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Parametrized PDEs

The behaviour of many systems can be described by the solutions of a system of
Partial Differential Equations.

These equations can depend on one or several parameters µ = (µ1, · · · , µp)
withp ∈ N∗ which can take values in a set denoted by P ⊂ Rp.
In this case, for one particular value µ ∈ P of this vector of parameters, the
associated solution to the PDE system is a function uµ solution of

A(uµ;µ) = 0,

where A(·;µ) is some differential operator depending on the parameter vector µ.
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Research nuclear core reactor
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Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Desprès, Golse, 2019]

Spatial domain Ω ⊂ Rd occupied by the nuclear core reactor

Neutrons are assumed to be separated into 2 groups according to their energy:
E = {E1,E2} (E1 > E2)

µ ∈ P: vector of parameters of the problem, which encodes the values of the
physical properties of the nuclear core

Problem of interest: Find

uµ = (u1,µ, u2,µ) : Ω→ R2: neutron scalar fluxes;

λµ > 0 eigenvalue with smallest modulus;

solution to the non-symmetric eigenvalue problem

Aµuµ = λµBµuµ

where Aµ and Bµ are linear operators such that A−1
µ Bµ satisfies the assumptions of

the Krein-Rutman theorem.
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Krein-Rutman theorem

The Krein-Rutman theorem is a generalisation of the Perron-Frobenius theorem to
operators defined on infinite-dimensional Banach spaces.

Consequence of the Krein-Rutman theorem: there exists a unique eigenvalue with
largest modulus keff,µ, which is simple, positive and such that

A−1
µ Bµuµ = keff,µuµ

uµ is then uniquely defined (up to a sign factor);

keff,µ = 1
λµ

: effective multiplication factor
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Effective multiplication factor

keff,µ < 1: the fission reaction is not the prevailing phenomenon, then the total
mean number of neutrons tends towards zero along time;
the reactor is said to be subcritical
keff,µ = 1: both creation and absorption of neutrons take as much place as the
other inside the system;
the reactor is said to be critical
keff,µ > 1: the fission dominates the absorption phenomenon, therefore a chain
reaction phenomenon takes place inside the system, and the total mean number
of neutrons increases at an exponential rate, the system then tends to collapse;
the reactor is said to be supercritical
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Two-Group Diffusion Equation

Aµuµ = λµBµuµ

Two-group Diffusion Equation

−∇ ·
(
D1,µ∇u1,µ

)
+ Σ11,µu1,µ + Σ12,µu2,µ

= λµ
[
χ1,µ

(
(νΣf )1,µu1,µ + (νΣf )2,µu2,µ

)]
−∇.

(
D2,µ∇u2,µ

)
+ Σ22,µu2,µ + Σ21,µu1,µ

= λµ
[
χ2,µ

(
(νΣf )1,µu1,µ + (νΣf )2,µu2,µ

)]
(1)

Σii = Σti − Σs,ii ;
Σti : total cross-section of group i ;
Σs,ij : scattering cross-section from group i to group j ;
Σij = −Σs,ij ;
Di = 1

3Σti
: diffusion coefficient of group i ;

Σfi : fission cross-section of group i ;
νi : average number of neutrons of groupd i emitted per fission;
χi : fission spectrum of group i
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Parameters of the problem

µ ∈ P represents the physical properties of the core and its configuration.
The spatial domain of calculation Ω is split into a structured grid that defines K
regions. On each region Ωk , µk represents the set of material parameters inside
the domain Ωk , so that µ = (µ1, . . . , µK ) ∈ P.

Figure: Cross-sectional view of the BSS-11 nuclear core reactor
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Motivation of model-order reduction methods

For a particular value of µ ∈ P, a numerical approximation of the solution uµ is
computed by some numerical scheme (for instance with a finite element code), the
resolution of which may be very costly from a computational point of view.

There exist a wide variety of contexts in which it is necessary to perform
parametric studies of the problem at hand, i.e. to compute (a numerical
approximation of) the solution uµ for a very large number of values of the
parameter vector µ as quickly as possible!

Examples:
Design optimization

Inverse problems

Real-time control

Uncertainty quantification

In such contexts, naive parametric studies using a standard finite element code may be
extremely expensive from a computational point of view and time-consuming!
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Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty.
The principle of these methods is the following:

Offline stage: Compute uµ with a standard numerical scheme (for instance finite
elements) for a small number of well-chosen values of the parameter vector µ;
this stage can be quite expensive from a computational point of view.

Build another model, a reduced model from these few (expensive) computations
in order to compute numerical approximations of uµ for many other values of µ,
but at a computational cost which is much cheaper than the initial (finite element)
scheme.

Online stage: Use the reduced model (instead of the original finite element code)
in order to compute much faster uµ for a large number of values of µ.
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Reduced-basis method

There exists a huge number of model-order reduction techniques in the litterature.

In this talk: Reduced Basis method for accelerating the resolution of parametrized
generalized non-symmetric eigenvalue problems, with a view to accelerating
parametric studies for criticity calculations.

A few seminal references:
Cohen, Dahmen, DeVore, Maday, Patera...

Reduced Basis Methods for Partial Differential Equations: An Introduction, Alfio
Quarteroni, Andrea Manzoni, Federico Negri

Certified Reduced Basis Methods for Parametrized Partial Differential Equations,
Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm

References on reduced basis techniques for symmetric eigenvalue problems:
[Fumagalli, Manzoni, Parolini, Verani, 2016], [Horger, Wohlmuth, Dickopf, 2017]

References on reduced basis techniques for neutronic applications:
[Sartori, Cammi, Luzzi, Rozza, 2016]
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Two-Group Diffusion Equation (discrete formulation)

Discretization of the spatial domain Ω with P1 crossed-triangular finite elements
over a rectangle mesh

The solution uµ is approximated by an element uµ,h belonging to a
finite-dimensional subspace Vh of dimension Nh (number of DoFs):
Vh = Span{(ϕi )i=1,Nh}

Weak formulation of the problem

Find
(
uµ,h, u∗µ,h, kµ,h

)
∈ Vh × Vh × R∗+ such that

∀vh ∈ Vh, aµ,h(uµ,h, vh) =
1

kµ,h
bµ,h(uµ,h, vh).

Adjoint problem ∀vh ∈ Vh, aµ,h(vh, u∗µ,h) =
1

kµ,h
bµ,h(vh, u∗µ,h).
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Two-Group Diffusion Equation (matrix form)

uµ,h =

Nh∑
i=1

(Uµ,h)iϕi , u∗µ,h =

Nh∑
i=1

(U∗µ,h)iϕi (2)

Matrix form of the problem

Find
(
Uµ,h,U∗µ,h, kµ,h

)
∈ RNh × RNh × R∗+ such that

Aµ,hUµ,h =
1

kµ,h
Bµ,hUµ,h (3)

Adjoint problem AT
µ,hU∗µ,h =

1
kµ,h

BT
µ,hU∗µ,h

Generalized eigenvalue problem
Aµ,h ∈ RNh×Nh is non-symmetric, invertible, with a coercive symmetric part

Bµ,h ∈ RNh×Nh is non-symmetric, not invertible and positive

−→ High-fidelity problem
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Reduced basis method

The resolution of the high-fidelity problem for a large number of values of the
parameter vector µ ∈ P may be very costly from a computational point of view
because Nh is large!

The principle of the reduced basis method is to approximate the solution(
uµ,h, u∗µ,h, kµ,h

)
by a Galerkin approximation associated to a linear subspace

VN ⊂ Vh of dimension at most 2N with N much smaller than Nh.

The reduced space VN is chosen such that

VN = Vect
{

uµ1,h, u
∗
µ1,h, · · · , uµN ,h, u

∗
µN ,h

}
,

where µ1, · · · , µN are N particular well-chosen values of the parameter vector µ.

In the offline stage, the high-fidelity problem is only solved for this N values of the
parameter vector.
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Online stage of the Reduced Basis method

Galerkin approximation of the eigenvalue problem in the discretization space VN

Weak formulation of the reduced problem

Find
(
uµ,N , u∗µ,N , kµ,N

)
∈ VN × VN × R∗+ such that

∀vN ∈ VN , aµ,h(uµ,N , vN) =
1

kµ,N
bµ,h(uµ,N , vN).

Adjoint problem ∀vN ∈ VN , aµ,h(vN , u∗µ,N) =
1

kµ,N
bµ,h(vN , u∗µ,N).
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Online stage of the reduced basis method

In the online stage, for each new value of µ ∈ P, an atmost 2N-dimensional
matrix eigenvalue problem is solved. When N � Nh, the resolution of the reduced
problem is much cheaper from a computational point of view than the resolution of
the original high-fidelity problem!

Reduced basis: Let n := dimVN and (θ1, · · · , θn) be an orthonormal basis of VN .
Denoting by

ΘN := (θ1| · · · |θn) ∈ RNh×n,

We define the n × n reduced matrices:{
Aµ,N = ΘT

NAµ,hΘN

Bµ,N = ΘT
NBµ,hΘN

.
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Approximate solutions given by the reduced basis method

Reduced problem

Find
(
cµ,N , c∗µ,N , kµ,N

)
∈ Rn × Rn × R∗+ such that

Aµ,Ncµ,N =
1

kµ,N
Bµ,Ncµ,N and Uµ,N = ΘNcµ,N

AT
µ,Nc∗µ,N =

1
kµ,N

BT
µ,Nc∗µ,N and U∗µ,N = ΘNc∗µ,N

uµ,N :=

Nh∑
i=1

(Uµ,N)i ϕi , u∗µ,N :=

Nh∑
i=1

(
U∗µ,N

)
i ϕi .
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Efficient computation of the reduced matrices

Assumption: Separability of the data of the problem

Aµ,h =
P∑

p=1

gp(µ)Ap,h

Offline phase: Compute for all 1 ≤ p ≤ P

Ap,N = ΘT
NAp,hΘN

Online phase: For µ ∈ P, compute Aµ,N as

Aµ,N =
P∑

p=1

gp(µ)Ap,N

Complexity: O(Pn2) (no dependence in Nh)

Similar computation for Bµ,N .
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How to build VN ?

This is usually done via an iterative algorithm called a greedy algorithm.

Need to choose a finite subset Ptrain ⊂ P, called training set.

Naive Greedy algorithm
Choose randomly µ1 ∈ Ptrain.

V1 = Vect
{

uµ1,h, u
∗
µ1,h
}

Iteration N: Choose µN ∈ Ptrain such that

µN ∈ argmax
µ∈Ptrain

|kµ,h − kµ,N−1|

VN = Vect
{

uµ1,h, u
∗
µ1,h, · · · , uµN ,h, u

∗
µN ,h

}
A naive version of the Greedy algorithm requires to evaluate kµ,h, for all µ ∈ Λtrain

→ too expensive...

Practical algorithm:
Replace ek

N−1(µ) := |kµ,h − kµ,N−1| by an easy-to-compute a posteriori error
estimator ∆k

N−1(µ).
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Error on the eigenvalue

Residuals:

Rµ,N = (Bµ,h − kµ,NAµ,h) uµ,N

R∗µ,N =
(

BT
µ,h − kµ,NAT

µ,h

)
u∗µ,N (4)

Proposition.A posteriori error estimator

There exists a positive constant Ck (µ) > 0 (called the prefactor) such that for all
µ ∈ P,

ek
N(µ) = |kµ,h − kµ,N | 6 Ck (µ)

‖Rµ,N‖∗‖R∗µ,N‖∗
〈c∗µ,N ,Aµ,Ncµ,N〉

= Ck (µ)ηk
N(µ) (5)

with ηk
N(µ) :=

‖Rµ,N‖∗‖R∗µ,N‖∗
〈c∗µ,N ,Aµ,Ncµ,N〉

and ‖ · ‖∗ a norm on RNh .

23 / 37



Error on the eigenvectors

Residuals:

Rµ,N = (Bµ,h − kµ,NAµ,h) uµ,N

R∗µ,N =
(

BT
µ,h − kµ,NAT

µ,h

)
u∗µ,N (6)

Proposition.A posteriori error estimator

There exist positive constants Cu(µ),Cu∗(µ) > 0 (called the prefactors) such that for
all µ ∈ P,

eu
N(µ) = ‖uµ,h − uµ,N‖ 6 Cu(µ)‖Rµ,N‖∗ = Cu(µ)ηu

N(µ) (7)

and
eu∗

N (µ) =
∥∥u∗µ,h − u∗µ,N

∥∥ 6 Cu∗
(µ)‖R∗µ,N‖∗ = Cu∗

(µ)ηu∗
N (µ) (8)

where ‖ · ‖ and ‖ · ‖∗ are dual norms of one another.

Example: If ‖ · ‖ is a discrete H1
0 (Ω) norm, ‖ · ‖∗ is a then discrete H−1(Ω) norm.
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How to build VN ?

Practical a posteriori error estimator:

∆k
N(µ) = C

k
N
‖Rµ,N‖‖R∗µ,N‖
〈c∗µ,N ,Aµ,Ncµ,N〉

= C
k
Nη

k
N(µ)

where C
k
N is a heuristic estimation of the prefactor Ck (µ)

∆k
N(µ) can be efficiently computed with complexity O(n2) if the data of the

problem is separated.

25 / 37



How to build VN ?

Actual Greedy algorithm
Choose randomly µ1 ∈ Ptrain.

V1 = Vect
{

uµ1,h, u
∗
µ1,h
}

Iteration N: Choose µN ∈ Ptrain such that

µN ∈ argmax
µ∈Ptrain

∆k
N−1(µ).

VN = Vect
{

uµ1,h, u
∗
µ1,h, · · · , uµN ,h, u

∗
µN ,h

}
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How to build C
k
N ? Heuristic procedure

Need to choose a finite subset Ppref ⊂ P, called prefactor set such that
Ppref ∩ Ptrain = ∅.

Solve the high-fidelity problem for all µ ∈ Ppref.

Compute for all µ ∈ Ppref, Ek
N(µ) :=

|kµ,h−kµ,N |
ηk

N (µ)
.

Define
C

k
N := max

µ∈Ppref
Ek

N(µ).
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First toy test case: the MiniCore problem

25 spatial regions
L = 107.52 cm
UGD12: mix of uranium dioxyde and Galinium oxyde
UO2: uranium dioxyde
BC: uµ(x) = 0, x ∈ ∂Ω

Nh = 2602 DoFs per group
Training set of parameters Ptrain of cardinality 1000 generated randomly
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High-fidelity and reduced solver

Reduced-order model obtained with N = 100
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Convergence of the reduced basis : mean relative errors over Ptest

Ptest ⊂ P with cardinality 50 (test set)
Ppref ⊂ P with cardinality 10 (prefactor set)

Figure: Mean relative errors over Ptest
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Parametric variability of the prefactor

Figure: Parametric variability of the prefactor
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Gain in computational time

Figure: Relative time saving of the reduced solver
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3D test case in APOLLO3 code (MINARET solver)

Figure: Cross-sectional views of the 3D core

9 spatial regions
BC: uµ(x) = 0, x ∈ ∂Ω
Nh = 108800 DoFs per group
Training set of parameters Ptrain of cardinality 100 generated randomly
Prefactor set Ppref of cardinality 5
Test set Ptest of cardinality 10
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Convergence of the reduced basis approximation
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Computational runtime of the reduced-order model
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Conclusions and perspectives

Conclusions:
Efficient reduced-order model for criticity calculations in neutronics using the
reduced basis method

Very encouraging results obtained on two-group diffusion models with the
APOLLO3 code

Heuristic procedure to estimate the value of the prefactor which yields accurate
estimations of the true error

Perpsectives:
More complex parametric variability in the 3D APOLLO test case

Specific method to explore the parameter space: choice of Ptrain, Ppref?

Rigorous justification of the heuristic procedure used to estimate the prefactor

Efficient implementation of the reduced order model in the APOLLO code

Application of the reduced basis method for the reduction of transport models
(more complex than two-group diffusion models, like Boltzmann model)

Thank you for your attention!
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