On classical and modern approximations for neutron transport in a unified framework

Matthias Schlottbom

October 26th, 2023

Mathematics for Nuclear Applications Seminar Port-au-rocs, le Croisic October 23–27, 2023

UNIVERSITY OF TWENTE.

Outline

Introduction

The neutron transfer equation (NTE) Modeling and analysis Slab geometry

Some classical semidiscretizations

Truncated Legendre expansion Discrete ordinates method

Generic discretization of the RTE

Variational formulation Galerkin approximation

Examples and implementational details

Legendre expansions Double Legendre expansions Piecewise constant expansions

Motivating examples

Nuclear reactors

Core of reactor CROCUS (EPFL); picture from wikipedia

Motivating examples

Biomedical imaging

PHOTOACOUSTIC BREAST IMAGING

(ILLUSTRATIONS MADE BY SJOUKJE SCHOUSTRA - BMPI GROUP (TWENTE))

Folkman, 1996

PHOTOACOUSTIC EFFECT

- **o** LIGHT ABSORPTION
- **o** TEMPERATURE RISE
- EXPANSION
- PRESSURE RISE
- ULTRASOUND WAVE
- o SIGNALS
- **RECONSTRUCTION**

Further applications

. . .

- radiation therapy: [Larsen '97, Frank et al 2008]
- gas & oil reservoir exploration: [Meng et al 2017]
- LED lighting: [Leung, Lagendijk, Mosk, Vos et al 2014]
- climate simulation: [Thomas et al '99]

Introduction

The neutron transfer equation (NTE) Modeling and analysis Slab geometry

Some classical semidiscretizations

Truncated Legendre expansion Discrete ordinates method

Generic discretization of the RTE

Variational formulation Galerkin approximation

Examples and implementational details

Legendre expansions Double Legendre expansions Piecewise constant expansions

Angular density

The angular density $\phi(t, \mathbf{r}, \mathbf{v})$: $\phi(t, \mathbf{r}, \mathbf{v}) d\mathbf{r} d\mathbf{v}$ is equal to the expected number of neutrons in the volume element $d\mathbf{r}$ about \mathbf{r} , with velocities in $d\mathbf{v}$ about \mathbf{v} at time t.

Energy dependent density: $\rho(t, \mathbf{r}, |\mathbf{v}|) = \int_{\mathbb{S}^2} \phi(t, \mathbf{r}, |\mathbf{v}|\mathbf{s}) \, \mathrm{d}\mathbf{s}$

Total amount of neutrons at r and t: $\int_0^\infty \rho(t, \mathbf{r}, |\mathbf{v}|) |\mathbf{v}|^2 \, d|\mathbf{v}|$

Flux: $j(t, \mathbf{r}, \mathbf{v}) \cdot \mathbf{n} \, dA \, d\mathbf{v} \, dt$ number of neutrons in $d\mathbf{v}$ about \mathbf{v} which cross a small area dA in time dt.

Angular current: $j(t, \mathbf{r}, \mathbf{v}) = \mathbf{v}\phi(t, \mathbf{r}, \mathbf{v})$

Particle model for neutron transport

Angular density $\phi(t, \mathbf{r}, \mathbf{v})$ for $\mathbf{r}, \mathbf{v} \in \mathbb{R}^3$, $\mathbf{v} \neq 0$

Assumptions:

- No interactions between particles
- Stationary and isotropic medium

- Particles travel along straight lines between scattering events (neutral particles)
- Relevant physical processes: transport, (different types of) scattering

Balance law for the change of neutrons

Change dN of number of neutrons in dt with velocity $d\mathbf{v}$ about \mathbf{v} in a volume \mathcal{R} with surface $\partial \mathcal{R}$ about \mathbf{r} :

$$dN = d\mathbf{v} dt \int_{\mathcal{R}} \frac{\partial \phi(t, \mathbf{r}, \mathbf{v})}{\partial t} d\mathbf{r}.$$

Balance relation for dN

- dN = (a) net number flowing out of $\partial \mathcal{R}$ in dt
 - (b) number of neutrons suffering collisions in ${\cal R}$ in dt
 - + (c) number of secondaries of velocity **v** produced in \mathcal{R} in *dt* by collisions
 - + (d) number of neutrons of velocity ${f v}$ produced in ${\cal R}$ in dt by sources.

(a) net number flowing out of S in dt

Apply divergence theorem and definition of angular current:

$$\begin{aligned} \mathbf{a}) &= d\mathbf{v} \, dt \, \int_{\partial \mathcal{R}} j(t, \mathbf{r}, \mathbf{v}) \cdot \mathbf{n} \, d\sigma & \text{(Definition flux)} \\ &= d\mathbf{v} \, dt \, \int_{\mathcal{R}} \operatorname{div}_{\mathbf{r}} (j(t, \mathbf{r}, \mathbf{v})) \, d\mathbf{r} & \text{(Gauss)} \\ &= d\mathbf{v} \, dt \, \int_{\mathcal{R}} \operatorname{div}_{\mathbf{r}} (\mathbf{v} \phi(t, \mathbf{r}, \mathbf{v})) \, d\mathbf{r} & \text{(Definition angular current)} \\ &= d\mathbf{v} \, dt \, \int_{\mathcal{R}} \mathbf{v} \cdot \nabla_{\mathbf{r}} \phi(t, \mathbf{r}, \mathbf{v})) \, d\mathbf{r} & \text{(div}_{\mathbf{r}}(\mathbf{v}) = 0) \end{aligned}$$

(b) number of neutrons suffering collisions in V in dt

$$\bigcirc \overset{l(\mathbf{v})}{\longrightarrow} \bigcirc \overset{\mathbf{v}'}{\longrightarrow} \overset{\mathbf{v}}{\longrightarrow}$$

Frequency of collisions: $I(\mathbf{v})$ denotes the *mean free path* between collisions of neutrons of velocity \mathbf{v} , i.e., on average $|\mathbf{v}|/I$ collisions per second.

Collision rate: $\frac{|\mathbf{v}|}{l(\mathbf{r},\mathbf{v})}\phi(t,\mathbf{r},\mathbf{v}) d\mathbf{r} d\mathbf{v}$ (b)= $\frac{|\mathbf{v}|}{l(\mathbf{r},\mathbf{v})}\phi(t,\mathbf{r},\mathbf{v}) d\mathbf{r} d\mathbf{v} dt$ (b) number of neutrons suffering collisions in V in dt

Frequency of collisions: $I(\mathbf{v})$ denotes the *mean free path* between collisions of neutrons of velocity \mathbf{v} , i.e., on average $|\mathbf{v}|/I$ collisions per second.

Collision rate:
$$\frac{|\mathbf{v}|}{l(\mathbf{r},\mathbf{v})}\phi(t,\mathbf{r},\mathbf{v}) d\mathbf{r} d\mathbf{v}$$

(b)= $\frac{|\mathbf{v}|}{l(\mathbf{r},\mathbf{v})}\phi(t,\mathbf{r},\mathbf{v}) d\mathbf{r} d\mathbf{v} dt$

Macroscopic cross section: $\sigma(\mathbf{r}, \mathbf{v}) = I^{-1}(\mathbf{r}, \mathbf{v})$.

Types of collisions: elastic, inelastic scattering, radiative capture, fission:

$$\sigma = \sigma_s + \sigma_{in} + \sigma_a + \sigma_f.$$

M. Schlottbom (U Twente)

(c) number of secondaries of velocity **v** produced in V in dt by collisions

 $|\mathbf{v}'|\sigma(\mathbf{r},\mathbf{v}' \to \mathbf{v})\phi(t,\mathbf{r},\mathbf{v}') d\mathbf{v}' d\mathbf{r} dt = \text{probable number of neutrons in } d\mathbf{r}$ at \mathbf{r} emitted *into* $d\mathbf{v}$ at \mathbf{v} in time dt about t due to collisions induced by neutrons of velocity in $d\mathbf{v}'$ at \mathbf{v}' .

$$(c) = d\mathbf{r} dt \int_{\mathbb{R}^3} \sigma(\mathbf{r}, \mathbf{v}' \to \mathbf{v}) \phi(t, \mathbf{r}, \mathbf{v}') d\mathbf{v}'.$$

Balance relation: (neglecting delay)

$$\sigma_s(\mathbf{r},\mathbf{v}') + \sigma_{in}(\mathbf{r},\mathbf{v}') +
u \sigma_f(\mathbf{r},\mathbf{v}') = \int_{\mathbb{R}^3} \sigma(\mathbf{r},\mathbf{v}'
ightarrow \mathbf{v}) \, d\mathbf{v}$$

with ν number of neutrons produced due to fission.

M. Schlottbom (U Twente)

The neutron transport equation

$$\frac{1}{|\mathbf{v}|} \frac{\partial \phi(t, \mathbf{r}, \mathbf{v})}{\partial t} + \underbrace{\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(t, \mathbf{r}, \mathbf{v})}_{=(a), \text{ transport}} + \underbrace{\sigma(\mathbf{r}, \mathbf{v}) \phi(t, \mathbf{r}, \mathbf{v})}_{=(b), \text{ out-collision}}$$
$$= \underbrace{\int_{\mathbb{R}^{3}} \sigma(\mathbf{r}, \mathbf{v}' \to \mathbf{v}) \phi(t, \mathbf{r}, \mathbf{v}') \, d\mathbf{v}'}_{c), \text{ secondaries}} + \underbrace{q(t, \mathbf{r}, \mathbf{v})}_{(d), \text{ sources}}$$

for
$$(\mathbf{r}, \mathbf{v}) \in \mathbb{R}^3 imes \mathbb{R}^3$$
 with $\mathbf{s} = \mathbf{v}/|\mathbf{v}| \in \mathbb{S}^2$.

Notation:

 $\phi(t, \mathbf{r}, \mathbf{v})$ angular density

 $\sigma(\mathbf{r},\mathbf{v})\geq$ 0 macroscopic cross section

 $\sigma(\mathbf{r},\mathbf{v}'
ightarrow\mathbf{v})$ scattering cross section

[Davison '57] [Case & Zweifel '67] [Duderstadt & Martin]

The neutron transport equation

$$\frac{1}{|\mathbf{v}|} \frac{\partial \phi(t, \mathbf{r}, \mathbf{v})}{\partial t} + \underbrace{\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(t, \mathbf{r}, \mathbf{v})}_{=(a), \text{ transport}} + \underbrace{\sigma(\mathbf{r}, \mathbf{v}) \phi(t, \mathbf{r}, \mathbf{v})}_{=(b), \text{ out-collision}}$$
$$= \underbrace{\int_{\mathbb{R}^{3}} \sigma(\mathbf{r}, \mathbf{v}' \to \mathbf{v}) \phi(t, \mathbf{r}, \mathbf{v}') \, d\mathbf{v}'}_{c), \text{ secondaries}} + \underbrace{q(t, \mathbf{r}, \mathbf{v})}_{(d), \text{ sources}}$$

for
$$(\mathbf{r}, \mathbf{v}) \in \mathbb{R}^3 imes \mathbb{R}^3$$
 with $\mathbf{s} = \mathbf{v}/|\mathbf{v}| \in \mathbb{S}^2$.

Notation:

 $\phi(t, \mathbf{r}, \mathbf{v})$ angular density

 $\sigma(\mathbf{r},\mathbf{v})\geq$ 0 macroscopic cross section

 $\sigma(\mathbf{r},\mathbf{v}'
ightarrow\mathbf{v})$ scattering cross section

Solution theory: [Dautray & Lions, vol. 6, Chapter XXI]

[Davison '57] [Case & Zweifel '67] [Duderstadt & Martin]

The neutron transport equation

$$\frac{1}{|\mathbf{v}|} \frac{\partial \phi(t, \mathbf{r}, \mathbf{v})}{\partial t} + \underbrace{\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(t, \mathbf{r}, \mathbf{v})}_{=(a), \text{ transport}} + \underbrace{\sigma(\mathbf{r}, \mathbf{v}) \phi(t, \mathbf{r}, \mathbf{v})}_{=(b), \text{ out-collision}}$$
$$= \underbrace{\int_{\mathbb{R}^{3}} \sigma(\mathbf{r}, \mathbf{v}' \to \mathbf{v}) \phi(t, \mathbf{r}, \mathbf{v}') \, d\mathbf{v}'}_{c), \text{ secondaries}} + \underbrace{q(t, \mathbf{r}, \mathbf{v})}_{(d), \text{ sources}}$$

for
$$(\mathbf{r}, \mathbf{v}) \in \mathbb{R}^3 imes \mathbb{R}^3$$
 with $\mathbf{s} = \mathbf{v}/|\mathbf{v}| \in \mathbb{S}^2$.

Observations and challenges

- ▶ No regeneration $\sigma(\mathbf{r}, \mathbf{v}' \rightarrow \mathbf{v}) = 0$: Family of ODEs for $\mathbf{v} \in \mathbb{R}^3$
- Low regularity of solutions (depending on q)
- Case σ(r, v' → v) > 0: Non-trivial coupling. No analytic closed-form solution
- High-dimensional: $\dim(\mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}^3) = 7$.

[Davison '57] [Case & Zweifel '67] [Duderstadt & Martin]

The stationary neutron transport equation

$$\underbrace{\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(\mathbf{r}, \mathbf{v})}_{=(a), \text{ transport}} + \underbrace{\sigma(\mathbf{r}, \mathbf{v}) \phi(\mathbf{r}, \mathbf{v})}_{=(b), \text{ out-collision}} = \underbrace{\int_{V} \sigma(\mathbf{r}, \mathbf{v}' \to \mathbf{v}) \phi(\mathbf{r}, \mathbf{v}') \, d\mathbf{v}'}_{c), \text{ secondaries}} + \underbrace{q(\mathbf{r}, \mathbf{v})}_{(d), \text{ sources}}$$
for $(\mathbf{r}, \mathbf{v}) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ with $\mathbf{s} = \mathbf{v}/|\mathbf{v}| \in \mathbb{S}^{2}$.

Notation:

 $\phi(\mathbf{r}, \mathbf{v})$ angular density

 $\sigma(\mathbf{r},\mathbf{v})\geq$ 0 macroscopic cross section

 $\sigma(\mathbf{r},\mathbf{v}'
ightarrow \mathbf{v})$ scattering cross section

[Davison '57] [Case & Zweifel '67] [Duderstadt & Martin]

The stationary neutron transport equation

$$\underbrace{\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(\mathbf{r}, \mathbf{s})}_{=(a), \text{ transport}} + \underbrace{\sigma(\mathbf{r}) \phi(\mathbf{r}, \mathbf{s})}_{=(b), \text{ out-collision}} = \underbrace{\int_{\mathbb{S}^2} k(\mathbf{r}, \mathbf{s}' \cdot \mathbf{s}) \phi(\mathbf{r}, \mathbf{s}') \, d\mathbf{s}'}_{c), \text{ secondaries}} + \underbrace{q(\mathbf{r}, \mathbf{s})}_{(d), \text{ sources}}$$

For $(\mathbf{r}, \mathbf{s}) \in \mathbb{R}^3 \times \mathbb{S}^2$.

Assumptions:

- One velocity $\mathbf{v} = \mathbf{s} \in \mathbb{S}^2$.
- No fission, nor inelastic scattering, i.e., consider radiative absorption and elastic scattering

$$\sigma(\mathbf{r}) = \sigma_a(\mathbf{r}) + \sigma_s(\mathbf{r})$$

- ► Rotational invariance $\sigma(\mathbf{r}, \mathbf{v}' \rightarrow \mathbf{v}) = \sigma_s(\mathbf{r})k(\mathbf{s}' \cdot \mathbf{s})$
- Often isotropic scattering $k(\mathbf{s}' \cdot \mathbf{s}) = 1/|\mathbb{S}^2|$.

[Davison '57] [Case & Zweifel '67] [Duderstadt & Martin]

Neutron transport on bounded domains

Vacuum boundary conditions

Assumptions

- $\mathcal{R} \subset \mathbb{R}^3$ bounded convex domain
- ▶ $\operatorname{supp}(q) \subset \mathcal{R}$
- $\operatorname{supp}(\sigma_s) \subset \mathcal{R}$

Inflow boundary

$$\Gamma_- = \{ (\boldsymbol{\mathsf{r}}, \boldsymbol{\mathsf{s}}) \in \partial \mathcal{R} \times \mathbb{S}^2 : \boldsymbol{\mathsf{s}} \cdot \boldsymbol{\mathsf{n}}(\boldsymbol{\mathsf{r}}) < 0 \}$$

$$\begin{split} \mathbf{s} \cdot \nabla_{\mathbf{r}} \phi + \sigma \phi &= \sigma_{s} \int_{\mathbb{S}^{2}} k(\mathbf{s} \cdot \mathbf{s}') \phi(\cdot, \mathbf{s}') \, d\mathbf{s}' + q \quad \text{in } \mathcal{R} \times \mathbb{S}' \\ \phi &= \mathbf{0} \qquad \qquad \text{on } \Gamma_{-} \end{split}$$

Remark: Inhomogeneous inflow conditions, periodic boundary conditions, reflection conditions, etc., can be modeled similarly.

M. Schlottbom (U Twente)

Well-posedness of the stationary neutron transport equation

$$\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi + \sigma \phi = \sigma_{\mathbf{s}} \int_{\mathbb{S}^2} k(\mathbf{s} \cdot \mathbf{s}') \phi(\cdot, \mathbf{s}') \, d\mathbf{s}' + q \quad \text{in } \mathcal{R} \times \mathbb{S}^2$$
$$\phi = 0 \qquad \qquad \text{on } \Gamma_-$$

Theorem Let $\sigma_a, \sigma_s \geq 0, q \in L^2(\mathcal{R} \times \mathbb{S}^2)$. Then the NTE has a unique solution $\phi \in L^2(\mathcal{R} \times \mathbb{S}^2)$ with

 $\|\mathbf{s}\cdot\nabla_{\mathbf{r}}\phi\|_{L^2}+\|\phi\|_{L^2}\leq C\|q\|_{L^2}.$

[Case Zweifel '63] [Dautray Lions '93] [Agoshkov '98] [Bal Jollivet 2008] [Egger S 2013]

M. Schlottbom (U Twente)

Well-posedness of the stationary neutron transport equation

$$\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi + \sigma \phi = \sigma_{\mathbf{s}} \int_{\mathbb{S}^2} k(\mathbf{s} \cdot \mathbf{s}') \phi(\cdot, \mathbf{s}') \, d\mathbf{s}' + q \quad \text{in } \mathcal{R} \times \mathbb{S}^2$$
$$\phi = 0 \qquad \qquad \text{on } \Gamma_-$$

Theorem Let $\sigma_a, \sigma_s \ge 0, q \in L^2(\mathcal{R} \times \mathbb{S}^2)$. Then the NTE has a unique solution $\phi \in L^2(\mathcal{R} \times \mathbb{S}^2)$ with

 $\|\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi\|_{L^2} + \|\phi\|_{L^2} \le C \|q\|_{L^2}.$

Proof (idea) Consider the mapping $T: L^2 \to L^2, \phi^n \mapsto \phi^{n+1}$, defined by

$$\mathbf{s} \cdot
abla_{\mathbf{r}} \phi^{n+1} + \sigma \phi^{n+1} = \sigma_s \mathcal{K} \phi^n + q \quad ext{in } \mathcal{R} imes \mathbb{S}^2$$

$$\phi^{n+1} = 0$$
 on Γ_- .

Verify conditions of Banach's fixed-point theorem.

[Case Zweifel '63] [Dautray Lions '93] [Agoshkov '98] [Bal Jollivet 2008] [Egger S 2013]

M. Schlottbom (U Twente)

Introduction

The neutron transfer equation (NTE) Modeling and analysis Slab geometry

Some classical semidiscretizations

Truncated Legendre expansion Discrete ordinates method

Generic discretization of the RTE

Variational formulation Galerkin approximation

Examples and implementational details

Legendre expansions Double Legendre expansions Piecewise constant expansions

Slab geometry

$$\mathbf{r} = (x, y, z) \in \mathbb{R}^2 \times (0, Z)$$
$$\mathbf{s} = (\cos \varphi \sin \theta, \sin \varphi \sin \theta, \cos \theta)$$
$$\mathbf{s} \cdot \mathbf{n}(Z) = \cos(\theta) =: \mu$$
$$\mathbf{s} \cdot \mathbf{n}(0) = -\mu$$

Assumption:

• $q(\mathbf{r}, \mathbf{s}) = q(z, \mu)$ • $\sigma = \sigma(z)$ • $k(\mathbf{s} \cdot \mathbf{s}') = 1/|\mathbb{S}^2|$ • $\phi = \phi(z, \mu)$

$$\implies$$
 $\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi = \mu \partial_z \phi$

NTE in slab geometry

$$\begin{split} \mu \partial_z \phi + \sigma \phi &= \frac{\sigma_s}{2} \int_{-1}^1 \phi(\cdot, \mu') \, \mathrm{d}\mu' + q \quad \text{in} (0, Z) \times (-1, 1) \\ \phi(0, \mu) &= g_0(\mu) & \mu > 0 \\ \phi(Z, \mu) &= g_Z(\mu) & \mu < 0 \end{split}$$

Introduction

The neutron transfer equation (NTE)

Modeling and analysis Slab geometry

Some classical semidiscretizations

Truncated Legendre expansion

Discrete ordinates method

Generic discretization of the RTE

Variational formulation Galerkin approximation

Examples and implementational details

Legendre expansions Double Legendre expansions Piecewise constant expansions

Legendre polynomial expansion

$$\phi(z,\mu) = \sum_{\ell=0}^{\infty} \phi_{\ell}(z) \mathcal{P}_{\ell}(\mu)$$

[Davison '57][Case Zweifel '67] [Modest 2003]

Legendre polynomial expansion

$$\phi(z,\mu) = \sum_{\ell=0}^{\infty} \phi_{\ell}(z) \mathcal{P}_{\ell}(\mu)$$

Recurrence relations

$$(2\ell + 1)\mu P_{\ell} = (\ell + 1)P_{\ell+1} + \ell P_{\ell-1}$$

Neutron transport equation

$$\mu \partial_z \phi + \sigma \phi = \frac{\sigma_s}{2} \int_{-1}^1 \phi(\cdot, \mu') \, \mathrm{d}\mu' + q$$

becomes an infinite coupled system

$$\frac{\ell+1}{2\ell+1}\partial_z\phi_{\ell+1} + \frac{\ell}{2\ell+1}\partial_z\phi_{\ell-1} + \sigma\phi_\ell = \frac{\sigma_s}{2}\phi_0\delta_{0,\ell} + q_\ell.$$

[Davison '57][Case Zweifel '67] [Modest 2003]

Truncated Legendre polynomial expansion

$$\phi(z,\mu) = \sum_{\ell=0}^{\infty} \phi_\ell(z) \mathsf{P}_\ell(\mu) pprox \sum_{\ell=0}^L \phi_\ell(z) \mathsf{P}_\ell(\mu).$$

Recurrence relations

$$(2\ell + 1)\mu P_{\ell} = (\ell + 1)P_{\ell+1} + \ell P_{\ell-1}$$

Neutron transport equation

$$\mu \partial_z \phi + \sigma \phi = \frac{\sigma_s}{2} \int_{-1}^1 \phi(\cdot, \mu') \, \mathrm{d}\mu' + q$$

becomes an infinite coupled system

$$\frac{\ell+1}{2\ell+1}\partial_z\phi_{\ell+1} + \frac{\ell}{2\ell+1}\partial_z\phi_{\ell-1} + \sigma\phi_\ell = \frac{\sigma_s}{2}\phi_0\delta_{0,\ell} + q_\ell.$$

Truncate system, by setting $\phi_{\ell} = 0$ for $\ell > L$.

[Davison '57][Case Zweifel '67] [Modest 2003]

M. Schlottbom (U Twente)

boundary conditions

*P*_L-equations. For
$$0 \le \ell \le L$$
 :

$$\frac{\ell+1}{2\ell+1}\partial_z\phi_{\ell+1} + \frac{\ell}{2\ell+1}\partial_z\phi_{\ell-1} + \sigma\phi_{\ell} = \frac{\sigma_s}{2}\phi_0\delta_{0,\ell} + q_\ell.$$

Truncation condition $\phi_{\ell} = 0$ for all $\ell > L$; and $\phi_{-1} = 0$.

Typical choices of **boundary conditions**, $z_b \in \{0, Z\}$, *L* odd:

$$\int (\phi(z_b, \mu) - g_{z_b}(\mu)) \mu^{\ell} d\mu = 0, \quad \ell = 1, 3, \dots, L$$
 (Marshak)
$$\phi(z_b, \mu_n) = g_{z_b}(\mu_n), \quad n = 1, 2, \dots, (L+1)/2,$$
 (Mark)

 \rightsquigarrow strong coupling of ϕ_{ℓ} .

[Davison '57][Case Zweifel '67] [Modest 2003]

The P_L -approximation

boundary conditions

*P*_L-equations. For
$$0 \le \ell \le L$$
 :

$$\frac{\ell+1}{2\ell+1}\partial_z\phi_{\ell+1} + \frac{\ell}{2\ell+1}\partial_z\phi_{\ell-1} + \sigma\phi_{\ell} = \frac{\sigma_s}{2}\phi_0\delta_{0,\ell} + q_\ell.$$

Truncation condition $\phi_{\ell} = 0$ for all $\ell > L$; and $\phi_{-1} = 0$.

Typical choices of **boundary conditions**, $z_b \in \{0, Z\}$, *L* odd:

$$\int (\phi(z_b, \mu) - g_{z_b}(\mu)) \mu^{\ell} d\mu = 0, \quad \ell = 1, 3, \dots, L$$
 (Marshak)
$$\phi(z_b, \mu_n) = g_{z_b}(\mu_n), \quad n = 1, 2, \dots, (L+1)/2,$$
 (Mark)

 \rightsquigarrow strong coupling of ϕ_{ℓ} .

Which are the correct ones? How to generalize to multi-d?

[Davison '57][Case Zweifel '67] [Modest 2003]

Introduction

The neutron transfer equation (NTE)

Modeling and analysis Slab geometry

Some classical semidiscretizations Truncated Legendre expansion Discrete ordinates method

Generic discretization of the RTE

Variational formulation Galerkin approximation

Examples and implementational details

Legendre expansions Double Legendre expansions Piecewise constant expansions

Gauss-Legendre quadrature ($N \ge 2$ even)

$$\int_{-1}^{1} \phi(z,\mu) \,\mathrm{d}\mu \approx \sum_{i=1}^{N} \omega_i \phi(z,\mu_i).$$

[Case Zweifel '67]

Gauss-Legendre quadrature ($N \ge 2$ even)

$$\int_{-1}^{1} \phi(z,\mu) \,\mathrm{d}\mu \approx \sum_{i=1}^{N} \omega_i \phi(z,\mu_i).$$

Introduce $\phi_n(z) \approx \phi(z, \mu_n)$ and evaluate NTE in μ_n , $n = 1, \dots, N$:

$$\mu_n \partial_z \phi_n + \sigma \phi_n = \frac{\sigma_s}{2} \sum_{i=1}^N \omega_i \phi_i + q_n \quad \text{in } (0, Z)$$

System of *N* ODEs for the *N* functions ϕ_n .

[Case Zweifel '67]

Gauss-Legendre quadrature ($N \ge 2$ even)

$$\int_{-1}^{1} \phi(z,\mu) \,\mathrm{d}\mu \approx \sum_{i=1}^{N} \omega_i \phi(z,\mu_i).$$

Introduce $\phi_n(z) \approx \phi(z, \mu_n)$ and evaluate NTE in μ_n , $n = 1, \dots, N$:

$$\mu_n \partial_z \phi_n + \sigma \phi_n = \frac{\sigma_s}{2} \sum_{i=1}^N \omega_i \phi_i + q_n \quad \text{in } (0, Z)$$

System of *N* ODEs for the *N* functions ϕ_n .

Boundary conditions:

$$\phi_n(0) = g_0(\mu_n) \quad \text{for } \mu_n > 0$$

 $\phi_n(Z) = g_Z(\mu_n) \quad \text{for } \mu_n < 0$

[Case Zweifel '67]

Gauss-Legendre quadrature ($N \ge 2$ even)

$$\int_{-1}^{1} \phi(z,\mu) \,\mathrm{d}\mu \approx \sum_{i=1}^{N} \omega_i \phi(z,\mu_i).$$

Introduce $\phi_n(z) \approx \phi(z, \mu_n)$ and evaluate NTE in μ_n , $n = 1, \dots, N$:

$$\mu_n \partial_z \phi_n + \sigma \phi_n = \frac{\sigma_s}{2} \sum_{i=1}^N \omega_i \phi_i + q_n \quad \text{in } (0, Z)$$

System of *N* ODEs for the *N* functions ϕ_n .

Boundary conditions:

$$\phi_n(0) = g_0(\mu_n) \quad \text{for } \mu_n > 0$$

 $\phi_n(Z) = g_Z(\mu_n) \quad \text{for } \mu_n < 0$

This method is equivalent to the P_{N-1} -approximation (with Mark b.c.).

[Case Zweifel '67]

Discrete ordinates method

Approximate $\phi(z, \mu)$ with discontinuous, piecewise constant functions

$$\phi(z,\mu) \approx \phi_n(z), \quad \mu_{n-1} \leq \mu \leq \mu_n, \ 1 \leq n \leq N.$$

Integrate NTE over (μ_{n-1}, μ_n) :

$$\frac{\mu_n + \mu_{n-1}}{2} \partial_z \phi_n + \sigma \phi_n = \frac{\sigma_s}{2} \sum_{i=1}^N \omega_i \phi_i + q_n.$$

- Partition $-1 = \mu_0 < \mu_1 < \ldots < \mu_N = 1$ arbitrary
- ► System of ODEs for φ_n

[Reed, Hill '73] [Lesaint, Raviart '74] [Kanschat et al 2012, 2014]
P_L method

- global approximation in angle μ
- scattering is diagonalized
- dense coupling due to boundary conditions
- multi-d: spherical harmonics
- boundary conditions for multi-d ?

P_L method

- global approximation in angle μ
- scattering is diagonalized
- dense coupling due to boundary conditions
- multi-d: spherical harmonics
- boundary conditions for multi-d ?

Discrete ordinates method

- transport part is triangular
- boundary conditions are straight-forward
- scattering couples all equations

P_L method

- global approximation in angle μ
- scattering is diagonalized
- dense coupling due to boundary conditions
- multi-d: spherical harmonics
- boundary conditions for multi-d ?

Discrete ordinates method

- transport part is triangular
- boundary conditions are straight-forward
- scattering couples all equations

skipped: Monte-Carlo methods (Metropolis-vNeumann-Ulam '46-'49)

P_L method

- global approximation in angle μ
- scattering is diagonalized
- dense coupling due to boundary conditions
- multi-d: spherical harmonics
- boundary conditions for multi-d ?

Discrete ordinates method

- transport part is triangular
- boundary conditions are straight-forward
- scattering couples all equations

skipped: Monte-Carlo methods (Metropolis-vNeumann-Ulam '46-'49)

Aim: Recover semi-discretizations from one framework

Advantage: Unified analysis, (perhaps) simplified implementation, and

more.

M. Schlottbom (U Twente)

Numerical Methods for Transport

Introduction

The neutron transfer equation (NTE)

Modeling and analysis Slab geometry

Some classical semidiscretizations

Truncated Legendre expansion Discrete ordinates method

Generic discretization of the RTE

Variational formulation

Galerkin approximation

Examples and implementational details

Legendre expansions Double Legendre expansions Piecewise constant expansions

Even-odd splitting

Even-odd parities

$$\phi^{\pm}(z,\mu) = \frac{1}{2}(\phi(z,\mu) \pm \phi(z,-\mu))$$

Observations

•
$$\phi = \phi^+ + \phi^-$$
 is an *L*²-orthogonal splitting

Parity transformation

$$\mu \partial_z \phi^+ ext{ is odd}, \qquad ar \phi(z,\mu) := rac{1}{2} \int_{-1}^1 \phi(z,\mu') \, d\mu' \quad ext{is even}.$$

Projection of the NTE onto even-odd functions:

$$\begin{split} \mu \partial_z \phi^- + \sigma \phi^+ &= \sigma_s \bar{\phi}^+ + q^+ \quad \text{in } (0, Z) \times (-1, 1) \\ \mu \partial_z \phi^+ + \sigma \phi^- &= q^- \qquad \quad \text{in } (0, Z) \times (-1, 1). \end{split}$$

[Vladimirov '61]

Derivation of a variational principle

Multiply

$$\mu \partial_z \phi^- + \sigma \phi^+ = \sigma_s \bar{\phi}^+ + q^+$$

with ψ^+ and integrate over $(0, Z) \times (-1, 1)$:

$$(\mu\partial_z\phi^-,\psi^+)+(\mu\partial_z\phi^+,\psi^-)+(\sigma\phi,\psi)=(\sigma_s\bar{\phi},\psi^+)+(q^+,\psi^+)$$

Derivation of a variational principle

Multiply

$$\mu \partial_z \phi^- + \sigma \phi^+ = \sigma_s \bar{\phi}^+ + q^+$$

with ψ^+ and integrate over $(0, Z) \times (-1, 1)$:

$$(\mu\partial_z\phi^-,\psi^+)+(\mu\partial_z\phi^+,\psi^-)+(\sigma\phi,\psi)=(\sigma_s\bar{\phi},\psi^+)+(q^+,\psi^+)$$

Integration-by-parts:

$$(\mu \partial_z \phi^-, \psi^+) = -(\phi^-, \mu \partial_z \psi^+) + \int_{-1}^1 \mu \ \phi^-(\cdot, \mu) \psi^+(\cdot, \mu) \Big|_0^Z \ \mathrm{d}\mu$$

Derivation of a variational principle

Multiply

$$\mu \partial_z \phi^- + \sigma \phi^+ = \sigma_s \bar{\phi}^+ + q^+$$

with ψ^+ and integrate over $(0, Z) \times (-1, 1)$:

$$(\mu\partial_z\phi^-,\psi^+)+(\mu\partial_z\phi^+,\psi^-)+(\sigma\phi,\psi)=(\sigma_s\bar{\phi},\psi^+)+(q^+,\psi^+)$$

Integration-by-parts:

$$(\mu \partial_z \phi^-, \psi^+) = -(\phi^-, \mu \partial_z \psi^+) + \int_{-1}^1 \mu \ \phi^-(\cdot, \mu) \psi^+(\cdot, \mu) \Big|_0^Z \ \mathrm{d}\mu$$

Key observation: $\mu\mapsto \mu\phi^-(\cdot,\mu)\psi^+(\cdot,\mu)$ is even.

$$\begin{split} \int_{-1}^{1} \mu \phi^{-}(Z,\mu) \psi^{+}(Z,\mu) \, \mathrm{d}\mu &= 2 \int_{-1}^{0} \mu \phi^{-}(Z,\mu) \psi^{+}(Z,\mu) \, \mathrm{d}\mu \\ &= 2 \int_{-1}^{0} \mu (g_{Z}(\mu) - \phi^{+}(Z,\mu)) \psi^{+}(Z,\mu) \, \mathrm{d}\mu \end{split}$$

[Egger S 2012, Palii S 2020]

Summary: Variational principle for the NTE

Find
$$\phi = \phi^+ + \phi^- \in \mathbb{W}^+ \oplus \mathbb{V}^-$$
 such that
 $b(\phi, \psi) = k(\phi, \psi) + \ell(\psi) \quad \forall \psi = \psi^+ + \psi^- \in \mathbb{W}^+ \oplus \mathbb{V}^-$ (1)

where

$$\begin{split} b(\phi,\psi) &= \langle |\mu|\phi^+,\psi^+\rangle_{\Gamma} - (\phi^-,\mu\partial_z\psi^+) + (\mu\partial_z\phi^+,\psi^-) + (\sigma\phi,\psi), \\ k(\phi,\psi) &= (\sigma_s\bar{\phi},\psi), \\ \ell(\psi) &= (q,\psi) + 2\langle |\mu|g,\psi^+\rangle_{\Gamma_-} \\ \mathbb{V} &:= L^2((0,Z)\times(-1,1)) \\ \mathbb{W}^+ &:= \{\psi\in\mathbb{V}^+:\mu\partial_z\psi\in\mathbb{V}\} \end{split}$$

Remarks

- Boundary conditions are incorporated naturally
- Equation (1) is well-posed for $\sigma_a \ge \gamma > 0$ [Palii & S, 2020]
- ▶ For bounded \mathcal{R} , well-posedness holds for $\sigma_a \ge 0$ [Egger & S, 2012].

M. Schlottborn (U Twente)

Numerical Methods for Transport

Introduction

The neutron transfer equation (NTE)

Modeling and analysis Slab geometry

Some classical semidiscretizations

Truncated Legendre expansion Discrete ordinates method

Generic discretization of the RTE

Variational formulation

Galerkin approximation

Examples and implementational details

Legendre expansions Double Legendre expansions Piecewise constant expansions

Galerkin approximation

Let $\mathbb{W}_h^+ \subset \mathbb{W}^+$ and $\mathbb{V}_h^- \subset \mathbb{V}^-$ be finite dimensional spaces.

Galerkin formulation. Find $\phi_h = \phi_h^+ + \phi_h^- \in \mathbb{W}_h^+ \oplus \mathbb{V}_h^-$ such that

$$m{b}(\phi_h,\psi_h)=m{k}(\phi_h,\psi_h)+\ell(\psi_h)$$

for all $\psi_h \in \mathbb{W}_h^+ \oplus \mathbb{V}_h^-$

Theorem. If $\sigma^{-1}\mu\partial_z \mathbb{W}_h^+ \subset \mathbb{V}_h^-$ and $\sigma_a \geq \gamma > 0$, then the Galerkin problem is well-posed and

$$\|\mu\partial_{z}(\phi^{+}-\phi_{h}^{+})\|_{L^{2}}+\|\phi-\phi_{h}\|_{L^{2}}\leq C\inf\|\mu\partial_{z}(\phi^{+}-\psi_{h}^{+})\|_{L^{2}}+\|\phi-\psi_{h}\|_{L^{2}}$$

where the infimum is taken over all $\psi_h \in \mathbb{W}_h^+ \oplus \mathbb{V}_h^-$.

[Egger S (2012)] [Palii S (2020)]

Introduction

The neutron transfer equation (NTE)

Modeling and analysis Slab geometry

Some classical semidiscretizations

Truncated Legendre expansion Discrete ordinates method

Generic discretization of the RTE

Variational formulation Galerkin approximation

Examples and implementational details

Legendre expansions

Double Legendre expansions Piecewise constant expansions

FEM + Legendre expansion: FEM- P_L method

Partition (0, Z) into *J* intervals: $0 = z_0 < z_1 < \ldots < z_J = Z$. Piecewise polynomials on (0, Z)

 $\mathbb{P}_{k}(0, Z) = \{ v : v_{|(z_{j-1}, z_{j})} \text{ is a polynomial of degree } k) \}$ $\mathbb{P}_{k}^{c}(0, Z) = \{ v \in \mathbb{P}_{k}(0, Z) : v \text{ is continuous} \}$ Basis for $\mathbb{P}_{1}^{c} : \varphi_{j} \in \mathbb{P}_{1}^{c}$ satisfying $\varphi_{j}(z_{i}) = \delta_{i,j}$. Basis for $\mathbb{P}_{0} : \chi_{n} \in \mathbb{P}_{0}$ satisfying $\chi_{n}(z) = \delta_{n,m}$ for $z \in (z_{m-1}, z_{m})$. Approximations, for *L* odd and k = 1,

$$\phi_{L,J}^{+}(z,\mu) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \varphi_j(z) P_{2\ell}(\mu),$$

$$\phi_{L,J}^{-}(z,\mu) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=1}^{J} c_{j,\ell}^{-} \chi_j(z) P_{2\ell+1}(\mu).$$

Remark: For *L* odd, σ pcw. constant, the compatibility condition $\sigma^{-1}\mu\partial_z \mathbb{W}_h^+ \subset \mathbb{V}_h^-$ holds.

M. Schlottbom (U Twente)

Numerical Methods for Transport

Towards a linear system

Insert approximations

$$\phi_{L,J}^{+}(z,\mu) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \varphi_{j}(z) P_{2\ell}(\mu),$$

$$\phi_{L,J}^{-}(z,\mu) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=1}^{J} c_{j,\ell}^{-} \chi_{j}(z) P_{2\ell+1}(\mu),$$

into Galerkin problem

$$m{b}(\phi^+_{L,J}+\phi^-_{L,J},\psi)=m{k}(\phi^+_{L,J}+\phi^-_{L,J},\psi)+\ell(\psi)$$

where $\psi = \varphi_i P_{2k}$ or $\psi = \chi_i P_{2k+1}$ ranges over all basis functions. Each basis function ψ yields a row of a linear system

$$Sc = f$$

for the unknown coefficients c.

for the term ($\mu\partial_z\phi^+_{L,J},\psi^-$)

We compute for
$$\psi^- = \chi_n P_{2k+1}$$

 $(\mu \partial_z \phi^+_{L,J}, \psi^-) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^J c^+_{j,\ell} \int_{-1}^1 \int_0^Z \partial_z \varphi_j \mu P_{2\ell} \chi_n P_{2k+1} \, \mathrm{d}z \, \mathrm{d}\mu$

for the term ($\mu\partial_z\phi^+_{L,J},\psi^-$)

We compute for
$$\psi^{-} = \chi_{n}P_{2k+1}$$

 $(\mu\partial_{z}\phi_{L,J}^{+},\psi^{-}) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \int_{-1}^{1} \int_{0}^{Z} \partial_{z}\varphi_{j}\mu P_{2\ell}\chi_{n}P_{2k+1} \,\mathrm{d}z \,\mathrm{d}\mu$
 $= \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \left(\underbrace{\int_{0}^{Z} \partial_{z}\varphi_{j}\chi_{n} \,\mathrm{d}z}_{=\mathbf{D}_{j,n}} \right) \left(\underbrace{\int_{-1}^{1} \mu P_{2\ell}(\mu) P_{2k+1}(\mu) \,\mathrm{d}\mu}_{=\mathbf{P}_{k,\ell}} \right)$

•

for the term ($\mu\partial_z\phi^+_{{\scriptscriptstyle L},{\scriptscriptstyle J}},\psi^-$)

We compute for
$$\psi^{-} = \chi_{n} P_{2k+1}$$

 $(\mu \partial_{z} \phi_{L,J}^{+}, \psi^{-}) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \int_{-1}^{1} \int_{0}^{Z} \partial_{z} \varphi_{j\mu} P_{2\ell} \chi_{n} P_{2k+1} \, \mathrm{d}z \, \mathrm{d}\mu$
 $= \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \left(\underbrace{\int_{0}^{Z} \partial_{z} \varphi_{j} \chi_{n} \, \mathrm{d}z}_{=\mathbf{D}_{j,n}} \right) \left(\underbrace{\int_{-1}^{1} \mu P_{2\ell}(\mu) P_{2k+1}(\mu) \, \mathrm{d}\mu}_{=\mathbf{P}_{k,\ell}} \right).$

Identify $\phi_{L,J}^+$ with its coefficient matrix $\mathbf{C}^+ = (c_{j,\ell}^+)_{j,\ell}$. Then we can write $(\mu \partial_z \phi_{L,J,1}^+, \psi^-) = (\mathbf{D}\mathbf{C}^+ \mathbf{P}^T)_{n,k}.$

for the term ($\mu\partial_z\phi^+_{{\scriptscriptstyle L},{\scriptscriptstyle J}},\psi^-$)

We compute for
$$\psi^{-} = \chi_{n} P_{2k+1}$$

 $(\mu \partial_{z} \phi_{L,J}^{+}, \psi^{-}) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \int_{-1}^{1} \int_{0}^{Z} \partial_{z} \varphi_{j\mu} P_{2\ell} \chi_{n} P_{2k+1} \, \mathrm{d}z \, \mathrm{d}\mu$
 $= \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \left(\underbrace{\int_{0}^{Z} \partial_{z} \varphi_{j} \chi_{n} \, \mathrm{d}z}_{=\mathbf{D}_{j,n}} \right) \left(\underbrace{\int_{-1}^{1} \mu P_{2\ell}(\mu) P_{2k+1}(\mu) \, \mathrm{d}\mu}_{=\mathbf{P}_{k,\ell}} \right).$

Identify $\phi^+_{L,J}$ with its coefficient matrix $\mathbf{C}^+ = (c^+_{j,\ell})_{j,\ell}$. Then we can write $(\mu \partial_z \phi^+_{L,J,1}, \psi^-) = (\mathbf{D}\mathbf{C}^+ \mathbf{P}^T)_{n,k}.$

Furthermore, the matrix $\mathbf{DC}^+\mathbf{P}^T$ can be identified with a vector

$$(P \otimes D)c^+$$
.

the remaining terms

The term
$$(\sigma \phi^+_{L,J}, \psi^+) = \int_{-1}^1 \int_0^Z \sigma(z) \phi^+_{L,J}(z,\mu) \psi^+(z,\mu) \, dz \, d\mu$$
 becomes

$$(\mathbf{I}\otimes\mathbf{M}(\sigma)^+)\mathbf{c}^+$$
 with $(\mathbf{M}(\sigma)^+)_{i,j}=\int_0^Z\sigma\varphi_i\varphi_j\,\mathrm{d}z.$

the remaining terms

The term
$$(\sigma \phi^+_{L,J}, \psi^+) = \int_{-1}^1 \int_0^Z \sigma(z) \phi^+_{L,J}(z,\mu) \psi^+(z,\mu) \, dz \, d\mu$$
 becomes

$$(\mathbf{I}\otimes\mathbf{M}(\sigma)^+)\mathbf{c}^+$$
 with $(\mathbf{M}(\sigma)^+)_{i,j}=\int_0^Z\sigma\varphi_i\varphi_j\,\mathrm{d}z.$

The term $(\sigma_s \bar{\phi}^+_{L,J}, \psi^+)$ becomes $(\text{diag}(1, 0, \dots, 0) \otimes \mathbf{M}(\sigma_s)^+)\mathbf{c}^+$.

the remaining terms

The term
$$(\sigma \phi^+_{L,J}, \psi^+) = \int_{-1}^1 \int_0^Z \sigma(z) \phi^+_{L,J}(z,\mu) \psi^+(z,\mu) \, dz \, d\mu$$
 becomes

$$(\mathbf{I}\otimes\mathbf{M}(\sigma)^+)\mathbf{c}^+$$
 with $(\mathbf{M}(\sigma)^+)_{i,j}=\int_0^Z\sigma\varphi_i\varphi_j\,\mathrm{d}z.$

The term $(\sigma_s \bar{\phi}^+_{L,J}, \psi^+)$ becomes $(\text{diag}(1, 0, \dots, 0) \otimes \mathbf{M}(\sigma_s)^+)\mathbf{c}^+$. The term $\langle |\mu|\phi^+_{L,J}, \psi^+\rangle_{\Gamma_-}$ becomes $(\mathbf{B} \otimes \text{diag}(1, 0, \dots, 0, 1))\mathbf{c}^+$

with
$$(\mathbf{B})_{\ell,k} = \int_{-1}^{1} P_{2\ell}(\mu) P_{2k}(\mu) |\mu| \, d\mu = 2 \int_{0}^{1} P_{2\ell}(\mu) P_{2k}(\mu) \mu \, d\mu.$$

Note that **B** is a dense matrix.

Discrete system for P_L method

Solve

$$\begin{pmatrix} \textbf{R} + \textbf{A}^+ & -\textbf{P}^{\mathsf{T}} \otimes \textbf{D}^{\mathsf{T}} \\ \textbf{P} \otimes \textbf{D} & \textbf{A}^- \end{pmatrix} \begin{pmatrix} \textbf{c}^+ \\ \textbf{c}^- \end{pmatrix} = \begin{pmatrix} \textbf{q}^+ \\ \textbf{q}^- \end{pmatrix}$$

with

$$\begin{split} \mathbf{R} &= \mathbf{B} \otimes \operatorname{diag}(1,0,\ldots,0,1), \quad \text{'boundary' matrix} \\ \mathbf{A}^+ &= \mathbf{I} \otimes \mathbf{M}(\sigma)^+ \otimes -\operatorname{diag}(1,0,\ldots,0) \otimes \mathbf{M}(\sigma_s)^+, \quad \text{'attenuation' matrix} \\ \mathbf{A}^- &= \mathbf{I} \otimes \mathbf{M}(\sigma)^-, \quad \text{'attenuation' matrix} \end{split}$$

Take away. Use Kronecker structure!

- Assembling matrices for spatial and angular parts separately, tremendously simplifies the implementation!
- Storing the factors instead of the Kronecker product reduces memory requirements!

Notes on solving the discrete system

The discrete system

$$\begin{pmatrix} \mathbf{R} + \mathbf{A}^+ & -\mathbf{P}^{\mathsf{T}} \otimes \mathbf{D}^{\mathsf{T}} \\ \mathbf{P} \otimes \mathbf{D} & \mathbf{A}^- \end{pmatrix} \begin{pmatrix} \mathbf{c}^+ \\ \mathbf{c}^- \end{pmatrix} = \begin{pmatrix} \mathbf{q}^+ \\ \mathbf{q}^- \end{pmatrix}$$

is equivalent to

$$egin{aligned} (\mathbf{R}+\mathbf{A}^+)\mathbf{c}^+ &- (\mathbf{P}\otimes\mathbf{D})^T\mathbf{c}^- = \mathbf{q}^+ \ & (\mathbf{P}\otimes\mathbf{D})\mathbf{c}^+ + \mathbf{A}^-\mathbf{c}^- = \mathbf{q}^-. \end{aligned}$$

Observation: $\mathbf{A}^- = \mathbf{I} \otimes \mathbf{M}(\sigma)^-$ is a diagonal matrix. Setting $\mathbf{C} = (\mathbf{M}(\sigma)^-)^{-1}$, elimination of \mathbf{c}^- yields the Schur complement:

$$\left(\mathbf{R} + \mathbf{A}^{+} + \left(\mathbf{P}^{\mathsf{T}} \mathbf{P} \otimes \mathbf{D}^{\mathsf{T}} \mathbf{C} \mathbf{D}\right)\right) \mathbf{c}^{+} = \mathbf{q}^{+} + \left(\mathbf{P} \otimes \mathbf{C} \mathbf{D}\right)^{\mathsf{T}} \mathbf{q}^{-}.$$

Once \mathbf{c}^+ is obtained, we can solve for \mathbf{c}^- .

Properties of the Schur complement

$$\left(\mathbf{R} + \mathbf{A}^{+} + \left(\mathbf{P}^{\mathsf{T}}\mathbf{P}\otimes\mathbf{D}^{\mathsf{T}}\mathbf{C}\mathbf{D}\right)\right)\mathbf{c}^{+} = \mathbf{q}^{+} + \left(\mathbf{P}\otimes\mathbf{C}\mathbf{D}\right)^{\mathsf{T}}\mathbf{q}^{-}.$$

- symmetric, positive definite
- ▶ sparse matrix (except for **B** in $\mathbf{R} = \mathbf{B} \otimes \text{diag}(1, 0, \dots, 0, 1)$)
- system size is about halved (compared to the full system for (c⁺, c⁻)).

Numerical example for P_L -method

Manufactured solution

$$\phi(z,\mu) = |\mu|e^{-\mu}e^{-z(1-z)}$$

Parameters

$$\sigma_a = 0.01, \quad \sigma_s = 2 + \sin(\pi z)/2, \quad z \in (0, 1)$$

Results

P_L with $J = 16384$			P_L with $L = 127$		
L	$\ \phi-\phi_h\ _{L^2}$	rate	J	$\ \phi-\phi_h\ _{L^2}$	rate
1	4.27e-01		2	5.91e-02	
3	4.51e-02	3.24	4	2.26e-02	1.39
7	1.94e-02	1.22	8	1.00e-02	1.17
15	6.56e-03	1.56	16	4.84e-03	1.05
31	2.25e-03	1.54	32	2.40e-03	1.01
63	7.84e-04	1.52	64	1.22e-03	0.98
127	2.74e-04	1.51	128	6.55e-04	0.90

Introduction

The neutron transfer equation (NTE)

Modeling and analysis Slab geometry

Some classical semidiscretizations

Truncated Legendre expansion Discrete ordinates method

Generic discretization of the RTE

Variational formulation Galerkin approximation

Examples and implementational details

Legendre expansions

Double Legendre expansions

Piecewise constant expansions

Double Legendre expansion

dP_L method

Treatment of *z*-variable as before. Angular basis functions:

$$egin{aligned} & Q_\ell^+(\mu) = P_\ell(2|\mu|-1) \ & Q_\ell^-(\mu) = \mathrm{sign}(\mu) P_\ell(2|\mu|-1) \ & ext{for 0} \leq \ell \leq L. \end{aligned}$$

Approximations

$$\phi_{L,J}^{+}(z,\mu) = \sum_{\ell=0}^{L} \sum_{j=0}^{J} c_{j,\ell}^{+} \varphi_{j}(z) Q_{\ell}^{+}(\mu),$$

$$\phi_{L,J}^{-}(z,\mu) = \sum_{\ell=0}^{L+1} \sum_{j=1}^{J} c_{j,\ell}^{-} \chi_{j}(z) Q_{\ell}^{-}(\mu).$$

, ,

Remark: For σ pcw. constant, the compatibility condition $\sigma^{-1}\mu\partial_z \mathbb{W}_h^+ \subset \mathbb{V}_h^-$ holds.

M. Schlottborn (U Twente)

Numerical Methods for Transport

Towards a linear system

dP_L method

Insert approximations

$$\phi^+_{L,J}(z,\mu) = \sum_{\ell=0}^{L} \sum_{j=0}^{J} c^+_{j,\ell} \varphi_j(z) Q^+_\ell(\mu),$$

 $\phi^-_{L,J}(z,\mu) = \sum_{\ell=0}^{L+1} \sum_{j=1}^{J} c^-_{j,\ell} \chi_j(z) Q^-_\ell(\mu),$

into Galerkin problem

$$b(\phi^+_{L,J} + \mathit{I}^-_{L,J},\psi) = k(\phi^+_{L,J} + \mathit{I}^-_{L,J},\psi) + \ell(\psi)$$

where $\psi = \varphi_i Q_k^+$ or $\psi = \chi_i Q_k^-$ ranges over all basis functions. Each basis function ψ yields a row of a linear system

$$\mathbf{Sc} = \mathbf{f}$$

for the unknown coefficients c.

for the term ($\mu\partial_{z}\phi^{+}_{{\scriptscriptstyle L},{\scriptscriptstyle J}},\psi^{-}$) in $d\!P_{{\scriptscriptstyle L}}$ method

We compute for
$$\psi^- = \chi_n Q_k^-$$

 $(\mu \partial_z \phi_{L,J}^+, \psi^-) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^J c_{j,\ell}^+ \int_0^Z \partial_z \varphi_j \chi_n \, dz$

$$\underbrace{\int_{-1}^{1} \mu Q_{\ell}^{+} Q_{k}^{-} d\mu}$$

for the term ($\mu\partial_{z}\phi^{+}_{{\scriptscriptstyle L},{\scriptscriptstyle J}},\psi^{-}$) in $d\!P_{{\scriptscriptstyle L}}$ method

We compute for
$$\psi^- = \chi_n Q_k^-$$

 $(\mu \partial_z \phi_{L,J}^+, \psi^-) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^J c_{j,\ell}^+ \int_0^Z \partial_z \varphi_j \chi_n \, dz \underbrace{\int_{-1}^1 \mu Q_\ell^+ Q_k^- d\mu}_{=\int_{-1}^1 |\mu| P_\ell(2|\mu|-1) P_k(2|\mu|-1) d\mu}$

for the term ($\mu\partial_{z}\phi^{+}_{{\scriptscriptstyle L},{\scriptscriptstyle J}},\psi^{-}$) in $d\!P_{{\scriptscriptstyle L}}$ method

We compute for
$$\psi^{-} = \chi_{n} Q_{k}^{-}$$

 $(\mu \partial_{z} \phi_{L,J}^{+}, \psi^{-}) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \int_{0}^{Z} \partial_{z} \varphi_{j} \chi_{n} dz \underbrace{\int_{-1}^{1} \mu Q_{\ell}^{+} Q_{k}^{-} d\mu}_{=\int_{-1}^{1} |\mu| P_{\ell}(2|\mu|-1) P_{k}(2|\mu|-1) d\mu}$
 $= \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \left(\underbrace{\int_{0}^{Z} \partial_{z} \varphi_{j} \chi_{n} dz}_{=\mathbf{D}_{j,n}} \right) \left(\underbrace{\int_{-1}^{1} \frac{\mu+1}{2} P_{\ell}(\mu) P_{k}(\mu) d\mu}_{=\mathbf{P}_{k,\ell}} \right).$

for the term $(\mu \partial_z \phi^+_{L,J}, \psi^-)$ in dP_L method

We compute for
$$\psi^{-} = \chi_{n} Q_{k}^{-}$$

 $(\mu \partial_{z} \phi_{L,J}^{+}, \psi^{-}) = \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \int_{0}^{Z} \partial_{z} \varphi_{j} \chi_{n} dz \underbrace{\int_{-1}^{1} \mu Q_{\ell}^{+} Q_{k}^{-} d\mu}_{=\int_{-1}^{1} |\mu| P_{\ell}(2|\mu|-1) P_{k}(2|\mu|-1) d\mu}$
 $= \sum_{\ell=0}^{(L-1)/2} \sum_{j=0}^{J} c_{j,\ell}^{+} \left(\underbrace{\int_{0}^{Z} \partial_{z} \varphi_{j} \chi_{n} dz}_{=\mathbf{D}_{j,n}} \right) \left(\underbrace{\int_{-1}^{1} \frac{\mu+1}{2} P_{\ell}(\mu) P_{k}(\mu) d\mu}_{=\mathbf{P}_{k,\ell}} \right).$

Identify $\phi_{L,J}^+$ with its coefficient matrix $\mathbf{C}^+ = (c_{j,\ell}^+)_{j,\ell}$. Then we can write $(\mu \partial_z \phi_{L,J,1}^+, \psi^-) = (\mathbf{D}\mathbf{C}^+ \mathbf{P}^T)_{n,k}.$

Furthermore, the matrix $\mathbf{DC}^+\mathbf{P}^T$ can be identified with a vector

 $(\mathbf{P}\otimes\mathbf{D})\mathbf{c}^+.$

dP_L method

The term
$$(\sigma\phi,\psi) = \int_{-1}^{1} \int_{0}^{Z} \sigma(z)\phi(z,\mu)\psi(z,\mu) dz d\mu$$
 becomes
 $(\mathbf{M}(\sigma)^{+} \otimes \mathbf{I})\mathbf{c}^{+}$ with $(\mathbf{M}(\sigma)^{+})_{i,j} = \int_{0}^{Z} \sigma\varphi_{i}\varphi_{j} dz.$

The term $(\sigma_{s}ar{\phi},\psi)$ becomes

$$(\operatorname{diag}(1,0,\ldots,0)\otimes \mathbf{M}(\sigma_s)^+)\mathbf{c}^+$$

The term $\langle |\mu|\phi^+,\psi^+\rangle_{\Gamma_-}$ becomes

$$(\mathbf{B} \otimes \text{diag}(1, 0, \dots, 0, 1))\mathbf{c}^+$$
 with $(\mathbf{B})_{\ell,k} = \int_{-1}^{1} P_{\ell}(\mu) P_k(\mu) \frac{\mu + 1}{2} d\mu$

Remark: B is a sparse matrix.

Discrete system for dP_L method

Solve

$$\begin{pmatrix} \mathbf{R} + \mathbf{A}^+ & -\mathbf{D}^{\mathsf{T}} \otimes \mathbf{P}^{\mathsf{T}} \\ \mathbf{D} \otimes \mathbf{P} & \mathbf{A}^- \end{pmatrix} \begin{pmatrix} \mathbf{c}^+ \\ \mathbf{c}^- \end{pmatrix} = \begin{pmatrix} \mathbf{q}^+ \\ \mathbf{q}^- \end{pmatrix}$$

with

$$\begin{split} \mathbf{R} &= \mathbf{B} \otimes \operatorname{diag}(1,0,\ldots,0,1), \quad \text{'boundary' matrix} \\ \mathbf{A}^+ &= \mathbf{I} \otimes \mathbf{M}(\sigma)^+ - \operatorname{diag}(1,0,\ldots,0) \otimes \mathbf{M}(\sigma_s)^+, \quad \text{'attenuation' matrix} \\ \mathbf{A}^- &= \mathbf{I} \otimes \mathbf{M}(\sigma)^-, \quad \text{'attenuation' matrix} \end{split}$$

All matrices are sparse for the dP_L -method and isotropic scattering.

Take away. Use Kronecker structure!

- Assembling matrices for spatial and angular parts separately, tremendously simplifies the implementation!
- Storing the factors instead of the Kronecker product reduces memory requirements!

Numerical example for *dP_L*-method

Manufactured solution

$$\phi(z,\mu) = |\mu|e^{-\mu}e^{-z(1-z)}$$

Parameters

$$\sigma_a = 0.01, \quad \mu_s = 2 + \sin(\pi z)/2, \quad z \in (0, 1)$$

Results

dP_L with $J = 16384$		dP_L with $L = 7$			
L	$\ \phi-\phi_h\ _{L^2}$	J	$\ \phi-\phi_h\ _{L^2}$	rate	
1	1.05e-01	256	2.97e-04	1.00	
2	1.29e-02	512	1.49e-04	1.00	
3	1.40e-03	1024	7.44e-05	1.00	
4	7.44e-05	2048	3.72e-05	1.00	
5	7.54e-06	4096	1.86e-05	1.00	
6	4.65e-06	8192	9.30e-06	1.00	
7	4.65e-06	16384	4.65e-06	1.00	
Introduction

The neutron transfer equation (NTE)

Modeling and analysis Slab geometry

Some classical semidiscretizations

Truncated Legendre expansion Discrete ordinates method

Generic discretization of the RTE

Variational formulation Galerkin approximation

Examples and implementational details

Legendre expansions Double Legendre expansions

Piecewise constant expansions

M. Schlottbom (U Twente)

Piecewise constant expansions: dG method

Treatment of *z*-variable as before.

Partition (-1, 1): $-1 = \mu_{-N} < ... < \mu_N = 1$, such that $\mu_{-n} = -\mu_n$.

Basis for piecewise constants in angle $\iota_k \in \mathbb{P}_0$ satisfying $\iota_n(\mu) = \delta_{n,m}$ for $\mu \in (\mu_{m-1}, \mu_m)$.

Angular basis functions for $1 \le n \le N$

$$egin{aligned} & \mathcal{Q}_n^+(\mu) = \iota_n(|\mu|) \ & \mathcal{Q}_{n,\ell}^-(\mu) = \mathrm{sign}(\mu)\iota_n(|\mu|)\mathcal{P}_\ell(2(|\mu|-\mu_{n+1/2})) ext{ for } \ell = 0,1. \end{aligned}$$

Approximations

$$\phi^+_{N,J}(z,\mu) = \sum_{n=1}^N \sum_{j=0}^J c^+_{j,n} \varphi_j(z) Q^+_n(\mu),$$

 $\phi^-_{N,J}(z,\mu) = \sum_{n=1}^N \sum_{\ell=0}^1 \sum_{j=1}^J c^-_{j,n,\ell} \chi_j(z) Q^-_{n,\ell}(\mu).$

Remark: For σ pcw. constant, the compatibility condition $\sigma^{-1}\mu\partial_z \mathbb{W}_h^+ \subset \mathbb{V}_h^-$ holds.

M. Schlottbom (U Twente)

Numerical Methods for Transport

Discrete system for *dG* method

Solve

$$\begin{pmatrix} \mathbf{R} + \mathbf{A}^+ & -\mathbf{P}^{\mathsf{T}} \otimes \mathbf{D}^{\mathsf{T}} \\ \mathbf{P} \otimes \mathbf{D} & \mathbf{A}^- \end{pmatrix} \begin{pmatrix} \mathbf{c}^+ \\ \mathbf{c}^- \end{pmatrix} = \begin{pmatrix} \mathbf{q}^+ \\ \mathbf{q}^- \end{pmatrix}$$

with

$$\begin{split} \mathbf{R} &= \mathbf{B} \otimes \operatorname{diag}(1, 0, \dots, 0, 1), \quad \text{'boundary' matrix} \\ \mathbf{A}^+ &= \mathbf{N} \otimes \mathbf{M}(\sigma)^+ - \mathbf{K} \otimes \mathbf{M}(\sigma_s)^+, \quad \text{'attenuation' matrix} \\ \mathbf{A}^- &= \mathbf{N} \otimes \mathbf{M}(\sigma)^-, \quad \text{'attenuation' matrix} \end{split}$$

All matrices are sparse for the *dG*-method except the scattering part K.

Take away. Use Kronecker structure!

- Assembling matrices for spatial and angular parts separately, tremendously simplifies the implementation!
- Storing the factors instead of the Kronecker product reduces memory requirements!

For effective treatment of dense scattering part see [Dölz Palii S (2022)].

Numerical example for dG-method

Manufactured solution

$$\phi(z,\mu) = |\mu|e^{-\mu}e^{-z(1-z)}$$

Parameters

$$\sigma_a = 0.01, \quad \sigma_s = 2 + \sin(\pi z)/2, \quad z \in (0, 1)$$

Results

dG with $J = 16384$			dG with $N = 128$		
N	$\ \phi-\phi_h\ _{L^2}$	rate	J	$\ \phi-\phi_h\ _{L^2}$	rate
2	4.23e-01		2	5.92e-02	
4	1.42e-01	1.57	4	2.28e-02	1.37
8	6.11e-02	1.22	8	1.06e-02	1.11
16	2.85e-02	1.10	16	5.89e-03	0.85
32	1.38e-02	1.05	32	4.13e-03	0.51
64	6.79e-03	1.02	64	3.57e-03	0.21
128	3.37e-03	1.01	128	3.42e-03	0.06

M. Schlottbom (U Twente)

Take aways

Take away 1. Many classical approximations of radiative transfer (P_L , dP_L , discrete ordinates) can be formulated, analyzed and implemented in one framework.

Take away 2. Use Kronecker structure!

- Assembling matrices for spatial and angular parts separately, tremendously simplifies the implementation!
- Storing the factors instead of the Kronecker product reduces memory requirements!

Generalizations to 3D

P_L-method

- use spherical harmonics instead of Legendre polynomials.
- Transport and attenuation matrices sparse and Kronecker structure.
- Scattering matrix diagonal; for general scattering kernels $k(\mathbf{s} \cdot \mathbf{s}')$.
- but the boundary matrix coupling becomes more expensive (also no Kronecker product structure); cf. [Egger & S 2019] for a remedy using PMLs.

dP_L -method

has no direct counterpart in general.

DG-method

- use pcw. constant functions on \mathbb{S}^2 .
- Transport and boundary matrix are sparse and Kronecker structure.
- Scattering matrix is dense, but compression possible [Dahmen et al 2020, Dölz et al 2022].

Structure allows to assemble and apply matrices efficiently.

M. Schlottbom (U Twente)