
S.G., P.-S.Hsin, H.Nakajima, S.Park, D.Pei
M.Cheng, S.Chun, B.Feigin, F.Ferrari, S.G. S.G., A.Sheshmani, S.-T.Yau w.i.p. w/ P.-S.Hsin, D.Pei

Based on:
S.G. (2007)
S.G., E.Witten
T.Dimofte, S.G., L.Hollands
S.G., D.Pei, P.Putrov, C.Vafa S.G., M.Marino, P.Putrov

w/ P.Putrov

Related work:
Y.Murakami
M.Jagadale
M.Kontsevich, Y.Soibelman
L.Diogo, T.Ekholm
S.Park $(2020,2022)$
A.Beliakova, C.Blanchet, A.Gainutdinov S.Garoufalidis, J.Gu, M.Marino J.Chae (2020, 2021, 2022) S.Ganatra, J.Pardon, V.Shende M.Jeffs

Non-perturbative Complex Chern-Simons

cf. E.Witten (1989)

Non-perturbative Complex Chern-Simons

$$
\int \frac{D A}{\text { gauge }} e^{-\frac{1}{\hbar} S[A]}
$$

Contains contributions of all complex flat connections $\alpha \in \pi_{0}\left(\mathcal{M}_{\text {flat }}\left(M_{3}, G\right)\right)$:

$$
\mathcal{Z}_{\alpha}^{\text {pert }}(\hbar)=\sum_{n=0}^{\infty} a_{n}^{\alpha} \hbar^{n+c_{\alpha}}
$$

Lift $\mathbb{Q} \in \pi_{0}\left(\mathcal{M}_{\text {flat }}\left(M_{3}, G\right)\right) \times \mathbb{Z}$

- Perturbative complex Chern-Simons well understood in early 2000s (conceptually and computationally)
- even the direct calculation leads to finite integrals under good analytical control

cf. S.Axelrod, I.Singer
- Many partition functions from 3d-3d correspondence ... can not completely close the boundary until 2013

Non-perturbative Complex Chern-Simons

perturbative
$\sum a_{n} \hbar^{n} \quad B(S)=\sum \frac{a_{n}}{n!} S^{n} \quad \frac{1}{\hbar} \int_{0}^{\infty} B(S) e^{-S / \hbar} d S$

Borel plane

$$
B(S)=\sum \frac{a_{n}}{n!} S^{n}
$$

non-perturbative

Non-perturbative Complex Chern-Simons

Borel resum
$q=e^{\hbar}$ complex, continuous

$$
S_{-1}^{3}(囚)=S_{+1}^{3}(8)
$$

Theorem: Using the R-matrix for Verma modules, for all links of unknots (plumbings), torus links, positive braid links, fibered knots up to 10 Xs , and homogeneous braid links the two-variable series

$$
F_{K}(x, q):=\sum_{b \in \mathbb{Z}} x^{b} \widehat{Z}_{b}\left(S^{3} \backslash K\right)
$$

is well defined and invariant under the required braid moves (cf. Reidemeister moves).

S.G., D.Pei, P.Putrov, C.Vafa S.G., C.Manolescu

$p^{\text {BII }} \mid$

$$
M_{3}=S_{-1 / 2}^{3}(8):
$$

$$
\widehat{Z}(q)=q^{-\frac{1}{2}}\left(1+q^{2}+3 q^{3}+4 q^{4}+6 q^{5}+8 q^{6}+12 q^{7}+\ldots\right.
$$

$$
\left.\ldots+20179997428388332001212 q^{500}+\ldots\right)
$$

$$
M_{3}=-S_{+5}^{3}\left(\mathbf{1 0}_{\mathbf{1 4 5}}\right):
$$

$$
\text { 支 } \begin{array}{rr}
b=2: & q^{14 / 5}\left(-1+q+2 q^{2}+4 q^{3}+\ldots\right) \\
b=1: & q^{11 / 5}\left(-1-q-4 q^{2}-7 q^{3}+\ldots\right) \\
b=0: & 2 q^{4}+2 q^{5}+4 q^{6}+8 q^{7}+14 q^{8}+\ldots \\
b=-1: & q^{11 / 5}\left(-1-q-4 q^{2}-7 q^{3}+\ldots\right) \\
b=-2: & q^{14 / 5}\left(-1+q+2 q^{2}+4 q^{3}+\ldots\right)
\end{array}
$$

$$
\begin{aligned}
& Z_{\alpha}\left(q=e^{\hbar}\right) \longmapsto Z_{a}(q) \longmapsto \widehat{Z}_{b}\left(M_{3} ; q\right) \\
& \text { resummation, } \\
& \text { function of } q \text { cutting-and-gluing } \\
& \text { integral } q \text {-series, } \\
& \text { functoriality, } \\
& \text { labeled by } \\
& \text { flat connection } \quad a \in H_{1}\left(M_{3} ; \mathbb{Z}\right) \quad b \in \operatorname{Spin}^{c}\left(M_{3}\right) \\
& \text { labeled by } \\
& \widehat{Z}_{b}=\sum_{a} S^{a b}\left(\mathcal{S} Z_{a}^{\text {pert }}+\sum_{\beta} n_{a}^{\beta} \mathcal{S} Z_{\beta}^{\text {pert }}\right) \\
& \text { non-abelian }
\end{aligned}
$$

Example: Lens spaces \& some mapping tori

$$
\widehat{Z}\left(M_{3}\right)=q=e^{\hbar} \quad \begin{gathered}
\text { S.Chun, S.G., S.Park, N. Sopenko } \\
\text { J.Andersen, W.Mistegaard }
\end{gathered}
$$

\Rightarrow trivial Borel plane, "almost abelian" flat connections

Theorem:

$$
n_{\beta}^{\alpha}=0
$$

$$
\alpha=\text { any }
$$

$$
\beta=\text { abelian }
$$

S.G., M.Marino, P.Putrov

Stokes / trans-series coefficients are not symmetric!

Definition:

$$
\mathcal{I}_{\beta}^{\alpha}\left(M_{3}\right):=\sum_{\beta(\text { fixed } \beta)} n_{\beta}^{\alpha} \widetilde{q}^{\mathrm{CS}_{\alpha}-\mathrm{CS}_{\beta}}
$$

Example: $\quad \mathcal{I}_{0}^{\alpha_{1}}=\widetilde{q}^{\frac{1}{4}}\left(1+\widetilde{q}^{2}+\widetilde{q}^{6}+\widetilde{q}^{12}+\widetilde{q}^{20}+\ldots\right)$
degee- 1 circle bundle over a genus-2 surfaces

$$
\begin{aligned}
& b_{10}=0 \\
& b_{8}=15 \\
& b_{6}=2
\end{aligned}
$$

Landau-Ginzburg ($\boldsymbol{X}, \boldsymbol{W}$)

- Fiberwise wrapped
- Fiberwise stopped

Landau-Ginzburg model	complex Chern-Simons
\widetilde{W}-plane	Borel plane
critical points	flat connections
solitons	instantons
LG model	
\timesM_{3}}{}	

reducible irreducible

$\Gamma_{\propto, \theta} \cap \Gamma_{\beta, \theta+\pi}=\mathcal{M}_{\text {soliton }}(\widetilde{W}, \mathbb{\propto}, ß)$

$$
\left.=\mathcal{M}_{\text {inst }}\left(M_{3} \times \mathbb{R}, \propto, ß ; S L(2, \mathbb{C})\right)\right)
$$

$$
Z=\int_{\Gamma} \frac{d z}{2 \pi i z} e^{\frac{1}{\hbar} \widetilde{W}(z)+\ldots}
$$

Conjecture: $\widehat{Z}_{b}\left(M_{3} ; q\right)$ should admit a definition via moduli spaces in curve counting

$$
\phi:(\Sigma, \partial \Sigma) \longrightarrow(X, L)
$$

Σ genus g, with n boundary components

$$
C=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

$$
\widetilde{\mathcal{W}}(\boldsymbol{x})=\sum_{i} \mathrm{Li}_{2}\left(x_{i}\right)+\sum_{i, j} \frac{C_{i j}}{2} \log x_{i} \log x_{j}
$$

T.Ekholm, A.Gruen, S.G., P.Kucharski, S.Park, M.Stosic, P.Sulkowski M.Cheng, S.Chun, B.Feigin, F.Ferrari, S.G., S.Harrison, D.Passaro

Problem: reproduce from Fukaya-Seidel category

$$
\mathcal{I}_{0}^{\alpha_{1}}\left(S_{-1 / r}^{3}\left(\mathbf{3}_{1}\right)\right)=\Phi_{36 r+6}^{(6 r-5)}-\Phi_{36 r+6}^{(6 r+7)}
$$

where $\Phi_{p}^{(a)}(q):=\sum_{n=0}^{\infty} \phi_{p}^{(a)}(n) q^{\frac{n^{2}}{4 p}} \quad \in q^{\frac{a^{2}}{4 p}} \mathbb{Z}[[q]]$

$$
\phi_{p}^{(a)}(n)=\left\{\begin{array}{cl}
(-1)^{n}, & n \equiv \pm a \bmod p \\
0, & \text { otherwise }
\end{array}\right.
$$

Conjecture: $\widehat{Z}_{b}\left(M_{3} ; q\right)$ should admit a definition via moduli spaces in gauge theory *
S.G., D.Pei, P.Putrov, C.Vafa

* Compactification and choice of chamber: K-theory / multiplicative / caloron version

Early clues: S.Chun, S.G., S.Park, N.Sopenko More detailed analysis: S.G., P.-S.Hsin, D.Pei (to appear soon)

Heegaard decomposition

$$
M_{3}=M_{3}^{(+)} \cup_{\Sigma} M_{3}^{(-)}
$$

S.G., M.Marino, P.Putrov

A-model $\phi: \mathbb{R} \times I \rightarrow \mathcal{M}_{H}(G, \Sigma) \cong \mathcal{M}_{\text {flat }}\left(G_{\mathbb{C}}, \Sigma\right)$

Figure 9. Disk instantons for the Poincaré sphere $M_{3}=\Sigma(2,3,5)$.
S.G., M.Marino, P.Putrov

$$
\mathcal{I}_{\beta}^{\alpha}\left(M_{3}\right):=\sum_{\beta(\text { fixed } \beta)} n_{\beta}^{\alpha} \widetilde{q}^{\mathrm{CS}_{\alpha}-\mathrm{CS}_{\beta}}
$$

Two functions of Lawrence and Zagier:

$$
\begin{aligned}
& q^{\frac{1}{120}}\left(1+q+q^{3}+q^{7}-q^{8}-q^{14}-q^{20}+\ldots\right) \\
& q^{\frac{49}{120}}\left(1+q+q^{2}+q^{4}-q^{11}-q^{15}-q^{18}+\ldots\right)
\end{aligned}
$$

$\alpha_{1} \quad \alpha_{2}$
generating series of Stokes coefficients !
S.G., M.Marino, P.Putrov

$$
\mathcal{I}_{\beta}^{\alpha}\left(M_{3}\right):=\alpha(\hat{ŋ} \beta
$$

$$
\widehat{Z}_{b}\left(M_{3} ; q\right)=>
$$

$$
\mathcal{I}_{\beta}^{\alpha}\left(M_{3}, \widetilde{q}\right)=\alpha(\hat{\jmath}) \beta
$$

Puzzle: Explain why, for Brieskorn spheres,

On $M_{4}=\mathbb{R} \times M_{3}$ same as VW equations

$$
\begin{array}{rccc}
\mathrm{VW}: & A & B \in \Omega^{2,+}\left(M_{4}, \mathfrak{g}\right) & \phi, \bar{\phi} \in \Omega^{0}\left(M_{4}, \mathfrak{g}\right) \\
& \uparrow & C \in \Omega^{0}\left(M_{4}, \mathfrak{g}\right) & \uparrow \\
& \uparrow & \uparrow &
\end{array}
$$

KW: A
$\phi \in \Omega^{1}\left(M_{4}, \mathfrak{g}\right)$

play an important role in the gauge theory approach to the geometric Langlands program

- Vafa-Witten theory

$$
\left\{\begin{array}{rl}
F_{A}^{+}-\frac{1}{2}[B \times B]+[C, B]=0 & A \in \mathcal{A}_{P} \\
d_{A}^{*} B-d_{A} C=0 & B \in \Omega^{2,+}\left(M_{4} ; \operatorname{ad}_{P}\right) \\
& C \in \Omega^{0}\left(M_{4} ; \operatorname{ad}_{P}\right)
\end{array}\right.
$$

How close is it to an Atiyah-style TOFT?

Homology a la Floer

$$
\mathcal{H}_{\mathrm{VW}}\left(M_{3}\right)=?
$$

Special family:

$$
M_{3}=S^{1} \times \Sigma_{g}
$$

and degree-p circle bundles
$g=0$: Gluck twist
$g=1$: knot surgeries, log-transforms, ...

THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE

N. J. HITCHIN

[Received 15 September 1986]

Introduction

In this paper we shall study a special class of solutions of the self-dual Yang-Mills equations. The original self-duality equations which arose in mathematical physics were defined on Euclidean 4 -space. The physically relevant solutions were the ones with finite action-the so-called 'instantons'. The same equations may be dimensionally reduced to Euclidean 3 -space by imposing invariance under

Proposition: in Vafa-Witten theory on $M_{3}=S^{1} \times \Sigma$

$$
\mathcal{M}_{\mathrm{VW}}\left(G, M_{3}\right) \cong \mathcal{M}_{H}^{\mathcal{E}}(G, \Sigma)
$$

moduli space of \mathcal{E}-valued Higgs bundles
with $R_{i}=(2,0,0)$.
$\underline{\mathcal{M}_{H}^{\mathcal{E}}(G, \Sigma):} \quad \quad L_{i}=K^{R_{i} / 2} \quad\left(R_{i} \in \mathbb{Z}\right)$
$L_{1} \otimes \operatorname{ad}_{P} \oplus L_{2} \otimes \operatorname{ad}_{P} \oplus L_{3} \otimes \operatorname{ad}_{P}$ valued Higgs bundles or, $\mathcal{E}=L_{1} \oplus L_{2} \oplus L_{3}$ valued, for short

Moreover,

$$
\begin{aligned}
& U(1)_{t} \subset \mathcal{M}_{H}(G, \Sigma) \\
& (A, \Phi) \mapsto\left(A, e^{i \theta} \Phi\right) \quad \text { circle action }
\end{aligned}
$$

Similarly, $\quad U(1)_{x} \times U(1)_{y} \times U(1)_{t} \subset \mathcal{M}_{H}^{\mathcal{E}}(G, \Sigma)$
\Rightarrow explicit expression for $\mathcal{H}_{\mathrm{VW}}\left(\Sigma_{g} \times S^{1}\right)$ and its equivariant character
\Rightarrow explicit expression for $\mathcal{H}_{\mathrm{VW}}\left(\Sigma_{g} \times S^{1}\right)$ and its equivariant character
cf. equivariant Verlinde formula

2d TQFT on Σ_{g}
cf. J.Andersen, S.G., D.Pei
Equivalently, a Rozansky-Witten theory with non-compact Coulomb branch
the answer is very large, even for $G=S U(2)$
Theorem:

$$
\begin{aligned}
H F^{+}\left(S^{2} \times S^{1}, \mathfrak{s}\right) & =\mathcal{T}_{-1 / 2}^{+} \oplus \mathcal{T}_{1 / 2}^{+}, \quad \mathfrak{s}=\mathfrak{s}_{0} \\
H F^{+}\left(\Sigma_{g} \times S^{1}, \mathfrak{s} h\right) & =\bigoplus_{i=0}^{d} \Lambda^{i} H^{1}\left(\Sigma_{g} ; \mathbb{Z}\right) \otimes \mathcal{T}_{0}^{+} /\left(U^{i-d-1}\right), \quad h \neq 0
\end{aligned}
$$

where $d=g-1-|h|$ and \mathfrak{s}_{h} is the spinc structure with $c_{1}\left(\mathfrak{s}_{h}\right)=2 h\left[S^{1}\right]$.
\Rightarrow explicit expression for $\mathcal{H}_{\mathrm{VW}}\left(\Sigma_{g} \times S^{1}\right)$ and its equivariant character
cf. equivariant Verlinde formula

Claim: when $\pi_{1}(G)=1$ the Gluck involution acts trivially on $\mathcal{H}_{\mathrm{VW}}\left(S^{2} \times S^{1}\right)$ and $Z_{\mathrm{VW}}\left(M_{4}, G\right)$ can not detect the Gluck twist.

Remark: the moduli spaces are different for

$$
\begin{equation*}
M_{4}=\mathbb{R} \times S^{1} \times \Sigma_{g} \cong \mathbb{C}^{*} \times \Sigma_{g} \tag{"K-theoretic"}
\end{equation*}
$$

and

$$
M_{4}=\mathbb{R} \times \mathbb{R} \times \Sigma_{g} \cong \mathbb{C} \times \Sigma_{g}
$$

Surprise: New 4-manifold invariant s.G., P.-S.Hsin, D.Pei

C.Vafa, E.Witten
for $G=S U(2)$ has
modular weight $w=-\frac{\chi}{2}$

$$
q_{1}=q_{2}=q
$$

$Z_{T\left[M_{4}\right]}(q)$
Elliptic genus of $T\left[M_{4}\right]$ 6d theory on $T^{2} \times M_{4}$ A.Gadde, S.G., P.Putrov B.Feigin, S.G.
$\frac{\chi}{2}+\frac{3}{2} \sigma$

Also different as "decorated TQFTs"

 (have different gradings)
Surprise: New 4-manifold invariant S.G., P.-S.Hsin, D.Pei

C.Vafa, E.Witten
for $G=S U(2)$ has modular weight $w=-\frac{\chi}{2}$

$$
\frac{\chi}{2}+\frac{3}{2} \sigma
$$

$$
G \text { - valued }
$$

$$
B \in \Omega^{2,+}\left(M_{4}, \mathfrak{g}\right) \quad C \in \Omega^{0}\left(M_{4}, \mathfrak{g}\right)^{\prime} \quad \phi, \bar{\phi} \in \Omega^{0}\left(M_{4}, \mathfrak{g}_{\mathbb{C}}\right)
$$

- Similar lesson for the GPPV conjecture.
- Moreover, the role of $\sigma, \bar{\sigma}$, e.g. for $M_{3}=L(p, 1)$:

$$
\widehat{Z}_{b}(q)=\int_{|x|=1} \frac{d x}{2 \pi / x} \underbrace{\frac{(x ; q)_{\infty}}{(x q ; q)_{\infty}} \frac{\left(x^{-1} ; q\right)_{\infty}}{\left(x^{-1} q ; q\right)_{\infty}}} \Theta_{b}^{(p)}(x ; q)
$$

$\mathrm{KW}: A \quad \phi \in \Omega^{1}\left(M_{4}, \mathfrak{g}\right) \quad \sigma, \bar{\sigma} \in \Omega^{0}\left(M_{4}, \mathfrak{g}_{\mathbb{C}}\right)$

- Stability conditions $\quad H^{2}\left(\mathcal{M}_{\text {flat }}\left(G_{\mathbb{C}}, M_{3}\right)\right)$

Floer theory

Quantum algebra

Infinite-dimensional modules, cohomology,
"Hilbert spaces," ...

