## DT Invariants and Holomorphic Curves

Pierrick Bousseau

University of Georgia

Wall-Crossing Structures, Analyticity and Resurgence IHES, 9 June 2023

### Introduction

### Relation between two topics:

- Donaldson–Thomas (DT) invariants of non-compact Calabi-Yau 3-folds:
  - ► Counts of stable coherent sheaves (or complexes of coherent sheaves) on *X* or special Lagrangian submanifolds of its mirror *Y*.
  - ▶ Counts of BPS states for the  $\mathcal{N}=2$  4d field theory  $\mathcal{T}$  obtained by considering IIA or IIB string theory on  $X \times \mathbb{R}^4$ .
- Holomorphic curves in a hyperkähler manifold  $\mathcal{M}$ .
  - $ightharpoonup \mathcal{M}$ : Coulomb branch of  $\mathcal{T}$  on  $S^1 imes \mathbb{R}^3$ , Seiberg–Witten integrable system.

### Plan

- General expected picture [Kontsevich-Soibelman 1303.3253]
- A concrete example [B 1909.02985-1909.02992, B-Descombes-Le Floch-Pioline 2210.10712]:
  - ▶ DT invariants for coherent sheaves on local  $\mathbb{P}^2$ :  $X = K_{\mathbb{P}^2} = \mathcal{O}_{\mathbb{P}^2}(-3)$ , non-compact Calabi-Yau 3-fold.
  - holomorphic curves in  $\mathcal{M}$ ,  $(\mathcal{M}, I)$ : elliptic fibration,  $(\mathcal{M}, J) = \mathbb{P}^2 \setminus E$ ,  $ALH^*$  metric.
  - ▶ Related to the expected resurgence properties of the solutions and quantum periods of a difference equation (quantum mirror curve).
- An heuristic/physics derivation of the general correspondence [B 2210.17001]
  - ▶ Holomorphic Floer theory for  $\mathcal{M}$ .

## Geometry: DT invariants

DT invariants:

$$\Omega_{\gamma}(u) \in \mathbb{Z}$$

counts of geometric objects on a Calabi-Yau 3-fold X, with given topology class  $\gamma \in \mathbb{Z}^n$  and satisfying a (Bridgeland) stability condition u.

- Examples:
  - ▶ Stable holomorphic vector bundles of Chern character  $\gamma$  for a Kähler parameter u.
  - Special Lagrangian submanifolds of class  $\gamma$  for a complex parameter u.

### Physics: BPS states in $\mathcal{N}=2$ 4d field theories

- $\mathcal{N}=2$  supersymmetric 4d field theories
  - ▶ B: Coulomb branch of vacua of the 4d theory,  $B \simeq \mathbb{C}^r$ .
  - ▶ In a generic vacuum  $u \in B \setminus \Delta$ , abelian gauge theory  $U(1)^r$
  - ▶ Supersymmetry: charge  $\gamma$ , central charge  $Z_{\gamma}(u) \in \mathbb{C}$ , BPS bound

$$|M| \geq |Z_{\gamma}(u)|$$

- ▶ Space of BPS states, saturating the BPS bound:  $H_{\gamma}(u)$
- ► BPS index

$$\Omega_{\gamma}(u) = \operatorname{Tr}_{H_{\gamma}(u)}(-1)^F$$

### From geometry to physics

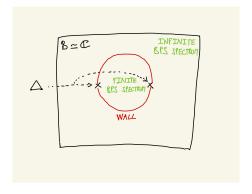
- ullet Geometric constructions from string theory: IIA or IIB string on Calabi-Yau 3-fold X
- Expectations:
  - ▶ the universal cover of  $B \setminus \Delta$  naturally maps to the space of Bridgeland stability conditions.
  - ▶ DT invariants = BPS indices: stability  $u \in B \setminus \Delta$
- ullet From now on: consider  $\mathcal{N}=2$  4d field theories without gravity.
  - ► Geometrically: non-compact Calabi-Yau 3-folds.

### Wall-crossing

- $\Omega_{\gamma}(u)$ : constant function of u away from codimension one loci in B, called walls, across which  $\Omega_{\gamma}(u)$  jumps discontinuously.
- Jumps controlled by a universal wall-crossing formula [Kontsevich-Soibelman]:

$$\{\Omega_{\gamma}(u^{-})\}_{\gamma} \to \{\Omega_{\gamma}(u^{+})\}_{\gamma}$$
.

• Example:  $\mathcal{N}=2$  SU(2) gauge theory



## Seiberg-Witten integrable system

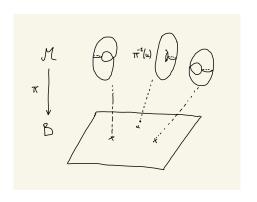
•  $\mathcal{M}$ : Coulomb branch of the theory on  $\mathbb{R}^3 \times S^1$ , hyperkähler manifold of complex dimension 2r, complex integrable system:

$$\pi: \mathcal{M} \longrightarrow B$$

- Twistor sphere of complex structures I, J, K
  - $\blacktriangleright$   $\pi$  *I*-holomorphic: in complex structure *I*, generic fibers of  $\pi$  are abelian varieties of dimension *r*.
  - ▶ for every  $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ , generic fibers of  $\pi$  are special Lagrangians in complex structure  $J_{\theta} = (\cos \theta)J + (\sin \theta)K$ .
  - ▶ Low energy: 3d  $\mathcal{N} = 4$  sigma model with target  $\mathcal{M}$
- $u \in B \setminus \Delta$ ,  $\gamma \in \pi_2(\mathcal{M}, \pi^{-1}(u)) \to H_1(\pi^{-1}(u), \mathbb{Z}) = \mathbb{Z}^{2r}$ ,

$$Z_{\gamma}(u) = \int_{\gamma} \Omega_{I}$$

## Seiberg-Witten integrable system



• Class S on  $C: \pi: \mathcal{M} \to B$  is (essentially) the Hitchin integrable system for C.

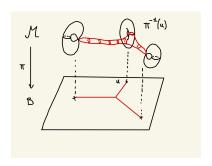
### Expectation

• For every point  $u \in B \setminus \Delta$ , and class  $\gamma \in \pi_2(\mathcal{M}, \pi^{-1}(u))$ ,

$$\Omega_{\gamma}(u) = N_{\gamma}(u)$$
.

- $ightharpoonup \Omega_{\gamma}(u)$ : DT/BPS invariants counting *u*-stable objects of class  $\gamma$ .
- ▶  $N_{\gamma}(u)$ : count of  $J_{\theta}$ -holomorphic disks in  $\mathcal{M}$  with boundary on the fiber  $\pi^{-1}(u)$  and of class  $\gamma$ , where  $\theta = \operatorname{Arg} Z_{\gamma}(u)$ .
- Evidence:
  - lacktriangle BPS spectrum  $\{\Omega_{\gamma}(u)\} o$  hyperkähler geometry of  ${\mathcal M}$  [Gaiotto-Moore-Neitzke]
  - ▶  $J_{\theta}$ -holomorphic disks: instantons/quantum corrections to construct the mirror of  $(\mathcal{M}, \omega_{\theta})$  [Fukaya, Kontsevich-Soibelman, Gross-Siebert]
  - ► Same wall-crossing formula [Kontsevich-Soibelman]
  - ► Tropical curves in *B* from holomorphic disks and attractor trees from DT invariants [Kontsevich-Soibelman]

## Expectation



#### Problems:

- The embedding of B in the space of Bridgeland stability conditions is not known in general.
- Defining counts of holomorphic disks is difficult in general.

### Examples:

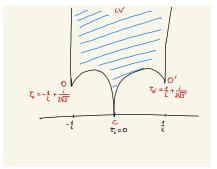
- Log Gromov-Witten invariants: algebro-geometric version of holomorphic disks used by Gross-Siebert in their mirror symmetry construction.
- DT invariants of quivers with potential versus log Gromov–Witten invariants of toric and cluster varieties [B-Argüz 2302.02068].
- This talk:
  - ightharpoonup DT invariants counting coherent sheaves on local  $\mathbb{P}^2$
  - ▶ One of the few examples where the embedding in the space of Bridgeland stability conditions is known.

### Local $\mathbb{P}^2$

- $X = K_{\mathbb{P}^2} = \mathcal{O}_{\mathbb{P}^2}(-3)$  non-compact Calabi-Yau 3-fold
  - ightharpoonup Zero section  $\iota \colon \mathbb{P}^2 \hookrightarrow X$
- $D_{\mathbb{P}^2}(X)$ : bounded derived category of sheaves on X set-theoretically supported on  $\mathbb{P}^2$ 
  - $\blacktriangleright \iota_*: D^b Coh(\mathbb{P}^2) \to D_{\mathbb{P}^2}(X)$
  - $ightharpoonup \mathcal{O}(n) := \iota_* \mathcal{O}_{\mathbb{P}^2}(n)$  (D4-branes with n units of D2-charges)
- IIA string theory on X:  $\mathcal{N}=2$  4d theory.
  - ▶ Seiberg-Witten geometry  $\pi: \mathcal{M} \to B$ ?
  - Mirror symmetry:  $B \setminus \Delta = \mathbb{H}/\Gamma_1(3)$ , modular curve.  $\mathcal{M}$ : universal family of elliptic curves.

### $\mathcal{M} \to \underline{B}$

A fundamental domain  $F_C$  of  $\Gamma_1(3)$  acting on  $\mathbb{H}$ :

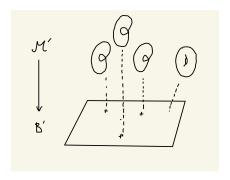


The modular curve  $B \setminus \Delta = \mathbb{H}/\Gamma_1(3)$ :



### $\mathcal{M}' \to B'$

- Work on the 3:1 cover B' of B resolving the orbifold point.
- $\mathcal{M}' \to \mathcal{B}'$ : elliptic fibration with 3 singular fibers.



## Map to the space of stability conditions

- $Stab(D_{\mathbb{P}^2}(X))$ : space of Bridgeland stability conditions on  $D_{\mathbb{P}^2}(X)$ , complex manifold of dimension 3
- Bayer-Macri (2009):

$$\widetilde{B \setminus \Delta} = \mathbb{H} o Stab(D_{\mathbb{P}^2}(X))$$
 $au \mapsto (\mathcal{A}( au), \mathcal{Z}( au))$ 

Central charge, additive map:

$$Z( au): \Gamma = \mathcal{K}_0(D_{\mathbb{P}^2}(X)) = \mathbb{Z}^3 o \mathbb{C}$$
  $\gamma \mapsto Z_{\gamma}( au)$ 

## DT/BPS invariants

To summarize:

$$\widetilde{B \setminus \Delta} = \mathbb{H} o \mathit{Stab}(D_{\mathbb{P}^2}(X)) \ au \mapsto (\mathcal{A}( au), \mathcal{Z}( au))$$

- We can then do DT theory.
  - ► Moduli spaces

$$M(\gamma, \tau) = \{\tau\text{-semistable objects in } A(\tau) \text{ of class } \gamma\}$$

► DT/BPS invariants:

$$\Omega(\gamma, \tau) \in \mathbb{Z}$$

▶ Wall-crossing as a function of  $\tau \in \mathbb{H}$ .

### Resurgence

Mirror curve:

$$H(p,x) = -1 + e^{x} + e^{p} + z(\tau) e^{-x-p} = 0$$
,

• Quantum mirror curve, difference equation:

$$(-1 + e^{x})\Psi(x) + \Psi(x + \hbar) + z(\tau) e^{\frac{\hbar}{2}} e^{-x} \Psi(x - \hbar) = 0.$$

- WKB solution:  $\Psi(x) = \exp(\frac{1}{\hbar} \int^x \lambda(\hbar))$ , where  $\lambda(\hbar)$  is a 1-form with formal dependence on  $\hbar$ :  $\lambda(\hbar) = \sum_{i \geq 0} \lambda_i \hbar^i$ .
- Formal "Quantum periods"

$$a(\hbar) = \int_{\gamma} \lambda(\hbar) \,, \;\; a_D(\hbar) = \int_{\gamma_D} \lambda(\hbar) \,.$$

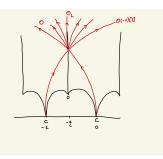
ullet Expectation: resurgence of the quantum periods is controlled by the BPS spectrum  $\{\Omega(\gamma,\tau)\}_{\gamma}$ . [Gu-Marino 2211.03871]

## Scattering diagrams

- ullet Goal: study of the DT/BPS invariants using flow trees organized in "scattering diagrams" in  $\widetilde{B\setminus \Delta}=\mathbb{H}$
- Pick a phase  $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ 
  - ► For every  $\gamma$  ∈ Γ, consider the 1-dimensional locus, "rays":

$$\mathcal{R}_{\gamma}^{+}(\theta) := \{ au \in \mathbb{H} \, | \, \operatorname{Arg}(Z_{\gamma}( au)) = \theta \, , \Omega(\gamma, au) 
eq 0 \} \subset \mathbb{H}$$

- ▶ Orient rays such that  $|Z_{\gamma}(\tau)|$  increases.
- ightharpoonup Decorate the rays by generating functions of DT invariants, get a scattering diagram  $\mathfrak{D}_{\theta}$



### Main result

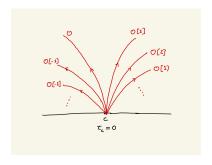
### Theorem (B, Descombes, Le Floch, Pioline, 2022)

For every  $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ , the scattering diagram  $\mathcal{D}_{\theta}$  can be uniquely reconstructed from:

- Explicit initial rays coming from the conifold points.
- Scatterings imposed by the consistency condition.
- Algorithmic reconstruction of the full BPS spectrum (except pure D0) at any point of the physical space of stability conditions.

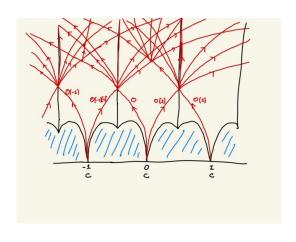
### Initial rays

At the conifold point  $\tau_O = 0$ ,  $Z_{\mathcal{O}}(\tau_O) = 0$ . Infinitly many initial rays corresponding to the objects  $\mathcal{O}[k]$ ,  $k \in \mathbb{Z}$ .

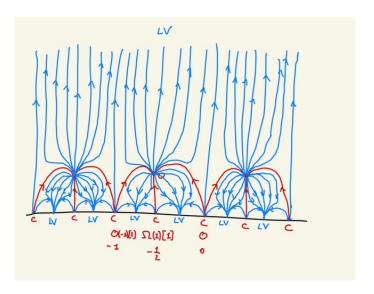


General conifold point: apply  $\Gamma_1(3)$ , spherical object E becoming massless, infinitly many initial rays corresponding to the objects E[k],  $k \in \mathbb{Z}$ .

# The scattering diagram $\mathfrak{D}_{rac{\pi}{2}}$



# The scattering diagram $\mathfrak{D}_0$



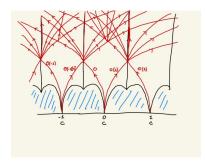
## Holomorphic disks?

- Expectation: for every  $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ , the scattering diagram  $\mathfrak{D}_{\theta}$  should describe  $J_{\theta}$ -holomorphic disks in  $\mathcal{M}'$ .
- ullet Problem: how to describe  $\mathcal{M}'$  as a complex manifold for the complex structure  $J_{ heta}$ ?
  - ▶ We only know that  $(\mathcal{M}', I)$  is an elliptic fibration over B.
- [Collins-Jacob-Lin]:
  - $(\mathcal{M}', J_{\frac{\pi}{2}}) = \mathbb{P}^2 \setminus E$ , where  $E \subset \mathbb{P}^2$  is a smooth cubic. Affine algebraic variety.
  - $(\mathcal{M}', J_0) \simeq (\mathcal{M}', I)$ , elliptic fibration. Twin torus fibrations.
- In both cases, use algebro-geometric definition of counts of holomorphic disks as log Gromov–Witten invariants.

## Holomorphic disks?

### Theorem (Gräfnitz, B.)

The scattering diagram  $\mathfrak{D}_{\frac{\pi}{2}}$  describes log curves in  $(\mathcal{M}', J_{\frac{\pi}{2}}) = \mathbb{P}^2 \setminus E$ .



### Corollary (B.)

Correspondence between DT invariants of  $K_{\mathbb{P}^2}$  of phase  $\frac{\pi}{2}$  and counts of log curves in  $\mathbb{P}^2 \setminus E$ 

## Holomorphic disks?

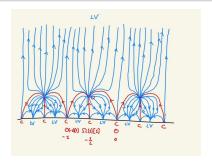
### Applications:

- Proof of Takahashi's conjecture on Gromov–Witten invariants of  $(\mathbb{P}^2, E)$  [B].
- Proof of quasimodularity of generating series of DT invariants [B-Fan-Guo-Wu].

# The scattering diagram $\mathfrak{D}_0$

### Theorem (Gross-Hacking-Keel)

The scattering diagram  $\mathfrak{D}_0$  describes log curves in  $(\mathcal{M}', J_0)$ .



### Corollary (B.)

Correspondence between DT invariants of  $K_{\mathbb{P}^2}$  of phase 0, DT invariants of the quiver (Q, W), and counts of log curves in the elliptic fibration  $(\mathcal{M}', J_0)$ .

### General question

Why are the counts of BPS states of a  $\mathcal{N}=2$  4d theory given by counts of holomorphic curves in the Seiberg–Witten geometry  $\pi:\mathcal{M}\to B$ ?

- Mirror symmetry and hyperkähler rotation for  $X = K_{\mathbb{P}^2}$ .
- In general?
  - Stronger conjecture formulated using holomorphic Floer theory.
  - Physics derivation.

## Mirror symmetry and hyperkähler rotation

- How to go from coherent sheaves on  $X = K_{\mathbb{P}^2}$  to  $J_{\theta}$ -holomorphic curves in the Coulomb branch  $\pi \colon \mathcal{M} \to B$ ?
- Claim: the mirror Y of X is the non-compact Calabi-Yau 3-fold  $Y: uv = \pi t$ .
  - ► Hyperkähler rotation:  $J_\theta$ -holomorphic disks in  $\mathcal{M}$  → special Lagrangian disks in  $(\mathcal{M}, I)$  of phase  $\theta$ .
  - ▶ Suspension  $\rightarrow$  closed special Lagrangians in Y.
  - ▶ Mirror symmetry  $\rightarrow$  stable coherent sheaves on X.
- Physics: IIA on  $X \leftrightarrow \text{IIB}$  on  $Y \leftrightarrow \text{IIA}$  on  $\mathcal{M}$  and NS5 on  $\pi^{-1}(u) \leftrightarrow M$  on  $\mathcal{M}$  and M5 on  $\pi^{-1}(u) \leftrightarrow \text{IIB}$  on  $\mathcal{B}$ , D3 on u (string junctions on D3-brane probe)

## Holomorphic Floer theory

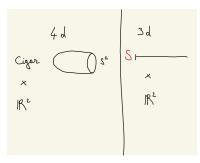
[Kontsevich-Soibelman], [Doan-Rezchikov], [B]

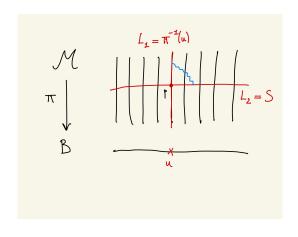
- $(\mathcal{M}, I, \Omega_I)$ : holomorphic symplectic manifold.
  - ▶ Hyperkähler structure  $I, J, K, J_{\theta} := (\cos \theta)J + (\sin \theta)K$ .
  - $L_1, L_2 \subset \mathcal{M}$ : *I*-holomorphic Lagrangian,  $\Omega_I|_{L_1} = \Omega_I|_{L_2} = 0$ .
- P: space of paths between  $L_1$  and  $L_2$ ,  $W:=\int_{\mathfrak{p}}d^{-1}\Omega_I$  (multivalued!)
  - ▶ Critical points: intersection points  $L_1 \cap L_2$ .
  - Gradient flow lines:  $J_{\theta}$  holomorphic curves,  $u: \mathbb{R}^2 \to \mathcal{M}$ .
  - $\zeta$ -instantons,  $u: \mathbb{R}^3 \to \mathcal{M}$ , solutions to Fueter equation

$$\partial_{\tau} u + I \partial_{s} u + J_{\theta} \partial_{t} u = 0.$$

- LG model for (P, W):
  - ▶  $p, q \in L_1 \cap L_2 \rightarrow \text{vector space } H_{pq} \text{ of 2d BPS states of } (P, W)$
  - ▶  $L_1, L_2 \rightarrow \text{category Brane}(P, W)$
  - $ightharpoonup \mathcal{M} 
    ightarrow 2$ -category of *I*-holomorphic Lagrangians (A-model versus Rozansky-Witten B-model).

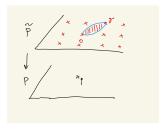
- Back to a  $\mathcal{N}=2$  4d field theory.
- How to recover the BPS spectrum  $\{\Omega_{\gamma}(u)\}$  from holomorphic Floer theory? Correct holomorphic symplectic manifolds  $\mathcal M$  and holomorphic Lagrangians  $L_1$ ,  $L_2$ ?
  - $\blacktriangleright$   $\mathcal{M}$ : Seiberg-Witten integrable system
  - ▶  $L_1 = \pi^{-1}(u)$ : fiber of  $\pi : \mathcal{M} \to B$  over  $u \in B$ .
  - ▶  $L_2 = S$ : natural section of  $\pi$ . Physical definition: boundary condition for the 3d sigma model of target  $\mathcal M$  defined by the cigar geometry [Nekrasov-Witten] Hitchin system example: Hitchin section.





- $L_1 \cap L_2 = \pi^{-1}(u) \cap S = \{p\}$
- But  $\pi_1(P) \neq 0$  and W is multivalued.
- $\pi_1(P) = \pi_2(\mathcal{M}, \pi^{-1}(u))$ : on  $\widetilde{P}$ , critical points of W indexed by

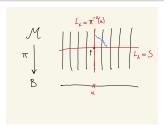
$$\gamma \in \pi_2(\mathcal{M}, \pi^{-1}(u))$$



### Conjecture (B)

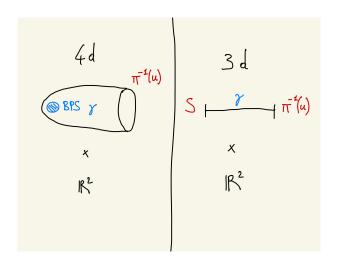
Given a  $\mathcal{N}=2$  4d field theory, the space of BPS states  $H_{\gamma}(u)$  of class  $\gamma$  in the vacuum u is isomorphic to the vector space  $H_{0\gamma}$  associated by holomorphic Floer theory for the Seiberg-Witten integrable system  $\mathcal{M}$  to the lifts 0 and  $\gamma$  of the intersection point between the fiber  $\pi^{-1}(u)$  and the section S:

$$H_{\gamma}(u) \simeq H_{0\gamma}$$



Gradient flow lines are naturally  $J_{\theta}$ -holomorphic disks with boundary on  $\pi^{-1}(u)$  and so one recovers the previous expectation in the numerical limit.

## Physics derivation



Thank you for your attention!