On classical and modern approximations for neutron transport in

 a unified frameworkMatthias Schlottbom

October 26th, 2023
Mathematics for Nuclear Applications Seminar
Port-au-rocs, le Croisic October 23-27, 2023

UNIVERSITY OF TWENTE.

Outline

Introduction

The neutron transfer equation (NTE)
Modeling and analysis
Slab geometry
Some classical semidiscretizations
Truncated Legendre expansion
Discrete ordinates method
Generic discretization of the RTE
Variational formulation
Galerkin approximation
Examples and implementational details
Legendre expansions
Double Legendre expansions
Piecewise constant expansions

Motivating examples

Nuclear reactors

Core of reactor CROCUS (EPFL); picture from wikipedia

Motivating examples

Biomedical imaging

PHOTOACOUSTIC BREAST IMAGING

(ILLUSTRATIONS MADE BY SJOUKJE SCHOUSTRA - BMPI GROUP (TWENTE))

PHOTOACOUSTIC EFFECT

- LIGHT ABSORPTION
- TEMPERATURE RISE
- EXPANSION
- PRESSURE RISE
- ULTRASOUND WAVE
- SIGNALS
- RECONSTRUCTION

Further applications

- radiation therapy: [Larsen '97, Frank et al 2008]
- gas \& oil reservoir exploration: [Meng et al 2017]
- LED lighting: [Leung, Lagendijk, Mosk, Vos et al 2014]
- climate simulation: [Thomas et al '99]
- ...

Introduction
The neutron transfer equation (NTE)
Modeling and analysis
Slab geometry
Some classical semidiscretizations
Truncated Legendre expansion
Discrete ordinates method
Generic discretization of the RTE
Variational formulation
Galerkin approximation
Examples and implementational details
Legendre expansions
Double Legendre expansions
Piecewise constant expansions

Angular density

The angular density $\phi(t, \mathbf{r}, \mathbf{v}): \phi(t, \mathbf{r}, \mathbf{v}) d \mathbf{r} d \mathbf{v}$ is equal to the expected number of neutrons in the volume element $d \mathbf{r}$ about \mathbf{r}, with velocities in $d \mathbf{v}$ about \mathbf{v} at time t.

Energy dependent density: $\rho(t, \mathbf{r},|\mathbf{v}|)=\int_{\mathbb{S}^{2}} \phi(t, \mathbf{r},|\mathbf{v}| \mathbf{s}) \mathrm{d} \mathbf{s}$
Total amount of neutrons at \mathbf{r} and $t: \int_{0}^{\infty} \rho(t, \mathbf{r},|\mathbf{v}|)|\mathbf{v}|^{2} \mathrm{~d}|\mathbf{v}|$
Flux: $j(t, \mathbf{r}, \mathbf{v}) \cdot \mathbf{n} d A d \mathbf{v} d t$ number of neutrons in $d \mathbf{v}$ about \mathbf{v} which cross a small area $d A$ in time $d t$.

Angular current: $j(t, \mathbf{r}, \mathbf{v})=\mathbf{v} \phi(t, \mathbf{r}, \mathbf{v})$

Particle model for neutron transport

Angular density $\phi(t, \mathbf{r}, \mathbf{v})$ for $\mathbf{r}, \mathbf{v} \in \mathbb{R}^{3}, \mathbf{v} \neq 0$

Assumptions:

- No interactions between particles
- Stationary and isotropic medium

- Particles travel along straight lines between scattering events (neutral particles)
- Relevant physical processes: transport, (different types of) scattering

Balance law for the change of neutrons

Change $d N$ of number of neutrons in $d t$ with velocity $d \mathbf{v}$ about \mathbf{v} in a volume \mathcal{R} with surface $\partial \mathcal{R}$ about \mathbf{r} :

$$
d N=d \mathbf{v} d t \int_{\mathcal{R}} \frac{\partial \phi(t, \mathbf{r}, \mathbf{v})}{\partial t} d \mathbf{r}
$$

Balance relation for $d N$

$d N=-$ (a) net number flowing out of $\partial \mathcal{R}$ in $d t$

- (b) number of neutrons suffering collisions in \mathcal{R} in $d t$
+ (c) number of secondaries of velocity \mathbf{v} produced in \mathcal{R} in dt by collisions
+ (d) number of neutrons of velocity \mathbf{v} produced in \mathcal{R} in $d t$ by sources.

(a) net number flowing out of S in $d t$

Apply divergence theorem and definition of angular current:

$$
\begin{align*}
(\mathrm{a}) & =d \mathbf{v} d t \int_{\partial \mathcal{R}} j(t, \mathbf{r}, \mathbf{v}) \cdot \mathbf{n} d \sigma \\
& =d \mathbf{v} d t \int_{\mathcal{R}} \operatorname{div}_{\mathbf{r}}(j(t, \mathbf{r}, \mathbf{v})) d \mathbf{r} \tag{Gauss}\\
& =d \mathbf{v} d t \int_{\mathcal{R}} \operatorname{div}_{\mathbf{r}}(\mathbf{v} \phi(t, \mathbf{r}, \mathbf{v})) d \mathbf{r} \\
& \left.=d \mathbf{v} d t \int_{\mathcal{R}} \mathbf{v} \cdot \nabla_{\mathbf{r}} \phi(t, \mathbf{r}, \mathbf{v})\right) d \mathbf{r}
\end{align*}
$$

(Definition flux)
(Definition angular current)

$$
\left(\operatorname{div}_{\mathbf{r}}(\mathbf{v})=0\right)
$$

(b) number of neutrons suffering collisions in V in $d t$

Frequency of collisions: $I(\mathbf{v})$ denotes the mean free path between collisions of neutrons of velocity \mathbf{v}, i.e., on average $|\mathbf{v}| / /$ collisions per second.

Collision rate: $\frac{|\mathbf{v}|}{l(\mathbf{r}, \mathbf{v})} \phi(t, \mathbf{r}, \mathbf{v}) d \mathbf{r} d \mathbf{v}$
$(\mathbf{b})=\frac{|\mathbf{v}|}{\|(\mathbf{r}, \mathbf{v})} \phi(t, \mathbf{r}, \mathbf{v}) d \mathbf{r} d \mathbf{v} d t$

(b) number of neutrons suffering collisions in V in $d t$

Frequency of collisions: $I(\mathbf{v})$ denotes the mean free path between collisions of neutrons of velocity \mathbf{v}, i.e., on average $|\mathbf{v}| / /$ collisions per second.

Collision rate: $\frac{|\mathbf{v}|}{l(\mathbf{r}, \mathbf{v})} \phi(t, \mathbf{r}, \mathbf{v}) d \mathbf{r} d \mathbf{v}$
$(\mathbf{b})=\frac{|\mathbf{v}|}{\mid(\mathbf{r}, \mathbf{v} \mathbf{v}} \phi(t, \mathbf{r}, \mathbf{v}) d \mathbf{r} d \mathbf{v} d t$
Macroscopic cross section: $\sigma(\mathbf{r}, \mathbf{v})=I^{-1}(\mathbf{r}, \mathbf{v})$.
Types of collisions: elastic, inelastic scattering, radiative capture, fission:

$$
\sigma=\sigma_{s}+\sigma_{i n}+\sigma_{a}+\sigma_{f}
$$

(c) number of secondaries of velocity \mathbf{v} produced in V in $d t$ by

 collisions
$\left|\mathbf{v}^{\prime}\right| \sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right) \phi\left(t, \mathbf{r}, \mathbf{v}^{\prime}\right) d \mathbf{v}^{\prime} d \mathbf{r} d t=$ probable number of neutrons in $d \mathbf{r}$ at \mathbf{r} emitted into $d \mathbf{v}$ at \mathbf{v} in time $d t$ about t due to collisions induced by neutrons of velocity in $d \mathbf{v}^{\prime}$ at \mathbf{v}^{\prime}.

$$
(c)=d \mathbf{r} d t \int_{\mathbb{R}^{3}} \sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right) \phi\left(t, \mathbf{r}, \mathbf{v}^{\prime}\right) d \mathbf{v}^{\prime} .
$$

Balance relation: (neglecting delay)

$$
\sigma_{s}\left(\mathbf{r}, \mathbf{v}^{\prime}\right)+\sigma_{\text {in }}\left(\mathbf{r}, \mathbf{v}^{\prime}\right)+\nu \sigma_{f}\left(\mathbf{r}, \mathbf{v}^{\prime}\right)=\int_{\mathbb{R}^{3}} \sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right) d \mathbf{v}
$$

with ν number of neutrons produced due to fission.

The neutron transport equation

$$
\begin{array}{r}
\frac{1}{|\mathbf{v}|} \frac{\partial \phi(t, \mathbf{r}, \mathbf{v})}{\partial t}+\underbrace{\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(t, \mathbf{r}, \mathbf{v})}_{=(\mathrm{a}), \text { transport }}+\underbrace{\sigma(\mathbf{r}, \mathbf{v}) \phi(t, \mathbf{r}, \mathbf{v})}_{=(\mathrm{b}), \text { out-collision }} \\
=\underbrace{\int_{\mathbb{R}^{3}} \sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right) \phi\left(t, \mathbf{r}, \mathbf{v}^{\prime}\right) d \mathbf{v}^{\prime}}_{\text {c), secondaries }}+\underbrace{q(t, \mathbf{r}, \mathbf{v})}_{\text {(d), sources }}
\end{array}
$$

for $(\mathbf{r}, \mathbf{v}) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ with $\mathbf{s}=\mathbf{v} /|\mathbf{v}| \in \mathbb{S}^{2}$.

Notation:

$\phi(t, \mathbf{r}, \mathbf{v})$ angular density
$\sigma(\mathbf{r}, \mathbf{v}) \geq 0$ macroscopic cross section
$\sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right)$ scattering cross section

The neutron transport equation

$$
\begin{array}{r}
\frac{1}{|\mathbf{v}|} \frac{\partial \phi(t, \mathbf{r}, \mathbf{v})}{\partial t}+\underbrace{\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(t, \mathbf{r}, \mathbf{v})}_{=(\mathrm{a}), \text { transport }}+\underbrace{\sigma(\mathbf{r}, \mathbf{v}) \phi(t, \mathbf{r}, \mathbf{v})}_{=(\mathrm{b}), \text { out-collision }} \\
=\underbrace{\int_{\mathbb{R}^{3}} \sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right) \phi\left(t, \mathbf{r}, \mathbf{v}^{\prime}\right) d \mathbf{v}^{\prime}}_{\text {c), secondaries }}+\underbrace{q(t, \mathbf{r}, \mathbf{v})}_{\text {(d), sources }}
\end{array}
$$

for $(\mathbf{r}, \mathbf{v}) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ with $\mathbf{s}=\mathbf{v} /|\mathbf{v}| \in \mathbb{S}^{2}$.

Notation:

$\phi(t, \mathbf{r}, \mathbf{v})$ angular density
$\sigma(\mathbf{r}, \mathbf{v}) \geq 0$ macroscopic cross section
$\sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right)$ scattering cross section
Solution theory: [Dautray \& Lions, vol. 6, Chapter XXI]
[Davison '57] [Case \& Zweifel '67] [Duderstadt \& Martin]

The neutron transport equation

$$
\begin{array}{r}
\frac{1}{|\mathbf{v}|} \frac{\partial \phi(t, \mathbf{r}, \mathbf{v})}{\partial t}+\underbrace{\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(t, \mathbf{r}, \mathbf{v})}_{=(\mathrm{a}), \text { transport }}+\underbrace{\sigma(\mathbf{r}, \mathbf{v}) \phi(t, \mathbf{r}, \mathbf{v})}_{=(\mathrm{b}), \text { out-collision }} \\
=\underbrace{\int_{\mathbb{R}^{3}} \sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right) \phi\left(t, \mathbf{r}, \mathbf{v}^{\prime}\right) d \mathbf{v}^{\prime}}_{\text {c), secondaries }}+\underbrace{q(t, \mathbf{r}, \mathbf{v})}_{\text {(d), sources }}
\end{array}
$$

for $(\mathbf{r}, \mathbf{v}) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ with $\mathbf{s}=\mathbf{v} /|\mathbf{v}| \in \mathbb{S}^{2}$.

Observations and challenges

- No regeneration $\sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right)=0$: Family of ODEs for $\mathbf{v} \in \mathbb{R}^{3}$
- Low regularity of solutions (depending on q)
- Case $\sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right)>0$: Non-trivial coupling. No analytic closed-form solution
- High-dimensional: $\operatorname{dim}\left(\mathbb{R} \times \mathbb{R}^{3} \times \mathbb{R}^{3}\right)=7$.

The stationary neutron transport equation

$$
\underbrace{\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(\mathbf{r}, \mathbf{v})}_{=(\mathrm{a}) \text {, transport }}+\underbrace{\sigma(\mathbf{r}, \mathbf{v}) \phi(\mathbf{r}, \mathbf{v})}_{=(\mathrm{b}) \text {, out-collision }}=\underbrace{\int_{V} \sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right) \phi\left(\mathbf{r}, \mathbf{v}^{\prime}\right) d \mathbf{v}^{\prime}}_{\text {c), secondaries }}+\underbrace{q(\mathbf{r}, \mathbf{v})}_{\text {(d), sources }}
$$

for $(\mathbf{r}, \mathbf{v}) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ with $\mathbf{s}=\mathbf{v} /|\mathbf{v}| \in \mathbb{S}^{2}$.

Notation:

$\phi(\mathbf{r}, \mathbf{v})$ angular density
$\sigma(\mathbf{r}, \mathbf{v}) \geq 0$ macroscopic cross section
$\sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right)$ scattering cross section

The stationary neutron transport equation

$$
\underbrace{\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi(\mathbf{r}, \mathbf{s})}_{=(\mathrm{a}), \text { transport }}+\underbrace{\sigma(\mathbf{r}) \phi(\mathbf{r}, \mathbf{s})}_{=(\mathrm{b}), \text { out-collision }}=\underbrace{\int_{\mathbb{S}^{2}} k\left(\mathbf{r}, \mathbf{s}^{\prime} \cdot \mathbf{s}\right) \phi\left(\mathbf{r}, \mathbf{s}^{\prime}\right) d \mathbf{s}^{\prime}}_{\text {c), secondaries }}+\underbrace{q(\mathbf{r}, \mathbf{s})}_{\text {(d), sources }}
$$

for $(\mathbf{r}, \mathbf{s}) \in \mathbb{R}^{3} \times \mathbb{S}^{2}$.

Assumptions:

- One velocity $\mathbf{v}=\mathbf{s} \in \mathbb{S}^{2}$.
- No fission, nor inelastic scattering, i.e., consider radiative absorption and elastic scattering

$$
\sigma(\mathbf{r})=\sigma_{a}(\mathbf{r})+\sigma_{s}(\mathbf{r})
$$

- Rotational invariance $\sigma\left(\mathbf{r}, \mathbf{v}^{\prime} \rightarrow \mathbf{v}\right)=\sigma_{s}(\mathbf{r}) k\left(\mathbf{s}^{\prime} \cdot \mathbf{s}\right)$
- Often isotropic scattering $k\left(\mathbf{s}^{\prime} \cdot \mathbf{s}\right)=1 /\left|\mathbb{S}^{2}\right|$.

Neutron transport on bounded domains

Vacuum boundary conditions

Assumptions

- $\mathcal{R} \subset \mathbb{R}^{3}$ bounded convex domain
- $\operatorname{supp}(q) \subset \mathcal{R}$
- $\operatorname{supp}\left(\sigma_{s}\right) \subset \mathcal{R}$

Inflow boundary

$$
\Gamma_{-}=\left\{(\mathbf{r}, \mathbf{s}) \in \partial \mathcal{R} \times \mathbb{S}^{2}: \mathbf{s} \cdot \mathbf{n}(\mathbf{r})<0\right\}
$$

$$
\begin{aligned}
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi+\sigma \phi & =\sigma_{s} \int_{\mathbb{S}^{2}} k\left(\mathbf{s} \cdot \mathbf{s}^{\prime}\right) \phi\left(\cdot, \mathbf{s}^{\prime}\right) d \mathbf{s}^{\prime}+q & & \text { in } \mathcal{R} \times \mathbb{S}^{2} \\
\phi & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Remark: Inhomogeneous inflow conditions, periodic boundary conditions, reflection conditions, etc., can be modeled similarly.

Well-posedness of the stationary neutron transport equation

$$
\begin{aligned}
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi+\sigma \phi & =\sigma_{s} \int_{\mathbb{S}^{2}} k\left(\mathbf{s} \cdot \mathbf{s}^{\prime}\right) \phi\left(\cdot, \mathbf{s}^{\prime}\right) d \mathbf{s}^{\prime}+q & & \text { in } \mathcal{R} \times \mathbb{S}^{2} \\
\phi & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Theorem Let $\sigma_{a}, \sigma_{s} \geq 0, q \in L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)$. Then the NTE has a unique solution $\phi \in L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)$ with

$$
\left\|\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi\right\|_{L^{2}}+\|\phi\|_{L^{2}} \leq C\|q\|_{L^{2}}
$$

[Case Zweifel '63] [Dautray Lions '93] [Agoshkov '98] [Bal Jollivet 2008] [Egger S 2013]

Well-posedness of the stationary neutron transport equation

$$
\begin{aligned}
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi+\sigma \phi & =\sigma_{s} \int_{\mathbb{S}^{2}} k\left(\mathbf{s} \cdot \mathbf{s}^{\prime}\right) \phi\left(\cdot, \mathbf{s}^{\prime}\right) d \mathbf{s}^{\prime}+q & & \text { in } \mathcal{R} \times \mathbb{S}^{2} \\
\phi & =0 & & \text { on } \Gamma_{-}
\end{aligned}
$$

Theorem Let $\sigma_{a}, \sigma_{s} \geq 0, q \in L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)$. Then the NTE has a unique solution $\phi \in L^{2}\left(\mathcal{R} \times \mathbb{S}^{2}\right)$ with

$$
\left\|\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi\right\|_{L^{2}}+\|\phi\|_{L^{2}} \leq C\|q\|_{L^{2}} .
$$

Proof (idea) Consider the mapping $T: L^{2} \rightarrow L^{2}, \phi^{n} \mapsto \phi^{n+1}$, defined by

$$
\begin{aligned}
\mathbf{s} \cdot \nabla_{\mathbf{r}} \phi^{n+1}+\sigma \phi^{n+1} & =\sigma_{s} K \phi^{n}+q & & \text { in } \mathcal{R} \times \mathbb{S}^{2} \\
\phi^{n+1} & =0 & & \text { on } \Gamma_{-} .
\end{aligned}
$$

Verify conditions of Banach's fixed-point theorem.
[Case Zweifel '63] [Dautray Lions '93] [Agoshkov '98] [Bal Jollivet 2008] [Egger S 2013]

Introduction

The neutron transfer equation (NTE)
Modeling and analysis
Slab geometry

Some classical semidiscretizations
Truncated Legendre expansion
Discrete ordinates method
Generic discretization of the RTE
Variational formulation
Galerkin approximation

Examples and implementational details
Legendre expansions
Double Legendre expansions
Piecewise constant expansions

Slab geometry

$$
\begin{aligned}
& \mathbf{r}=(x, y, z) \in \mathbb{R}^{2} \times(0, Z) \\
& \mathbf{s}=(\cos \varphi \sin \theta, \sin \varphi \sin \theta, \cos \theta) \\
& \mathbf{s} \cdot \mathbf{n}(Z)=\cos (\theta)=: \mu \\
& \mathbf{s} \cdot \mathbf{n}(0)=-\mu
\end{aligned}
$$

Assumption:

- $q(\mathbf{r}, \mathbf{s})=q(z, \mu)$
- $\sigma=\sigma(z)$
- $k\left(\mathbf{s} \cdot \mathbf{s}^{\prime}\right)=1 /\left|\mathbb{S}^{2}\right|$
- $\phi=\phi(z, \mu)$
$\Longrightarrow \mathbf{s} \cdot \nabla_{\mathbf{r}} \phi=\mu \partial_{z} \phi$

NTE in slab geometry

$$
\begin{aligned}
\mu \partial_{z} \phi+\sigma \phi & =\frac{\sigma_{s}}{2} \int_{-1}^{1} \phi\left(\cdot, \mu^{\prime}\right) \mathrm{d} \mu^{\prime}+q & & \text { in }(0, Z) \times(-1,1) \\
\phi(0, \mu) & =g_{0}(\mu) & & \mu>0 \\
\phi(Z, \mu) & =g_{z}(\mu) & & \mu<0
\end{aligned}
$$

Introduction
The neutron transfer equation (NTE)
Modeling and analysis
Slab geometry
Some classical semidiscretizations
Truncated Legendre expansion
Discrete ordinates method
Generic discretization of the RTE
Variational formulation
Galerkin approximation
Examples and implementational details
Legendre expansions
Double Legendre expansions
Piecewise constant expansions

The P_{L}-approximation

Legendre polynomial expansion

$$
\phi(z, \mu)=\sum_{\ell=0}^{\infty} \phi_{\ell}(z) P_{\ell}(\mu)
$$

The P_{L}-approximation

Legendre polynomial expansion

$$
\phi(z, \mu)=\sum_{\ell=0}^{\infty} \phi_{\ell}(z) P_{\ell}(\mu)
$$

Recurrence relations

$$
(2 \ell+1) \mu P_{\ell}=(\ell+1) P_{\ell+1}+\ell P_{\ell-1}
$$

Neutron transport equation

$$
\mu \partial_{z} \phi+\sigma \phi=\frac{\sigma_{s}}{2} \int_{-1}^{1} \phi\left(\cdot, \mu^{\prime}\right) \mathrm{d} \mu^{\prime}+q
$$

becomes an infinite coupled system

$$
\frac{\ell+1}{2 \ell+1} \partial_{z} \phi_{\ell+1}+\frac{\ell}{2 \ell+1} \partial_{z} \phi_{\ell-1}+\sigma \phi_{\ell}=\frac{\sigma_{s}}{2} \phi_{0} \delta_{0, \ell}+q_{\ell} .
$$

The P_{L}-approximation

Truncated Legendre polynomial expansion

$$
\phi(z, \mu)=\sum_{\ell=0}^{\infty} \phi_{\ell}(z) P_{\ell}(\mu) \approx \sum_{\ell=0}^{L} \phi_{\ell}(z) P_{\ell}(\mu)
$$

Recurrence relations

$$
(2 \ell+1) \mu P_{\ell}=(\ell+1) P_{\ell+1}+\ell P_{\ell-1}
$$

Neutron transport equation

$$
\mu \partial_{z} \phi+\sigma \phi=\frac{\sigma_{s}}{2} \int_{-1}^{1} \phi\left(\cdot, \mu^{\prime}\right) \mathrm{d} \mu^{\prime}+q
$$

becomes an infinite coupled system

$$
\frac{\ell+1}{2 \ell+1} \partial_{z} \phi_{\ell+1}+\frac{\ell}{2 \ell+1} \partial_{z} \phi_{\ell-1}+\sigma \phi_{\ell}=\frac{\sigma_{s}}{2} \phi_{0} \delta_{0, \ell}+q_{\ell}
$$

Truncate system, by setting $\phi_{\ell}=0$ for $\ell>L$.

The P_{L}-approximation

boundary conditions
P_{L}-equations. For $0 \leq \ell \leq L$:

$$
\frac{\ell+1}{2 \ell+1} \partial_{z} \phi_{\ell+1}+\frac{\ell}{2 \ell+1} \partial_{z} \phi_{\ell-1}+\sigma \phi_{\ell}=\frac{\sigma_{s}}{2} \phi_{0} \delta_{0, \ell}+q_{\ell} .
$$

Truncation condition $\phi_{\ell}=0$ for all $\ell>L$; and $\phi_{-1}=0$.
Typical choices of boundary conditions, $z_{b} \in\{0, Z\}, L$ odd:

$$
\begin{gather*}
\int\left(\phi\left(z_{b}, \mu\right)-g_{z_{b}}(\mu)\right) \mu^{\ell} \mathrm{d} \mu=0, \quad \ell=1,3, \ldots, L \\
\phi\left(z_{b}, \mu_{n}\right)=g_{z_{b}}\left(\mu_{n}\right), \quad n=1,2, \ldots,(L+1) / 2 \tag{Mark}
\end{gather*}
$$

\rightsquigarrow strong coupling of ϕ_{ℓ}.

The P_{L}-approximation

boundary conditions

P_{L}-equations. For $0 \leq \ell \leq L:$

$$
\frac{\ell+1}{2 \ell+1} \partial_{z} \phi_{\ell+1}+\frac{\ell}{2 \ell+1} \partial_{z} \phi_{\ell-1}+\sigma \phi_{\ell}=\frac{\sigma_{s}}{2} \phi_{0} \delta_{0, \ell}+q_{\ell} .
$$

Truncation condition $\phi_{\ell}=0$ for all $\ell>L$; and $\phi_{-1}=0$.
Typical choices of boundary conditions, $z_{b} \in\{0, Z\}, L$ odd:

$$
\begin{gathered}
\int\left(\phi\left(z_{b}, \mu\right)-g_{z_{b}}(\mu)\right) \mu^{\ell} \mathrm{d} \mu=0, \quad \ell=1,3, \ldots, L \\
\phi\left(z_{b}, \mu_{n}\right)=g_{z_{b}}\left(\mu_{n}\right), \quad n=1,2, \ldots,(L+1) / 2
\end{gathered}
$$

\rightsquigarrow strong coupling of ϕ_{ℓ}.
Which are the correct ones? How to generalize to multi-d?

Introduction
The neutron transfer equation (NTE)
Modeling and analysis
Slab geometry
Some classical semidiscretizations
Truncated Legendre expansion
Discrete ordinates method
Generic discretization of the RTE
Variational formulation
Galerkin approximation
Examples and implementational details
Legendre expansions
Double Legendre expansions
Piecewise constant expansions

Discrete ordinates methods: Wick-Chandrasekhar

Gauss-Legendre quadrature ($N \geq 2$ even)

$$
\int_{-1}^{1} \phi(z, \mu) \mathrm{d} \mu \approx \sum_{i=1}^{N} \omega_{i} \phi\left(z, \mu_{i}\right)
$$

Discrete ordinates methods: Wick-Chandrasekhar

Gauss-Legendre quadrature ($N \geq 2$ even)

$$
\int_{-1}^{1} \phi(z, \mu) \mathrm{d} \mu \approx \sum_{i=1}^{N} \omega_{i} \phi\left(z, \mu_{i}\right)
$$

Introduce $\phi_{n}(z) \approx \phi\left(z, \mu_{n}\right)$ and evaluate NTE in $\mu_{n}, n=1, \ldots, N$:

$$
\mu_{n} \partial_{z} \phi_{n}+\sigma \phi_{n}=\frac{\sigma_{s}}{2} \sum_{i=1}^{N} \omega_{i} \phi_{i}+q_{n} \quad \text { in }(0, Z)
$$

System of N ODEs for the N functions ϕ_{n}.

Discrete ordinates methods: Wick-Chandrasekhar

Gauss-Legendre quadrature ($N \geq 2$ even)

$$
\int_{-1}^{1} \phi(z, \mu) \mathrm{d} \mu \approx \sum_{i=1}^{N} \omega_{i} \phi\left(z, \mu_{i}\right)
$$

Introduce $\phi_{n}(z) \approx \phi\left(z, \mu_{n}\right)$ and evaluate NTE in $\mu_{n}, n=1, \ldots, N$:

$$
\mu_{n} \partial_{z} \phi_{n}+\sigma \phi_{n}=\frac{\sigma_{s}}{2} \sum_{i=1}^{N} \omega_{i} \phi_{i}+q_{n} \quad \text { in }(0, z)
$$

System of N ODEs for the N functions ϕ_{n}.

Boundary conditions:

$$
\begin{array}{ll}
\phi_{n}(0)=g_{0}\left(\mu_{n}\right) & \text { for } \mu_{n}>0 \\
\phi_{n}(Z)=g_{z}\left(\mu_{n}\right) & \text { for } \mu_{n}<0
\end{array}
$$

Discrete ordinates methods: Wick-Chandrasekhar

Gauss-Legendre quadrature ($N \geq 2$ even)

$$
\int_{-1}^{1} \phi(z, \mu) \mathrm{d} \mu \approx \sum_{i=1}^{N} \omega_{i} \phi\left(z, \mu_{i}\right)
$$

Introduce $\phi_{n}(z) \approx \phi\left(z, \mu_{n}\right)$ and evaluate NTE in $\mu_{n}, n=1, \ldots, N$:

$$
\mu_{n} \partial_{z} \phi_{n}+\sigma \phi_{n}=\frac{\sigma_{s}}{2} \sum_{i=1}^{N} \omega_{i} \phi_{i}+q_{n} \quad \text { in }(0, z)
$$

System of N ODEs for the N functions ϕ_{n}.
Boundary conditions:

$$
\begin{array}{ll}
\phi_{n}(0)=g_{0}\left(\mu_{n}\right) & \text { for } \mu_{n}>0 \\
\phi_{n}(Z)=g_{z}\left(\mu_{n}\right) & \text { for } \mu_{n}<0
\end{array}
$$

This method is equivalent to the P_{N-1}-approximation (with Mark b.c.).

Discrete ordinates method

Approximate $\phi(z, \mu)$ with discontinuous, piecewise constant functions

$$
\phi(z, \mu) \approx \phi_{n}(z), \quad \mu_{n-1} \leq \mu \leq \mu_{n}, 1 \leq n \leq N .
$$

Integrate NTE over $\left(\mu_{n-1}, \mu_{n}\right)$:

$$
\frac{\mu_{n}+\mu_{n-1}}{2} \partial_{z} \phi_{n}+\sigma \phi_{n}=\frac{\sigma_{s}}{2} \sum_{i=1}^{N} \omega_{i} \phi_{i}+q_{n}
$$

- Partition $-1=\mu_{0}<\mu_{1}<\ldots<\mu_{N}=1$ arbitrary
- System of ODEs for ϕ_{n}

Summary of classical semidiscretizations

P_{L} method

- global approximation in angle μ
- scattering is diagonalized
- dense coupling due to boundary conditions
- multi-d: spherical harmonics
- boundary conditions for multi-d ?

Summary of classical semidiscretizations

P_{L} method

- global approximation in angle μ
- scattering is diagonalized
- dense coupling due to boundary conditions
- multi-d: spherical harmonics
- boundary conditions for multi-d ?

Discrete ordinates method

- transport part is triangular
- boundary conditions are straight-forward
- scattering couples all equations

Summary of classical semidiscretizations

P_{L} method

- global approximation in angle μ
- scattering is diagonalized
- dense coupling due to boundary conditions
- multi-d: spherical harmonics
- boundary conditions for multi-d ?

Discrete ordinates method

- transport part is triangular
- boundary conditions are straight-forward
- scattering couples all equations
skipped: Monte-Carlo methods (Metropolis-vNeumann-Ulam '46-'49)

Summary of classical semidiscretizations

P_{L} method

- global approximation in angle μ
- scattering is diagonalized
- dense coupling due to boundary conditions
- multi-d: spherical harmonics
- boundary conditions for multi-d ?

Discrete ordinates method

- transport part is triangular
- boundary conditions are straight-forward
- scattering couples all equations
skipped: Monte-Carlo methods (Metropolis-vNeumann-Ulam '46-'49)
Aim: Recover semi-discretizations from one framework
Advantage: Unified analysis, (perhaps) simplified implementation, and more.

Introduction
The neutron transfer equation (NTE)
Modeling and analysis
Slab geometry
Some classical semidiscretizations
Truncated Legendre expansion
Discrete ordinates method
Generic discretization of the RTE
Variational formulation
Galerkin approximation
Examples and implementational details
Legendre expansions
Double Legendre expansions
Piecewise constant expansions

Even-odd splitting

Even-odd parities

$$
\phi^{ \pm}(z, \mu)=\frac{1}{2}(\phi(z, \mu) \pm \phi(z,-\mu))
$$

Observations

- $\phi=\phi^{+}+\phi^{-}$is an L^{2}-orthogonal splitting
- Parity transformation

$$
\mu \partial_{z} \phi^{+} \text {is odd, } \quad \bar{\phi}(z, \mu):=\frac{1}{2} \int_{-1}^{1} \phi\left(z, \mu^{\prime}\right) d \mu^{\prime} \quad \text { is even. }
$$

Projection of the NTE onto even-odd functions:

$$
\begin{array}{ll}
\mu \partial_{z} \phi^{-}+\sigma \phi^{+}=\sigma_{s} \bar{\phi}^{+}+q^{+} & \text {in }(0, z) \times(-1,1) \\
\mu \partial_{z} \phi^{+}+\sigma \phi^{-}=q^{-} & \text {in }(0, z) \times(-1,1) .
\end{array}
$$

Derivation of a variational principle

Multiply

$$
\mu \partial_{z} \phi^{-}+\sigma \phi^{+}=\sigma_{s} \bar{\phi}^{+}+q^{+}
$$

with ψ^{+}and integrate over $(0, Z) \times(-1,1)$:

$$
\left(\mu \partial_{z} \phi^{-}, \psi^{+}\right)+\left(\mu \partial_{z} \phi^{+}, \psi^{-}\right)+(\sigma \phi, \psi)=\left(\sigma_{s} \bar{\phi}, \psi^{+}\right)+\left(q^{+}, \psi^{+}\right)
$$

Derivation of a variational principle

Multiply

$$
\mu \partial_{z} \phi^{-}+\sigma \phi^{+}=\sigma_{s} \bar{\phi}^{+}+q^{+}
$$

with ψ^{+}and integrate over $(0, Z) \times(-1,1)$:

$$
\left(\mu \partial_{z} \phi^{-}, \psi^{+}\right)+\left(\mu \partial_{z} \phi^{+}, \psi^{-}\right)+(\sigma \phi, \psi)=\left(\sigma_{s} \bar{\phi}, \psi^{+}\right)+\left(q^{+}, \psi^{+}\right)
$$

Integration-by-parts:

$$
\left(\mu \partial_{z} \phi^{-}, \psi^{+}\right)=-\left(\phi^{-}, \mu \partial_{z} \psi^{+}\right)+\left.\int_{-1}^{1} \mu \phi^{-}(\cdot, \mu) \psi^{+}(\cdot, \mu)\right|_{0} ^{z} \mathrm{~d} \mu
$$

Derivation of a variational principle

Multiply

$$
\mu \partial_{z} \phi^{-}+\sigma \phi^{+}=\sigma_{s} \bar{\phi}^{+}+q^{+}
$$

with ψ^{+}and integrate over $(0, Z) \times(-1,1)$:

$$
\left(\mu \partial_{z} \phi^{-}, \psi^{+}\right)+\left(\mu \partial_{z} \phi^{+}, \psi^{-}\right)+(\sigma \phi, \psi)=\left(\sigma_{s} \bar{\phi}, \psi^{+}\right)+\left(q^{+}, \psi^{+}\right)
$$

Integration-by-parts:

$$
\left(\mu \partial_{z} \phi^{-}, \psi^{+}\right)=-\left(\phi^{-}, \mu \partial_{z} \psi^{+}\right)+\left.\int_{-1}^{1} \mu \phi^{-}(\cdot, \mu) \psi^{+}(\cdot, \mu)\right|_{0} ^{z} \mathrm{~d} \mu
$$

Key observation: $\mu \mapsto \mu \phi^{-}(\cdot, \mu) \psi^{+}(\cdot, \mu)$ is even.

$$
\begin{aligned}
\int_{-1}^{1} \mu \phi^{-}(Z, \mu) \psi^{+}(Z, \mu) \mathrm{d} \mu & =2 \int_{-1}^{0} \mu \phi^{-}(Z, \mu) \psi^{+}(Z, \mu) \mathrm{d} \mu \\
& =2 \int_{-1}^{0} \mu\left(g_{z}(\mu)-\phi^{+}(Z, \mu)\right) \psi^{+}(Z, \mu) \mathrm{d} \mu
\end{aligned}
$$

Summary: Variational principle for the NTE

Find $\phi=\phi^{+}+\phi^{-} \in \mathbb{W}^{+} \oplus \mathbb{V}^{-}$such that

$$
\begin{equation*}
b(\phi, \psi)=k(\phi, \psi)+\ell(\psi) \quad \forall \psi=\psi^{+}+\psi^{-} \in \mathbb{W}^{+} \oplus \mathbb{V}^{-} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
b(\phi, \psi) & =\langle | \mu\left|\phi^{+}, \psi^{+}\right\rangle_{\Gamma}-\left(\phi^{-}, \mu \partial_{z} \psi^{+}\right)+\left(\mu \partial_{z} \phi^{+}, \psi^{-}\right)+(\sigma \phi, \psi), \\
k(\phi, \psi) & =\left(\sigma_{s} \bar{\phi}, \psi\right), \\
\ell(\psi) & =(q, \psi)+2\langle | \mu\left|g, \psi^{+}\right\rangle_{\Gamma_{-}} \\
\mathbb{V} & :=L^{2}((0, z) \times(-1,1)) \\
\mathbb{W}^{+} & :=\left\{\psi \in \mathbb{V}^{+}: \mu \partial_{z} \psi \in \mathbb{V}\right\}
\end{aligned}
$$

Remarks

- Boundary conditions are incorporated naturally
- Equation (1) is well-posed for $\sigma_{a} \geq \gamma>0$ [Palii \& S, 2020]
- For bounded \mathcal{R}, well-posedness holds for $\sigma_{a} \geq 0$ [Egger \& S, 2012].

Introduction

The neutron transfer equation (NTE)
Modeling and analysis
Slab geometry

Some classical semidiscretizations
Truncated Legendre expansion
Discrete ordinates method
Generic discretization of the RTE
Variational formulation
Galerkin approximation

Examples and implementational details
Legendre expansions
Double Legendre expansions
Piecewise constant expansions

Galerkin approximation

Let $\mathbb{W}_{h}^{+} \subset \mathbb{W}^{+}$and $\mathbb{V}_{h}^{-} \subset \mathbb{V}^{-}$be finite dimensional spaces.
Galerkin formulation. Find $\phi_{h}=\phi_{h}^{+}+\phi_{h}^{-} \in \mathbb{W}_{h}^{+} \oplus \mathbb{V}_{h}^{-}$such that

$$
b\left(\phi_{h}, \psi_{h}\right)=k\left(\phi_{h}, \psi_{h}\right)+\ell\left(\psi_{h}\right)
$$

for all $\psi_{h} \in \mathbb{W}_{h}^{+} \oplus \mathbb{V}_{h}^{-}$
Theorem. If $\sigma^{-1} \mu \partial_{z} \mathbb{W}_{h}^{+} \subset \mathbb{V}_{h}^{-}$and $\sigma_{a} \geq \gamma>0$, then the Galerkin problem is well-posed and

$$
\left\|\mu \partial_{z}\left(\phi^{+}-\phi_{h}^{+}\right)\right\|_{L^{2}}+\left\|\phi-\phi_{h}\right\|_{L^{2}} \leq C \inf \left\|\mu \partial_{z}\left(\phi^{+}-\psi_{h}^{+}\right)\right\|_{L^{2}}+\left\|\phi-\psi_{h}\right\|_{L^{2}}
$$ where the infimum is taken over all $\psi_{h} \in \mathbb{W}_{h}^{+} \oplus \mathbb{V}_{h}^{-}$.

Introduction

The neutron transfer equation (NTE)
Modeling and analysis
Slab geometry

Some classical semidiscretizations
Truncated Legendre expansion
Discrete ordinates method
Generic discretization of the RTE
Variational formulation
Galerkin approximation

Examples and implementational details
Legendre expansions
Double Legendre expansions
Piecewise constant expansions

FEM + Legendre expansion: FEM- P_{L} method

Partition $(0, Z)$ into J intervals: $0=z_{0}<z_{1}<\ldots<z_{J}=Z$.
Piecewise polynomials on $(0, Z)$

$$
\begin{aligned}
& \left.\mathbb{P}_{k}(0, Z)=\left\{v: v_{\mid\left(z_{j-1}, z_{j}\right)} \text { is a polynomial of degree } k\right)\right\} \\
& \mathbb{P}_{k}^{c}(0, Z)=\left\{v \in \mathbb{P}_{k}(0, Z): v \text { is continuous }\right\}
\end{aligned}
$$

Basis for $\mathbb{P}_{1}^{c}: \varphi_{j} \in \mathbb{P}_{1}^{c}$ satisfying $\varphi_{j}\left(z_{i}\right)=\delta_{i, j}$.
Basis for $\mathbb{P}_{0}: \chi_{n} \in \mathbb{P}_{0}$ satisfying $\chi_{n}(z)=\delta_{n, m}$ for $z \in\left(z_{m-1}, z_{m}\right)$.
Approximations, for L odd and $k=1$,

$$
\begin{aligned}
& \phi_{L, J}^{+}(z, \mu)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+} \varphi_{j}(z) P_{2 \ell}(\mu), \\
& \phi_{L, J}^{-}(z, \mu)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=1}^{J} c_{j, \ell}^{-} \chi_{j}(z) P_{2 \ell+1}(\mu) .
\end{aligned}
$$

Remark: For Lodd, σ pcw. constant, the compatibility condition $\sigma^{-1} \mu \partial_{z} \mathbb{W}_{h}^{+} \subset \mathbb{V}_{h}^{-}$holds.

Towards a linear system

Insert approximations

$$
\begin{aligned}
& \phi_{L, J}^{+}(z, \mu)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+} \varphi_{j}(z) P_{2 \ell}(\mu), \\
& \phi_{L, J}^{-}(z, \mu)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=1}^{J} c_{j, \ell}^{-} \chi_{j}(z) P_{2 \ell+1}(\mu),
\end{aligned}
$$

into Galerkin problem

$$
b\left(\phi_{L, J}^{+}+\phi_{L, J}^{-}, \psi\right)=k\left(\phi_{L, J}^{+}+\phi_{L, J}^{-}, \psi\right)+\ell(\psi)
$$

where $\psi=\varphi_{i} P_{2 k}$ or $\psi=\chi_{i} P_{2 k+1}$ ranges over all basis functions.
Each basis function ψ yields a row of a linear system

$$
\mathbf{S c}=\mathbf{f}
$$

for the unknown coefficients \mathbf{c}.

Implementational details

for the term $\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)$
We compute for $\psi^{-}=\chi_{n} P_{2 k+1}$

$$
\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+} \int_{-1}^{1} \int_{0}^{z} \partial_{z} \varphi_{j} \mu P_{2 \ell} \chi_{n} P_{2 k+1} \mathrm{~d} z \mathrm{~d} \mu
$$

Implementational details

for the term $\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)$
We compute for $\psi^{-}=\chi_{n} P_{2 k+1}$

$$
\begin{aligned}
& \left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+} \int_{-1}^{1} \int_{0}^{z} \partial_{z} \varphi_{j} \mu P_{2 \ell} \chi_{n} P_{2 k+1} \mathrm{~d} z \mathrm{~d} \mu \\
& =\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+}(\underbrace{\int_{0}^{z} \partial_{z} \varphi_{j} \chi_{n} \mathrm{~d} z}_{=\mathbf{D}_{j, n}})(\underbrace{\int_{-1}^{1} \mu P_{2 \ell}(\mu) P_{2 k+1}(\mu) \mathrm{d} \mu}_{=\mathbf{P}_{k, \ell}}) .
\end{aligned}
$$

Implementational details

for the term $\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)$
We compute for $\psi^{-}=\chi_{n} P_{2 k+1}$

$$
\begin{aligned}
& \left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+} \int_{-1}^{1} \int_{0}^{z} \partial_{z} \varphi_{j} \mu P_{2 \ell} \chi_{n} P_{2 k+1} \mathrm{~d} z \mathrm{~d} \mu \\
& =\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+}(\underbrace{\int_{0}^{z} \partial_{z} \varphi_{j} \chi_{n} \mathrm{~d} z}_{=\mathbf{D}_{j, n}})(\underbrace{\int_{-1}^{1} \mu P_{2 \ell}(\mu) P_{2 k+1}(\mu) \mathrm{d} \mu}_{=\mathbf{P}_{k, \ell}}) .
\end{aligned}
$$

Identify $\phi_{L, J}^{+}$with its coefficient matrix $\mathbf{C}^{+}=\left(c_{j, \ell}^{+}\right)_{j, \ell}$. Then we can write

$$
\left(\mu \partial_{z} \phi_{L, J, 1}^{+}, \psi^{-}\right)=\left(\mathbf{D C}^{+} \mathbf{P}^{\top}\right)_{n, k} .
$$

Implementational details

for the term $\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)$
We compute for $\psi^{-}=\chi_{n} P_{2 k+1}$

$$
\begin{aligned}
& \left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+} \int_{-1}^{1} \int_{0}^{z} \partial_{z} \varphi_{j} \mu P_{2 \ell} \chi_{n} P_{2 k+1} \mathrm{~d} z \mathrm{~d} \mu \\
& =\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+}(\underbrace{\int_{0}^{z} \partial_{z} \varphi_{j} \chi_{n} \mathrm{~d} z}_{=\mathbf{D}_{j, n}})(\underbrace{\int_{-1}^{1} \mu P_{2 \ell}(\mu) P_{2 k+1}(\mu) \mathrm{d} \mu}_{=\mathbf{P}_{k, \ell}}) .
\end{aligned}
$$

Identify $\phi_{L, J}^{+}$with its coefficient matrix $\mathbf{C}^{+}=\left(c_{j, \ell}^{+}\right)_{j, \ell}$. Then we can write

$$
\left(\mu \partial_{z} \phi_{L, J, 1}^{+}, \psi^{-}\right)=\left(\mathbf{D C}^{+} \mathbf{P}^{\top}\right)_{n, k} .
$$

Furthermore, the matrix $\mathbf{D C}{ }^{+} \mathbf{P}^{T}$ can be identified with a vector

$$
(\mathbf{P} \otimes \mathbf{D}) \mathbf{c}^{+} .
$$

Implementational details continued

the remaining terms
The term $\left(\sigma \phi_{L, J}^{+}, \psi^{+}\right)=\int_{-1}^{1} \int_{0}^{z} \sigma(z) \phi_{L, J}^{+}(z, \mu) \psi^{+}(z, \mu) \mathrm{d} z \mathrm{~d} \mu$ becomes

$$
\left(\mathbf{I} \otimes \mathbf{M}(\sigma)^{+}\right) \mathbf{c}^{+} \quad \text { with }\left(\mathbf{M}(\sigma)^{+}\right)_{i, j}=\int_{0}^{z} \sigma \varphi_{i} \varphi_{j} \mathrm{~d} z
$$

Implementational details continued

the remaining terms
The term $\left(\sigma \phi_{L, J}^{+}, \psi^{+}\right)=\int_{-1}^{1} \int_{0}^{z} \sigma(z) \phi_{L, J}^{+}(z, \mu) \psi^{+}(z, \mu) \mathrm{d} z \mathrm{~d} \mu$ becomes

$$
\left(\mathbf{I} \otimes \mathbf{M}(\sigma)^{+}\right) \mathbf{c}^{+} \quad \text { with }\left(\mathbf{M}(\sigma)^{+}\right)_{i, j}=\int_{0}^{z} \sigma \varphi_{i} \varphi_{j} \mathrm{~d} z
$$

The term $\left(\sigma_{s} \bar{\phi}_{L, J}^{+}, \psi^{+}\right)$becomes $\left(\operatorname{diag}(1,0, \ldots, 0) \otimes \mathbf{M}\left(\sigma_{s}\right)^{+}\right) \mathbf{c}^{+}$.

Implementational details continued

the remaining terms
The term $\left(\sigma \phi_{L, J}^{+}, \psi^{+}\right)=\int_{-1}^{1} \int_{0}^{z} \sigma(z) \phi_{L, J}^{+}(z, \mu) \psi^{+}(z, \mu) \mathrm{d} z \mathrm{~d} \mu$ becomes

$$
\left(\mathbf{I} \otimes \mathbf{M}(\sigma)^{+}\right) \mathbf{c}^{+} \quad \text { with }\left(\mathbf{M}(\sigma)^{+}\right)_{i, j}=\int_{0}^{z} \sigma \varphi_{i} \varphi_{j} \mathrm{~d} z
$$

The term $\left(\sigma_{s} \bar{\phi}_{L, J}^{+}, \psi^{+}\right)$becomes $\left(\operatorname{diag}(1,0, \ldots, 0) \otimes \mathbf{M}\left(\sigma_{s}\right)^{+}\right) \mathbf{c}^{+}$.
The term $\langle | \mu\left|\phi_{L, J}^{+}, \psi^{+}\right\rangle_{\Gamma_{-}} \operatorname{becomes}(\mathbf{B} \otimes \operatorname{diag}(1,0, \ldots, 0,1)) \mathbf{c}^{+}$

$$
\text { with }(\mathbf{B})_{\ell, k}=\int_{-1}^{1} P_{2 \ell}(\mu) P_{2 k}(\mu)|\mu| d \mu=2 \int_{0}^{1} P_{2 \ell}(\mu) P_{2 k}(\mu) \mu d \mu \text {. }
$$

Note that \mathbf{B} is a dense matrix.

Discrete system for P_{L} method

Solve

$$
\left(\begin{array}{cc}
\mathbf{R}+\mathbf{A}^{+} & -\mathbf{P}^{T} \otimes \mathbf{D}^{T} \\
\mathbf{P} \otimes \mathbf{D} & \mathbf{A}^{-}
\end{array}\right)\binom{\mathbf{c}^{+}}{\mathbf{c}^{-}}=\binom{\mathbf{q}^{+}}{\mathbf{q}^{-}}
$$

with
$\mathbf{R}=\mathbf{B} \otimes \operatorname{diag}(1,0, \ldots, 0,1), \quad$ 'boundary' matrix
$\mathbf{A}^{+}=\mathbf{I} \otimes \mathbf{M}(\sigma)^{+} \otimes-\operatorname{diag}(1,0, \ldots, 0) \otimes \mathbf{M}\left(\sigma_{s}\right)^{+}, \quad$ 'attenuation' matrix
$\mathbf{A}^{-}=\mathbf{I} \otimes \mathbf{M}(\sigma)^{-}, \quad$ 'attenuation' matrix

Take away. Use Kronecker structure!

- Assembling matrices for spatial and angular parts separately, tremendously simplifies the implementation!
- Storing the factors instead of the Kronecker product reduces memory requirements!

Notes on solving the discrete system

The discrete system

$$
\left(\begin{array}{cc}
\mathbf{R}+\mathbf{A}^{+} & -\mathbf{P}^{T} \otimes \mathbf{D}^{T} \\
\mathbf{P} \otimes \mathbf{D} & \mathbf{A}^{-}
\end{array}\right)\binom{\mathbf{c}^{+}}{\mathbf{c}^{-}}=\binom{\mathbf{q}^{+}}{\mathbf{q}^{-}}
$$

is equivalent to

$$
\begin{aligned}
\left(\mathbf{R}+\mathbf{A}^{+}\right) \mathbf{c}^{+}-(\mathbf{P} \otimes \mathbf{D})^{T} \mathbf{c}^{-} & =\mathbf{q}^{+} \\
(\mathbf{P} \otimes \mathbf{D}) \mathbf{c}^{+}+\mathbf{A}^{-} \mathbf{c}^{-} & =\mathbf{q}^{-}
\end{aligned}
$$

Observation: $\mathbf{A}^{-}=\mathbf{I} \otimes \mathbf{M}(\sigma)^{-}$is a diagonal matrix. Setting $\mathbf{C}=\left(\mathbf{M}(\sigma)^{-}\right)^{-1}$, elimination of \mathbf{c}^{-}yields the Schur complement:

$$
\left(\mathbf{R}+\mathbf{A}^{+}+\left(\mathbf{P}^{\top} \mathbf{P} \otimes \mathbf{D}^{\top} \mathbf{C D}\right)\right) \mathbf{c}^{+}=\mathbf{q}^{+}+(\mathbf{P} \otimes \mathbf{C D})^{T} \mathbf{q}^{-}
$$

Once \mathbf{c}^{+}is obtained, we can solve for \mathbf{c}^{-}.

Properties of the Schur complement

$$
\left(\mathbf{R}+\mathbf{A}^{+}+\left(\mathbf{P}^{\top} \mathbf{P} \otimes \mathbf{D}^{\top} \mathbf{C D}\right)\right) \mathbf{c}^{+}=\mathbf{q}^{+}+(\mathbf{P} \otimes \mathbf{C D})^{\top} \mathbf{q}^{-} .
$$

- symmetric, positive definite
- sparse matrix (except for \mathbf{B} in $\mathbf{R}=\mathbf{B} \otimes \operatorname{diag}(1,0, \ldots, 0,1)$)
- system size is about halved (compared to the full system for $\left(\mathbf{c}^{+}, \mathbf{c}^{-}\right)$).

Numerical example for P_{L}-method

Manufactured solution

$$
\phi(z, \mu)=|\mu| e^{-\mu} e^{-z(1-z)}
$$

Parameters

$$
\sigma_{a}=0.01, \quad \sigma_{s}=2+\sin (\pi z) / 2, \quad z \in(0,1)
$$

Results

P_{L} with $J=16384$			P_{L} with $L=127$						
L	$\left\\|\phi-\phi_{h}\right\\|_{L^{2}}$	rate	J	$\left\\|\phi-\phi_{h}\right\\|_{L^{2}}$	rate				
1	$4.27 \mathrm{e}-01$		2	5.91e-02					
3	$4.51 \mathrm{e}-02$	3.24	4	$2.26 \mathrm{e}-02$	1.39				
7	$1.94 \mathrm{e}-02$	1.22	8	$1.00 \mathrm{e}-02$	1.17				
15	$6.56 \mathrm{e}-03$	1.56	16	$4.84 \mathrm{e}-03$	1.05				
31	$2.25 \mathrm{e}-03$	1.54	32	$2.40 \mathrm{e}-03$	1.01				
63	$7.84 \mathrm{e}-04$	1.52	64	1.22e-03	0.98				
127	$2.74 \mathrm{e}-04$	1.51	128	6.55e-04	0.90				

Introduction

The neutron transfer equation (NTE)
Modeling and analysis
Slab geometry

Some classical semidiscretizations
Truncated Legendre expansion
Discrete ordinates method
Generic discretization of the RTE
Variational formulation
Galerkin approximation
Examples and implementational details
Legendre expansions
Double Legendre expansions
Piecewise constant expansions

Double Legendre expansion

$d P_{L}$ method

Treatment of z-variable as before. Angular basis functions:
$Q_{\ell}^{+}(\mu)=P_{\ell}(2|\mu|-1)$
$Q_{\ell}^{-}(\mu)=\operatorname{sign}(\mu) P_{\ell}(2|\mu|-1)$
for $0 \leq \ell \leq L$.

Approximations

$$
\begin{aligned}
& \phi_{L, J}^{+}(z, \mu)=\sum_{\ell=0}^{L} \sum_{j=0}^{J} c_{j, \ell}^{+} \varphi_{j}(z) Q_{\ell}^{+}(\mu), \\
& \phi_{L, J}^{-}(z, \mu)=\sum_{\ell=0}^{L+1} \sum_{j=1}^{J} c_{j, \ell}^{-} \chi_{j}(z) Q_{\ell}^{-}(\mu) .
\end{aligned}
$$

Remark: For σ pcw. constant, the compatibility condition $\sigma^{-1} \mu \partial_{z} \mathbb{W}_{h}^{+} \subset \mathbb{V}_{h}^{-}$holds.

Towards a linear system

$d P_{L}$ method

Insert approximations

$$
\begin{aligned}
\phi_{L, J}^{+}(z, \mu) & =\sum_{\ell=0}^{L} \sum_{j=0}^{J} c_{j, \ell}^{+} \varphi_{j}(z) Q_{\ell}^{+}(\mu), \\
\phi_{L, J}^{-}(z, \mu) & =\sum_{\ell=0}^{L+1} \sum_{j=1}^{J} c_{j, \ell}^{-} \chi_{j}(z) Q_{\ell}^{-}(\mu),
\end{aligned}
$$

into Galerkin problem

$$
b\left(\phi_{L, J}^{+}+I_{L, J}^{-}, \psi\right)=k\left(\phi_{L, J}^{+}+I_{L, J}^{-}, \psi\right)+\ell(\psi)
$$

where $\psi=\varphi_{i} Q_{k}^{+}$or $\psi=\chi_{i} Q_{k}^{-}$ranges over all basis functions.
Each basis function ψ yields a row of a linear system

$$
\mathbf{S c}=\mathbf{f}
$$

for the unknown coefficients \mathbf{c}.

Implementational details

for the term $\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)$in $d P_{L}$ method
We compute for $\psi^{-}=\chi_{n} Q_{k}^{-}$

$$
\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+} \int_{0}^{z} \partial_{z} \varphi_{j} \chi_{n} d z \quad \underbrace{\int_{-1}^{1} \mu Q_{\ell}^{+} Q_{k}^{-} d \mu}
$$

Implementational details

for the term $\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)$in $d P_{L}$ method
We compute for $\psi^{-}=\chi_{n} Q_{k}^{-}$

$$
\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+} \int_{0}^{z} \partial_{z} \varphi_{j} \chi_{n} d z \underbrace{\int_{-1}^{1} \mu Q_{\ell}^{+} Q_{k}^{-} d \mu}_{=\int_{-1}^{1}|\mu| P_{\ell}(2|\mu|-1) P_{k}(2|\mu|-1) d \mu}
$$

Implementational details

for the term $\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)$in $d P_{L}$ method
We compute for $\psi^{-}=\chi_{n} Q_{k}^{-}$

$$
\begin{aligned}
& \left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+} \int_{0}^{z} \partial_{z} \varphi_{j} \chi_{n} d z \underbrace{\int_{-1}^{1} \mu Q_{\ell}^{+} Q_{k}^{-} d \mu}_{=\int_{-1}^{1}|\mu| P_{\ell}(2|\mu|-1) P_{k}(2|\mu|-1) d \mu} \\
& =\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+}(\underbrace{\int_{0}^{z} \partial_{z} \varphi_{j} \chi_{n} d z}_{=\mathbf{D}_{j, n}})(\underbrace{\int_{-1}^{1} \frac{\mu+1}{2} P_{\ell}(\mu) P_{k}(\mu) d \mu}_{=\mathbf{P}_{k, \ell}})
\end{aligned}
$$

Implementational details

for the term $\left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)$in $d P_{L}$ method
We compute for $\psi^{-}=\chi_{n} Q_{k}^{-}$

$$
\begin{aligned}
& \left(\mu \partial_{z} \phi_{L, J}^{+}, \psi^{-}\right)=\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+} \int_{0}^{z} \partial_{z} \varphi_{j} \chi_{n} d z \underbrace{\int_{-1}^{1} \mu Q_{\ell}^{+} Q_{k}^{-} d \mu}_{=\int_{-1}^{1}|\mu| P_{\ell}(2|\mu|-1) P_{k}(2|\mu|-1) d \mu} \\
& =\sum_{\ell=0}^{(L-1) / 2} \sum_{j=0}^{J} c_{j, \ell}^{+}(\underbrace{\int_{0}^{z} \partial_{z} \varphi_{j} \chi_{n} d z}_{=\mathbf{D}_{j, n}})(\underbrace{\int_{-1}^{1} \frac{\mu+1}{2} P_{\ell}(\mu) P_{k}(\mu) d \mu}_{=\mathbf{P}_{k, \ell}}) .
\end{aligned}
$$

Identify $\phi_{L, J}^{+}$with its coefficient matrix $\mathbf{C}^{+}=\left(c_{j, \ell}^{+}\right)_{j, \ell}$. Then we can write

$$
\left(\mu \partial_{z} \phi_{L, J, 1}^{+}, \psi^{-}\right)=\left(\mathbf{D C}^{+} \mathbf{P}^{T}\right)_{n, k} .
$$

Furthermore, the matrix $\mathbf{D C}{ }^{+} \mathbf{P}^{\top}$ can be identified with a vector

$$
(\mathbf{P} \otimes \mathbf{D}) \mathbf{c}^{+} .
$$

Implementational details continued

$d P_{L}$ method
The term $(\sigma \phi, \psi)=\int_{-1}^{1} \int_{0}^{z} \sigma(z) \phi(z, \mu) \psi(z, \mu) d z d \mu$ becomes

$$
\left(\mathbf{M}(\sigma)^{+} \otimes \mathbf{I}\right) \mathbf{c}^{+} \quad \text { with }\left(\mathbf{M}(\sigma)^{+}\right)_{i, j}=\int_{0}^{z} \sigma \varphi_{i} \varphi_{j} d z
$$

The term $\left(\sigma_{s} \bar{\phi}, \psi\right)$ becomes

$$
\left(\operatorname{diag}(1,0, \ldots, 0) \otimes \mathbf{M}\left(\sigma_{s}\right)^{+}\right) \mathbf{c}^{+}
$$

The term $\langle | \mu\left|\phi^{+}, \psi^{+}\right\rangle_{\Gamma_{-}}$becomes
$(\mathbf{B} \otimes \operatorname{diag}(1,0, \ldots, 0,1)) \mathbf{c}^{+} \quad$ with $(\mathbf{B})_{\ell, k}=\int_{-1}^{1} P_{\ell}(\mu) P_{k}(\mu) \frac{\mu+1}{2} d \mu$
Remark: B is a sparse matrix.

Discrete system for $d P_{L}$ method

Solve

$$
\left(\begin{array}{cc}
\mathbf{R}+\mathbf{A}^{+} & -\mathbf{D}^{T} \otimes \mathbf{P}^{T} \\
\mathbf{D} \otimes \mathbf{P} & \mathbf{A}^{-}
\end{array}\right)\binom{\mathbf{c}^{+}}{\mathbf{c}^{-}}=\binom{\mathbf{q}^{+}}{\mathbf{q}^{-}}
$$

with

$$
\mathbf{R}=\mathbf{B} \otimes \operatorname{diag}(1,0, \ldots, 0,1), \quad \text { 'boundary' matrix }
$$

$\mathbf{A}^{+}=\mathbf{I} \otimes \mathbf{M}(\sigma)^{+}-\operatorname{diag}(1,0, \ldots, 0) \otimes \mathbf{M}\left(\sigma_{s}\right)^{+}, \quad$ 'attenuation' matrix
$\mathbf{A}^{-}=\mathbf{I} \otimes \mathbf{M}(\sigma)^{-}, \quad$ 'attenuation' matrix
All matrices are sparse for the $d P_{L}$-method and isotropic scattering.
Take away. Use Kronecker structure!

- Assembling matrices for spatial and angular parts separately, tremendously simplifies the implementation!
- Storing the factors instead of the Kronecker product reduces memory requirements!

Numerical example for $d P_{L}$-method

Manufactured solution

$$
\phi(z, \mu)=|\mu| e^{-\mu} e^{-z(1-z)}
$$

Parameters

$$
\sigma_{a}=0.01, \quad \mu_{s}=2+\sin (\pi z) / 2, \quad z \in(0,1)
$$

Results

$d P_{L}$ with $J=16384$		$d P_{L}$ with $L=7$						
L	$\left\\|\phi-\phi_{h}\right\\|_{L^{2}}$	J	$\left\\|\phi-\phi_{h}\right\\|_{L^{2}}$	rate				
1	1.05e-01	256	2.97e-04	1.00				
2	$1.29 \mathrm{e}-02$	512	1.49e-04	1.00				
3	$1.40 \mathrm{e}-03$	1024	$7.44 \mathrm{e}-05$	1.00				
4	$7.44 \mathrm{e}-05$	2048	$3.72 \mathrm{e}-05$	1.00				
5	7.54e-06	4096	1.86e-05	1.00				
6	$4.65 \mathrm{e}-06$	8192	$9.30 \mathrm{e}-06$	1.00				
7	4.65e-06	16384	$4.65 \mathrm{e}-06$	1.00				

Introduction
The neutron transfer equation (NTE)
Modeling and analysis
Slab geometry
Some classical semidiscretizations
Truncated Legendre expansion
Discrete ordinates method
Generic discretization of the RTE
Variational formulation
Galerkin approximation
Examples and implementational details
Legendre expansions
Double Legendre expansions
Piecewise constant expansions

Piecewise constant expansions: $d G$ method

Treatment of z-variable as before.

Partition $(-1,1):-1=\mu_{-N}<\ldots<\mu_{N}=1$, such that $\mu_{-n}=-\mu_{n}$.
Basis for piecewise constants in angle
$\iota_{k} \in \mathbb{P}_{0}$ satisfying $\iota_{n}(\mu)=\delta_{n, m}$ for $\mu \in\left(\mu_{m-1}, \mu_{m}\right)$.
Angular basis functions for $1 \leq n \leq N$
$Q_{n}^{+}(\mu)=\iota_{n}(|\mu|)$
$Q_{n, \ell}^{-}(\mu)=\operatorname{sign}(\mu) \iota_{n}(|\mu|) P_{\ell}\left(2\left(|\mu|-\mu_{n+1 / 2}\right)\right)$ for $\ell=0,1$.

Approximations

$$
\begin{aligned}
\phi_{N, J}^{+}(z, \mu) & =\sum_{n=1}^{N} \sum_{j=0}^{J} c_{j, n}^{+} \varphi_{j}(z) Q_{n}^{+}(\mu) \\
\phi_{N, J}^{-}(z, \mu) & =\sum_{n=1}^{N} \sum_{\ell=0}^{1} \sum_{j=1}^{J} c_{j, n, \ell}^{-} \chi_{j}(z) Q_{n, \ell}^{-}(\mu) .
\end{aligned}
$$

Remark: For $\sigma \mathrm{pcw}$. constant, the compatibility condition
$\sigma^{-1} \mu \partial_{z} \mathbb{W}_{h}^{+} \subset \mathbb{V}_{h}^{-}$holds.

Discrete system for $d G$ method

Solve

$$
\left(\begin{array}{cc}
\mathbf{R}+\mathbf{A}^{+} & -\mathbf{P}^{T} \otimes \mathbf{D}^{T} \\
\mathbf{P} \otimes \mathbf{D} & \mathbf{A}^{-}
\end{array}\right)\binom{\mathbf{c}^{+}}{\mathbf{c}^{-}}=\binom{\mathbf{q}^{+}}{\mathbf{q}^{-}}
$$

with

$$
\begin{aligned}
\mathbf{R} & =\mathbf{B} \otimes \operatorname{diag}(1,0, \ldots, 0,1), \quad \text { 'boundary' matrix } \\
\mathbf{A}^{+} & =\mathbf{N} \otimes \mathbf{M}(\sigma)^{+}-\mathbf{K} \otimes \mathbf{M}\left(\sigma_{s}\right)^{+}, \quad \text { 'attenuation' matrix } \\
\mathbf{A}^{-} & =\mathbf{N} \otimes \mathbf{M}(\sigma)^{-}, \quad \text { 'attenuation' matrix }
\end{aligned}
$$

All matrices are sparse for the $d G$-method except the scattering part \mathbf{K}.
Take away. Use Kronecker structure!

- Assembling matrices for spatial and angular parts separately, tremendously simplifies the implementation!
- Storing the factors instead of the Kronecker product reduces memory requirements!

Numerical example for $d G$-method

Manufactured solution

$$
\phi(z, \mu)=|\mu| e^{-\mu} e^{-z(1-z)}
$$

Parameters

$$
\sigma_{a}=0.01, \quad \sigma_{s}=2+\sin (\pi z) / 2, \quad z \in(0,1)
$$

Results

$d G$ with $J=16384$			$d G$ with $N=128$						
N	$\left\\|\phi-\phi_{h}\right\\|_{L^{2}}$	rate	J	$\left\\|\phi-\phi_{h}\right\\|_{L^{2}}$	rate				
2	$4.23 \mathrm{e}-01$		2	5.92e-02					
4	1.42e-01	1.57	4	$2.28 \mathrm{e}-02$	1.37				
8	$6.11 \mathrm{e}-02$	1.22	8	$1.06 \mathrm{e}-02$	1.11				
16	$2.85 \mathrm{e}-02$	1.10	16	$5.89 \mathrm{e}-03$	0.85				
32	$1.38 \mathrm{e}-02$	1.05	32	$4.13 \mathrm{e}-03$	0.51				
64	$6.79 \mathrm{e}-03$	1.02	64	3.57e-03	0.21				
128	3.37e-03	1.01	128	3.42e-03	0.06				

Take aways

Take away 1. Many classical approximations of radiative transfer ($P_{L}, d P_{L}$, discrete ordinates) can be formulated, analyzed and implemented in one framework.

Take away 2. Use Kronecker structure!

- Assembling matrices for spatial and angular parts separately, tremendously simplifies the implementation!
- Storing the factors instead of the Kronecker product reduces memory requirements!

Generalizations to 3D

P_{L}-method

- use spherical harmonics instead of Legendre polynomials.
- Transport and attenuation matrices sparse and Kronecker structure.
- Scattering matrix diagonal; for general scattering kernels $k\left(\mathbf{s} \cdot \mathbf{s}^{\prime}\right)$.
- but the boundary matrix coupling becomes more expensive (also no Kronecker product structure); cf. [Egger \& S 2019] for a remedy using PMLs.
$d P_{L}$-method
- has no direct counterpart in general.

DG-method

- use pcw. constant functions on \mathbb{S}^{2}.
- Transport and boundary matrix are sparse and Kronecker structure.
- Scattering matrix is dense, but compression possible [Dahmen et al 2020, Dölz et al 2022].

Structure allows to assemble and apply matrices efficiently.

