q-series, resurgence and modularity

Veronica Fantini
IHES

Wall-Crossing Structures, Analyticity and Resurgence

Introduction

How much resurgence knows about modularity

Study resurgence of a divergent power series, which are related to \mathbf{q} -

\section*{Resurgence}

q-series

Modularity

 series (or q-functions) and try to understand if their resummation is related with a quantum modular form (QMF).Is there a general resurgent structure from which we can construct QMF?

Introduction

How much resurgence knows about modularity and vice-versa

Resurgence

Study resurgence of a divergent power series, which are related to \mathbf{q} series (or q-functions) and try to understand if their resummation is related with a quantum modular form (QMF).

q-series

Is there a general resurgent structure from which we can construct QMF?

Modularity

In the main example of today we know already there is a QMF related with a q-series. Does modularity help to prove resurgence?

Borel-Laplace summability

From divergent series to analytic functions

$$
\tilde{S}_{0} \in \mathbb{C} \llbracket \hbar \rrbracket \quad B \quad G(s) \in \mathbb{C}\{s\}
$$

Borel-Laplace summability

From analytic function to divergent series and back to analytic functions

Resurgence

The importance of the Borel plane

DEFINITION: A function $\hat{\phi}(\zeta) \in \mathbb{C}\{\zeta\}$ is resurgent if it can be endlessly analytically continued, i.e. for every $\mathrm{L}>0$ there exists a finite subset $\Omega_{L} \subset \mathbb{C}$ such that $\hat{\phi}(\zeta)$ can be analytically continued along every path of length less than L which avoids Ω_{L}.

- The Borel plane contains the main informations
- Alien calculus, median resummation, Hankel contour Laplace transform,... are alternatives to the usual Laplace transform, well defined to work with resurgent functions

Resurgence

Simple resurgent functions

Let ω be a singular point of $G(\zeta) \in \mathbb{C}\{\zeta\}$

$$
G(\zeta)=\frac{C_{\omega}}{\zeta-\omega}+\frac{S_{\omega}}{2 \pi i} \log (\zeta-\omega) \hat{\phi}_{\omega}(\zeta-\omega)+\text { h.f. }
$$

where $S_{\omega}, C_{\omega} \in \mathbb{Z}$ and $\hat{\phi}_{\omega}(\zeta) \in \mathbb{C}\{\zeta\}$.
In fact, looking at $\hat{\phi}_{\omega}(\zeta)$ we can continue to study the singularities in the Borel plane. If $G(\zeta)$ is resurgent, the $\hat{\phi}_{\omega}$ know each other.

Resurgence

Simple resurgent functions

Let ω be a singular point of $G(\zeta) \in \mathbb{C}\{\zeta\}$

$$
G(\zeta)=\frac{C_{\omega}}{\zeta-\omega}+\frac{S_{\omega}}{2 \pi i} \log (\zeta-\omega) \hat{\phi}_{\omega}(\zeta-\omega)+\text { h.f. }
$$

where $S_{\omega}, C_{\omega} \in \mathbb{Z}$ and $\hat{\phi}_{\omega}(\zeta) \in \mathbb{C}\{\zeta\}$.
In fact, looking at $\hat{\phi}_{\omega}(\zeta)$ we can continue to study the singularities in the Borel plane. If $G(\zeta)$ is resurgent, the $\hat{\phi}_{\omega}$ know each other.

Resurgence

Resurgent structure

DEFINITION: A resurgent structure consists of the following data

- set of singularities $\{\omega \in \Omega\}$
- collection of germs $\hat{\phi}_{\omega}(\zeta) \in \mathbb{C}\{\zeta\}$
- Stokes constants C_{ω}, S_{ω}

Resurgence

"Modular" resurgent structure

DEFINITION: A "modular" resurgent structure is a resurgent structure such that

- tower of singularities $\left\{\rho_{k} \in \mathbb{R} \mid k \in \Omega\right\}, \Omega \subset \mathbb{Z}$
- collection of germs $\hat{\phi}_{k}(\zeta)=1$
- Stokes constants $S_{k} \in \mathbb{Z}$ in a suitable normalisation, and $L(s)=\sum_{k \in \Omega} \frac{S_{k}}{|k|^{s}}$ is an L-function

Resurgence

Divergent series with "modular" resurgent structure

Let $\tilde{S}_{0}(\hbar)=\sum_{n=1}^{\infty} c_{n} \hbar^{n}$ be Gevrey-1 and

$$
c_{n}=\text { const } \cdot(n-1)!\sum_{k \in \Omega} \frac{S_{k}}{\rho_{k}^{n}}
$$

with $\left\{\rho_{k} \in \mathbb{R} \mid k \in \Omega\right\}$ and $\Omega \subset \mathbb{Z}$ and $L(s)=\sum_{k \in \Omega} \frac{S_{k}}{|k|^{s}}$ is an L-function. Then $G(\zeta)=\mathscr{B} \tilde{S}_{0}$ has a "modular" resurgent structure.

In fact, $G(\zeta)=$ const $\sum_{n=1}^{\infty} \sum_{k \in \Omega} \frac{S_{k}}{\rho_{k}^{n}} \frac{\zeta^{n}}{n}=$ const $\sum_{k \in \Omega} S_{k} \log \left(\zeta-\rho_{k}\right) \cdot 1+$ h.f.

Resurgence

Divergent series with "modular" resurgent structure

Let $\tilde{S}_{0}(\hbar)=\sum_{n=0}^{\infty} c_{n} \hbar^{n}$ be a Gevrey-1 series and

$$
c_{n}=\text { const } \cdot \Gamma(n+\alpha) \sum_{k \in \Omega} \frac{S_{k}}{\rho_{k}^{n+\alpha}} \text { for } \alpha \in \mathbb{Q}_{\geq 0} \text { not integer }
$$

with $\left\{\rho_{k} \in \mathbb{R} \mid k \in \Omega\right\}$ and $\Omega \subset \mathbb{Z}$ and $L(s)=\sum_{k \in \Omega} \frac{S_{k}}{|k|^{s}}$ is an L-function. Then $G(\zeta)=\mathscr{B} \tilde{S}_{0}$ has a "modular" resurgent structure.

In fact, $G(\zeta)=$ const $\sum_{n=0}^{\infty} \sum_{k \in \Omega} \frac{S_{k}}{\rho_{k}^{n+\alpha}} \frac{\Gamma(n+\alpha)}{n!} \zeta^{n}=\frac{\text { const }}{(\alpha-1) \Gamma(\alpha-1)} \sum_{k \in \Omega} \frac{S_{k}}{\left(\rho_{k}-\zeta\right)^{\alpha}}$

Resurgence

Taking generalised Laplace transform

Let $\tilde{S}_{0} \in \mathbb{Q} \llbracket \hbar \rrbracket$ be a formal series such that it is Gevrey-1 and its Borel transform $G(\zeta)$ admits a simple "modular" resurgent structure.

Then the generalised Laplace transform (for some path \mathscr{C})

$$
S_{0}(\hbar):=\int_{\mathscr{C}} e^{-\zeta / \hbar} G(\zeta) d \zeta
$$

defines a $\operatorname{QMF} f(\tau):=S_{0}(2 \pi i \tau)$, i.e.

Resurgence

Taking generalised Laplace transform
$f: \mathbb{Q} \rightarrow \mathbb{C}$ such that

$$
f(\tau+1)=e^{2 \pi i / m} f(\tau) \quad(c \tau+d)^{-1} f(\gamma \tau)=e^{2 \pi i / m} f(\tau)+h_{\gamma}(\tau)
$$

for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and $h_{\gamma}: \mathbb{R} \rightarrow \mathbb{C}$ is C^{∞} and real-analytic except at $\tau=\gamma^{-1}(\infty)$.

The main example

The main example

after Andrews, Cohen, Zagier,...

$$
\begin{gathered}
\sigma(q):=\sum_{n=0}^{\infty} \frac{q^{n(n+1) / 2}}{(-q ; q)_{n}}=1+\sum_{n=0}^{\infty}(-1)^{n} q^{n+1}(q)_{n} \\
\sigma^{*}(q):=2 \sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n^{2}}}{\left(q ; q^{2}\right)_{n}}=-2 \sum_{n=0}^{\infty} q^{n+1}\left(q^{2} ; q^{2}\right)_{n}
\end{gathered}
$$

- $\sigma(q), \sigma^{*}(q)$ are convergent for $|q|<1$,
- they make sense when q is a root of unity: if $q=\exp (2 \pi i \tau)$ with $\tau \in \mathbb{Q}$ then $\sigma(q)=-\sigma^{*}\left(q^{-1}\right)$
- Define the coefficients $\{T(k)\}_{k \in 24 \mathbb{Z}+1}$ by

$$
q \sigma\left(q^{24}\right)=\sum_{k \geq 0} T(k) q^{k}, \quad q^{-1} \sigma^{*}\left(q^{24}\right)=\sum_{k<0} T(k) q^{|k|}
$$

then $L(s)=\sum_{k \in 24 \mathbb{Z}+1} T(k)|k|^{-s}=\zeta_{\mathbb{Q}(\sqrt{3+\sqrt{3}})}(s) / \zeta_{\mathbb{Q}}(\sqrt{3})^{(s)}$.

The main example
 after Zagier, Cohen, Andrews,...

Define $f: \mathbb{Q} \rightarrow \mathbb{C}$

$$
f(\tau)=q^{1 / 24} \sigma(q)=-q^{1 / 24} \sigma^{*}\left(q^{-1}\right) \quad \tau \in \mathbb{Q}, q=\exp (2 \pi i \tau)
$$

PROPOSITION [Zagier,10; Kontsevich]. The function $f(\tau)$ satisfies

$$
f(\tau+1)=e^{2 \pi i / 24} f(\tau), \quad \frac{1}{|2 \tau+1|} f\left(\frac{\tau}{2 \tau+1}\right)=e^{2 \pi i / 24} f(\tau)+h(\tau)
$$

where $h: \mathbb{R} \rightarrow \mathbb{C}$ is C^{∞} on \mathbb{R} and real-analytic except at $\tau=0,-1 / 2$.

The main example

Divergent series

Let $\hbar \in \mathbb{C}$ and define the formal power series

$$
\begin{aligned}
\tilde{S}_{0}(\hbar) & :=\hbar e^{\hbar / 24}\left(1+\sum_{n=1}^{\infty}(-1)^{n+1} e^{n \hbar} \prod_{k=0}^{n}\left(1-e^{k \hbar}\right)\right) \\
& =\hbar e^{\hbar / 24}\left(1+e^{\hbar}-e^{2 \hbar}\left(1-e^{\hbar}\right)+\ldots\right)=\sum_{n=1}^{\infty} c_{n} \hbar^{n} \in \mathbb{Q} \llbracket \hbar \rrbracket
\end{aligned}
$$

The main example

Divergent series

Let $\hbar \in \mathbb{C}$ and define the formal power series

$$
\begin{aligned}
\tilde{S}_{0}(\hbar) & :=\hbar e^{\hbar / 24}\left(1+\sum_{n=1}^{\infty}(-1)^{n+1} e^{n \hbar} \prod_{k=0}^{n}\left(1-e^{k \hbar}\right)\right) \\
& =\hbar e^{\hbar / 24}\left(1+e^{\hbar}-e^{2 \hbar}\left(1-e^{\hbar}\right)+\ldots\right)=\sum_{n=1}^{\infty} c_{n} \hbar^{n} \in \mathbb{Q} \llbracket \hbar \rrbracket
\end{aligned}
$$

CONJECTURE 1:

$$
\frac{c_{n}}{(n-1)!}=\sqrt{2} \sum_{k \in 24 \mathbb{Z}+1} \frac{T(k)}{\rho_{k}^{n}} \quad \text { with } \rho_{k}:=\frac{\pi^{2}}{12} k
$$

The main example

$\tilde{S}_{0}(\hbar)$ has a "modular" resurgent structure

$$
\begin{array}{ll}
S_{0}^{+}(\hbar):=\sqrt{2} \int_{0}^{+i \infty} e^{-s / \hbar} \sum_{k \in 24 \mathbb{Z}+1} \frac{T(k)}{\rho_{k}-s} d s, & \Im \hbar>0 \\
S_{0}^{-}(\hbar):=\sqrt{2} \int_{0}^{-i \infty} e^{-s / \hbar} \sum_{k \in 24 \mathbb{Z}+1} \frac{T(k)}{\rho_{k}-s} d s, & \Im \hbar<0
\end{array}
$$

The main example

$\tilde{S}_{0}(\hbar)$ has a "modular" resurgent structure

$$
\begin{array}{ll}
S_{0}^{+}(\hbar):=\sqrt{2} \int_{0}^{+i \infty} e^{-s / \hbar} \sum_{k \in 24 \mathbb{Z}+1} \frac{T(k)}{\rho_{k}-s} d s, & \Im \hbar>0 \\
S_{0}^{-}(\hbar):=\sqrt{2} \int_{0}^{-i \infty} e^{-s / \hbar} \sum_{k \in 24 \mathbb{Z}+1} \frac{T(k)}{\rho_{k}-s} d s, & \Im \hbar<0
\end{array}
$$

In fact S_{0}^{+}and S_{0}^{-}extend analytically to the right and the left half-planes $\Re \hbar>0, \Re \hbar<0$

$$
\begin{aligned}
& \left.\left(S_{0}^{+}(\hbar)-S_{0}^{-}(\hbar)\right)\right|_{\mathfrak{R} \hbar>0}=2 \pi i \sqrt{2} \sum_{k \in 24 \mathbb{Z}_{\geq 0}+1} T(k) e^{-\rho_{k} / \hbar} \\
& \left.\left(S_{0}^{+}(\hbar)-S_{0}^{-}(\hbar)\right)\right|_{\mathfrak{R} \hbar<0}=-2 \pi i \sqrt{2} \sum_{k \in 24 \mathbb{Z}_{<0}+1} T(k) e^{-\rho_{k} / \hbar}
\end{aligned}
$$

The main example

$\tilde{S}_{0}(\hbar)$ has a "modular" resurgent structure

$$
\begin{array}{ll}
S_{0}^{+}(\hbar):=\sqrt{2} \int_{0}^{+i \infty} e^{-s / \hbar} \sum_{k \in 24 \mathbb{Z}+1} \frac{T(k)}{\rho_{k}-s} d s, & \Im \hbar>0 \\
S_{0}^{-}(\hbar):=\sqrt{2} \int_{0}^{-i \infty} e^{-s / \hbar} \sum_{k \in 24 \mathbb{Z}+1} \frac{T(k)}{\rho_{k}-s} d s, & \Im \hbar<0
\end{array}
$$

In fact S_{0}^{+}and S_{0}^{-}extend analytically to the right and the left half-planes $\Re \hbar>0, \Re \hbar<0$

$$
\begin{aligned}
& \left.\left(S_{0}^{+}(\hbar)-S_{0}^{-}(\hbar)\right)\right|_{\Re \hbar>0}=2 \pi i \sqrt{2} \sum_{k \in 24 \mathbb{Z}_{\geq 0}+1} T(k) e^{-\rho_{k} / \hbar}=2 \pi i \sqrt{2} \tilde{q}^{-1 / 48} \sigma\left(\tilde{q}^{-1 / 2}\right) \\
& \left.\left(S_{0}^{+}(\hbar)-S_{0}^{-}(\hbar)\right)\right|_{\Re \hbar<0}=-2 \pi i \sqrt{2} \sum_{k \in 24 \mathbb{Z}_{<0}+1} T(k) e^{-\rho_{k} / \hbar}=2 \pi i \sqrt{2} \tilde{q}^{1 / 48} \sigma^{*}\left(\tilde{q}^{-1 / 2}\right)
\end{aligned}
$$

The main example

Quantum modularity

CONJECTURE 2
If $\hbar=\frac{2 \pi i}{N}$, then
$\frac{1}{N} f\left(\frac{1}{N}\right)=\frac{1}{2 \pi i} \begin{cases}S_{0}^{+}(\hbar)-\sqrt{2} 2 \pi i \mathbf{e}_{0}\left(\frac{25}{48} N\right) & N=1,2,3, \ldots \\ S_{0}^{-}(\hbar)+\sqrt{2} 2 \pi i \mathbf{e}_{0}\left(\frac{25}{48} N\right) & N=-1,-2,-3, \ldots\end{cases}$

The main example

Quantum modularity

CONJECTURE 2

If $\hbar=\frac{2 \pi i}{N}$, then
$\frac{1}{N} f\left(\frac{1}{N}\right)=\frac{1}{2 \pi i} \begin{cases}S_{0}^{+}(\hbar)-\sqrt{2} 2 \pi i \mathbf{e}_{0}\left(\frac{25}{48} N\right) & N=1,2,3, \ldots \\ S_{0}^{-}(\hbar)+\sqrt{2} 2 \pi i \mathbf{e}_{0}\left(\frac{25}{48} N\right) & N=-1,-2,-3, \ldots\end{cases}$

REMARK: $\tau f(\tau) \neq \frac{1}{2 \pi i} S_{0}^{ \pm}(2 \pi i \tau) \pm \sqrt{2} \mathbf{e}_{0}\left(\frac{25}{48 \cdot \tau}\right)$ for $\tau \in \mathbb{Q} \backslash\{0\}$ and $\tau \neq \pm \frac{1}{N}$

The main example

Quantum modularity: the cocycle $h(\tau)$

COROLLARY 1
Let $h(\tau):=\frac{1}{|2 \tau+1|} f\left(\frac{\tau}{2 \tau+1}\right)-e^{\frac{2 \pi i}{24} f(\tau) \text {, then }}$
$\forall \tau>-\frac{1}{2}, \tau \neq 0 \quad h(\tau)=\frac{\sqrt{2}}{\tau} \sum_{k \in 24 Z+1} T(k)\left[\mathbf{e}_{0}\left(\frac{1}{24}\right) \mathbf{e}_{1}\left(\frac{k}{\tau \cdot 48}\right)-\mathbf{e}_{1}\left(\frac{(2 \tau+1) k}{\tau \cdot 48}\right)\right]$
$\forall \tau<-\frac{1}{2}, \quad h(\tau)=\frac{\sqrt{2}}{\tau} \sum_{k \in 24 Z+1} T(k)\left[\mathbf{e}_{0}\left(\frac{1}{24}\right) \mathbf{e}_{1}\left(\frac{k}{\tau \cdot 48}\right)+\mathbf{e}_{1}\left(\frac{(2 \tau+1) k}{\tau \cdot 48}\right)\right]$

The main example

COROLLARY 2

For any non-zero rational number $\tau \in \mathbb{Q} \backslash\{0\}$

$$
\sum_{k \in 24 \mathbb{Z}+1} T(k) \mathbf{e}_{1}\left(\frac{k \tau}{48}\right)=-\frac{\operatorname{sgn}(\tau)}{2} f(\tau / 2)-\frac{f(1 / \tau)}{\sqrt{2} \tau}
$$

$\Rightarrow \tau f(\tau)=\frac{1}{2 \pi i} S_{0}^{ \pm}(2 \pi i \tau)-\sqrt{2} \frac{\operatorname{sgn}(\tau)}{2} f\left(\frac{1}{2 \tau}\right)$ for $\tau \in \mathbb{Q} \backslash\{0\}$

Kontsevich-Zagier

Kontsevich-Zagier q-series
 after Zagier and Costin-Garoufalidis

Consider the q -series

$$
\phi(q):=\sum_{n \geq 0}(q)_{n}
$$

It is NOT an analytic function of q inside or outside the unit disk but it is well defined at q equal to root of unity

$$
\text { Strange identity } \phi(q)=-\frac{1}{2} \sum_{n=1}^{\infty} n \chi(n) q^{\left(n^{2}-1\right) / 24}
$$

where $\chi(n)= \begin{cases}1 & n \equiv 1,11 \bmod 12 \\ -1 & n \equiv 5,7 \bmod 12 \\ 0 & \text { otherwise }\end{cases}$
RHS is convergent for $|q|<1$ and its limit as q goes to roots of unity is ϕ.

Kontsevich-Zagier q-series

after Zagier and Costin-Garoufalidis

Define $f: \mathbb{Q} \rightarrow \mathbb{C}$

$$
f(\tau)=q^{1 / 24} \sum_{n=0}^{\infty}(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right) \quad \tau \in \mathbb{Q}, q=\exp (2 \pi i \tau)
$$

THEOREM [Zagier,99]. The function $f(\tau)$ satisfies

$$
f(\tau+1)=e^{2 \pi i / 24} f(\tau), \quad f(\tau)+(i \tau)^{-3 / 2} f(-1 / \tau)=h(\tau)
$$

where $h: \mathbb{R} \rightarrow \mathbb{C}$ is C^{∞} on \mathbb{R} and real-analytic except at $\tau=0$.

Kontsevich-Zagier q-series

after Zagier and Costin-Garoufalidis

Let $\hbar \in \mathbb{C}$ and define the formal power series

$$
\tilde{S}_{0}(\hbar):=e^{\hbar / 24} \sum_{n=0}^{\infty} \prod_{k=0}^{n}\left(1-e^{k \hbar}\right)=\sum_{n=0}^{\infty} c_{n} \hbar^{n} \in \mathbb{Q} \llbracket \hbar \rrbracket
$$

THEOREM [Zagier,99] $c_{n}=\sqrt{3}(-1)^{n} \frac{(2 n+1)!}{4^{n} n!} \sum_{k=1}^{\infty} \frac{\chi(k)}{\left(k^{2} \pi^{2} / 6\right)^{n+1}}$

Kontsevich-Zagier q-series

after Zagier and Costin-Garoufalidis

Let $\hbar \in \mathbb{C}$ and define the formal power series

$$
\tilde{S}_{0}(\hbar):=e^{\hbar / 24} \sum_{n=0}^{\infty} \prod_{k=0}^{n}\left(1-e^{k \hbar}\right)=\sum_{n=0}^{\infty} c_{n} \hbar^{n} \in \mathbb{Q} \llbracket \hbar \rrbracket
$$

THEOREM [Zagier,99] $\quad c_{n}=\sqrt{3}(-1)^{n} \frac{(2 n+1)!}{4^{n} n!} \sum_{k=1}^{\infty} \frac{\chi(k)}{\left(k^{2} \pi^{2} / 6\right)^{n+1}}$
THEOREM [Costin-Garoufalidis,10]

- The Borel transform of \tilde{S}_{0} is $G(\zeta)=\frac{3 \pi}{2 \sqrt{2}} \sum_{k=1}^{\infty} \frac{k \chi(k)}{\left(k^{2} \pi^{2} / 6-\zeta\right)^{5 / 2}}$

Kontsevich-Zagier q-series

after Zagier and Costin-Garoufalidis

Let $\hbar \in \mathbb{C}$ and define the formal power series

$$
\tilde{S}_{0}(\hbar):=e^{\hbar / 24} \sum_{n=0}^{\infty} \prod_{k=0}^{n}\left(1-e^{k \hbar}\right)=\sum_{n=0}^{\infty} c_{n} \hbar^{n} \in \mathbb{Q} \llbracket \hbar \rrbracket
$$

THEOREM [Zagier,99] $\quad c_{n}=\sqrt{3}(-1)^{n} \frac{(2 n+1)!}{4^{n} n!} \sum_{k=1}^{\infty} \frac{\chi(k)}{\left(k^{2} \pi^{2} / 6\right)^{n+1}}$
THEOREM [Costin-Garoufalidis,10]

- The Borel transform of \tilde{S}_{0} is $G(\zeta)=\frac{3 \pi}{2 \sqrt{2}} \sum_{k=1}^{\infty} \frac{k \chi(k)}{\left(k^{2} \pi^{2} / 6-\zeta\right)^{5 / 2}}$
- $\left.\left(S_{0}^{+}(\hbar)-S_{0}^{-}(\hbar)\right)\right|_{\Re \hbar<0}=-(2 \pi)^{3 / 2} \hbar^{-3 / 2} \sum_{k=1}^{\infty} k \chi(k) e^{-\rho_{k} / \hbar}$ where $\rho_{k}=k^{2} \pi^{2} / 6$

Kontsevich-Zagier q-series
 after Zagier and Costin-Garoufalidis

Let $\hbar \in \mathbb{C}$ and define the formal power series

$$
\tilde{S}_{0}(\hbar):=e^{\hbar / 24} \sum_{n=0}^{\infty} \prod_{k=0}^{n}\left(1-e^{k \hbar}\right)=\sum_{n=0}^{\infty} c_{n} \hbar^{n} \in \mathbb{Q} \llbracket \hbar \rrbracket
$$

THEOREM [Zagier,99] $\quad c_{n}=\sqrt{3}(-1)^{n} \frac{(2 n+1)!}{4^{n} n!} \sum_{k=1}^{\infty} \frac{\chi(k)}{\left(k^{2} \pi^{2} / 6\right)^{n+1}} \quad c_{n}=\sqrt{2 \pi}(-1)^{n} \Gamma\left(n+\frac{3}{2}\right) \sum_{k=1}^{\infty} \frac{k \chi(k)}{\left(k^{2} \pi^{2} / 6\right)^{n+3 / 2}}$
THEOREM [Costin-Garoufalidis,10]

- The Borel transform of \tilde{S}_{0} is $G(\zeta)=\frac{3 \pi}{2 \sqrt{2}} \sum_{k=1}^{\infty} \frac{k \chi(k)}{\left(k^{2} \pi^{2} / 6-\zeta\right)^{5 / 2}}$ \Rightarrow singularities at $\rho_{k}, k \in \mathbb{Z}_{\geq 1}$
- $\left.\left(S_{0}^{+}(\hbar)-S_{0}^{-}(\hbar)\right)\right|_{\Re \hbar>0}=-(2 \pi)^{3 / 2} \hbar^{-3 / 2} \sum_{k=1}^{\infty} k \chi(k) e^{-\rho_{k} / \hbar}$ where $\rho_{k}=k^{2} \pi^{2} / 6$
\Rightarrow Stokes $S_{k}=k \chi(k), k \in \mathbb{Z}_{\geq 1}$

Kontsevich-Zagier q-series

after Zagier and Costin-Garoufalidis

THEOREM [Costin-Garoufalidis,10]
Let $\tau \in \mathbb{Q} \backslash\{0\}$ then

$$
S_{0}^{+}(2 \pi i \tau)+S_{0}^{-}(2 \pi i \tau)=2 f(\tau)
$$

i.e. the median resummation $S_{0}(2 \pi i \tau)=\int_{\mathscr{C}} e^{-\zeta / \hbar} G(\zeta) d \zeta$ is a quantum modular form.

Trace of quantum mechanical operators: local \mathbb{P}^{2}

Trace of quantum mechanical operators: local \mathbb{P}^{2} after Rella

$$
\operatorname{Tr}\left(\rho_{\mathbb{P} 2}\right)=\frac{1}{\sqrt{3 \tau}} e^{-\frac{\pi i}{36} \tau+\frac{\pi}{12 t}+\frac{\pi i}{4}} \frac{\left(q^{2 / 3} ; q\right)_{\infty}^{2}}{\left(q^{1 / 3} ; q\right)_{\infty}} \frac{\left(e^{2 \pi i / 3} ; \tilde{q}\right)_{\infty}}{\left(e^{-2 \pi i / 3} ; \tilde{q}\right)_{\infty}^{2}}
$$

where $q=e^{2 \pi i \tau}, \tilde{q}=e^{-2 \pi i / \tau}$ and $\tau \in \mathbb{H}$.

- $\operatorname{Tr}\left(\rho_{\mathbb{P}^{2}}\right)$ is convergent as a q-series and as a \tilde{q}-series.

In fact, taking the asymptotics as $q \rightarrow 1$ or $\tilde{q} \rightarrow 1$ we get two divergent series: let $\hbar=2 \pi i \tau$

$$
\begin{gathered}
\operatorname{Tr}\left(\rho_{\mathbb{P}^{2}}\right)=-\frac{\Gamma(1 / 3)^{3}}{2 \pi i \hbar} \exp \left(-3 \sum_{n=1}^{\infty} \frac{B_{2 n} B_{2 n+1}(2 / 3)}{2 n(2 n+1)!} \hbar^{2 n}\right) \\
\operatorname{Tr}\left(\rho_{\mathbb{P}^{2}}\right)=\sqrt{\frac{2 \pi i}{33 / 2} \hbar} \frac{{ }^{\frac{i V}{4 n^{2}} \hbar} \exp \left(-\sqrt{3} i \sum_{n=1}^{\infty} \frac{B_{2 n} B_{2 n-1}(2 / 3)}{(2 n)!(2 n-1)}\left(\frac{12 \pi^{2}}{\hbar}\right)^{2 n-1}\right)}{} .\left\{\begin{array}{l}
2
\end{array}\right)
\end{gathered}
$$

Trace of quantum mechanical operators: local \mathbb{P}^{2} after Rella

$$
\operatorname{Tr}\left(\rho_{\mathbb{P} 2}\right)=\frac{1}{\sqrt{3 \tau}} e^{-\frac{\pi i}{36} \tau+\frac{\pi}{12 t}+\frac{\pi i}{4}} \frac{\left(q^{2 / 3} ; q\right)_{\infty}^{2}}{\left(q^{1 / 3} ; q\right)_{\infty}} \frac{\left(e^{2 \pi i / 3} ; \tilde{q}\right)_{\infty}}{\left(e^{-2 \pi i / 3} ; \tilde{q}\right)_{\infty}^{2}}
$$

where $q=e^{2 \pi i \tau}, \tilde{q}=e^{-2 \pi i / \tau}$ and $\tau \in \mathbb{H}$.

- $\operatorname{Tr}\left(\rho_{\mathbb{P}^{2}}\right)$ is convergent as a q-series and as a \tilde{q}-series.

In fact, taking the asymptotics as $q \rightarrow 1$ or $\tilde{q} \rightarrow 1$ we get two divergent series: let $\hbar=2 \pi i \tau$

$$
\begin{gathered}
\operatorname{Tr}\left(\rho_{\mathbb{P}^{2}}\right)=-\frac{\Gamma(1 / 3)^{3}}{2 \pi i \hbar} \exp \left(-3 \sum_{n=1}^{\infty} \frac{B_{2 n} B_{2 n+1}(2 / 3)}{2 n(2 n+1)!} \hbar^{2 n}\right) \\
\operatorname{Tr}\left(\rho_{\mathbb{P}^{2}}\right)=\sqrt{\frac{2 \pi i}{3^{3 / 2} \hbar}} \frac{{ }^{\frac{i v}{4 \pi^{2}} \hbar} \exp \left(-\sqrt{3} i \sum_{n=1}^{\infty} \frac{B_{2 n} B_{2 n-1}(2 / 3)}{(2 n)!(2 n-1)}\left(\frac{12 \pi^{2}}{\hbar}\right)^{2 n-1}\right)}{} .\left\{\begin{array}{c}
\end{array}\right)
\end{gathered}
$$

Trace of quantum mechanical operators: local \mathbb{P}^{2} Resurgent structure

THEOREM [Rella,22]
Let $\tilde{S}_{0}(\hbar)=-3 \sum_{n=1}^{\infty} \frac{B_{2 n} B_{2 n+1}(2 / 3)}{2 n(2 n+1)!} \hbar^{2 n}$ and $G_{0}(s)=\mathscr{B} \tilde{S}_{0}$, then
the singularities of its Borel transform are at $\rho_{k}=4 \pi^{2} k, k \in \mathbb{Z} \backslash\{0\}$
the Stokes constants S_{k} satisfy $\sum_{k=1}^{\infty} \frac{S_{k}}{k^{s}}=L\left(s+1, \chi_{3,2}\right) \zeta(s)$, with $\chi_{3,2}(n)= \begin{cases}1 & n \equiv 1 \bmod 3 \\ 0 & n \equiv 0 \bmod 3 \\ -1 & n \equiv 2 \bmod 3\end{cases}$
Locally at $s=\rho_{k}$, the Borel transform is $G_{0}(s)=$ const $\cdot \frac{S_{k}}{2 \pi i} \log \left(s-\rho_{k}\right) \cdot 1+$ h.f.

Trace of quantum mechanical operators: local \mathbb{P}^{2}

Resurgent structure

REMARK [Rella,22]

- $c_{2 n}^{0}=$ const $\cdot \Gamma(2 n) \sum_{k \geq 1} \frac{S_{k}}{\rho_{k}^{2 n}}$ exact large order relation
- $\left.\left(S_{0}^{+}-S_{0}^{-}\right)\right|_{\Re \hbar>0}=\mathrm{const} \sum_{k \geq 1} S_{k} e^{-\rho_{k} / \hbar} \propto \log (w ; \tilde{q})_{\infty}-\log \left(w^{-1} ; \tilde{q}\right)_{\infty}$ with $w=e^{2 \pi i / 3}$

Trace of quantum mechanical operators: local \mathbb{P}^{2} Resurgent structure

THEOREM [Rella,22]
Let $\quad \tilde{S}_{\infty}(\hbar)=-\sqrt{3} i \sum_{n=1}^{\infty} \frac{B_{2 n} B_{2 n-1}(2 / 3)}{(2 n)!(2 n-1)}\left(\frac{12 \pi^{2}}{\hbar}\right)^{2 n-1}$ and $G_{\infty}(s)=\mathscr{B} \tilde{S}_{\infty}$, then
the singularities of its Borel transform are $\rho_{k}=k / 3, k \in \mathbb{Z} \backslash\{0\}$
the Stokes constants S_{k} satisfy $\sum_{k=1}^{\infty} \frac{S_{k}}{k^{s}}=L\left(s, \chi_{3,2}\right) \zeta(s+1)$
Locally at $s=\rho_{k}$, the Borel transform is $G_{\infty}(s)=$ const $\cdot \frac{S_{k}}{2 \pi i} \log \left(s-\rho_{k}\right) \cdot 1+$ h.f.

Trace of quantum mechanical operators: local \mathbb{P}^{2}

Resurgent structure

REMARK [Rella,22]

- $c_{2 n}^{\infty}=\mathrm{const} \cdot \Gamma(2 n-1) \sum_{k \geq 1} \frac{S_{k}}{\rho_{k}^{2 n-1}}$ exact large order relation
- $\left.\left(S_{0}^{+}-S_{0}^{-}\right)\right|_{\Re \hbar>0}=\mathrm{const} \sum_{k \geq 1} S_{k} e^{-\rho_{k} / \hbar} \propto \log \left(q^{2 / 3} ; q\right)_{\infty}-\log \left(q^{1 / 3} ; q\right)_{\infty}$

Conclusion

Modular Resurgence

- From "modular" resurgent structure we expect to find QMF by taking generalised Laplace transform (e.g. the median Laplace resummation for Kontsevich-Zagier q-series or in William's talk)
- For simple "modular" resurgent structure the median Laplace

QMF

 resummation does not seem to give a QMF (as in the main example)
Conclusion

Modular Resurgence

- From "modular" resurgent structure we expect to find QMF by taking generalised Laplace transform (e.g. the median Laplace resummation for Kontsevich-Zagier q-series or in William's talk)
- For simple "modular" resurgent structure the median Laplace resummation does not seem to give a QMF (as in the main example)

Thank you for your attention

