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Introduction

How much resurgence knows about modularity

Study resurgence of a divergent power series, which are related to g-
Resurgence series (or g-functions) and try to understand if their resummation is
related with a quantum modular form (QMF).
g-series .
Is there a general resurgent structure from which we can construct QMF?
Modularity




Introduction

How much resurgence knows about modularity and vice-versa

Study resurgence of a divergent power series, which are related to q-
Resurgence series (or g-functions) and try to understand if their resummation is
related with a quantum modular form (QMF).
q-series , , .
s there a general resurgent structure from which we can construct QMF
Modularity In the main example of today we know already there is a QMF related
with a g-series. Does modularity help to prove resurgence?




Borel-Laplace summability

From divergent series to analytic functions
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Borel-Laplace summability

From analytic function to divergent series and back to analytic functions
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Resurgence

The importance of the Borel plane

DEFINITION: A function qg(éf ) € C{} is resurgent if it can be endlessly
analytically continued, i.e. for every L>0 there exists a finite subset 2, C C
such that ¢»({) can be analytically continued along every path of length less than

L. which avoids £2;.

* The Borel plane contains the main informations

o Alien calculus, median resummation, Hankel contour Laplace transform,... are
alternatives to the usual Laplace transtform, well defined to work with

resurgent functions



Resurgence

Simple resurgent functions

Let @ be a singular point of G({) € C{{}

C, S, .
+ —log({ — w)¢,({ —w)+ h.f.
(—w 27

G(C) =

where §,C € Z and ¢?w(§') e C{{}.

In fact, looking at $ (&) we can continue to study the singularities in the Borel
plane. If G({) is resurgent, the ¢, know each other.



Resurgence

Simple resurgent functions

Let @ be a singular point of G({) € C{{}
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(—w 27

where §,C € Z and ¢?w(§') e C{{}.

In fact, looking at $ (&) we can continue to study the singularities in the Borel
plane. If G({) is resurgent, the ¢, know each other.



Resurgence

Resurgent structure

DEFINITION: A resurgent structure consists of the following data
O set of singularities {w € €2}

O collection of germs ¢?w(§ ) € C{C}

O Stokes constants C_, S,



Resurgence

“Modular” resurgent structure

DEFINITION: A “modular” resurgent structure is a resurgent structure such that

O tower of singularities {p, € R|k € Q}, Q C Z

O collection of germs ¢?k((: ) =1
S

. . . ko .
O Stokes constants S, € Z in a suitable normalisation, and L(s) = Z i is an L-function
kel




Resurgence

Divergent series with “modular” resurgent structure

Let §O(h) = Z c,n" be Gevrey-1 and

n=1

S

¢, = const - (n — 1)!2—];
ke Pk
Sk

T is an L-function. Then G({) = %’SO has a

with {p, € R|k € Q} and Q C Z and L(s) = Z
kel

“modular” resurgent structure.

0 S n
In fact, G({) = constz Z —i(:— = const Z S log(C —p,) - 1+ h.t
=1 ke Pk ! keQ



Resurgence

Divergent series with “modular” resurgent structure

0

Let §O(h) = Z c," be a Gevrey-1 series and
n=0
¢, = const - [ '(n+a) Z for a € (), not integer
keQ i
S -
with {p, € R|k € Q} and Q C Z and L(s) = Z \kk\ — is an L-function. Then G({) = %S has a
kel

“modular” resurgent structure.

St F(n + a) const St
In fact, G(C) = COHStf;)kEZQ prta o' = (a— DI'(a—1) kezsz (P — €)*



Resurgence

Taking generalised Laplace transform

Let S() € Q[ 7]] be a formal series such that it is Gevrey-1 and its Borel
transform G({) admits a simple “modular” resurgent structure.

Then the generalised Laplace transform (for some path &)

Sy(h) = J e "M G(&)dC

€
defines a QMF f(7) := $)(2xi7), i.e.



Resurgence

Taking generalised Laplace transform

f: Q — C such that

fiz +

for y = a b
4 c d

=y 1(c0).

D=e""f(x)  (ct+d)~ fiyr) = e™"f(r) + h (1)

) e SL,(Z) and hy: [

— (C is C* and real-analytic except at



The main example



The main example

after Andrews, Cohen, Zagier,...

o G+

= a9,

o(q) = =1+ ) (-D"q""\(g),
n=0

n2

o*(q) —22( 1y =-2) ¢""g%qY,
n=0

(q; qz)

e 6(q),0*(q) are convergent for |g| < 1,
e they make sense when ¢ is a root of unity: if g = exp(2zir) with 7 € Q then 6(q) = — 6¥(g™")

e Define the coefficients { 7(k) } ,cr47.1 DY

go(g®) = Y Thg", ¢ 'o*(q* =Y Thg

k>0 k<0

then L(s) = Z T(k)\krS—z; ( /i +\/_>(s)/(: ( @(s).

ke247+1




The main example

after Zagier, Cohen, Andrews,...
Define f: Q — C

() = ¢"*o(q) = — ¢"**c*(q"") 1€ Q,q = exp(2xir)

PROPOSITION [Zagier,10; Kontsevich]. The function f(7) satisfies

_2zil24 1 ( Y ) _27il24
ft+ 1) = e f(2), \21+1\f 1) € () + h()

where 1: R — Cis C* on R and real-analytic except at 7 = 0, — 1/2.



The main example

Divergent series

Let 2 € C and define the formal power series

S’O(h):z heh/24 (1 n i (_1)n+lenhH(1 _ ekh))
n=1 k=0

= he 1+ e =M1 —eM) +...) = Z c,h" € Q[n]

n=1



The main example

Divergent series

Let 2 € C and define the formal power series

S’O(h):: heh/24 (1 n i (_1)n+lenhH(1 _ ekh))
n=1 k=0

= he 1+ e =M1 —eM) +...) = Z c,h" € Q[n]

n=1

CONJECTURE 1:

2
i S \/E Z 1) with p, 1= ﬂ—k

(n—1)! erazi1 Pk 12



The main example

§O(h) has a “modular” resurgent structure

S+(h) = 1/2 [ e N ——ds, Sh>0
0 ke2az+1 Pk ™%

— IO T k
So (h) = \/5{ e 5/ Z ) ds, Sh <0
0 ke2daz+1 Pk

So



The main example

5 S
So(7) has a “modular” resurgent structure °
SJ(h) 1= \/5[ e 5/ Z — ds, Sh>0 X X

0 ke2az41 Pk =3
So (h) = \/5{ e 5/ Z ) ds, Sh <0 B

0 ke2az41 Pk =3 Jo
In fact S(;r and S, extend analytically to the right and the left half-planes R > 0,87 < O
(SH(h) — Sy (h)) = 27i\/2 Z T(k)ePih

RAa>0
k€247, y+1
St(h) — Sy (h = — 27i\/2 T(k)e "

(S5 =Sm) | V2 ) Tk

k€247 +1



The main example

- \
So(7) has a “modular” resurgent structure ’
+100 T(k)
SJ(h) 1= \/5[ e 5/ Z — ds, Sh>0 X X
0 ke24z+1 Pk ™9
So (h) = \/5{ e 5/ Z ) ds, Sh <0 B
0 ke2az41 Pk ™% Jo
In fact S(;r and S, extend analytically to the right and the left half-planes R > 0,87 < O
(SF(n) — Sy (1)) . 27in/2 ), Te ™ = 2zin/2 G~ "o(g ")
g k€247 4+ 1
<S(;r (n) =S¢ (h)) N = — 2711'\/5 Z T(k)e P = 27:1'\/5 g4 (g=1%)

k€247 +1



The main example

Quantum modularity

CONJECTURE 2
2l
If h = ., then
N
: 25
1 (1) ] SJ(h)—\/EZMO(@N) N=123,..
NTANT 27| sy +2 2miey (BN) N=—1,-2,-3,..

43



The main example

Quantum modularity

CONJECTURE 2
2l
If h = ., then
N
: 25
1 (1) ] SJ(h)—\/EZMO(@N) N=123,..
NTANT 27| sy +2 2miey (BN) N=—1,-2,-3,..

43

| 25 |
REMARK: 7f(7) # —5, (27it) £ \/5 e, ( ) fort € Q\{0} and 7 # = —
27T 48 - T N



The main example

Quantum modularity: the cocycle /(7)

COROLLARY 1

1 T 27l
Let h(7) := — e24f(1), th
et h(7) \27+1\f(27+1> e f(7), then

1 \/5 1 k 27+ 1)k

VT>—5,T#O h(t) = - Z T(k)le()(ﬁ)fh(z_.élg)—el( 7. 48 )]
i _\/5 1 k 2+ Dk

VT<—5, h(t) = - Z T(k)[eo(ﬁ)el(f.48>+el( T-48 )]




The main example

COROLLARY 2

For any non-zero rational number 7 € Q\ {0}

3 o ()=

k€247 +1 \/ZT

sgn(7)
2

|
= 7f(7) = o S(;—L(27rif) — \/_ f( 27) forr € Q\{0}



Kontsevich-Zagier



Kontsevich-Zagier g-series

after Zagier and Costin-Garoufalidis

Consider the g-series
dq) =) (q),
n>0

It is NOT an analytic function of g inside or outside the unit disk but it is well defined at g equal to root of

unity

o0

1
Strange identity ¢(q) = — > Z ny(n)g ™' =24

n=1
1 n=1,11 mod 12
where y(n) = < —1 n=5,7 mod 12
0O  otherwise

RHS is convergent for |g| < 1 and its limit as g goes to roots of unity is ¢.



Kontsevich-Zagier g-series

after Zagier and Costin-Garoufalidis

Define f: Q — C
f@=q"*Y A-g)1-¢)...A-q" 7€ Q.q=exp(2rir)
n=0

THEOREM [Zagier,99]. The function f(7) satisfies

fx+ 1) = @), fr) + (1) V2 f(=1/7) = h(r)

where 1: R — Cis C*® on R and real-analytic except at 7 = 0.



Kontsevich-Zagier g-series

after Zagier and Costin-Garoufalidis

Let 2 € C and define the formal power series

So(h):= eh/242 H(1 — k) = Z c,i" € Q[A]

n=0 k=0

- ,2n+DIq (k)
THEOREM |[Zagier,99] c, \/_ 3(—1) A | Z (K272/6)+]



Kontsevich-Zagier g-series

after Zagier and Costin-Garoufalidis

Let 2 € C and define the formal power series
oo

So(h):= emMi ﬁa — ekhy = Z c,h" € QA]]

THEOREM [Zagier,99] ¢, = /3(—1)"

2n+1)! i y(k)

dnnl (k22 6]

THEOREM [Costin-Garoufalidis,10]

o0

3 Z ky(k)

The Borel transform of S, is G(&) =
o 0 () 2\/5 - (k27216 — )5/




Kontsevich-Zagier g-series

after Zagier and Costin-Garoufalidis

Let 2 € C and define the formal power series

So(h):= emMi ﬁa — ekhy = Z c,h" € QA]]

o0

2n+1)! i y(k)

THEOREM [Zagier,99] ¢, = v/3(=1)"
Zagier99) ¢, = V3= ) e

k=1
THEOREM [Costin-Garoufalidis,10]

R4 i ky(k)
2\/5 - (k27216 — )32

= — (2m)* R Z ky(k)e " where p, = k*n*/6
k=1

, The Borel transform of So is G(0) =

° (SO (") - So_(h)) |2Rh<o



Kontsevich-Zagier g-series

after Zagier and Costin-Garoufalidis

Let 2 € C and define the formal power series

So(h):= eh/242 H(l — k) = Z c,i" € Q[A]

n=0 k=0
Cn+1)! < X (k) 3\ © ky (k)
THEOREM [Zagier,99] ¢, = 1)" c, =\2n(—1)'"I'| n+—
[ sl ] \/_( ) 41y I; (k2ﬂ2/6)”+1 L ( ) o) ]; (k2ﬂ2/6)”+3/2
THEOREM [ Costin-Garoufalidis,10]
. 3 -~ ky(k
, The Borel transform of §, is G(¢) = ~ Z 240 = singularities at p;, k € Z,

NG ~ (k27l'2/6 _ 4’)5/2
= — 2n)*?h=37 ) ky(k)e ™" where p, = k*72/6 = Stokes S, = ky(k), k € Z.,
k=1

o],



Kontsevich-Zagier g-series

after Zagier and Costin-Garoufalidis

THEOREM [Costin-Garoufalidis,10]
Let 7 € Q\{0} then
So 2rit) + Sy 2nit) = 2f(7)

i.e. the median resummation Sy(27i7) = J e ""G(O)dE
11
_ —>
is a quantum modular form. <




Trace of quantum mechanical
operators: local [P*



Trace of quantum mechanical operators: local P*
after Rella

2/3. N2 27i/3.
: e 36T+12T+7Zl (q ,Q) (e - ,Q)

N (q'73; @) (e72713; )2,

Tr(pp2) =

where ¢ = ¢*™*, § = e *" and 7 € H.

* Tr(pp2) is convergent as a g-series and as a g-series.

In fact, taking the asymptotics as ¢ — 1 or g — lwe get two divergent series: let i = 2mit

I(1/3)° > B, B,  (2/3
Tr(ppe) = — —2 exp (—32 20211 )hz’l)

2mih 2n2n+1)!

n=1

2 2n—1
T i B, B 2/3 1272
I'(ﬂ[p)z) — \/ ; e 4n? €Xp —\/gl E 2n*"2n— 1( ) ( JT )

‘ om)l2n—1) \ &




Trace of quantum mechanical operators: local P*
after Rella

2/3. N2 27i/3.
: e 36T+12T+7Zl (q ,Q) (e - ,Q)

/37 (q'73; @) (e72713; )2,

Tr(pp2) =

where ¢ = ¢*™*, § = e *" and 7 € H.

* Tr(pp2) is convergent as a g-series and as a g-series.

In fact, taking the asymptotics as ¢ — 1 or g — lwe get two divergent series: let i = 2mit

I'(1/3)° > B, B, (2/3
=AY (_32 iBa >h2n>

2mih 2n2n+1)!

n=1

2 2n—1
T i B, B 2/3 1272
r(p[FD2) — \/ l e 4r? cXp —\/gl E 2n-2n— 1( ) ( T )

(2n) 12n — 1) h




Trace of quantum mechanical operators: local P*
Resurgent structure

THEOREM [Rella,22]
o BonBont1(2/3)

Let So(f) = = nz:; 2n(2n + 1)!

7*" and G(s) = ABS,, then

the singularities of its Borel transform are at p, = 47%k, k € Z\{0)

© ¢ 1 n=1 mod3
the Stokes constants S, satisfy Z k—’; = L(s + 1,y3,)C(s), with y3,(n) =40 n=0 mod 3
k=1 —1 n=2 mod 3

Locally at s = p,, the Borel transform is G(s) = const - Z_k log(s —p;) -1+ h.f.
TTl



Trace of quantum mechanical operators: local P*
Resurgent structure

REMARK [Rella,22]

0 Sk .
, Gy, = const - '(2n) Z ~— exact large order relation
1 Pk ’
s (55 = S lgpso = const ) Se ™ o log(w: ), — log(w™":§),, with
k>1

W = e27rl/3



Trace of quantum mechanical operators: local P*
Resurgent structure

THEOREM [Rella,22]

2n—1
3 < B, B, .(2/3) [ 12x° 3
Let S (h)=—1/3i ) — 21 (E15) [ 10 and G_(s) = BS_, then
% 2n)'2n—-1) \ % %

n=1

the singularities of its Borel transform are p, = k/3, k € Z\{0}

= S
the Stokes constants 5, satisfy Z k—’; = L(s, y3,)C(s + 1)
k=1

Locally at s = p,, the Borel transform is G (s) = const - > k. log(s —p,) - 1+ ht
Tl



Trace of quantum mechanical operators: local P*
Resurgent structure

REMARK [Rella,22]

. ¢ = const - I'(2n — 1) Z
k>1 PE"

o (55 = S lgpso = const ) Se ™ o log(g™*: q)., — log(q"": 9).
k>1

- exact large order relation



Conclusion

* From “modular” resurgent structure we expect to find QMF

Resurgence by taking generalised Laplace transform (e.g. the median
Laplace resummation for Kontsevich-Zagier g-series or in
William’s talk)

e For simple “modular” resurgent structure the median Laplace

resummation does not seem to give a QMF (as in the main
example)




Conclusion

Modular * From “modular” resurgent structure we expect to find QMF
Resurgence by taking generalised Laplace transform (e.g. the median
Laplace resummation for Kontsevich-Zagier g-series or in
William’s talk)

e For simple “modular” resurgent structure the median Laplace

resummation does not seem to give a QMF (as in the main
example)

Thank you for your attention



