Reduced Basis method for non-symmetric eigenvalue problems: application to neutronics

Yonah Conjungo-Taumhas ${ }^{1}$, Geneviève Dusson ${ }^{3}$, Virginie Ehrlacher ${ }^{2}$, Tony Lelièvre ${ }^{2}$ \& François Madiot ${ }^{1}$
${ }^{1}$ Université Paris-Saclay, CEA, Service d'Études des Réacteurs et de Mathématiques Appliquées, 91191 Gif-sur-Yvette, France
${ }^{2}$ CERMICS, Ecole des Ponts ParisTech \& MATHERIALS team-project, INRIA
${ }^{3}$ Université de Franche-Comté, Besançon

École des Ponts
ParisTech

MATHerials

Journées scientifiques du GdR MANU, Le Croisic, 24th October 2023

Outline

(1) Criticity calculations in nuclear core reactor
(2) Reduced basis method
(3) Numerical tests

Outline

(1) Criticity calculations in nuclear core reactor

(2) Reduced basis method

(3) Numerical tests

Parametrized PDEs

- The behaviour of many systems can be described by the solutions of a system of Partial Differential Equations.
- These equations can depend on one or several parameters $\mu=\left(\mu_{1}, \cdots, \mu_{p}\right)$ with $p \in \mathbb{N}^{*}$ which can take values in a set denoted by $\mathcal{P} \subset \mathbb{R}^{p}$. In this case, for one particular value $\mu \in \mathcal{P}$ of this vector of parameters, the associated solution to the PDE system is a function u_{μ} solution of

$$
\mathcal{A}\left(u_{\mu} ; \mu\right)=0,
$$

where $\mathcal{A}(\cdot ; \mu)$ is some differential operator depending on the parameter vector μ.

Research nuclear core reactor

Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Desprès, Golse, 2019]

- Spatial domain $\Omega \subset \mathbb{R}^{d}$ occupied by the nuclear core reactor
- Neutrons are assumed to be separated into $\mathbf{2}$ groups according to their energy: $E=\left\{E_{1}, E_{2}\right\}\left(E_{1}>E_{2}\right)$
- $\mu \in \mathcal{P}$: vector of parameters of the problem, which encodes the values of the physical properties of the nuclear core

Problem of interest: Find

- $u_{\mu}=\left(u_{1, \mu}, u_{2, \mu}\right): \Omega \rightarrow \mathbb{R}^{2}$: neutron scalar fluxes;
- $\lambda_{\mu}>0$ eigenvalue with smallest modulus;
solution to the non-symmetric eigenvalue problem

$$
\mathcal{A}_{\mu} \boldsymbol{u}_{\mu}=\lambda_{\mu} \mathcal{B}_{\mu} \boldsymbol{u}_{\mu}
$$

where \mathcal{A}_{μ} and \mathcal{B}_{μ} are linear operators such that $\mathcal{A}_{\mu}^{-1} \mathcal{B}_{\mu}$ satisfies the assumptions of the Krein-Rutman theorem.

Krein-Rutman theorem

The Krein-Rutman theorem is a generalisation of the Perron-Frobenius theorem to operators defined on infinite-dimensional Banach spaces.

Consequence of the Krein-Rutman theorem: there exists a unique eigenvalue with largest modulus $K_{\text {eff }, \mu}$, which is simple, positive and such that

$$
\mathcal{A}_{\mu}^{-1} \mathcal{B}_{\mu} u_{\mu}=k_{\mathrm{eff}, \mu} u_{\mu}
$$

- u_{μ} is then uniquely defined (up to a sign factor);
- $k_{\text {eff }, \mu}=\frac{1}{\lambda_{\mu}}$: effective multiplication factor

Effective multiplication factor

- $k_{\text {eff }, \mu}<1$: the fission reaction is not the prevailing phenomenon, then the total mean number of neutrons tends towards zero along time; the reactor is said to be subcritical
- $k_{\text {eff }, \mu}=1$: both creation and absorption of neutrons take as much place as the other inside the system; the reactor is said to be critical
- $k_{\text {eff }, \mu}>1$: the fission dominates the absorption phenomenon, therefore a chain reaction phenomenon takes place inside the system, and the total mean number of neutrons increases at an exponential rate, the system then tends to collapse; the reactor is said to be supercritical

Two-Group Diffusion Equation

$$
\mathcal{A}_{\mu} \boldsymbol{u}_{\mu}=\lambda_{\mu} \mathcal{B}_{\mu} \boldsymbol{u}_{\mu}
$$

Two-group Diffusion Equation

$$
\begin{align*}
& -\nabla \cdot\left(D_{1, \mu} \nabla u_{1, \mu}\right)+\Sigma_{11, \mu} u_{1, \mu}+\Sigma_{12, \mu} u_{2, \mu} \\
& =\lambda_{\mu}\left[\chi_{1, \mu}\left(\left(\nu \Sigma_{f}\right)_{1, \mu} u_{1, \mu}+\left(\nu \Sigma_{f}\right)_{2, \mu} u_{2, \mu}\right)\right] \\
& -\nabla \cdot\left(D_{2, \mu} \nabla u_{2, \mu}\right)+\Sigma_{22, \mu} u_{2, \mu}+\Sigma_{21, \mu} u_{1, \mu} \\
& =\lambda_{\mu}\left[\chi_{2, \mu}\left(\left(\nu \Sigma_{f}\right)_{1, \mu} u_{1, \mu}+\left(\nu \Sigma_{f}\right)_{2, \mu} u_{2, \mu}\right)\right] \tag{1}
\end{align*}
$$

- $\Sigma_{i i}=\Sigma_{t i}-\Sigma_{s, i i}$;
- $\Sigma_{t i}$: total cross-section of group i;
- $\Sigma_{s, i j}$: scattering cross-section from group i to group j;
- $\Sigma_{i j}=-\Sigma_{s, i j}$;
- $D_{i}=\frac{1}{3 \Sigma_{t i}}$: diffusion coefficient of group i;
- $\Sigma_{f i}$: fission cross-section of group i;
- ν_{i} : average number of neutrons of groupd i emitted per fission;
- χ_{i} : fission spectrum of group i

Parameters of the problem

- $\mu \in \mathcal{P}$ represents the physical properties of the core and its configuration.
- The spatial domain of calculation Ω is split into a structured grid that defines K regions. On each region Ω_{k}, μ^{k} represents the set of material parameters inside the domain Ω_{k}, so that $\mu=\left(\mu^{1}, \ldots, \mu^{K}\right) \in \mathcal{P}$.

Figure: Cross-sectional view of the BSS-11 nuclear core reactor

Motivation of model-order reduction methods

- For a particular value of $\mu \in \mathcal{P}$, a numerical approximation of the solution u_{μ} is computed by some numerical scheme (for instance with a finite element code), the resolution of which may be very costly from a computational point of view.
- There exist a wide variety of contexts in which it is necessary to perform parametric studies of the problem at hand, i.e. to compute (a numerical approximation of) the solution u_{μ} for a very large number of values of the parameter vector μ as quickly as possible!

Examples:

- Design optimization
- Inverse problems
- Real-time control
- Uncertainty quantification

In such contexts, naive parametric studies using a standard finite element code may be extremely expensive from a computational point of view and time-consuming!

Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty. The principle of these methods is the following:

- Offline stage: Compute u_{μ} with a standard numerical scheme (for instance finite elements) for a small number of well-chosen values of the parameter vector μ; this stage can be quite expensive from a computational point of view.
- Build another model, a reduced model from these few (expensive) computations in order to compute numerical approximations of u_{μ} for many other values of μ, but at a computational cost which is much cheaper than the initial (finite element) scheme.
- Online stage: Use the reduced model (instead of the original finite element code) in order to compute much faster u_{μ} for a large number of values of μ.

Outline

(1) Criticity calculations in nuclear core reactor

(2) Reduced basis method

(3) Numerical tests

Reduced-basis method

There exists a huge number of model-order reduction techniques in the litterature.
In this talk: Reduced Basis method for accelerating the resolution of parametrized generalized non-symmetric eigenvalue problems, with a view to accelerating parametric studies for criticity calculations.

A few seminal references:

- Cohen, Dahmen, DeVore, Maday, Patera...
- Reduced Basis Methods for Partial Differential Equations: An Introduction, Alfio Quarteroni, Andrea Manzoni, Federico Negri
- Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm

References on reduced basis techniques for symmetric eigenvalue problems: [Fumagalli, Manzoni, Parolini, Verani, 2016], [Horger, Wohlmuth, Dickopf, 2017]

References on reduced basis techniques for neutronic applications: [Sartori, Cammi, Luzzi, Rozza, 2016]

Two-Group Diffusion Equation (discrete formulation)

- Discretization of the spatial domain Ω with $P 1$ crossed-triangular finite elements over a rectangle mesh
- The solution u_{μ} is approximated by an element $u_{\mu, n}$ belonging to a finite-dimensional subspace V_{h} of dimension N_{h} (number of DoFs): $V_{h}=\operatorname{Span}\left\{\left(\varphi_{i}\right)_{i=1, N_{h}}\right\}$

Weak formulation of the problem

Find $\left(u_{\mu, h}, u_{\mu, h}^{*}, k_{\mu, h}\right) \in V_{h} \times V_{h} \times \mathbb{R}_{+}^{*}$ such that
$\forall v_{h} \in V_{h}, \quad a_{\mu, h}\left(u_{\mu, h}, v_{h}\right)=\frac{1}{k_{\mu, h}} b_{\mu, h}\left(u_{\mu, h}, v_{h}\right)$.
Adjoint problem $\forall v_{h} \in V_{h}, \quad a_{\mu, h}\left(v_{h}, u_{\mu, h}^{*}\right)=\frac{1}{k_{\mu, h}} b_{\mu, h}\left(v_{h}, u_{\mu, h}^{*}\right)$.

Two-Group Diffusion Equation (matrix form)

$$
\begin{equation*}
u_{\mu, h}=\sum_{i=1}^{N_{h}}\left(U_{\mu, h}\right)_{i} \varphi_{i}, \quad u_{\mu, h}^{*}=\sum_{i=1}^{N_{h}}\left(U_{\mu, h}^{*}\right)_{i} \varphi_{i} \tag{2}
\end{equation*}
$$

Matrix form of the problem

Find $\left(U_{\mu, h}, U_{\mu, h}^{*}, k_{\mu, h}\right) \in \mathbb{R}^{N_{h}} \times \mathbb{R}^{N_{h}} \times \mathbb{R}_{+}^{*}$ such that

$$
\begin{equation*}
A_{\mu, h} U_{\mu, h}=\frac{1}{k_{\mu, h}} B_{\mu, h} U_{\mu, h} \tag{3}
\end{equation*}
$$

Adjoint problem

$$
A_{\mu, h}^{T} U_{\mu, h}^{*}=\frac{1}{k_{\mu, h}} B_{\mu, h}^{T} U_{\mu, h}^{*}
$$

- Generalized eigenvalue problem
- $A_{\mu, h} \in \mathbb{R}^{N_{h} \times N_{h}}$ is non-symmetric, invertible, with a coercive symmetric part
- $B_{\mu, h} \in \mathbb{R}^{N_{h} \times N_{h}}$ is non-symmetric, not invertible and positive
\longrightarrow High-fidelity problem

Reduced basis method

- The resolution of the high-fidelity problem for a large number of values of the parameter vector $\mu \in \mathcal{P}$ may be very costly from a computational point of view because N_{h} is large!
- The principle of the reduced basis method is to approximate the solution ($u_{\mu, h}, u_{\mu, h}^{*}, k_{\mu, h}$) by a Galerkin approximation associated to a linear subspace $V_{N} \subset V_{h}$ of dimension at most $2 N$ with N much smaller than N_{h}.
- The reduced space V_{N} is chosen such that

$$
V_{N}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}, \cdots, u_{\mu_{N}, h}, u_{\mu_{N}, h}^{*}\right\},
$$

where μ_{1}, \cdots, μ_{N} are N particular well-chosen values of the parameter vector μ.

- In the offline stage, the high-fidelity problem is only solved for this N values of the parameter vector.

Online stage of the Reduced Basis method

Galerkin approximation of the eigenvalue problem in the discretization space V_{N}

Weak formulation of the reduced problem

$$
\begin{aligned}
& \text { Find }\left(u_{\mu, N}, u_{\mu, N}^{*}, k_{\mu, N}\right) \in V_{N} \times V_{N} \times \mathbb{R}_{+}^{*} \text { such that } \\
& \forall v_{N} \in V_{N}, \quad a_{\mu, h}\left(u_{\mu, N}, v_{N}\right)=\frac{1}{k_{\mu, N}} b_{\mu, h}\left(u_{\mu, N}, v_{N}\right) .
\end{aligned}
$$

Adjoint problem $\forall v_{N} \in V_{N}, \quad a_{\mu, h}\left(v_{N}, u_{\mu, N}^{*}\right)=\frac{1}{k_{\mu, N}} b_{\mu, h}\left(v_{N}, u_{\mu, N}^{*}\right)$.

Online stage of the reduced basis method

- In the online stage, for each new value of $\mu \in \mathcal{P}$, an atmost $2 N$-dimensional matrix eigenvalue problem is solved. When $N \ll N_{h}$, the resolution of the reduced problem is much cheaper from a computational point of view than the resolution of the original high-fidelity problem!
- Reduced basis: Let $n:=\operatorname{dim} V_{N}$ and $\left(\theta_{1}, \cdots, \theta_{n}\right)$ be an orthonormal basis of V_{N}. Denoting by

$$
\Theta_{N}:=\left(\theta_{1}|\cdots| \theta_{n}\right) \in \mathbb{R}^{N_{n} \times n},
$$

We define the $n \times n$ reduced matrices:

$$
\left\{\begin{array}{l}
A_{\mu, N}=\Theta_{N}^{\top} A_{\mu, h} \Theta_{N} \\
B_{\mu, N}=\Theta_{N}^{\top} B_{\mu, h} \Theta_{N} .
\end{array}\right.
$$

Approximate solutions given by the reduced basis method

Reduced problem

Find $\left(c_{\mu, N}, c_{\mu, N}^{*}, k_{\mu, N}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}_{+}^{*}$ such that $A_{\mu, N} C_{\mu, N}=\frac{1}{k_{\mu, N}} B_{\mu, N} C_{\mu, N} \quad$ and $\quad U_{\mu, N}=\Theta_{N} C_{\mu, N}$

$$
A_{\mu, N}^{T} c_{\mu, N}^{*}=\frac{1}{k_{\mu, N}} B_{\mu, N}^{T} c_{\mu, N}^{*} \quad \text { and } \quad U_{\mu, N}^{*}=\Theta_{N} c_{\mu, N}^{*}
$$

$$
u_{\mu, N}:=\sum_{i=1}^{N_{h}}\left(U_{\mu, N}\right)_{i} \varphi_{i}, \quad u_{\mu, N}^{*}:=\sum_{i=1}^{N_{h}}\left(U_{\mu, N}^{*}\right)_{i} \varphi_{i}
$$

Efficient computation of the reduced matrices

Assumption: Separability of the data of the problem

$$
A_{\mu, h}=\sum_{p=1}^{P} g_{p}(\mu) A_{p, h}
$$

Offline phase: Compute for all $1 \leq p \leq P$

$$
A_{p, N}=\Theta_{N}^{\top} A_{p, h} \Theta_{N}
$$

Online phase: For $\mu \in \mathcal{P}$, compute $A_{\mu, N}$ as

$$
A_{\mu, N}=\sum_{p=1}^{P} g_{p}(\mu) A_{p, N}
$$

Complexity: $\mathcal{O}\left(P n^{2}\right)$ (no dependence in N_{h})
Similar computation for $B_{\mu, N}$.

How to build V_{N} ?

This is usually done via an iterative algorithm called a greedy algorithm.
Need to choose a finite subset $\mathcal{P}_{\text {train }} \subset \mathcal{P}$, called training set.

Naive Greedy algorithm

- Choose randomly $\mu_{1} \in \mathcal{P}_{\text {train }}$.

$$
V_{1}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}\right\}
$$

- Iteration N : Choose $\mu_{N} \in \mathcal{P}_{\text {train }}$ such that

$$
\begin{gathered}
\mu_{N} \in \underset{\mu \in \mathcal{P}_{\text {tain }}}{\operatorname{argmax}}\left|k_{\mu, h}-k_{\mu, N-1}\right| \\
V_{N}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}, \cdots, u_{\mu_{N}, h}, u_{\mu_{N}, h}^{*}\right\}
\end{gathered}
$$

A naive version of the Greedy algorithm requires to evaluate $k_{\mu, h}$, for all $\mu \in \Lambda_{\text {train }}$ \rightarrow too expensive...

Practical algorithm:

Replace $e_{N-1}^{k}(\mu):=\left|k_{\mu, h}-k_{\mu, N-1}\right|$ by an easy-to-compute a posteriori error estimator $\Delta_{N-1}^{k}(\mu)$.

Error on the eigenvalue

- Residuals:

$$
\begin{align*}
R_{\mu, N} & =\left(B_{\mu, h}-k_{\mu, N} A_{\mu, h}\right) u_{\mu, N} \\
R_{\mu, N}^{*} & =\left(B_{\mu, h}^{T}-k_{\mu, N} A_{\mu, h}^{T}\right) u_{\mu, N}^{*} \tag{4}
\end{align*}
$$

Proposition.A posteriori error estimator

There exists a positive constant $C^{\kappa}(\mu)>0$ (called the prefactor) such that for all $\mu \in \mathcal{P}$,

$$
\begin{equation*}
e_{N}^{k}(\mu)=\left|k_{\mu, h}-k_{\mu, N}\right| \leqslant C^{k}(\mu) \frac{\left\|R_{\mu, N}\right\|_{*}\left\|R_{\mu, N}^{*}\right\|_{*}}{\left\langle C_{\mu, N}^{*}, A_{\mu, N} C_{\mu, N}\right\rangle}=C^{k}(\mu) \eta_{N}^{k}(\mu) \tag{5}
\end{equation*}
$$

with $\eta_{N}^{\kappa}(\mu):=\frac{\left\|R_{\mu, N}\right\|_{*}\left\|R_{\mu, N}^{*}\right\|_{*}}{\left\langle c_{\mu, N}^{*}, A_{\mu, N} C_{\mu, N}\right\rangle}$ and $\|\cdot\|_{*}$ a norm on $\mathbb{R}^{N_{h}}$.

Error on the eigenvectors

- Residuals:

$$
\begin{align*}
& R_{\mu, N}=\left(B_{\mu, h}-k_{\mu, N} A_{\mu, h}\right) u_{\mu, N} \\
& R_{\mu, N}^{*}=\left(B_{\mu, h}^{T}-k_{\mu, N} A_{\mu, h}^{T}\right) u_{\mu, N}^{*} \tag{6}
\end{align*}
$$

Proposition.A posteriori error estimator

There exist positive constants $C^{u}(\mu), C^{u_{*}}(\mu)>0$ (called the prefactors) such that for all $\mu \in \mathcal{P}$,

$$
\begin{equation*}
e_{N}^{u}(\mu)=\left\|u_{\mu, h}-u_{\mu, N}\right\| \leqslant C^{u}(\mu)\left\|R_{\mu, N}\right\|_{*}=C^{u}(\mu) \eta_{N}^{u}(\mu) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{N}^{u^{*}}(\mu)=\left\|u_{\mu, h}^{*}-u_{\mu, N}^{*}\right\| \leqslant C^{u^{*}}(\mu)\left\|R_{\mu, N}^{*}\right\|_{*}=C^{u^{*}}(\mu) \eta_{N}^{u^{*}}(\mu) \tag{8}
\end{equation*}
$$

where $\|\cdot\|$ and $\|\cdot\|_{*}$ are dual norms of one another.

Example: If $\|\cdot\|$ is a discrete $H_{0}^{1}(\Omega)$ norm, $\|\cdot\|_{*}$ is a then discrete $H^{-1}(\Omega)$ norm.

How to build V_{N} ?

- Practical a posteriori error estimator:

$$
\Delta_{N}^{k}(\mu)=\bar{C}_{N}^{\kappa} \frac{\left\|R_{\mu, N}\right\|\| \| R_{\mu, N}^{*} \|}{\left\langle C_{\mu, N}^{*}, A_{\mu, N} C_{\mu, N}\right\rangle}=\bar{C}_{N}^{k} \eta_{N}^{k}(\mu)
$$

where \bar{C}_{N}^{k} is a heuristic estimation of the prefactor $C^{k}(\mu)$

- $\Delta_{N}^{k}(\mu)$ can be efficiently computed with complexity $\mathcal{O}\left(n^{2}\right)$ if the data of the problem is separated.

How to build V_{N} ?

Actual Greedy algorithm

- Choose randomly $\mu_{1} \in \mathcal{P}_{\text {train }}$.

$$
V_{1}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}\right\}
$$

- Iteration N : Choose $\mu_{N} \in \mathcal{P}_{\text {train }}$ such that

$$
\begin{gathered}
\mu_{N} \in \underset{\mu \in \mathcal{P}_{\text {train }}}{\operatorname{argmax}} \Delta_{N-1}^{k}(\mu) . \\
V_{N}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}, \cdots, u_{\mu_{N}, h}, u_{\mu_{N}, h}^{*}\right\}
\end{gathered}
$$

Need to choose a finite subset $\mathcal{P}_{\text {pref }} \subset \mathcal{P}$, called prefactor set such that $\mathcal{P}_{\text {pref }} \cap \mathcal{P}_{\text {train }}=\emptyset$.

- Solve the high-fidelity problem for all $\mu \in \mathcal{P}_{\text {pref }}$.
- Compute for all $\mu \in \mathcal{P}_{\text {pref }}, \mathcal{E}_{N}^{k}(\mu):=\frac{\left|k_{\mu, h}-\kappa_{\mu, N \mid}\right|}{\eta_{N}^{k}(\mu)}$.
- Define

$$
\overline{\mathcal{C}}_{N}^{k}:=\max _{\mu \in \mathcal{P}_{\text {pref }}} \mathcal{E}_{N}^{k}(\mu) .
$$

Outline

(1) Criticity calculations in nuclear core reactor

(2) Reduced basis method

(3) Numerical tests

First toy test case: the MiniCore problem

- 25 spatial regions
- $L=107.52 \mathrm{~cm}$
- UGD12: mix of uranium dioxyde and Galinium oxyde
- UO2: uranium dioxyde
- BC: $u_{\mu}(x)=0, \quad x \in \partial \Omega$
- $N_{h}=2602$ DoFs per group
- Training set of parameters $\mathcal{P}_{\text {train }}$ of cardinality 1000 generated randomly

High-fidelity and reduced solver

Reduced-order model obtained with $N=100$

Convergence of the reduced basis : mean relative errors over $\mathcal{P}_{\text {test }}$

- $\mathcal{P}_{\text {test }} \subset \mathcal{P}$ with cardinality 50 (test set)
- $\mathcal{P}_{\text {pref }} \subset \mathcal{P}$ with cardinality 10 (prefactor set)

Parametric variability of the prefactor

Figure: Parametric variability of the prefactor

Gain in computational time

Figure: Relative time saving of the reduced solver

Figure: Cross-sectional views of the 3D core

- 9 spatial regions
- BC: $u_{\mu}(x)=0, \quad x \in \partial \Omega$
- $N_{h}=108800$ DoFs per group
- Training set of parameters $\mathcal{P}_{\text {train }}$ of cardinality 100 generated randomly
- Prefactor set $\mathcal{P}_{\text {pref }}$ of cardinality 5
- Test set $\mathcal{P}_{\text {test }}$ of cardinality 10

Convergence of the reduced basis approximation

Computational runtime of the reduced-order model

Conclusions and perspectives

Conclusions:

- Efficient reduced-order model for criticity calculations in neutronics using the reduced basis method
- Very encouraging results obtained on two-group diffusion models with the APOLLO3 code
- Heuristic procedure to estimate the value of the prefactor which yields accurate estimations of the true error

Perpsectives:

- More complex parametric variability in the 3D APOLLO test case
- Specific method to explore the parameter space: choice of $\mathcal{P}_{\text {train }}, \mathcal{P}_{\text {pref }}$?
- Rigorous justification of the heuristic procedure used to estimate the prefactor
- Efficient implementation of the reduced order model in the APOLLO code
- Application of the reduced basis method for the reduction of transport models (more complex than two-group diffusion models, like Boltzmann model)

Thank you for your attention!

