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cf. E.Witten (1989)
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e Perturbative complex Chern-Simons well understood
in early 2000s (conceptually and computationally)

e even the direct calculation leads to tinite mtegrals

under good analytical control
cf. S.Axelrod, I.Singer

 Many partiton tunctions from 3d-3d correspondence
... can not completely close the boundary until 2013

U
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Non—pertw’oaﬁve Comp lex Chern-Simons

) Uqg(9)
?_}\1 at generic ¢
ZPert(p) = Z a Bt function of ¢

n=0 \/

Borel resum

q = e" complex, continuous
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Theorem: Using the R-matrix for Verma modules, for
all links of unknots (plumbings), torus links, positive

braid links, fibered knots up to 10 Xs, and

homogeneous braid links the two-variable series

Fi(z,q) = Za:b 7 (S?\ K)
beZ

1s well defined and invariant under the required braid
moves (cf. Reiddemeister moves).

S.G., D.Pei, P.Putrov, C.Vafa

S.G., C.Manolescu

R1 ) R2 / R3 > S.Park (2020, 2021)

(b — > — ‘ ‘ \ X J.Chae



Z(q) =q 2(1+¢*+ 3¢ +4¢* +6¢° +8¢° +12¢" + ...
... +20179997428388332001212¢°" + ... )

Mz = —525(10145):

b=2: q14/5(—1+q—|—2q2—|—4q3+...)
b=1: q11/5(—1—q—4q2—7q3+...)
b=0: 2¢*+2¢°+4¢°+8¢" +14¢° + ...
b=—-1: q11/5(—1—q—4q2—7q3+...)
b= —-2: q14/5(—1—|—q—|—2q2—|—4q3—|—...)



labeled by complex
flat connection

labeled by
a < Hl(Mg; Z)

labeled by
b € Spin®(M3)



Example: Lens spaces & some mapping tori

Z\ /\4 — __ _h S.Chun, S.6., S.Park, N.Sopenko
( 3) o q — € J.Andersen, W.Mistegaard

m) trivial Borel plane,
“almost abehan” flat connections

o = any
£ = abelian

S.G6., M.Marino, P.Putrov

Theorem: n% = 0

Stokes / trans-series coellicients are
not symmetric/



Definition: ’

TG(Ms):= »  nfq e
B (fixed B)
Example: 70" =7 (14+ ¢ +¢° + ¢ + ¢
degee-1 circle bundle over
a genus-2 surfaces bio = 0 Vi -
.







Landau-Ginzburg (X, W)

e Fiberwise wrapped ( O

e Iiberwise stopped

Borel plane

=
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Landau-Ginzburg model

complex Chern-Simons

W—plane

Borel plane

critical points

flat connections

solitons instantons
LG model
R x R x Ms
| S —
YM instantons
W dz; e ow
04 dt z 8Zj

4

T—

S.G., M.Marino, P.Putrov

S.Cecotti, C.Vafa

B K.Hori, A.Igbal, C.Vafa



Landau-Ginzbur g S.6., M.Marino, P.Putrov

reducible irreducible

F@,H [ F@,Q—l—w — Msoliton(,ﬁa@a ﬂs)

— Minst(MS X [R,(DZ, ﬂ37 SL(Qa(D)))

J
D —
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Conijecture: Z;(Ms; q) should admit a definition via
moduli spaces m curve counting S.6., D.Pei, P.Putrov, C.Vafa

¢:(%,0%) — (X,L)
>, genus g, with n boundary components

oX =y U...U~,

B — ¢*[2] < HQ(Xv L)

bi = ¢«|vi] € H1(L)

Some evidence: L.Diogo, T.Ekholm

=) Landau-Ginzburg W(z)



BPS quiver
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W(x) = Z Lis(x;) + Z 7‘7 log z; log x;
2 2,J

T.Ekholm, A.Gruen, S.G., P.Kucharski, S.Park, M.Stosic, P.Sulkowski
M.Cheng, S.Chun, B.Feigin, F.Ferrari, S.G., S.Harrison, D.Passaro



Problem: reproduce from Fukaya-Seidel category

a1 6r—5 or+7
T8 (S2,,,(31)) = @y o) — Y+

where <I>(a’ Z Cb € q% Z|(q]]

(—1) n = +a mod p,
0, otherwise.

=




Conjecture: Z,(Ms3; q) should admit a definition via

moduli spaces 1n gauge theory *

BNahm

23:1 efﬁi

Y

Kapustin-Witten
PDEs

S.G., D.Pei, P.Putrov, C.Vafa

Gy,
M
Spin®(M3)

* Compactification and choice of chamber: K-theory /

multiplicative / caloron version

Early clues: S.Chun, S.6., S.Park, N.Sopenko

More detailed analysis: S.G., P.-S.Hsin, D.Pei (to appear soon)



Heegaard decomposition My = M?EH Us: M?E_)

| t B

o
(-1 0 ) (+)
@ JMJ S.6., M.Marino, P.Putrov
b

A-model ¢:Rx I — Mgy(G,%) 2 Mg (Ge,X)
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Figure 9. Disk instantons for the Poincaré sphere M3 = 3(2,3,5).

S.G., M.Marino, P.Putrov

Q ~CSo—CS
T§(Ms):= »  n§q p
B (fixed B)



‘Two tunctions of Lawrence and Zagier:

0
{'\ 0 (1+g++q" —* =" =™ +..)

S o q120(1+q—|—q _|_q4_q11_q15_q18_}_.“)
1 2

ogenerating series ol Stokes coetlicients [

S.G6., M.Marino, P.Putrov

o= off) ()




IS(M?HED = Q O /B

Puzzle: Explain why, for Brieskorn spheres,

?
o Ba. = BNahm

L/



On M4 =R x Ms same as VW equations

T
VW: A B e QQ’+(M479) ¢7 ¢ < QO(M479C)
A ONS QO(Mélag) A
v I v
KW: A 6 € QL (My, g) 0,7 € Q(My,gc)



e Vala-Witten theory

1
Fi = 5[B x Bl +[C.B] = 0 AeAp
2,+ :
deB—dACZO B e () (M4,adp)
C e Q°(My;adp)

How close is it to an Atiyah-style TQFT ?

S.6., A.Sheshmani, S.-T.Yau

M4 — ]RXMg —

e




Homology a /a Floer
Hyw (Ms) = 7

Special family:

1 .
Mz =5 x 3 g=0: Gluck twist

g = 1: knot surgeries,
log-transforms, ...



THE SELF-DUALITY EQUATIONS
ON A RIEMANN SURFACE

N. J. HITCHIN

[Received 15 September 1986)

Introduction

In this paper we shall study a special class of solutions of the self-dual Yang-Mills
equations. The original self-duality equations which arose in mathematical physics
were defined on Euclidean 4-space. The physically relevant solutions were the

ones with finite action—the so-called ‘instantons’. The same equations may be
dimensionally reduced to Euclidean 3-space by imposing invariance unde

Proposition: in Vafa-Witten theory on M3 = S' x &

Myw (G, M3) = M5 (G, %)

moduli space of E-valued Higgs bundles
with R; = (2,0,0). 5.6., A.Sheshmani, 5.-T.Yau



M5 (G, %) Li= K%? (R eZ)

Li®adp® Lo®adp @ Ls®adp valued Higgs bundles
or, £ = L1 ® Lo @® Ly valued, for short

Moreover, U(1); & Mpg(G,X)
(4, @) = (4, ®)

Similarly, U(1), x U(1)y x U(1)y & ME(G,¥)

m) cxplicit expression for Hyw (X, x S 1)

and 1ts cquivariant character 5.6. A.Sheshmani. S-T.Yau

cf. V.Munoz



m) explicit expression for Hyw (X, x S*)

and 1ts equivariant character >

2d TQFT on %, cf. J.Andersen, S.6., D Pei

the answer 1s very large, even for G = SU (2)

Theorem: P.Ozsvath, Z.Szabo

HF*' (5% x S1,s)

T+1/2 D 7-1W/L27 9 = 30

d
HF* (S, x SYs) = PANH (ZH2) T, /(U—), h#0
1=0

where d = g — 1 — |h| and sy, is the spin® structure with c(s,) = 2h[S!].



m) explicit expression for Hyw (X, x S*)

and 1ts equivariant character >

Claim: when 7 (G) = 1 the Gluck mvolution acts
trivially on Hyw (S? x S1) and Zyw(My, G) can not
detect the Gluck twist.

Remark: the moduli spaces are different for
My=Rx S'x%,2C"x %,
My =R xRxX,=Cx3,

and



Surprise: New 4-manifold mvariant 5.6., P.-S.Hsin, D.Pei

Z(Mg; q1, q2)

ﬁ—u K_CDQ

X
va(M4) — q112 Z anq? ZT[M4](Q)
HEZZO
C.Vafa, E.Witten A.Gadde, S.G.,.P..Pu’rr'ov
for G = SU(2) has Vo3 B Feigin, S.6.
modular weight w = — & Ay Z
SE T 5 737



Surprise: New 4-manifold mvariant 5.6., P.-S.Hsin, D.Pei

Z(My; q1, q2)
ﬁ 1 y: q2 = ¢
12 A Z7(Mm,) (2)
ZVW(M4) — 44 Z anqq T |My]
HEZZO
¢-Vafa, £ Witter A.Gadde, S.G.,.P..Pu’rr'ov
for GG = SU(Q) has . B.Felgm,:S.G.
dular weight w = — & X 4 2y
1Mo 2 2 2
G - valued

B & QQ’+(M4,Q) C € QO(le,/ZI)/ P, a S QO(MZlagC)



e Similar lesson for the GPPV conjecture.

* Moreover, the role of o, 7, e.g. for M3 = L(p,1):

e Stability conditions



Floer theory Quantum algebra

non-compact moduli Infinite-dimensional
spaces, ... modules, cohomology,

“Hilbert spaces,” ...




