(u^{n+1 / 2}, v\right)=k\left(u^{n}, v\right)+\ell(v) \quad \forall v \in \mathbb{W}^{+} .
$$

Subspace: $\mathbb{W}_{0}^{+}=\left\{v \in \mathbb{W}^{+}: v(z, \mu)=\bar{v}(z)\right\}$.
Correction equation: Find $u_{e}^{n+1} \in \mathbb{W}_{0}^{+}$such that

$$
a\left(u_{e}^{n+1}, v\right)=k\left(u^{n+1 / 2}-u^{n}, v\right) \quad \forall v \in \mathbb{W}_{0}^{+} .
$$

New iterate: $u^{n+1}:=u^{n+1 / 2}+u_{e}^{n+1}$.
Theorem: For any $u^{0} \in \mathbb{W}^{+}$, the iteration $u^{n} \mapsto u^{n+1}$ converges to the solution $u=\phi^{+}$of the even-parity equation, and

$$
\left.\left\|u^{n+1}-u\right\|_{a} \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty} \right\rvert\,\left\|u^{n}-u\right\|_{a}
$$

Convergence proof

cf. Ceá's lemma

Galerkin orthogonality:

$$
a\left(e^{n+1}, v\right)=a\left(u_{e}^{n+1 / 2}, v\right) \quad \forall v \in \mathbb{W}_{0}^{+}
$$

Convergence proof

cf. Ceá's lemma

Galerkin orthogonality:

$$
a\left(e^{n+1}, v\right)=a\left(u_{e}^{n+1 / 2}, v\right) \quad \forall v \in \mathbb{W}_{0}^{+}
$$

For any $v \in \mathbb{W}_{0}^{+}$

$$
\begin{array}{rlrl}
\left\|e^{n+1}\right\|_{a}^{2} & =a\left(e^{n+1}, e^{n+1}\right) & \text { (Definition } \left.\|\cdot\|_{a}\right) \\
& =a\left(e^{n+1}, e^{n+1 / 2}-u_{e}^{n+1 / 2}\right) & \left(e^{n+1}=e^{n+1 / 2}-u_{e}^{n+1 / 2}\right) \\
& =a\left(e^{n+1}, e^{n+1 / 2}-v\right) & \text { (Galerkin orthogonality) } \\
& \leq\left\|e^{n+1}\right\|_{a}\left\|e^{n+1 / 2}-v\right\|_{a .} & & \text { (Cauchy-Schwarz) }
\end{array}
$$

Convergence proof

cf. Ceá's lemma

Galerkin orthogonality:

$$
a\left(e^{n+1}, v\right)=a\left(u_{e}^{n+1 / 2}, v\right) \quad \forall v \in \mathbb{W}_{0}^{+}
$$

For any $v \in \mathbb{W}_{0}^{+}$

$$
\begin{array}{rlrl}
\left\|e^{n+1}\right\|_{a}^{2} & =a\left(e^{n+1}, e^{n+1}\right) & \text { (Definition } \left.\|\cdot\|_{a}\right) \\
& =a\left(e^{n+1}, e^{n+1 / 2}-u_{e}^{n+1 / 2}\right) & \left(e^{n+1}=e^{n+1 / 2}-u_{e}^{n+1 / 2}\right) \\
& =a\left(e^{n+1}, e^{n+1 / 2}-v\right) & \text { (Galerkin orthogonality) } \\
& \leq\left\|e^{n+1}\right\|_{a}\left\|e^{n+1 / 2}-v\right\|_{a .} & & \text { (Cauchy-Schwarz) }
\end{array}
$$

Therefore

$$
\left\|e^{n+1}\right\|_{a} \leq \inf _{v \in \mathbb{W}_{0}^{+}}\left\|e^{n+1 / 2}-v\right\|_{a} \leq\left\|e^{n+1 / 2}\right\|_{a} \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty}\left\|e^{n}\right\|_{a}
$$

Discrete iterative scheme with correction

Choose $\mathbb{W}_{h}^{+} \subset \mathbb{W}^{+}$.
Given $u_{h}^{n} \in \mathbb{W}_{h}^{+}$, find $u_{h}^{n+1 / 2} \in \mathbb{W}_{h}^{+}$such that

$$
b\left(u_{h}^{n+1 / 2}, v_{h}\right)=k\left(u_{h}^{n}, v_{h}\right)+\ell\left(v_{h}\right) \quad \forall v_{h} \in \mathbb{W}_{h}^{+} .
$$

Subspace: $\mathbb{W}_{0, h}^{+}=\left\{v_{h} \in \mathbb{W}_{h}^{+}: v_{h}(z, \mu)=\bar{v}_{h}(z)\right\}$.
Correction equation: Find $u_{e, h}^{n+1} \in \mathbb{W}_{0, h}^{+}$such that

$$
a\left(u_{e, h}^{n+1}, v_{h}\right)=k\left(u_{h}^{n+1 / 2}-u_{h}^{n}, v_{h}\right) \quad \forall v_{h} \in \mathbb{W}_{0, h}^{+} .
$$

New iterate: $u_{h}^{n+1}:=u_{h}^{n+1 / 2}+u_{e, h}^{n+1}$.
Theorem: For any $u_{h}^{0} \in \mathbb{W}_{h}^{+}$, the iteration $u_{h}^{n} \mapsto u_{h}^{n+1}$ converges to the solution $u_{h}=\phi^{+}$of the discrete even-parity equation, and

$$
\left.\left\|u_{h}^{n+1}-u_{n}\right\|_{a} \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty} \right\rvert\,\left\|u_{h}^{n}-u_{h}\right\|_{a} .
$$

Relation of correction equations to PDEs

Correction equation: Find $u_{e}^{n+1} \in \mathbb{W}_{0}$ such that

$$
b\left(u_{e}^{n+1}, \psi\right)=k\left(u_{e}^{n+1}, v\right)+k\left(u^{n+1 / 2}-u^{n}, v\right) \quad \forall v \in \mathbb{W}_{0} .
$$

is the weak formulation of the diffusion equation

$$
-\partial_{z}\left(\frac{1}{3 \sigma} \partial_{z} u_{e}\right)+\sigma_{a} u_{e}=\sigma_{s}\left(\bar{u}^{n+1 / 2}-\bar{u}^{n}\right) \quad \text { in }(0, z)
$$

Discrete correction equation: Find $u_{e, h}^{n+1} \in \mathbb{W}_{0, h}$ such that

$$
b\left(u_{e, h}^{n+1}, v\right)=k\left(u_{h}^{n+1}, v\right)+k\left(u_{h}^{n+1 / 2}-\phi_{h}^{n}, v\right) \quad \forall v \in \mathbb{W}_{0, h}
$$

is the weak formulation of the diffusion equation

$$
-\partial_{z}\left(D_{N} \partial_{z} u_{e, h}\right)+\sigma_{a} u_{e, h}=\sigma_{s}\left(\bar{u}_{e, h}^{n+1 / 2}-\bar{u}_{e, h}^{n}\right) \quad \text { in }(0, Z) .
$$

with $D_{N}(z)=\frac{1}{3 \sigma}\left(1+\frac{1}{4} \sum_{n} \Delta \mu^{3}\right)$.

Numerical realization of the scheme: Transport step

Choose $\mathbb{W}_{h}^{+} \subset \mathbb{W}^{+}$as in dG method, i.e.,

$$
v_{h}(z, \mu)=\sum_{n=1}^{N} \sum_{j=0}^{J} c_{j, n}^{+} \varphi_{j}(z) Q_{n}^{+}(\mu)
$$

with hat functions φ_{j} and piecewise constant Q_{n}^{+}.
Given $u_{h}^{n} \in \mathbb{W}_{h}^{+}$, find $u_{h}^{n+1 / 2} \in \mathbb{W}_{h}^{+}$such that

$$
b\left(u_{h}^{n+1 / 2}, v_{h}\right)=k\left(u_{h}^{n}, v_{h}\right)+\ell\left(v_{h}\right) \quad \forall v_{h} \in \mathbb{W}_{h}^{+},
$$

translates to: Given \mathbf{u}^{n}, solve for $\mathbf{u}^{n+1 / 2}$

$$
\left(\mathbf{R}+\mathbf{N} \otimes \mathbf{M}(\sigma)^{+}+\left(\mathbf{P}^{\top} \mathbf{N}^{-1} \mathbf{P} \otimes \mathbf{D}^{\top} \mathbf{C D}\right)\right) \mathbf{u}^{n+1 / 2}=\left(\mathbf{K} \otimes \mathbf{M}\left(\sigma_{s}\right)^{+}\right) \mathbf{u}^{n}+\mathbf{f}
$$

- matrices on LHS are sparse
- $\mathbf{P}^{\top} \mathbf{N}^{-1} \mathbf{P}$, and \mathbf{N} are diagonal: matrix on LHS is block-diagonal.
- can be solved in parallel.
- each system corresponds to an elliptic equation.
- application of dense matrix \mathbf{K} is cheap.

Numerical realization of the scheme: Subspace correction

Correction equation: Find $u_{e, h}^{n+1} \in \mathbb{W}_{0, h}^{+}$such that

$$
a\left(u_{e, h}^{n+1}, v_{h}\right)=k\left(u_{h}^{n+1 / 2}-u_{h}^{n}, v_{h}\right) \quad \forall v_{h} \in \mathbb{W}_{0, h}^{+} .
$$

New iterate: $u_{h}^{n+1}:=u_{h}^{n+1 / 2}+u_{e, h}^{n+1}$.
Translates to: Given $\mathbf{u}^{n}, \mathbf{u}^{n+1 / 2}$, solve for \mathbf{u}_{e}^{n+1}
$\left(\mathbf{B}+\mathbf{M}\left(\sigma_{a}\right)^{+}+\mathbf{D}^{T} \mathbf{C D}\right) \mathbf{u}_{e}^{n+1}=\left(\frac{1}{2} \mathbf{e}^{T} \mathbf{K} \otimes \mathbf{M}\left(\sigma_{s}\right)^{+}\right)\left(\mathbf{u}^{n+1 / 2}-\mathbf{u}^{n}\right)$.
$\mathbf{u}^{n+1}=\mathbf{u}^{n+1 / 2}+\mathbf{Q u}_{e}^{n+1}$.

- $\mathbf{Q}=\mathbf{e} \otimes \mathbf{I}$ prolongates coefficients of functions in $\mathbb{W}_{h, 0}^{+}$to \mathbb{W}_{h}^{+}.
- Correction equation is a small elliptic equation.

Numerical tests

$$
\sigma_{s}(z)=\left\{\begin{array}{ll}
2+\sin (2 \pi z), & z \leq \frac{1}{2} \\
102+\sin (2 \pi z), & z>\frac{1}{2},
\end{array} \quad \sigma_{a}(z)= \begin{cases}10.01, & z \leq \frac{1}{2} \\
0.01, & z>\frac{1}{2}\end{cases}\right.
$$

Proven convergence rate for iteration without subspace correction

$$
\left\|\sigma_{s} / \sigma_{t}\right\|_{\infty} \approx 0.9999
$$

Spectrum of error propagator $\bar{e}_{h}^{n} \mapsto \bar{e}_{h}^{n+1}$ for different N
$J=16$

$$
\left\|u_{h}^{n}-u_{h}\right\|_{a} \leq \rho^{n} \mid\left\|u_{h}^{0}-u_{h}\right\|_{a}
$$

Spectrum of error propagator $\bar{e}_{h}^{n} \mapsto \bar{e}_{h}^{n+1}$ for different N $\mathrm{J}=64$

$$
\left\|u_{h}^{n}-u_{h}\right\|_{a} \leq \rho^{n} \mid\left\|u_{h}^{0}-u_{h}\right\|_{a}
$$

Spectrum of error propagator $\bar{e}_{h}^{n} \mapsto \bar{e}_{h}^{n+1}$ for different N $J=512$

$$
\left\|u_{h}^{n}-u_{h}\right\|_{a} \leq \rho^{n} \mid\left\|u_{h}^{0}-u_{h}\right\|_{a}
$$

Multi-D: Lattice problem

$$
\begin{equation*}
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(\mathbf{r}, \mathbf{s})+\sigma(\mathbf{r}) \phi(\mathbf{r}, \mathbf{s})=\sigma_{s}(\mathbf{r}) \bar{\phi}+q(\mathbf{r}, \mathbf{s}) \tag{NTE}
\end{equation*}
$$

for $\mathbf{r} \in(0,7) \times(0,7), \mathbf{s} \in \mathbb{S}^{2}$.
All results translate verbatim!

Left and middle: Approximation of the half-sphere with $N=4$ and $N=64$ triangles. Right: Geometry of the lattice problem. Here, $\sigma_{a}=10$ and $\sigma=\sigma_{a}$ in black regions, $\sigma_{a}=0$ and $\sigma=1$ else; $q=1$ in white region, $q=0$ else.

Lattice problem: results

Neutron density in a $\log _{10}$-scale for the lattice problem for $J=9801$ spatial vertices and $N=4$ triangles on a half-sphere (left) and $J=78961$ spatial vertices and $N=64$ triangles on a half-sphere (right).

Stopping criterion: $\left\|u_{h}^{n+1}-u_{h}^{n}\right\|_{a} \leq 10^{-10}$.
Observed rate: $\left\|u_{h}^{n+1}-u_{h}^{n}\right\|_{a} \leq 0.2\left\|u_{h}^{n}-u_{h}^{n-1}\right\|_{a}$, i.e., 17 iterations.

Lattice problem: results

Comparison to Monte Carlo (left) [Brunner] and our approximation with $N=64$ (right).

Stopping criterion: $\left\|u_{h}^{n+1}-u_{h}^{n}\right\|_{a} \leq 10^{-10}$. Observed rate: $\left\|u_{h}^{n+1}-u_{h}^{n}\right\|_{a} \leq 0.2\left\|u_{h}^{n}-u_{h}^{n-1}\right\|_{a}$, i.e., 17 iterations.

Lattice problem: results

Comparison to standard S_{6} discrete ordinates method (left) [Brunner] and our approximation with $N=64$ (right).

Stopping criterion: $\left\|u_{h}^{n+1}-u_{h}^{n}\right\|_{a} \leq 10^{-10}$.
Observed rate: $\left\|u_{h}^{n+1}-u_{h}^{n}\right\|_{a} \leq 0.2\left\|u_{h}^{n}-u_{h}^{n-1}\right\|_{a}$, i.e., 17 iterations.
Side note: No "ray effect" in DG solution (left)

Convergence behavior in a diffusion scaling

$$
\begin{aligned}
& \sigma_{s}^{\varepsilon}(\mathbf{r})=\frac{\sigma_{s}(\mathbf{r})+1 / 10}{\varepsilon}, \quad \sigma_{a}^{\varepsilon}=\varepsilon\left(\sigma_{a}(\mathbf{r})+1 / 10\right), \quad q^{\varepsilon}(x, s)=\varepsilon q(\mathbf{r}) . \\
& \left\|\sigma_{s} / \sigma\right\|_{\infty}=O\left(1-\varepsilon^{2}\right) \text { for } \varepsilon \rightarrow 0 \\
& J=9801 \\
& J=78961
\end{aligned}
$$

Iteration counts n and minimal reduction rates for $\left\|\phi_{h}^{n}-\phi_{h}^{n-1}\right\|_{a}$ for the lattice problem with scaled parameters $\sigma_{s}^{\varepsilon}, \sigma_{a}^{\varepsilon}$ and q^{ε} for different ε and discretizations with N triangles on a half-sphere and J vertices in the spatial mesh.

Convergence of DSA scheme: classical vs variational

Classical discrete ordinates method [Adams \& Larsen 2002]

- Diffusion synthetic acceleration motivated by asymptotic analysis.
- For semidiscrete problem with periodic b.c. and constant coefficients

$$
\left\|\bar{e}^{n+1}\right\|_{2} \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty}\left\|\bar{e}^{n}\right\|_{2}
$$

- Inconsistend discretization can lead to divergence.

Variational approach [Palii \& S 2020]

- The iteration always converges:
- varying and (possibly) discontinuous coefficients
- non-periodic b.c.
- independent of the spatial discretization
- convergence is also fast (mathematical proof misses)

Convergence of DSA scheme: classical vs variational

Classical discrete ordinates method [Adams \& Larsen 2002]

- Diffusion synthetic acceleration motivated by asymptotic analysis.
- For semidiscrete problem with periodic b.c. and constant coefficients

$$
\left\|\bar{e}^{n+1}\right\|_{2} \leq\left\|\frac{\sigma_{s}}{\sigma}\right\|_{\infty}\left\|\bar{e}^{n}\right\|_{2}
$$

- Inconsistend discretization can lead to divergence.

Variational approach [Palii \& S 2020]

- The iteration always converges:
- varying and (possibly) discontinuous coefficients
- non-periodic b.c.
- independent of the spatial discretization
- convergence is also fast (mathematical proof misses)
- can be extended to anisotropic scattering [Dölz et al, 2022]:
- matrix compression techniques for applying scattering integral
- larger subspaces for correction

Iterative solution for dG discretization
Source iteration for NTE in slab geometry Accelerating the source iteration Accelerated scheme in a variational context

Low-rank approximations

Overview of different approaches

Rank control
Preconditioning

Classical approximations

use a tensor product approximation

$$
\phi(\mathbf{r}, \mathbf{s}) \approx \sum_{i=1}^{I} \sum_{j=1}^{J} u_{i, j} \phi_{i}(\mathbf{r}) H_{j}(\mathbf{s})
$$

If \mathcal{R} and \mathbb{S}^{2} are partitioned by quasi-uniform triangulations with mesh-size h :

$$
I \sim h^{-d}, \quad J \sim h^{-d+1}
$$

Storage is proportional to $I J \approx h^{-2 d+1}$
[Chandrasekhar ('50)] [Case+Zweifel ('67)] [Duderstadt+Martin ('79)] [Lewis+Miller ('84)] [Manteuffel et al (2000)] [Egger+S (2010)], and many more

More efficient approaches

Sparse tensor products

[Widmer et al (2008)],
[Grella+Schwab (2011a,b)]

$$
\phi(\mathbf{r}, \mathbf{s}) \approx \sum_{1 \leq f(i, j) \leq 1} u_{i, j} \phi_{i}(\mathbf{r}) H_{j}(\mathbf{s})
$$

Storage is proportional to $/ \log /$

Phase-space adaptive methods

 [Kophazy+Lathouwers (2015)] [Dahmen et al (2020)] [Palii+S (2022)]
Low-rank tensor product approximations

Coefficient matrix of solution $\mathbf{U}=\left(u_{i, j}\right)_{i, j} \in \mathbb{R}^{1 \times J}$
Approximate \mathbf{U} by short sums of rank one matrices:

$$
\mathbf{U} \approx \sum_{k=1}^{r} \mathbf{v}_{k} \otimes \mathbf{w}_{k}, \quad \mathbf{v}_{k} \in \mathbb{R}^{\prime}, \mathbf{w}_{k} \in \mathbb{R}^{J}
$$

Storage is proportional to $r(I+J)$

Recall: Even-parity formulation

Even-parity equation (in variational form): Find $u=\phi^{+} \in \mathbb{W}^{+}$such that

$$
a(u, v)=\ell(v) \quad \forall v \in \mathbb{W}^{+},
$$

where

$$
\begin{aligned}
a(u, v) & =\langle | \mu|u, v\rangle_{\Gamma}+\left(\frac{\mu}{\sigma} \partial_{z} u, \mu \partial_{z} v\right)+(\sigma u, v)-\left(\sigma_{s} \bar{u}, v\right), \\
\ell(v) & =\left(q, v+\frac{\mu}{\sigma} \partial_{z} v\right)+2\langle | \mu|g, v\rangle_{\Gamma_{-}} .
\end{aligned}
$$

Observations:

- a is symmetric positive definite bilinear form on \mathbb{W}^{+}.
- Even-parity equations are well-posed (Lax-Milgram lemma).
- $\|v\|_{a}:=a(v, v)^{1 / 2}$ is a norm.
- Odd part $\phi^{-}=\frac{1}{\sigma}\left(q^{-}-\mu \partial_{z} u\right)$ can be retrieved from u.

Structure of even-parity system

Recall: After discretization $\mathbf{A u}=\mathbf{f}$ with

$$
\mathbf{A}:=\mathbf{R}+\mathbf{A}^{+}+\left(\mathbf{P}^{\top} \mathbf{N}^{-1} \mathbf{P} \otimes \mathbf{D}^{\top} \mathbf{C D}\right)
$$

with

$$
\begin{aligned}
\mathbf{R} & =\mathbf{B} \otimes \operatorname{diag}(1,0, \ldots, 0,1), & & \text { 'boundary' matrix } \\
\mathbf{A}^{+} & =\mathbf{N} \otimes \mathbf{M}(\sigma)^{+}-\mathbf{K} \otimes \mathbf{M}\left(\sigma_{s}\right)^{+}, & & \text {'attenuation' matrix }
\end{aligned}
$$

is a short sum of Kronecker products:

$$
\mathbf{A}=\sum_{k=1}^{4} \mathbf{A}_{k} \otimes \mathbf{B}_{k}
$$

with sparse or low-rank matrices $\mathbf{A}_{k} \in \mathbb{R}^{J \times J}$ and $\mathbf{B}_{k} \in \mathbb{R}^{I \times I}$.

Computational complexity of matrix-vector products

For $\mathbf{A}=\sum_{k=1}^{4} \mathbf{A}_{k} \otimes \mathbf{B}_{k}$ and

$$
\mathbf{U}=\operatorname{mat}(\mathbf{u})
$$

we have

$$
\operatorname{mat}(\mathbf{A u})=\sum_{i=1}^{4} \underbrace{\mathbf{B}_{i} \mathbf{U} \mathbf{A}_{i}^{T}}_{O(I J)} .
$$

Storage and Flops for MatVec Au are $O(I J)$.
Iterative schemes are suitable.

Computational complexity of matrix-vector products

For $\mathbf{A}=\sum_{k=1}^{4} \mathbf{A}_{k} \otimes \mathbf{B}_{k}$ and

$$
\mathbf{U}=\operatorname{mat}(\mathbf{u})=\sum_{k=1}^{r} \mathbf{v}_{k} \otimes \mathbf{w}_{k}
$$

we have

$$
\operatorname{mat}(\mathbf{A u})=\sum_{i=1}^{4} \underbrace{\mathbf{B}_{i} \mathbf{U} \mathbf{A}_{i}^{T}}_{O(I J)}=\sum_{i=1}^{4} \underbrace{\sum_{k=1}^{r}\left(\mathbf{B}_{i} \mathbf{v}_{k}\right) \otimes\left(\mathbf{A}_{i} \mathbf{w}_{k}\right)}_{O(r(I+J))} .
$$

Storage and Flops for MatVec Au are $O(r(I+J))$.
However: Rank r grows by a factor of 4 .
Conclusion for iterative schemes that should exploit low rank of \mathbf{U} :

- control growth of ranks
- aim for few iterations (\rightsquigarrow preconditioning)

Iterative solution for dG discretization
Source iteration for NTE in slab geometry Accelerating the source iteration Accelerated scheme in a variational context

Low-rank approximations
Overview of different approaches
Rank control
Preconditioning

Composition of contractions

Lemma. Let $S: X \rightarrow Y, T: Y \rightarrow Z$ be Lipschitz continuous with Lipschitz constants L_{S} and L_{T}. Then $T \circ S$ is Lipschitz with

$$
\left\|T\left(S\left(x_{1}\right)\right)-T\left(S\left(x_{2}\right)\right)\right\|_{z} \leq L_{S} L_{T}\left\|x_{1}-x_{2}\right\|_{X} \quad \forall x_{1}, x_{2} \in X
$$

Implications: If S describes a preconditioned Richardson iteration from above, then

- $L_{S}<1$ (contraction).
- If T describes rank truncation, we require $L_{T} \leq 1$ (non-expansive). Then $T \circ S$ is a convergent scheme.
- The norms are important!

Truncated singular value decomposition

Let $\mathbf{U} \in \mathbb{R}^{I \times J}$ be of rank n.
Singular value decomposition

$$
\mathbf{U}=\mathbf{W} \Sigma \mathbf{v}^{\top}, \quad \mathbf{W} \in \mathbb{R}^{1 \times n}, \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mathbf{v} \in \mathbb{R}^{J \times n},
$$

with $\sigma_{j}>0, \mathbf{W}^{\top} \mathbf{W}=\mathbf{I}, \mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$.

Eckart-Young-Mirsky Theorem:

$$
\min _{\mathbf{z} \in \mathbb{R}^{\prime \times J}, \operatorname{rank}(\mathbf{z})=k}\|\mathbf{U}-\mathbf{Z}\|_{F}=\sigma_{k+1}=\left\|\mathbf{U}-\mathbf{W}_{k} \Sigma_{k} \mathbf{V}_{k}^{T}\right\|_{F} .
$$

with \mathbf{W}_{k} the first k-columns of $\mathbf{W}, \mathbf{V}_{k}$ the first k-columns of \mathbf{V}, $\Sigma_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.

Issues:

- How to interpret the Frobenius norm $\|\mathbf{U}\|_{F}^{2}=\sum_{i, j}\left|U_{i, j}\right|^{2}$ in function space context?
- Denoting truncated SVD of \mathbf{U} by $T_{k}(\mathbf{U})=\mathbf{W}_{k} \Sigma_{k} \mathbf{V}_{k}^{T}$, we do not have

$$
\left\|T_{k}\left(\mathbf{U}_{1}\right)-T_{k}\left(\mathbf{U}_{2}\right)\right\|_{F} \leq\left\|\mathbf{U}_{1}-\mathbf{U}_{2}\right\|_{F} .
$$

Non-expansive rank truncation

Let $\mathbf{U} \in \mathbb{R}^{I \times J}$ be of rank n. Singular value decomposition

$$
\mathbf{U}=\mathbf{W} \Sigma \mathbf{V}^{T}, \quad \mathbf{W} \in \mathbb{R}^{1 \times n}, \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mathbf{V} \in \mathbb{R}^{J \times n}
$$

with $\sigma_{j}>0, \mathbf{W}^{\top} \mathbf{W}=\mathbf{I}, \mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$.
Soft-thresholding: $\boldsymbol{s}_{\delta}(t)=\operatorname{sgn}(t) \max \{|t|-\delta, 0\}$.
Define $\mathbf{S}_{\delta}(\mathbf{U})=\mathbf{W} \operatorname{diag}\left(s_{\delta}\left(\sigma_{1}\right), \ldots, s_{\delta}\left(\sigma_{n}\right)\right) \mathbf{V}^{\top}$.
Note: all singular values $\sigma_{j}<\delta$ are set to zero.
\mathbf{S}_{δ} is non-expansive: $\left\|\mathbf{S}_{\delta}\left(\mathbf{U}_{1}\right)-\mathbf{S}_{\delta}\left(\mathbf{U}_{2}\right)\right\|_{F} \leq\left\|\mathbf{U}_{1}-\mathbf{U}_{2}\right\|_{F}$.
[Bachmayr \& Schneider, 2017]

Non-expansive rank truncation

Let $\mathbf{U} \in \mathbb{R}^{1 \times J}$ be of rank n. Singular value decomposition

$$
\mathbf{U}=\mathbf{W} \Sigma \mathbf{v}^{\top}, \quad \mathbf{W} \in \mathbb{R}^{1 \times n}, \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \mathbf{v} \in \mathbb{R}^{J \times n}
$$

with $\sigma_{j}>0, \mathbf{W}^{\top} \mathbf{W}=\mathbf{I}, \mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$.
Soft-thresholding: $\boldsymbol{s}_{\delta}(t)=\operatorname{sgn}(t) \max \{|t|-\delta, 0\}$.
Define $\mathbf{S}_{\delta}(\mathbf{U})=\mathbf{W} \operatorname{diag}\left(s_{\delta}\left(\sigma_{1}\right), \ldots, s_{\delta}\left(\sigma_{n}\right)\right) \mathbf{V}^{\top}$.
Note: all singular values $\sigma_{j}<\delta$ are set to zero.
\mathbf{S}_{δ} is non-expansive: $\left\|\mathbf{S}_{\delta}\left(\mathbf{U}_{1}\right)-\mathbf{S}_{\delta}\left(\mathbf{U}_{2}\right)\right\|_{F} \leq\left\|\mathbf{U}_{1}-\mathbf{U}_{2}\right\|_{F}$.
Next step: Find transformation $\mathbf{W}=f(\mathbf{U})$ s.t. $\|\mathbf{W}\|_{F} \sim\|\mathbf{U}\|_{\mathbf{A}}=\left\|u_{h}\right\|_{a}$, and apply rank truncation to \mathbf{W}.
[Bachmayr \& Schneider, 2017]

Iterative solution for dG discretization
Source iteration for NTE in slab geometry Accelerating the source iteration Accelerated scheme in a variational context

Low-rank approximations
Overview of different approaches
Rank control

Preconditioning

Equivalent inner products

Recall: Even-parity bilinear form

$$
a(u, v)=\langle | \mu|u, v\rangle_{\Gamma}+\left(\frac{\mu}{\sigma} \partial_{z} u, \mu \partial_{z} v\right)+(\sigma u, v)-\left(\sigma_{s} \bar{u}, v\right)
$$

Lemma. There exists constants $\gamma_{1}, \gamma_{2}>0$ such that

$$
\gamma_{1} p_{*}(v, v) \leq a(v, v) \leq \gamma_{2} p_{*}(v, v) \quad \forall v \in \mathbb{W}^{+}
$$

with

$$
p_{*}(u, v):=\left(\mu^{2} \partial_{z} u, \partial_{z} v\right)+\left(\left(1+\mu^{2}\right) u, v\right) .
$$

Spectrally equivalent matrices

$$
\begin{aligned}
a(u, v) & =\langle u, v\rangle_{\Gamma_{-}}+\left(\frac{\mu}{\sigma} \partial_{z} u, \mu \partial_{z} v\right)+(\sigma u, v)-\left(\sigma_{s} \bar{u}, v\right) \\
p_{*}(u, v) & =\left(\mu^{2} \partial_{z} u, \partial_{z} v\right)+\left(\left(1+\mu^{2}\right) u, v\right)
\end{aligned}
$$

Corollary. For all $\mathbf{x} \in \mathbb{R}^{/ J}$ it holds

$$
\gamma_{1}\left\langle\mathbf{P}_{*} \mathbf{x}, \mathbf{x}\right\rangle \leq\langle\mathbf{A x}, \mathbf{x}\rangle \leq \gamma_{2}\left\langle\mathbf{P}_{*} \mathbf{x}, \mathbf{x}\right\rangle
$$

with matrix

$$
\begin{aligned}
\mathbf{P}_{*} & =\mathbf{T} \otimes(\mathbf{K}+\mathbf{M})+\mathbf{N} \otimes \mathbf{M} \\
\mathbf{M} & =\mathbf{M}(1)^{+}, \quad \mathbf{K}=\mathbf{D}^{T}\left(\mathbf{M}(1)^{-}\right)^{-1} \mathbf{D}
\end{aligned}
$$

Variable transformation

Recall: $\mathbf{P}_{*}=\mathbf{T} \otimes(\mathbf{K}+\mathbf{M})+\mathbf{N} \otimes \mathbf{M}$
Cholesky factorization: $\mathbf{U}_{z}^{\top} \mathbf{U}_{\mathbf{z}}=\mathbf{K}+\mathbf{M}$ with bidiagonal \mathbf{U}_{z}, yields

$$
\mathbf{P}_{*}=\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}^{T}\right)(\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}})\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}\right) .
$$

Lemma. For all $u_{h} \in \mathbb{W}_{h}^{+}$it holds

$$
\gamma_{1}\|\mathbf{w}\|_{2}^{2} \leq\left\|u_{h}\right\|_{a}^{2} \leq \gamma_{2}\|\mathbf{w}\|_{2}^{2}
$$

with $\mathbf{w}=\tilde{\mathbf{P}}_{*}^{1 / 2}\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}\right) \mathbf{u}$, and $\tilde{\mathbf{P}}_{*}=\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}}$.
Take away: Control over win Euclidean norm implies control over u_{h} in energy norm.

Variable transformation

Recall: $\mathbf{P}_{*}=\mathbf{T} \otimes(\mathbf{K}+\mathbf{M})+\mathbf{N} \otimes \mathbf{M}$
Cholesky factorization: $\mathbf{U}_{z}^{T} \mathbf{U}_{z}=\mathbf{K}+\mathbf{M}$ with bidiagonal \mathbf{U}_{z}, yields

$$
\mathbf{P}_{*}=\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}^{T}\right)(\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}})\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}\right)
$$

Lemma. For all $u_{h} \in \mathbb{W}_{h}^{+}$it holds

$$
\gamma_{1}\|\mathbf{w}\|_{2}^{2} \leq\left\|u_{h}\right\|_{a}^{2} \leq \gamma_{2}\|\mathbf{w}\|_{2}^{2}
$$

with $\mathbf{w}=\tilde{\mathbf{P}}_{*}^{1 / 2}\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}\right) \mathbf{u}$, and $\tilde{\mathbf{P}}_{*}=\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}}$.
Take away: Control over win Euclidean norm implies control over u_{h} in energy norm.

$$
\text { Proof: } \begin{array}{rlr}
\left\|u_{h}\right\|_{a}^{2} & =a\left(u_{h}, u_{h}\right) \sim p_{*}\left(u_{h}, u_{h}\right) & \text { (Equivalence } a \sim p_{*} \text {) } \\
& =\mathbf{u}^{T} \mathbf{P}_{*} \mathbf{u} & \text { (using coordinates) } \\
& =\left(\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}\right) \mathbf{u}\right)^{T} \tilde{\mathbf{P}}_{*}\left(\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}\right) \mathbf{u}\right) & \\
& =\left\|\tilde{\mathbf{P}}_{*}^{1 / 2}\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}\right) \mathbf{u}\right\|_{2}^{2} . &
\end{array}
$$

Transformed linear system

Linear system $\mathbf{A u}=\mathbf{f}$ is equivalent to

Preconditioned linear system

$$
\tilde{\mathbf{P}}_{*}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{P}}_{*}^{-1 / 2} \mathbf{w}=\tilde{\mathbf{f}}
$$

with

$$
\begin{aligned}
\tilde{\mathbf{A}} & :=\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}^{T}\right)^{-1} \mathbf{A}\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}\right)^{-1} \\
\tilde{\mathbf{P}}_{*} & =\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}} \\
\tilde{\mathbf{f}} & :=\tilde{\mathbf{P}}_{*}^{-1 / 2}\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}^{T}\right)^{-1} \mathbf{f}
\end{aligned}
$$

Transformed linear system

Linear system $\mathbf{A u}=\mathbf{f}$ is equivalent to

Preconditioned linear system

$$
\tilde{\mathbf{P}}_{*}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{P}}_{*}^{-1 / 2} \mathbf{w}=\tilde{\mathbf{f}}
$$

with

$$
\begin{aligned}
\tilde{\mathbf{A}} & :=\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}^{T}\right)^{-1} \mathbf{A}\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}\right)^{-1} \\
\tilde{\mathbf{P}}_{*} & =\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}} \\
\tilde{\mathbf{f}} & :=\tilde{\mathbf{P}}_{*}^{-1 / 2}\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}^{T}\right)^{-1} \mathbf{f} .
\end{aligned}
$$

Question: How to apply $\tilde{\mathbf{P}}_{*}^{-1 / 2}$ in a way that is compatible with the low-rank approach?

Transformed linear system

Linear system $\mathbf{A u}=\mathbf{f}$ is equivalent to

Preconditioned linear system

$$
\tilde{\mathbf{P}}_{*}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{P}}_{*}^{-1 / 2} \mathbf{w}=\tilde{\mathbf{f}}
$$

with

$$
\begin{aligned}
\tilde{\mathbf{A}} & :=\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}^{T}\right)^{-1} \mathbf{A}\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}\right)^{-1} \\
\tilde{\mathbf{P}}_{*} & =\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}} \\
\tilde{\mathbf{f}} & :=\tilde{\mathbf{P}}_{*}^{-1 / 2}\left(\mathbf{N}^{1 / 2} \otimes \mathbf{U}_{z}^{T}\right)^{-1} \mathbf{f}
\end{aligned}
$$

Question: How to apply $\tilde{\mathbf{P}}_{*}^{-1 / 2}$ in a way that is compatible with the low-rank approach?

Calculus $\exp (\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}})=\exp (\tilde{\mathbf{T}}) \otimes \exp (\tilde{\mathbf{M}})$.
Approach: 'Interpolate' $\tilde{\mathbf{P}}_{*}^{-1 / 2}$ using sums of exponentials.

Complex function theory

Gamma function

$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t, \quad \operatorname{Re}(z)>0
$$

[Scholz \& Yserentant (2017)]: It holds for $r>0$ and $\operatorname{Re}(z)>0$:

$$
\Gamma(z)=r^{z} \int_{-\infty}^{\infty} \exp \left(-r e^{t}+z t\right) d t
$$

Therefore, for arbitrary $\beta>0$:

$$
\frac{1}{r^{\beta}}=\frac{1}{\Gamma(\beta)} \int_{-\infty}^{\infty} \exp \left(-r e^{t}+\beta t\right) d t
$$

Observation: The integrand decays rapidly for $t \rightarrow \pm \infty$.
Idea: Approximate the integral with the trapezoidal rule, and truncate:

$$
\frac{1}{r^{\beta}} \approx \frac{h}{\Gamma(\beta)} \sum_{k=k_{1}}^{k_{2}} \exp \left(-r e^{k h}\right) e^{k h \beta}
$$

Exponential sum approximation of the ideal preconditioner

Recall $\exp \left(\tilde{\mathbf{P}}_{*}\right)=\exp (\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}})=\exp (\tilde{\mathbf{T}}) \otimes \exp (\tilde{\mathbf{M}})$.
We obtain

$$
\begin{array}{rlr}
\tilde{\mathbf{P}}_{*}^{-1 / 2} & =\frac{1}{\Gamma(1 / 2)} \int_{-\infty}^{\infty} \exp \left(-\tilde{\mathbf{P}}_{*} e^{t}\right) e^{t / 2} d t \quad \text { (Functional calculus) } \\
& \approx \frac{h}{\Gamma(\beta)} \sum_{k=k_{1}}^{k_{2}} \exp \left(-\tilde{\mathbf{P}}_{*} e^{k h}\right) e^{k h / 2} \quad \text { (Trapezoidal rule) } \\
& =\frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \rho_{k} \exp \left(-\alpha_{k} \tilde{\mathbf{T}}\right) \otimes \exp \left(-\alpha_{k} \tilde{\mathbf{M}}\right) \\
& =: \tilde{\mathbf{P}}^{-1 / 2} &
\end{array}
$$

Use $\tilde{\mathbf{P}}^{-1 / 2}$ instead of $\mathbf{P}_{*}^{-1 / 2}$ in the numerical scheme.
[Braess+Hackbusch (2005)][Beylkin+Monzon (2010)], [Scholz+Yserentant (2017)],
[Yserentant (2020)]

Accuracy of exponential sum approximation

$$
\frac{1}{r^{1 / 2}} \approx \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} e^{k h / 2} \exp \left(-e^{k h} r\right)
$$

For $\epsilon>0$, choose h, k_{1}, k_{2} such that for all eigenvalues r of $\tilde{\mathbf{P}}_{*}$:

$$
1-\epsilon \leq \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+\ln (r)}+(k h+\ln (r)) / 2\right) \leq 1+\epsilon .
$$

Then, by functional calculus,

$$
\left\|\left(\tilde{\mathbf{P}}^{-1 / 2}-\tilde{\mathbf{P}}_{*}^{-1 / 2}\right) \mathbf{x}\right\|_{2} \leq \epsilon\left\|\tilde{\mathbf{P}}_{*}^{-1 / 2} \mathbf{x}\right\|_{2}
$$

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, k_{2}=1$.

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, k_{2}=2$.

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=3$.

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=4$.

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=5$.

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=6$.

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=7$.

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=8$.

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=9$.

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=10$.
10

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=11$.
11

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=12$.
12

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=13$.
13

Impression of the required parameters

Plots of

$$
x \mapsto \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+x}+(k h+x) / 2\right)
$$

for $x=\ln (r)$ for $r=10^{-16}$ to $r=1, h=2.5, k_{1}=-2, \quad k_{2}=14$.
14

Eigenvalues for $\tilde{\mathbf{P}}_{*}$ for example discretizations

For $\epsilon=1 / 10$, choose h, k_{1}, k_{2} such that for all eigenvalues $\lambda=r$ of $\tilde{\mathbf{P}}_{*}$:

$$
1-\epsilon \leq \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+\ln (r)}+(k h+\ln (r)) / 2\right) \leq 1+\epsilon
$$

For dG method in angle, FEM in space with uniform grid-sizes $\Delta z, \Delta \mu$

$$
c \Delta z^{2} \Delta \mu^{2} / 3 \leq \lambda \leq 1
$$

If $\Delta z=\Delta \mu=10^{-5}$, choose $h=2.5, k_{1}=-2, k_{2}=18$.

Note: Only $\ln \lambda$ enters.

Eigenvalues for $\tilde{\mathbf{P}}_{*}$ for example discretizations

For $\epsilon=1 / 10$, choose h, k_{1}, k_{2} such that for all eigenvalues $\lambda=r$ of $\tilde{\mathbf{P}}_{*}$:

$$
1-\epsilon \leq \frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \exp \left(-e^{k h+\ln (r)}+(k h+\ln (r)) / 2\right) \leq 1+\epsilon
$$

For dG method in angle, FEM in space with uniform grid-sizes $\Delta z, \Delta \mu$

$$
c \Delta z^{2} \Delta \mu^{2} / 3 \leq \lambda \leq 1
$$

If $\Delta z=\Delta \mu=10^{-5}$, choose $h=2.5, k_{1}=-2, k_{2}=18$.
For P_{N} method in angle, FEM in space with uniform grid-size Δz

$$
c \Delta z^{2} / N^{4} \leq \lambda \leq 1
$$

If $\Delta z=10^{-5}, N=100$, choose $h=2.5, k_{1}=-2, k_{2}=17$.
Note: Only $\ln \lambda$ enters.

Summary: Preconditioner via exponential sums

$\tilde{\mathbf{P}}_{*}=\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}}$

Exponential sum approximation:

$$
\tilde{\mathbf{P}}^{-1 / 2}:=\frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \rho_{k} \exp \left(-\alpha_{k} \tilde{\mathbf{T}}\right) \otimes \exp \left(-\alpha_{k} \tilde{\mathbf{M}}\right)
$$

with error bound (appropriately choosing h, k_{1}, k_{2})

$$
\left\|\left(\tilde{\mathbf{P}}^{-1 / 2}-\tilde{\mathbf{P}}_{*}^{-1 / 2}\right) \mathbf{x}\right\|_{2} \leq \epsilon\left\|\tilde{\mathbf{P}}_{*}^{-1 / 2} \mathbf{x}\right\|_{2}
$$

Lemma. For all $\mathbf{x} \in \mathbb{R}^{/ J}$ it holds that

$$
\frac{\gamma_{1}}{1+\epsilon}\langle\tilde{\mathbf{P}} \mathbf{x}, \mathbf{x}\rangle \leq\langle\tilde{\mathbf{A}} \mathbf{x}, \mathbf{x}\rangle \leq \frac{\gamma_{2}}{1-\epsilon}\langle\tilde{\mathbf{P}} \mathbf{x}, \mathbf{x}\rangle .
$$

Summary: Preconditioner via exponential sums

$\tilde{\mathbf{P}}_{*}=\tilde{\mathbf{T}} \otimes \mathbf{I}+\mathbf{I} \otimes \tilde{\mathbf{M}}$

Exponential sum approximation:

$$
\tilde{\mathbf{P}}^{-1 / 2}:=\frac{h}{\sqrt{\pi}} \sum_{k=k_{1}}^{k_{2}} \rho_{k} \exp \left(-\alpha_{k} \tilde{\mathbf{T}}\right) \otimes \exp \left(-\alpha_{k} \tilde{\mathbf{M}}\right)
$$

with error bound (appropriately choosing h, k_{1}, k_{2})

$$
\left\|\left(\tilde{\mathbf{P}}^{-1 / 2}-\tilde{\mathbf{P}}_{*}^{-1 / 2}\right) \mathbf{x}\right\|_{2} \leq \epsilon\left\|\tilde{\mathbf{P}}_{*}^{-1 / 2} \mathbf{x}\right\|_{2}
$$

Theorem. For any \mathbf{w}^{0}, the mapping $\mathbf{w}^{n} \mapsto \mathbf{w}^{n+1}$ defined by

$$
\mathbf{w}^{n+1}=\mathbf{w}^{n}-\tau\left(\tilde{\mathbf{P}}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{P}}^{-1 / 2} \mathbf{w}^{n}-\tilde{\mathbf{f}}\right)
$$

converges for any $\tau \in\left(0,2(1-\epsilon) / \gamma_{2}\right)$ to the solution \mathbf{w} in the 2-norm.

Conclusion: Rank-controlled iteration

Rank controlled iteration

$$
\begin{aligned}
& \left.\tilde{\mathbf{w}}^{n+1}=\mathbf{w}^{n}-\tau\left(\tilde{\mathbf{P}}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{P}}^{-1 / 2}\right) \mathbf{w}^{n}-\tilde{\mathbf{f}}\right) \\
& \mathbf{w}^{n+1}=\mathbf{S}_{\delta_{n}}\left(\tilde{\mathbf{w}}^{n+1}\right),
\end{aligned}
$$

with soft-thresholding \mathbf{S}_{δ}.

Properties:

- Converges linearly (independent of the grid)
- The iterates $\left\{\mathbf{w}^{n}\right\}$ have quasi-optimal ranks, assuming the singular values of the limit \mathbf{w} decay algebraically or exponentially.
- Storage and operation count scales like $O(r(I+J))$ and not $O(I J)$ as for usual implementations.
[Bachmayr \& Schneider (2017)], [Bachmayr \& Bardin \& S (2023)]

