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e Reduced basis method
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ﬂ Criticity calculations in nuclear core reactor
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Parametrized PDEs

@ The behaviour of many systems can be described by the solutions of a system of
Partial Differential Equations.

@ These equations can depend on one or several parameters o = (1, , lip)
withp € N* which can take values in a set denoted by P C R,
In this case, for one particular value 1 € P of this vector of parameters, the
associated solution to the PDE system is a function u,, solution of

A(uy; ) =0,

where A(-; 1) is some differential operator depending on the parameter vector .
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Research nuclear core reactor

5/37



Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Després, Golse, 2019]

@ Spatial domain Q c R? occupied by the nuclear core reactor

@ Neutrons are assumed to be separated into 2 groups according to their energy:
E ={E, B} (E > E)

@ 1 € P: vector of parameters of the problem, which encodes the values of the
physical properties of the nuclear core

Problem of interest: Find
® u, = (U, Uz,) : Q — RZ: neutron scalar fluxes;
@ )\, > 0 eigenvalue with smallest modulus;
solution to the non-symmetric eigenvalue problem

Apu, = Buuy,

where A, and B,, are linear operators such that A" B,, satisfies the assumptions of
the Krein-Rutman theorem.
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Krein-Rutman theorem

The Krein-Rutman theorem is a generalisation of the Perron-Frobenius theorem to
operators defined on infinite-dimensional Banach spaces.

Consequence of the Krein-Rutman theorem: there exists a unique eigenvalue with
largest modulus k., which is simple, positive and such that

—1
Au Buu, = keff,uuu

@ u, is then uniquely defined (up to a sign factor);
@ Keft, = % effective multiplication factor
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Effective multiplication factor

@ Ko, < 1: the fission reaction is not the prevailing phenomenon, then the total
mean number of neutrons tends towards zero along time;
the reactor is said to be subcritical

@ ke, = 1: both creation and absorption of neutrons take as much place as the
other inside the system;
the reactor is said to be critical

® ke, > 1: the fission dominates the absorption phenomenon, therefore a chain
reaction phenomenon takes place inside the system, and the total mean number
of neutrons increases at an exponential rate, the system then tends to collapse;
the reactor is said to be supercritical
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Two-Group Diffusion Equation

Apu, = A Buuy,

Two-group Diffusion Equation

=V - (D1,uVU1) + Za1,,U1p + Tiz Uz
= >\l" [XLN ((sz)“:NULN + (sz)2,u,u2,u)]

~V. (D2, V) + Top o pu + Fot b
=M X, (WE)1,0u1,0 + (VEf)2,.U2,,0) ] (1

®© ©6 6 066 060 06090

Yi= X4 — Xsii;
¥ total cross-section of group i;
Y5 j- scattering cross-section from group i to group j;
Yj=—X;
D; = éﬂ diffusion coefficient of group i;
¥ j: fission cross-section of group i;
vj: average number of neutrons of groupd / emitted per fission;
xi: fission spectrum of group i
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Parameters of the problem

@ 1 € P represents the physical properties of the core and its configuration.
@ The spatial domain of calculation Q is split into a structured grid that defines K
regions. On each region Q, u* represents the set of material parameters inside

the domain Q, so that . = (1!, . ..
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Figure: Cross-sectional view of the BSS-11 nuclear core'reactor
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Motivation of model-order reduction methods

@ For a particular value of i € P, a numerical approximation of the solution u,, is
computed by some numerical scheme (for instance with a finite element code), the
resolution of which may be very costly from a computational point of view.

@ There exist a wide variety of contexts in which it is necessary to perform
parametric studies of the problem at hand, i.e. to compute (a numerical
approximation of) the solution u,, for a very large number of values of the
parameter vector . as quickly as possible!

Examples:
@ Design optimization
@ Inverse problems
@ Real-time control
@ Uncertainty quantification

In such contexts, naive parametric studies using a standard finite element code may be
extremely expensive from a computational point of view and time-consuming!
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Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty.
The principle of these methods is the following:

o Offline stage: Compute u,, with a standard numerical scheme (for instance finite
elements) for a small number of well-chosen values of the parameter vector y;
this stage can be quite expensive from a computational point of view.

@ Build another model, a reduced model from these few (expensive) computations
in order to compute numerical approximations of u,, for many other values of .,
but at a computational cost which is much cheaper than the initial (finite element)
scheme.

@ Online stage: Use the reduced model (instead of the original finite element code)
in order to compute much faster u,, for a large number of values of .
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e Reduced basis method
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Reduced-basis method

There exists a huge number of model-order reduction techniques in the litterature.

In this talk: Reduced Basis method for accelerating the resolution of parametrized
generalized non-symmetric eigenvalue problems, with a view to accelerating
parametric studies for criticity calculations.
A few seminal references:

@ Cohen, Dahmen, DeVore, Maday, Patera...

@ Reduced Basis Methods for Partial Differential Equations: An Introduction, Alfio
Quarteroni, Andrea Manzoni, Federico Negri

@ Certified Reduced Basis Methods for Parametrized Partial Differential Equations,
Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm
References on reduced basis techniques for symmetric eigenvalue problems:
[Fumagalli, Manzoni, Parolini, Verani, 2016], [Horger, WohIimuth, Dickopf, 2017]

References on reduced basis techniques for neutronic applications:
[Sartori, Cammi, Luzzi, Rozza, 2016]
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Two-Group Diffusion Equation (discrete formulation)

@ Discretization of the spatial domain Q with P1 crossed-triangular finite elements
over a rectangle mesh

@ The solution u,, is approximated by an element u,, » belonging to a
finite-dimensional subspace Vj, of dimension N, (number of DoFs):
Vi = Span{(i)i=1,n, }

Weak formulation of the problem

Find (Uu,n, Ujs hy Kuin) € Vi x Vi x RS such that

Vh € Vi, @un(Up,hs Vi) = 7—Dp,n(Up,n, Vh)-

e
Ko

PN * 1 *
Adjoint problem Vv, € Vi, @, n(Vh, U 5) = rhbu,h(Vm Uy, h)-
L,
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Two-Group Diffusion Equation (matrix form)

Npy Np

U = > (Uunieis Upn= > (Uin)iwi @)

i=1 i=1

Matrix form of the problem

Find (U, n, U py kun) € RY x R™ x R such that

1
AunUpn = k—BM,hU h (3)
w,h
Adjoint problem  A] U , = kLBZYhU‘ﬁ,,,
w,h

@ Generalized eigenvalue problem
@ A, n € RN is non-symmetric, invertible, with a coercive symmetric part
@ B,he RNaxNa g non-symmetric, not invertible and positive

— High-fidelity problem
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Reduced basis method

@ The resolution of the high-fidelity problem for a large number of values of the
parameter vector p € P may be very costly from a computational point of view
because Nj is large!

@ The principle of the reduced basis method is to approximate the solution

(Uy.h, U, 1y Ku,n) by @ Galerkin approximation associated to a linear subspace

Vi C V;, of dimension at most 2N with N much smaller than Nj,.
@ The reduced space V) is chosen such that

*

*
VN = Vect {uu1,h7 u,u1,h7 Tty U,uN,ha U,u,N,h} )

where p4,-- -, un are N particular well-chosen values of the parameter vector .

@ In the offline stage, the high-fidelity problem is only solved for this N values of the
parameter vector.
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Online stage of the Reduced Basis method

Galerkin approximation of the eigenvalue problem in the discretization space Vi

Weak formulation of the reduced problem

Find (Uun, U v, Kun) € Vv x Vi x RY such that

b
Vv € W,  aun(Uun, V) = rNbu,h(Uu,Na VN)-
7R

* 1 *
Adjoint problem Vvy € Vi, a,n(w, U n) = rNbu,h(VNy Uy N)-
,

18/37



Online stage of the reduced basis method

@ In the online stage, for each new value of i € P, an atmost 2N-dimensional
matrix eigenvalue problem is solved. When N < Nj, the resolution of the reduced
problem is much cheaper from a computational point of view than the resolution of
the original high-fidelity problem!

@ Reduced basis: Let n:= dimVjy and (61, - - - ,8,) be an orthonormal basis of Vy.
Denoting by

On = (01]---10n) € RM",
We define the n x n reduced matrices:

A.n=OLA, ON
B.n = ©kB,.nOn
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Approximate solutions given by the reduced basis method

Reduced problem

Find (c..n, Cins Kun) € R” x R” x R} such that

1
Au,NCu,N = TNB”’NC”’N and UH,N = eNCH’N
I

T 1 i * *
AuNCuN = NB;L,NC;,N and U, n = OnC,n
1

Np

Nn
Uyn = Z (UunN); i U= Z (Uin), @i
i—1

i=1
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Efficient computation of the reduced matrices

Assumption: Separability of the data of the problem

P
Aun= Z 9n(1)Ap,n

p=1

Offline phase: Compute forall1 <p <P
Apn = @/(/Ap,h@N

Online phase: For i € P, compute A, v as

P
Aun = Z (1) Ap.N

p=1
Complexity: O(Pn?) (no dependence in Nj)
Similar computation for B, y.
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How to build Vy ?

This is usually done via an iterative algorithm called a greedy algorithm.

Need to choose a finite subset Pyain C P, called training set.

Naive Greedy algorithm

@ Choose randomly p1 € Pyain-

Vi = Vect {Um,h, U;hh}
@ lteration N: Choose un € Prain Such that

pn € argmax |k, n — K n—1|
Meptrain

*

.
Vv = Vect {Uyuy s Upy iy 5 Uny,hs Uy }

A naive version of the Greedy algorithm requires to evaluate k,, p, for all ;& € Ayain
— too expensive...

Practical algorithm:
Replace ef,_; (1) := |k.» — k. n—1| by an easy-to-compute a posteriori error
B s
estimator A ().
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Error on the eigenvalue

@ Residuals:
Run = (Bun — KuNAyup) Un
;,N = (Bl,h - k,u,NAL—,h) U:z,N (4)

Proposition.A posteriori error estimator

There exists a positive constant C*(1) > 0 (called the prefactor) such that for all

neP,
| Bl 1Rl «

k k
(G AuNCun) = C*(m)nn(k) ®)

eﬁ/(u) = |Ku,n — Kun| < Ck( )

Nl Bl and || - ||. a norm on R"x,

h
with i (p) := (€ n> AuNCN)
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Error on the eigenvectors

@ Residuals:
F"u,N = (Buyh - kuyNAuyh) Up,N

Rin = (Bl — KunAlLs) Ui (6)

Proposition.A posteriori error estimator

There exist positive constants C“(u), C** () > 0 (called the prefactors) such that for
all w € P,

en(p) = ltpp — Ul < C(W)IIRu NI« = C*(1)nn(p) @)
and
&N (1) = [[upn — Uil < C7 (IR = C (ki (1) ®)
where || - || and || - ||« are dual norms of one another.

Example: If || - || is a discrete H}(Q2) norm, || - || is a then discrete H~'(Q) norm.
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How to build Vy ?

@ Practical a posteriori error estimator:

k NBunllIBinll =«

Ay =7C =
n () CN(C;N,AM,NC;L,N) NN (1)

where 5’;, is a heuristic estimation of the prefactor C* (1)

@ A% () can be efficiently computed with complexity O(n?) if the data of the
problem is separated.
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How to build Vy ?

Actual Greedy algorithm
@ Choose randomly pi1 € Prain.

Vi = Vect {U;L1,h, U;;,h}
@ lteration N: Choose un € Pyain Such that

k
un € argmax Ay ().
HEPhrain

*

"
Vi = Vect {um oy Upgny oo Uy hy uI»Lth}
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How to build 5’;, ? Heuristic procedure

Need to choose a finite subset Pyt C P, called prefactor set such that
Ppref N Ptrain = @

@ Solve the high-fidelity problem for all 1o € Pper.

_ Rk n—ku Nl

@ Compute for all p € Ppret, Ex(11) o
En

@ Define
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e Numerical tests
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First toy test case: the MiniCore problem

Vacuum

mm UGDI12
mm UO2
IReflector

Vacuum Vacuum

Vacuum

25 spatial regions

L=107.52 cm

UGD12: mix of uranium dioxyde and Galinium oxyde

UQ2: uranium dioxyde

BC: uu(x) =0, xe€0Q

Ny, = 2602 DoFs per group

Training set of parameters P4, Of cardinality 1000 generated randomly

© 6 6 6 06 000
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High-fidelity and reduced solver

Reduced-order model obtained with N = 100
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Convergence of the reduced basis : mean

@ Pest C P with cardinality 50 (test set)

@ Ppet C P with cardinality 10 (prefactor set)
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Parametric variability of the prefactor

3 %1071

it -

21075
= o
61072

o] T A
10 o 4 -2
= ax(w) 4% 10

kin)

50 0 10 20 30 40 50

0 10 20 30 40
Index for test parameter

Index for test parameter

Figure: Parametric variability of the prefactor
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Gain in computational time
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Figure: Relative time saving of the reduced solver
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3D test case in APOLLOS code (MINARET solver)

Figure: Cross-sectional views of the 3D core

@ 9 spatial regions

@ BC:uu(x) =0, xe€9Q

@ N, = 108800 DoFs per group

@ Training set of parameters Pyain 0f cardinality 100 generated randomly
@ Prefactor set Pyrer 0Of cardinality 5

@ Test set Prest Of cardinality 10
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Convergence of the reduced basis approximation

Errors.

Errors on Kerr

Errors on the direct flux uy

Errors on the adjoint flux uy
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Computational runtime of the reduced-order model
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Conclusions and perspectives

Conclusions:

@ Efficient reduced-order model for criticity calculations in neutronics using the
reduced basis method

@ Very encouraging results obtained on two-group diffusion models with the
APOLLOS3 code

@ Heuristic procedure to estimate the value of the prefactor which yields accurate
estimations of the true error

Perpsectives:
@ More complex parametric variability in the 3D APOLLO test case
@ Specific method to explore the parameter space: choice of Piain, Poret?
@ Rigorous justification of the heuristic procedure used to estimate the prefactor
o Efficient implementation of the reduced order model in the APOLLO code

@ Application of the reduced basis method for the reduction of transport models
(more complex than two-group diffusion models, like Boltzmann model)

Thank you for your attention!
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