Reduced Basis method for non-symmetric eigenvalue problems: application to neutronics

Yonah Conjungo-Taumhas¹, Geneviève Dusson³, Virginie Ehrlacher², Tony Lelièvre² & François Madiot¹

¹Université Paris-Saclay, CEA, Service d'Études des Réacteurs et de Mathématiques Appliquées, 91191 Gif-sur-Yvette, France

²CERMICS, Ecole des Ponts ParisTech & MATHERIALS team-project, INRIA

³Université de Franche-Comté, Besançon

École des Ponts ParisTech

Journées scientifiques du GdR MANU, Le Croisic, 24th October 2023

Criticity calculations in nuclear core reactor

2 Reduced basis method

Oriticity calculations in nuclear core reactor

2) Reduced basis method

- The behaviour of many systems can be described by the solutions of a system of Partial Differential Equations.
- These equations can depend on one or several parameters μ = (μ₁, · · · , μ_p) with p ∈ N* which can take values in a set denoted by P ⊂ R^p. In this case, for one particular value μ ∈ P of this vector of parameters, the associated solution to the PDE system is a function u_μ solution of

$\mathcal{A}(u_{\mu};\mu)=0,$

where $\mathcal{A}(\cdot; \mu)$ is some differential operator depending on the parameter vector μ .

Research nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Desprès, Golse, 2019]

- Spatial domain $\Omega \subset \mathbb{R}^d$ occupied by the nuclear core reactor
- Neutrons are assumed to be separated into 2 groups according to their energy:
 E = {*E*₁, *E*₂} (*E*₁ > *E*₂)
- μ ∈ P: vector of parameters of the problem, which encodes the values of the physical properties of the nuclear core

Problem of interest: Find

- $u_{\mu} = (u_{1,\mu}, u_{2,\mu}) : \Omega \to \mathbb{R}^2$: neutron scalar fluxes;
- $\lambda_{\mu} > 0$ eigenvalue with smallest modulus;

solution to the non-symmetric eigenvalue problem

 $\mathcal{A}_{\mu}\mathbf{u}_{\mu} = \lambda_{\mu}\mathcal{B}_{\mu}\mathbf{u}_{\mu}$

where \mathcal{A}_{μ} and \mathcal{B}_{μ} are linear operators such that $\mathcal{A}_{\mu}^{-1}\mathcal{B}_{\mu}$ satisfies the assumptions of the Krein-Rutman theorem.

The **Krein-Rutman theorem** is a generalisation of the **Perron-Frobenius theorem** to operators defined on infinite-dimensional Banach spaces.

Consequence of the Krein-Rutman theorem: there exists a unique eigenvalue with largest modulus $k_{\text{eff},u}$, which is **simple, positive** and such that

 $\mathcal{A}_{\mu}^{-1}\mathcal{B}_{\mu}u_{\mu}=k_{\mathrm{eff},\mu}u_{\mu}$

- u_{μ} is then uniquely defined (up to a sign factor);
- $k_{\text{eff},\mu} = \frac{1}{\lambda_{\mu}}$: effective multiplication factor

- k_{eff,µ} < 1: the fission reaction is not the prevailing phenomenon, then the total mean number of neutrons tends towards zero along time; the reactor is said to be subcritical
- *k*_{eff,μ} = 1: both creation and absorption of neutrons take as much place as the other inside the system; the reactor is said to be critical
- $k_{\text{eff},\mu} > 1$: the fission dominates the absorption phenomenon, therefore a chain reaction phenomenon takes place inside the system, and the total mean number of neutrons increases at an exponential rate, the system then tends to collapse; the reactor is said to be supercritical

 $\mathcal{A}_{\mu}u_{\mu} = \lambda_{\mu}\mathcal{B}_{\mu}u_{\mu}$

Two-group Diffusion Equation

$$\begin{aligned} &-\nabla \cdot \left(D_{1,\mu} \nabla u_{1,\mu} \right) + \Sigma_{11,\mu} u_{1,\mu} + \Sigma_{12,\mu} u_{2,\mu} \\ &= \lambda_{\mu} \left[\chi_{1,\mu} \left((\nu \Sigma_{f})_{1,\mu} u_{1,\mu} + (\nu \Sigma_{f})_{2,\mu} u_{2,\mu} \right) \right] \end{aligned}$$

$$-\nabla.\left(D_{2,\mu}\nabla u_{2,\mu}\right) + \Sigma_{22,\mu}u_{2,\mu} + \Sigma_{21,\mu}u_{1,\mu} \\ = \lambda_{\mu}\left[\chi_{2,\mu}\left((\nu\Sigma_{f})_{1,\mu}u_{1,\mu} + (\nu\Sigma_{f})_{2,\mu}u_{2,\mu}\right)\right]$$

(1)

- $\Sigma_{ii} = \Sigma_{ti} \Sigma_{s,ii};$
- Σ_{ti}: total cross-section of group i;
- Σ_{s,ij}: scattering cross-section from group *i* to group *j*;
- $\Sigma_{ij} = -\Sigma_{s,ij};$
- $D_i = \frac{1}{3\Sigma_{ii}}$: diffusion coefficient of group *i*;
- Σ_{fi}: fission cross-section of group *i*;
- *ν_i*: average number of neutrons of groupd *i* emitted per fission;
- χ_i : fission spectrum of group *i*

Parameters of the problem

- $\mu \in \mathcal{P}$ represents the **physical** properties of the core and its configuration.
- The spatial domain of calculation Ω is split into a structured grid that defines K regions. On each region Ω_k, μ^k represents the set of material parameters inside the domain Ω_k, so that μ = (μ¹,...,μ^K) ∈ P.

Figure: Cross-sectional view of the BSS-11 nuclear core reactor

- For a particular value of $\mu \in \mathcal{P}$, a numerical approximation of the solution u_{μ} is computed by some numerical scheme (for instance with a finite element code), the resolution of which may be very costly from a computational point of view.
- There exist a wide variety of contexts in which it is necessary to perform **parametric studies** of the problem at hand, i.e. to compute (a numerical approximation of) the solution u_{μ} for a very large number of values of the parameter vector μ as quickly as possible!

Examples:

- Design optimization
- Inverse problems
- Real-time control
- Uncertainty quantification

In such contexts, naive parametric studies using a standard finite element code may be extremely expensive from a computational point of view and time-consuming!

Model-order reduction methods have been developped to circumvent this difficulty. The principle of these methods is the following:

- Offline stage: Compute u_μ with a standard numerical scheme (for instance finite elements) for a small number of well-chosen values of the parameter vector μ; this stage can be quite expensive from a computational point of view.
- Build another model, a **reduced model** from these few (expensive) computations in order to compute numerical approximations of u_{μ} for many other values of μ , but at a computational cost which is **much cheaper** than the initial (finite element) scheme.
- **Online stage:** Use the reduced model (instead of the original finite element code) in order to compute much faster u_{μ} for a large number of values of μ .

Criticity calculations in nuclear core reactor

2 Reduced basis method

<ロト < 団 > < 臣 > < 臣 > 臣 の Q () 13/37 There exists a huge number of model-order reduction techniques in the litterature.

In this talk: **Reduced Basis method** for accelerating the resolution of parametrized **generalized non-symmetric eigenvalue problems**, with a view to accelerating parametric studies for criticity calculations.

A few seminal references:

- Cohen, Dahmen, DeVore, Maday, Patera...
- Reduced Basis Methods for Partial Differential Equations: An Introduction, Alfio Quarteroni, Andrea Manzoni, Federico Negri
- Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm

References on reduced basis techniques for symmetric eigenvalue problems: [Fumagalli, Manzoni, Parolini, Verani, 2016], [Horger, Wohlmuth, Dickopf, 2017]

References on reduced basis techniques for neutronic applications: [Sartori, Cammi, Luzzi, Rozza, 2016]

Two-Group Diffusion Equation (discrete formulation)

- Discretization of the spatial domain Ω with *P*1 crossed-triangular finite elements over a rectangle mesh
- The solution u_μ is approximated by an element u_{μ,h} belonging to a finite-dimensional subspace V_h of dimension N_h (number of DoFs):
 V_h = Span{(φ_i)_{i=1,N_h}}

Weak formulation of the problem

Α

Find
$$(u_{\mu,h}, u_{\mu,h}^*, k_{\mu,h}) \in V_h \times V_h \times \mathbb{R}^*_+$$
 such that
 $\forall v_h \in V_h, \quad a_{\mu,h}(u_{\mu,h}, v_h) = \frac{1}{k_{\mu,h}} b_{\mu,h}(u_{\mu,h}, v_h).$
djoint problem $\forall v_h \in V_h, \quad a_{\mu,h}(v_h, u_{\mu,h}^*) = \frac{1}{k_{\mu,h}} b_{\mu,h}(v_h, u_{\mu,h}^*).$

Two-Group Diffusion Equation (matrix form)

$$u_{\mu,h} = \sum_{i=1}^{N_h} (U_{\mu,h})_i \varphi_i, \quad u_{\mu,h}^* = \sum_{i=1}^{N_h} (U_{\mu,h}^*)_i \varphi_i$$
(2)

Matrix form of the problem

Find
$$(U_{\mu,h}, U_{\mu,h}^*, k_{\mu,h}) \in \mathbb{R}^{N_h} \times \mathbb{R}^{N_h} \times \mathbb{R}^*_+$$
 such that

$$A_{\mu,h}U_{\mu,h} = \frac{1}{k_{\mu,h}}B_{\mu,h}U_{\mu,h}$$
(3)
Adjoint problem $A_{\mu,h}^T U_{\mu,h}^* = \frac{1}{k_{\mu,h}}B_{\mu,h}^T U_{\mu,h}^*$

Generalized eigenvalue problem

- $A_{\mu,h} \in \mathbb{R}^{N_h imes N_h}$ is **non-symmetric**, invertible, with a coercive symmetric part
- $B_{\mu,h} \in \mathbb{R}^{N_h \times N_h}$ is **non-symmetric**, not invertible and positive

・ロト ・四ト ・ヨト ・ヨト … ヨ

- The resolution of the high-fidelity problem for a large number of values of the parameter vector µ ∈ P may be very costly from a computational point of view because N_h is large!
- The principle of the reduced basis method is to approximate the solution $(u_{\mu,h}, u_{\mu,h}^*, k_{\mu,h})$ by a Galerkin approximation associated to a linear subspace $V_N \subset V_h$ of dimension at most 2*N* with *N* much smaller than N_h .
- The reduced space V_N is chosen such that

 $V_{N} = \operatorname{Vect} \left\{ u_{\mu_{1},h}, u_{\mu_{1},h}^{*}, \cdots, u_{\mu_{N},h}, u_{\mu_{N},h}^{*} \right\},\$

where μ_1, \dots, μ_N are *N* particular well-chosen values of the parameter vector μ .

• In the **offline stage**, the high-fidelity problem is only solved for this *N* values of the parameter vector.

Galerkin approximation of the eigenvalue problem in the discretization space V_N

Weak formulation of the reduced problem

Find $(u_{\mu,N}, u_{\mu,N}^*, k_{\mu,N}) \in V_N \times V_N \times \mathbb{R}^*_+$ such that $\forall v_N \in V_N, \quad a_{\mu,h}(u_{\mu,N}, v_N) = \frac{1}{k_{\mu,N}} b_{\mu,h}(u_{\mu,N}, v_N).$ Adjoint problem $\forall v_N \in V_N, \quad a_{\mu,h}(v_N, u_{\mu,N}^*) = \frac{1}{k_{\mu,N}} b_{\mu,h}(v_N, u_{\mu,N}^*).$

- In the online stage, for each new value of µ ∈ P, an atmost 2N-dimensional matrix eigenvalue problem is solved. When N ≪ N_h, the resolution of the reduced problem is much cheaper from a computational point of view than the resolution of the original high-fidelity problem!
- **Reduced basis**: Let $n := \dim V_N$ and $(\theta_1, \dots, \theta_n)$ be an orthonormal basis of V_N . Denoting by

$$\Theta_N := (\theta_1 | \cdots | \theta_n) \in \mathbb{R}^{N_h \times n},$$

We define the $n \times n$ reduced matrices:

$$\begin{cases} A_{\mu,N} = \Theta_N^T A_{\mu,h} \Theta_N \\ B_{\mu,N} = \Theta_N^T B_{\mu,h} \Theta_N \end{cases}$$

Reduced problem

Find
$$(c_{\mu,N}, c_{\mu,N}^*, k_{\mu,N}) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^+$$
 such that
 $A_{\mu,N}c_{\mu,N} = \frac{1}{k_{\mu,N}}B_{\mu,N}c_{\mu,N}$ and $U_{\mu,N} = \Theta_N c_{\mu,N}$
 $A_{\mu,N}^T c_{\mu,N}^* = \frac{1}{k_{\mu,N}}B_{\mu,N}^T c_{\mu,N}^*$ and $U_{\mu,N}^* = \Theta_N c_{\mu,N}^*$

$$u_{\mu,N} := \sum_{i=1}^{N_h} \left(U_{\mu,N}
ight)_i arphi_i, \quad u_{\mu,N}^* := \sum_{i=1}^{N_h} \left(U_{\mu,N}^*
ight)_i arphi_i.$$

4 ロ ト 4 団 ト 4 臣 ト 4 臣 ト 臣 の Q (ひ)
20/37

Efficient computation of the reduced matrices

Assumption: Separability of the data of the problem

$$m{A}_{\mu,h} = \sum_{
ho=1}^{
ho} g_{
ho}(\mu) m{A}_{
ho,h}$$

Offline phase: Compute for all $1 \le p \le P$

 $A_{p,N} = \Theta_N^T A_{p,h} \Theta_N$

Online phase: For $\mu \in \mathcal{P}$, compute $A_{\mu,N}$ as

$$A_{\mu,N} = \sum_{
ho=1}^{
ho} g_{
ho}(\mu) A_{
ho,N}$$

Complexity: $\mathcal{O}(Pn^2)$ (no dependence in N_h)

Similar computation for $B_{\mu,N}$.

How to build V_N ?

This is usually done via an iterative algorithm called a greedy algorithm.

Need to choose a finite subset $\mathcal{P}_{train} \subset \mathcal{P}$, called **training set**.

Naive Greedy algorithm

• Choose randomly $\mu_1 \in \mathcal{P}_{\text{train}}$.

$$V_1 = \text{Vect} \{ u_{\mu_1,h}, u_{\mu_1,h}^* \}$$

• Iteration *N*: Choose $\mu_N \in \mathcal{P}_{\text{train}}$ such that

 $\mu_{N} \in \operatorname*{argmax}_{\mu \in \mathcal{P}_{\mathrm{train}}} |k_{\mu,h} - k_{\mu,N-1}|$

$$V_N = \text{Vect} \{ u_{\mu_1,h}, u_{\mu_1,h}^*, \cdots, u_{\mu_N,h}, u_{\mu_N,h}^* \}$$

A naive version of the Greedy algorithm requires to evaluate $k_{\mu,h}$, for all $\mu \in \Lambda_{\text{train}}$ \rightarrow too expensive...

Practical algorithm:

Replace $e_{N-1}^{k}(\mu) := |k_{\mu,h} - k_{\mu,N-1}|$ by an easy-to-compute **a posteriori error** estimator $\Delta_{N-1}^{k}(\mu)$. Residuals:

$$R_{\mu,N} = (B_{\mu,h} - k_{\mu,N}A_{\mu,h}) u_{\mu,N}$$

$$R_{\mu,N}^* = \left(B_{\mu,h}^T - k_{\mu,N}A_{\mu,h}^T\right) u_{\mu,N}^*$$
(4)

Proposition. A posteriori error estimator

There exists a positive constant $C^{k}(\mu) > 0$ (called the **prefactor**) such that for all $\mu \in \mathcal{P}$,

$$e_{N}^{k}(\mu) = |k_{\mu,h} - k_{\mu,N}| \leqslant C^{k}(\mu) \frac{||R_{\mu,N}||_{*} ||R_{\mu,N}^{*}||_{*}}{\langle c_{\mu,N}^{*}, A_{\mu,N} c_{\mu,N} \rangle} = C^{k}(\mu) \eta_{N}^{k}(\mu)$$
(5)

with $\eta_N^k(\mu) := \frac{\|R_{\mu,N}\|_* \|R_{\mu,N}^*\|_*}{\langle c_{\mu,N}^*, A_{\mu,N} c_{\mu,N} \rangle}$ and $\|\cdot\|_*$ a norm on \mathbb{R}^{N_h} .

Residuals:

$$R_{\mu,N} = (B_{\mu,h} - k_{\mu,N}A_{\mu,h}) u_{\mu,N}$$

$$R_{\mu,N}^* = \left(B_{\mu,h}^T - k_{\mu,N}A_{\mu,h}^T\right) u_{\mu,N}^*$$
(6)

Proposition. A posteriori error estimator

There exist positive constants $C^{u}(\mu)$, $C^{u_*}(\mu) > 0$ (called the **prefactors**) such that for all $\mu \in \mathcal{P}$,

$$e_{N}^{u}(\mu) = \|u_{\mu,h} - u_{\mu,N}\| \leq C^{u}(\mu)\|R_{\mu,N}\|_{*} = C^{u}(\mu)\eta_{N}^{u}(\mu)$$
(7)

and

$$e_{N}^{u^{*}}(\mu) = \left\| u_{\mu,h}^{*} - u_{\mu,N}^{*} \right\| \leqslant C^{u^{*}}(\mu) \| R_{\mu,N}^{*} \|_{*} = C^{u^{*}}(\mu) \eta_{N}^{u^{*}}(\mu)$$
(8)

where $\|\cdot\|$ and $\|\cdot\|_*$ are dual norms of one another.

Example: If $\|\cdot\|$ is a discrete $H_0^1(\Omega)$ norm, $\|\cdot\|_*$ is a then discrete $H^{-1}(\Omega)$ norm.

Practical a posteriori error estimator:

$$\Delta_{N}^{k}(\mu) = \overline{C}_{N}^{k} \frac{\|R_{\mu,N}\| \|R_{\mu,N}^{*}\|}{\langle c_{\mu,N}^{*}, A_{\mu,N} c_{\mu,N} \rangle} = \overline{C}_{N}^{k} \eta_{N}^{k}(\mu)$$

where \overline{C}_{N}^{k} is a heuristic estimation of the prefactor $C^{k}(\mu)$

Δ^k_N(μ) can be efficiently computed with complexity O(n²) if the data of the problem is separated.

Actual Greedy algorithm

• Choose randomly $\mu_1 \in \mathcal{P}_{train}$.

$$V_1 = \text{Vect} \{ u_{\mu_1,h}, u_{\mu_1,h}^* \}$$

• Iteration *N*: Choose $\mu_N \in \mathcal{P}_{train}$ such that

$$\mu_N \in \underset{\mu \in \mathcal{P}_{\text{train}}}{\operatorname{argmax}} \Delta_{N-1}^k(\mu).$$

$$V_{N} = \operatorname{Vect} \left\{ u_{\mu_{1},h}, u_{\mu_{1},h}^{*}, \cdots, u_{\mu_{N},h}, u_{\mu_{N},h}^{*} \right\}$$

<ロ> < (回) < (u) < (

Need to choose a finite subset $\mathcal{P}_{pref} \subset \mathcal{P}$, called **prefactor set** such that $\mathcal{P}_{pref} \cap \mathcal{P}_{train} = \emptyset$.

- Solve the high-fidelity problem for all $\mu \in \mathcal{P}_{\text{pref}}$.
- Compute for all $\mu \in \mathcal{P}_{\text{pref}}, \mathcal{E}_{N}^{k}(\mu) := \frac{|k_{\mu,h} k_{\mu,N}|}{\eta_{N}^{k}(\mu)}.$
- Define

$$\overline{\pmb{C}}_{\pmb{N}}^{\pmb{k}} := \max_{\mu \in \mathcal{P}_{\mathsf{pref}}} \mathcal{E}_{\pmb{N}}^{\pmb{k}}(\mu).$$

Criticity calculations in nuclear core reactor

2) Reduced basis method

First toy test case: the MiniCore problem

- 25 spatial regions
- *L* = 107.52 *cm*
- UGD12: mix of uranium dioxyde and Galinium oxyde
- UO2: uranium dioxyde
- BC: $u_{\mu}(x) = 0$, $x \in \partial \Omega$
- $N_h = 2602$ DoFs per group
- $\bullet~$ Training set of parameters \mathcal{P}_{train} of cardinality 1000 generated randomly

29/37

100

80

60

40

20

Reduced-order model obtained with N = 100

Convergence of the reduced basis : mean relative errors over \mathcal{P}_{test}

- $\mathcal{P}_{test} \subset \mathcal{P}$ with cardinality 50 (test set)
- $\mathcal{P}_{pref} \subset \mathcal{P}$ with cardinality 10 (prefactor set)

31/37

Parametric variability of the prefactor

Figure: Parametric variability of the prefactor

Gain in computational time

Figure: Relative time saving of the reduced solver > < => < => > = -> < <

3D test case in APOLLO3 code (MINARET solver)

Figure: Cross-sectional views of the 3D core

- 9 spatial regions
- BC: $u_{\mu}(x) = 0$, $x \in \partial \Omega$
- *N_h* = 108800 DoFs per group
- $\bullet~$ Training set of parameters \mathcal{P}_{train} of cardinality 100 generated randomly
- Prefactor set \mathcal{P}_{pref} of cardinality 5
- Test set \mathcal{P}_{test} of cardinality 10

Convergence of the reduced basis approximation

イロン イロン イヨン イヨン 36/37

Conclusions and perspectives

Conclusions:

- Efficient reduced-order model for criticity calculations in neutronics using the reduced basis method
- Very encouraging results obtained on two-group diffusion models with the APOLLO3 code
- Heuristic procedure to estimate the value of the prefactor which yields accurate estimations of the true error

Perpsectives:

- More complex parametric variability in the 3D APOLLO test case
- Specific method to explore the parameter space: choice of $\mathcal{P}_{train}, \mathcal{P}_{pref}$?
- Rigorous justification of the heuristic procedure used to estimate the prefactor
- Efficient implementation of the reduced order model in the APOLLO code
- Application of the reduced basis method for the reduction of transport models (more complex than two-group diffusion models, like Boltzmann model)

Thank you for your attention!