Spectral summability of 1D oscillators and Fourier analysis on Carnot groups

Davide Barilari,
Dipartimento di Matematica "Tullio Levi-Civita", Universitá degli Studi di Padova

High Frequency Analysis,
Angers, August 28-31, 2023

Università degli Studi di Padova

Joint work with

This is based on a joint work with
■ Hajer Bahouri (LJLL, CNRS \& Sorbonne Univ)

- Isabelle Gallagher (DMA, École Normale Supérieure)

■ Matthieu Léautaud (IMO, Univ. Paris Saclay)
\rightarrow Main references:
BBG-21 H.Bahouri, D.Barilari, I.Gallagher,
Strichartz estimates and Fourier restriction theorems in the Heisenberg group,
Journal of Fourier Analysis and Applications, 2021
BBGM-23 H.Bahouri, D.Barilari, I.Gallagher, M.Léautaud
Spectral summability for the quartic oscillator with applications to the Engel group,
Journal of Spectral Theory, 2023

Outline

1 Strichartz estimates in the Heisenberg group

2 Spectral summability of quartic oscillators and the Engel group

3 Comments and generalizations

Outline

1 Strichartz estimates in the Heisenberg group

2 Spectral summability of quartic oscillators and the Engel group

3 Comments and generalizations

The Schrödinger equation on \mathbb{R}^{n}

The Schrödinger sequation on \mathbb{R}^{n}

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta u=0 \\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

From the explicit expression of the solution, using Fourier analysis:

$$
u(t, \cdot)=\frac{\mathrm{e}^{i \frac{\left.1 \cdot\right|^{2}}{4 t}}}{(4 \pi i t)^{\frac{n}{2}}} \star u_{0} .
$$

one obtains the basic dispersive estimate (for $t \neq 0$)

$$
\begin{equation*}
\|u(t, \cdot)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq \frac{1}{(4 \pi|t|)^{\frac{n}{2}}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \tag{1}
\end{equation*}
$$

Strichartz estimates

From the basic dispersive estimate (using so-called $T T^{*}$ argument)
For initial data $u_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$ we have the following Strichartz estimate

$$
\begin{equation*}
\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)} \leq C_{p, q}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{2}
\end{equation*}
$$

where (p, q) satisfies the scaling admissibility condition

$$
\frac{2}{q}+\frac{n}{p}=\frac{n}{2}, \quad q \geq 2,(n, q, p) \neq(2,2, \infty)
$$

- Similar dispersive inequality for the inhomogeneous Schrödinger equation $i \partial_{t} u-\Delta u=f$
- crucial in the study of semilinear and quasilinear Schrödinger equations

No dispersion in Heisenberg

The linear Schrödinger equations on \mathbb{H} associated with the sublaplacian

$$
\left(S_{\mathbb{H}}\right) \quad\left\{\begin{array}{c}
i \partial_{t} u-\Delta_{\mathbb{H}} u=f \\
u_{\mid t=0}=u_{0},
\end{array}\right.
$$

Theorem (Bahouri-Gérard-Xu 2000)

There exists a function u_{0} in the Schwartz class $\mathcal{S}(\mathbb{H})$ such that the solution to the free Schrödinger equation (S_{H}) satisfies

$$
u\left(t, x_{1}, x_{2}, x_{3}\right)=u_{0}\left(x_{1}, x_{2}, x_{3}+t\right) .
$$

In particular for all $1 \leq p \leq \infty$

$$
\|u(t, \cdot)\|_{L^{p}\left(\mathbb{H}^{d}\right)}=\left\|u_{0}\right\|_{L^{p}\left(\mathbb{H}^{d}\right)}
$$

\rightarrow no dispersion

The Heisenberg group \mathbb{H}

$\mathbb{H} \sim \mathbb{R}^{3}$

$$
X_{1}:=\partial_{1}-\frac{x_{2}}{2} \partial_{3}, \quad X_{2}:=\partial_{2}+\frac{x_{1}}{2} \partial_{3}, \quad X_{3}:=\partial_{3}
$$

Group law:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}+\frac{1}{2}\left(x_{1} y_{2}-y_{1} x_{2}\right)
\end{array}\right)
$$

The Haar measure is equal to the Lebesgue measure.
Convolution product $f \star g(x):=\int_{\mathbb{H}} f\left(x \cdot y^{-1}\right) g(y) d y$.
Homogeneous dimension
$Q=\sum_{j} j \operatorname{dimg}_{j}=4, \quad\left|B_{\mathbb{H}}(x, r)\right|=r^{Q}\left|B_{\mathbb{H}}(0,1)\right|$

Carnot groups

The Lie algebra \mathfrak{g} of a Carnot (stratified Lie) group of step r admits the following stratification

$$
\mathfrak{g}=\bigoplus_{i=1}^{r} \mathfrak{g}_{i} \quad \text { with } \quad \mathfrak{g}_{i+1}=\left[\mathfrak{g}_{1}, \mathfrak{g}_{i}\right]
$$

A sub-Riemannian structure is given by a scalar product on \mathfrak{g}_{1} Heisenberg group \mathbb{H} (step 2)

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}, \quad \overbrace{X_{1}, X_{2}}^{\mathfrak{g}_{1}}, \quad \overbrace{X_{3}=\left[X_{1}, X_{2}\right]}^{\mathfrak{g}_{2}}
$$

Engel group \mathbb{E} (step 3)

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}, \quad \overbrace{X_{1}, X_{2}}^{\mathfrak{g}_{1}}, \quad \overbrace{X_{3}=\left[X_{1}, X_{2}\right]}^{\mathfrak{g}_{2}}, \quad \overbrace{X_{4}=\left[X_{1}, X_{3}\right]}^{\mathfrak{y}_{3}}
$$

- Goal: prove (some) Strichartz estimates in the Heisenberg group
\rightarrow the original approach of Strichartz, 1977

Vol. 44, No. 3 DUKE MATHEMATICAL JOURNAL© September 1977

RESTRICTIONS OF FOURIER TRANSFORMS TO QUADRATIC SURFACES AND DECAY OF SOLUTIONS OF WAVE EQUATIONS

ROBERT S. STRICHARTZ

81. Introduction

Let S be a subset of \mathbb{R}^{n} and $d \mu$ a positive measure supported on S and of temperate growth at infinity. We consider the following two problems:
Problem A. For which values of $p, 1 \leq p<2$, is it true that $f \in L^{p}\left(\mathbb{R}^{n}\right)$ implies \hat{f} has a well-defined restriction to S in $L^{2}(d \mu)$ with

$$
\begin{equation*}
\left(\int|\hat{\mid}|^{2} d \mu\right)^{1 / 2} \leq c_{p} \mid\|f\|_{p} ? \tag{1.1}
\end{equation*}
$$

- The Fourier dual of \mathbb{R}^{n} is \mathbb{R}^{n}
- The Fourier dual of \mathbb{H}^{d} is not \mathbb{H}^{d}
\rightarrow anisotropic norms due to the no-dispersion effect

The result

A function f on \mathbb{H}^{1} is said to be radial if $f(x, y, z)=\phi\left(x^{2}+y^{2}, z\right)$.

Theorem (Bahouri, DB, Gallagher, '19)

Given (p, q) belonging to the admissible set

$$
\mathcal{A}=\left\{(p, q) \in[2, \infty]^{2} / p \leq q \quad \text { and } \quad \frac{2}{q}+\frac{2 d}{p}=\frac{Q}{2}\right\},
$$

the solution to the Schrödinger equation $\left(S_{\mathbb{H}}\right)$ with radial data satisfies

$$
\|u\|_{L_{2}^{\infty} L_{t}^{q} L_{x, y}^{L}} \leq C_{p, q, p_{1}, q_{1}}\left(\left\|u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)}\right) .
$$

- very restrictive due to $p \leq q$ then $p=q=2$
- we stress that $L_{z}^{\infty} L_{t}^{q} L_{x, y}^{p} \neq L_{t}^{\infty} L_{z}^{q} L_{x, y}^{p}$
- similar for inhomogeneous and wave

The result

A function f on \mathbb{H}^{1} is said to be radial if $f(x, y, z)=\phi\left(x^{2}+y^{2}, z\right)$.

Theorem (Bahouri, DB, Gallagher, '19)

Given (p, q) belonging to the admissible set

$$
\mathcal{A}=\left\{(p, q) \in[2, \infty]^{2} / p \leq q \quad \text { and } \quad \frac{2}{q}+\frac{2 d}{p} \leq \frac{Q}{2}\right\},
$$

the solution to the Schrödinger equation $\left(S_{\mathbb{H}}\right)$ with radial data satisfies

$$
\|u\|_{L_{z}^{\infty} L_{t}^{q} L_{x, y}^{p}} \leq C_{p, q, p_{1}, q_{1}}\left(\left\|u_{0}\right\|_{H^{\sigma}\left(\mathbb{H}^{d}\right)}\right) .
$$

- $\sigma=\frac{Q}{2}-\frac{2}{q}-\frac{2 d}{p}$ is the loss of derivatives, $\sigma=0$ forces $p=q$
- we stress that $L_{z}^{\infty} L_{t}^{q} L_{x, y}^{p} \neq L_{t}^{\infty} L_{z}^{q} L_{x, y}^{p}$
- similar for inhomogeneous and wave

Fourier restriction problem

Stein, Fefferman, Tomas, etc:

Can we restrict the Fourier transform of an L^{p} function to hypersurfaces ?

- f in $L^{1}\left(\mathbb{R}^{n}\right)$ implies $\mathcal{F}(f)$ continuous \rightarrow OK.
- f in $L^{2}\left(\mathbb{R}^{n}\right)$ implies $\mathcal{F}(f)$ in $L^{2}\left(\widehat{\mathbb{R}}^{n}\right) \rightarrow$ arbitrary on a zero meas set

Tomas and Stein

For which $1 \leq p \leq 2$ then $\mathcal{F}(f)$ can be restricted to a hypersurfaces \widehat{S} and is in L^{q} ?

S should be "sufficiently curved" since

$$
\begin{equation*}
f(x)=\frac{e^{-\left|x^{\prime}\right|^{2}}}{1+\left|x_{1}\right|} \quad x=\left(x_{1}, x^{\prime}\right) \in \mathbb{R}^{n}, \tag{3}
\end{equation*}
$$

is in L^{p} for $p>1$ but cannot be restricted to hyperplane.

Tomas-Stein

Theorem (Tomas-Stein, 1975)

Let \widehat{S} be a smooth compact hypersurface in $\widehat{\mathbb{R}}^{n}$ with non vanishing Gaussian curvature at every point, $d \sigma$ a smooth measure on \widehat{S}.

$$
\left\|\left.\mathcal{F}(f)\right|_{\widehat{S}}\right\|_{L^{2}(\widehat{S}, d \sigma)} \leq C_{p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

for every $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and every $p \leq(2 n+2) /(n+3)$,

- A necessary condition $p \leq(2 n+2) /(n+3)$ Knapp counterexample
- A similar result is possible for surfaces with vanishing Gaussian curvature (that are not flat).
- In this case the range of p is smaller depending on the order of tangency of the surface to its tangent space.
- for $q \neq 2$ not completely solved

From restriction to Strichartz estimates

The classical Schrödinger equation in \mathbb{R}^{n} : taking the inverse Fourier transform

$$
\begin{equation*}
u(t, x)=\int_{\widehat{\mathbb{R}}^{n}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{u}_{0}(\xi) d \xi \tag{4}
\end{equation*}
$$

Consider the paraboloid \widehat{S} in the space of frequencies $\widehat{\mathbb{R}}^{n+1}=\widehat{\mathbb{R}} \times \widehat{\mathbb{R}}^{n}$

$$
\widehat{S}=\left\{(\alpha, \xi) \in \widehat{\mathbb{R}} \times \widehat{\mathbb{R}}^{n}\left|\alpha=|\xi|^{2}\right\}\right.
$$

■ Given $\widehat{u}_{0}: \widehat{\mathbb{R}}^{n} \rightarrow \mathbb{C}$ define $g: \widehat{S} \rightarrow \mathbb{C}$ as $g\left(|\xi|^{2}, \xi\right)=\widehat{u}_{0}(\xi)$. Then

$$
u(t, x)=\int_{\mathbb{R}^{n}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{u}_{0}(\xi) d \xi=\int_{\widehat{s}} e^{i y \cdot z} g(z) d \sigma(z)
$$

where $y=(t, x)$ and $z=(\alpha, \xi)$.

Some obervations

1. Prove a Fourier restriction on the Heisenberg group

- a (spectral) restriction result of D.Müller \rightarrow specific for the "sphere"
- what is the sphere? what about paraboloid?

2. We do not exactly need restriction theorems for \mathbb{H}^{d}

- we applied the result to a surface in the space $\mathbb{R}^{n+1}=\mathbb{R} \times \mathbb{R}^{n}$
\rightarrow the paraboloid for the Schrödinger eq. (the cone for the wave equation) is in $\widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d}$,
- which is not related to $\mathbb{H}^{d^{\prime}}$ for some d^{\prime}.

The Fourier transform on \mathbb{H}

It is defined using irreducible unitary representations: for any integrable function u on \mathbb{H} (Kirillov theory)

$$
\forall \lambda \in \mathbb{R}^{*}, \quad \widehat{u}(\lambda):=\int_{\mathbb{H}} u(x) \mathcal{R}_{x}^{\lambda} d x
$$

with \mathcal{R}^{λ} the group homomorphism between \mathbb{H} and the unitary group $\mathcal{U}\left(L^{2}(\mathbb{R})\right)$ of $L^{2}(\mathbb{R})$ given for all x in \mathbb{H} and ϕ in $L^{2}(\mathbb{R})$, by

$$
\mathcal{R}_{x}^{\lambda} \phi(\theta):=\exp \left(i \lambda x_{3}+i \lambda \theta x_{2}\right) \phi\left(\theta+x_{1}\right) .
$$

Then $\widehat{u}(\lambda)$ is a family of bounded operators on $L^{2}(\mathbb{R})$, with many properties similar to $\mathbb{R}^{d}: \underbrace{\text { inversion formula }}_{\text {Trace }}, \underbrace{\text { Fourier-Plancherel identity }}_{\text {Hilbert-Schmidt }}$

The Fourier transform of the sublaplacian on Hinm

The sub-Laplacian

$$
\Delta_{\mathbb{H}}=X_{1}^{2}+X_{2}^{2}
$$

There holds

$$
\widehat{-\Delta_{\mathbb{H}} u}(\lambda)=\widehat{u}(\lambda) \circ P_{\lambda}, \quad \text { with } \quad P_{\lambda}:=-\frac{d^{2}}{d \theta^{2}}+\lambda^{2} \theta^{2} .
$$

The spectrum of the rescaled harmonic oscillator is

$$
\operatorname{Sp}\left(P_{\lambda}\right)=\{|\lambda|(2 m+1), m \in \mathbb{N}\}
$$

and the eigenfunctions are the Hermite functions ψ_{m}^{λ}. So for all $m \in \mathbb{N}$,

$$
\widehat{-\Delta_{\mathbb{H}} u}(\lambda) \psi_{m}^{\lambda}=E_{m}(\lambda) \widehat{u}(\lambda) \psi_{m}^{\lambda} .
$$

The frequency space on \mathbb{H}

Set $\widehat{x}:=(n, m, \lambda) \in \widehat{\mathbb{H}}=\mathbb{N}^{2} \times \mathbb{R}^{*}$, and

$$
\begin{aligned}
\mathcal{F}_{\mathbb{H}}(u)(n, m, \lambda) & :=\left(\widehat{u}(\lambda) \psi_{m}^{\lambda} \mid \psi_{n}^{\lambda}\right)_{L^{2}(\mathbb{R})} \\
& =\int_{\mathbb{H}} \mathcal{W}(\widehat{x}, x) u(x) d x
\end{aligned}
$$

where $\mathcal{W}(\hat{x}, x):=e^{i \lambda x_{3}} e^{-|\lambda|\left(x_{1}^{2}+x_{2}^{2}\right)} \underbrace{L_{m}\left(2|\lambda|\left(x_{1}^{2}+x_{2}^{2}\right)\right)}_{\text {Laguerre polynomial }}$.
Then

$$
\mathcal{F}_{\mathbb{H}}\left(-\Delta_{\mathbb{H}} u\right)(n, m, \lambda)=\underbrace{E_{m}(\lambda)}_{\text {frequency }} \mathcal{F}_{\mathbb{H}}(u)(n, m, \lambda) .
$$

Bahouri, Chemin, Danchin

First observation in the Heisenberg group

Let u_{0} in $\mathcal{S}\left(\mathbb{H}^{d}\right)$ be radial and consider the Cauchy problem

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta_{\mathbb{H}} u=0 \\
u_{\mid t=0}=u_{0} .
\end{array}\right.
$$

Taking the partial Fourier transform with respect to the variable w

$$
\left\{\begin{array}{l}
i \frac{d}{d t} \mathcal{F}_{\mathbb{H}}(u)(t, n, m, \lambda)=-|\lambda|(2|m|+d) \mathcal{F}_{\mathbb{H}}(u)(t, n, m, \lambda) \\
\mathcal{F}_{\mathbb{H}}(u)_{\mid t=0}=\mathcal{F}_{\mathbb{H}} u_{0} .
\end{array}\right.
$$

$$
\mathcal{F}_{\mathbb{H}}(u)(t, n, m, \lambda)=e^{i t|\lambda|(2|m|+d)} \mathcal{F}_{\mathbb{H}}\left(u_{0}\right)(n, m, \lambda) \delta_{n, m} .
$$

\rightarrow Notice that if we set $n=m=0$ we see the "transport" part

$$
\mathcal{F}_{\mathbb{H}}(u)(t, 0,0, \lambda)=e^{i t|\lambda| d} \mathcal{F}_{\mathbb{H}}\left(u_{0}\right)(0,0, \lambda) .
$$

What we proved is the following restriction theorem
Theorem (Bahouri, DB, Gallagher, '19)
If $1 \leq q \leq p \leq 2$, then for f radial

$$
\begin{equation*}
\left\|\mathcal{F}_{\widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d}}(f) \mid \Sigma\right\|_{L^{2}(d \Sigma)} \leq C_{p, q}\|f\|_{L_{\Sigma}^{1} L_{L}^{q} L_{L, y}^{p}}, \tag{5}
\end{equation*}
$$

where Σ is the paraboloid

$$
\Sigma=\left\{(\alpha,(n, n, \lambda)) \in \widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d} / \alpha=|\lambda|(2|n|+d)\right\} .
$$

Using the dual inequality and assuming that $\mathcal{F}_{\mathbb{H}} u_{0}$ is localized in a ball

For any $2 \leq p \leq q \leq \infty$

$$
\|u\|_{L_{z}^{\infty} L_{t}^{q} L_{x, y}^{p}} \leq C\left\|\mathcal{F}_{\mathbb{H}} u_{0}\right\|_{L^{2}\left(\widehat{\mathbb{H}}^{d}\right)}=C\left\|u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)},
$$

Comments

On the positive side:

- an interpretation of Müller result
- extension to other surfaces in the dual of Heisenberg group
- some new Strichartz estimates for linear Shrödinger/wave equations

Still to do (\rightarrow a lot!):

- remove the radial assumption on the initial data?
- extend this analysis to more general groups ? every 2-step ?
- obtain applications to sub-Riemannian NLS ? (seems difficult)
- what about 3 steps?

Outline

1 Strichartz estimates in the Heisenberg group

2 Spectral summability of quartic oscillators and the Engel group

3 Comments and generalizations

The Engel group

$\mathbb{E} \sim \mathbb{R}^{4}$

$$
X_{1}:=\partial_{1}, \quad X_{2}:=\partial_{2}+x_{1} \partial_{3}+\frac{x_{1}^{2}}{2} \partial_{4}, \quad X_{3}:=\partial_{3}+x_{1} \partial_{4}, \quad X_{4}:=\partial_{4}
$$

Group law:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \cdot\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}+x_{1} y_{2} \\
x_{4} y_{4}+x_{1} y_{3}+\frac{x_{1}^{2}}{2} y_{2}
\end{array}\right)
$$

Homogeneous dimension: $Q=\sum_{j} j \operatorname{dimg}_{j}=7$

$$
\delta_{\varepsilon}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\varepsilon x_{1}, \varepsilon x_{2}, \varepsilon^{2} x_{3}, \varepsilon^{3} x_{4}\right)
$$

The sublaplacian

In general

$$
\Delta:=\sum_{X_{j} \in \mathfrak{g}_{1}} X_{j}^{2}
$$

so on \mathbb{H} and \mathbb{E}

$$
\Delta=X_{1}^{2}+X_{2}^{2} .
$$

Homogeneous and inhomogeneous Sobolev spaces are defined by

$$
\|u\|_{\mathcal{H}^{s}}=\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}}, \quad\|f\|_{H^{s}}=\left\|(\operatorname{Id}-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}} .
$$

Questions:

- "Space of frequencies" for Fourier Analysis
- Summation formula
- Some applications

The Fourier transform on \mathbb{E}

For any integrable function u on \mathbb{E}

$$
\forall(\nu, \lambda) \in \mathbb{R} \times \mathbb{R}^{*}, \quad \widehat{u}(\nu, \lambda):=\int_{\mathbb{E}} u(x) \mathcal{R}_{x}^{\nu, \lambda} d x,
$$

- $\mathcal{R}^{\nu, \lambda}$ the group homomorphism between \mathbb{E} and $\mathcal{U}\left(L^{2}(\mathbb{R})\right)$
- for all x in \mathbb{E} and ϕ in $L^{2}(\mathbb{R})$, by

$$
\mathcal{R}_{x}^{\nu, \lambda} \phi(\theta):=\exp \left(i \lambda x_{4}+i \lambda \theta x_{3}-i \frac{\nu}{\lambda} x_{2}+i \lambda \frac{\theta^{2}}{2} x_{2}\right) \phi\left(\theta+x_{1}\right) .
$$

- λ is dual to the center X_{4} (homogeneous of degree 3)
- ν is representing the operator (homogeneous of degree 4)

$$
X_{4} X_{2}-\frac{1}{2} X_{3}^{2}
$$

The Fourier transform of the sublaplacian 0 n

$\widehat{-\Delta_{\mathbb{E}} u}(\nu, \lambda)=\widehat{u}(\nu, \lambda) \circ P_{\nu, \lambda}, \quad$ with $\quad P_{\nu, \lambda}:=-\frac{d^{2}}{d \theta^{2}}+\left(\lambda \frac{\theta^{2}}{2}-\frac{\nu}{\lambda}\right)^{2}$.

- $\operatorname{Sp}\left(P_{\nu, \lambda}\right)=\left\{E_{m}(\nu, \lambda), m \in \mathbb{N}\right\}$ not explicit!
- $\psi_{m}^{\nu, \lambda}$ the eigenfunctions of $P_{\nu, \lambda}$ associated with $E_{m}(\nu, \lambda)$.

Homogeneity reduces to the study

$$
P_{\mu}:=-\frac{d^{2}}{d \theta^{2}}+\left(\frac{\theta^{2}}{2}-\mu\right)^{2}
$$

Setting $T_{\alpha} \varphi:=\alpha^{\frac{1}{2}} \varphi(\alpha \cdot)$ and $\mu=\frac{\nu}{|\lambda|^{4 / 3}}$ then $P_{\nu, \lambda}=|\lambda|^{2 / 3} T_{|\lambda|^{1 / 3}} \mathrm{P}_{\mu} T_{|\lambda|^{-1 / 3}}$

$$
E_{m}(\nu, \lambda)=|\lambda|^{2 / 3} E_{m}(\mu) \quad \text { and } \quad \psi_{m}^{\nu, \lambda}=T_{|\lambda|^{1 / 3}} \varphi_{m}^{\mu}
$$

The Lai-Robert, Colin de Verdière-Letrouit, Helffer, Helffer-Léautaud...

The frequency space on \mathbb{E}

Set $\widehat{x}:=(n, m, \nu, \lambda) \in \widehat{\mathbb{E}}=\mathbb{N}^{2} \times \mathbb{R} \times \mathbb{R}^{*}$, and

$$
\begin{aligned}
\mathcal{F}_{\mathbb{E}}(u)(n, m, \nu, \lambda) & :=\left(\widehat{u}(\lambda) \psi_{m}^{\nu, \lambda} \mid \psi_{n}^{\nu, \lambda}\right)_{L^{2}(\mathbb{R})} \\
& =: \int_{\mathbb{H}} \mathcal{W}(\widehat{x}, x) u(x) d x
\end{aligned}
$$

where

$$
\mathcal{W}((n, m, \nu, \lambda), x):=e^{i\left(\lambda x_{4}-\frac{\nu}{\lambda} x_{2}\right)} \int_{\mathbb{R}} e^{i \lambda\left(\theta x_{3}+\frac{\theta^{2}}{2} x_{2}\right)} \psi_{m}^{\nu, \lambda}\left(\theta+x_{1}\right) \psi_{n}^{\nu, \lambda}(\theta) d \theta .
$$

Then

$$
\mathcal{F}_{\mathbb{E}}\left(-\Delta_{\mathbb{E}} u\right)(n, m, \nu, \lambda)=\underbrace{E_{m}(\nu, \lambda)}_{\text {frequency }} \mathcal{F}_{\mathbb{E}}(u)(n, m, \nu, \lambda) .
$$

Spectral summability

Theorem (Bahouri-DB-Gallagher-Léautaud 2023)

$$
\sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{1}{\mathrm{E}_{m}(\mu)^{\gamma}} d \mu<\infty \Longleftrightarrow \gamma>2
$$

Moreover assume $\Phi \in L^{1}\left(\mathbb{R}_{+}, r^{\frac{5}{2}} d r\right)$

$$
\sum_{m \in \mathbb{N}} \int_{\mathbb{R} \times \mathbb{R}^{*}} \Phi\left(E_{m}(\nu, \lambda)\right) d \nu d \lambda=\mathrm{C} \int_{0}^{\infty} \Phi(r) r^{\frac{5}{2}} d r
$$

where

$$
\mathrm{C}=\sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{3}{\mathrm{E}_{m}(\mu)^{\frac{1}{2}}} d \mu .
$$

■ it splits the contribution of the spectrum and the one of F
■ it is a summability result for all the spectra

Spectral summability

Theorem (Bahouri-DB-Gallagher-Léautaud 2023)

$$
\sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{1}{\mathrm{E}_{m}(\mu)^{\gamma}} d \mu<\infty \Longleftrightarrow \gamma>2
$$

Moreover assume $\Phi \in L^{1}\left(\mathbb{R}_{+}, r^{\frac{Q-2}{2}} d r\right)$

$$
\sum_{m \in \mathbb{N}} \int_{\mathbb{R} \times \mathbb{R}^{*}} \Phi\left(E_{m}(\nu, \lambda)\right) d \nu d \lambda=\mathrm{C} \int_{0}^{\infty} \Phi(r) r^{\frac{Q-2}{2}} d r
$$

where

$$
\mathrm{C}=\sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{3}{\mathrm{E}_{m}(\mu)^{\frac{Q}{2}}} d \mu .
$$

- it splits the contribution of the spectrum and the one of F
- it is a summability result for all the spectra

On the summability of the spectrum

It relies on a refined analysis of the spectrum of P_{μ} : recall

$$
\mathrm{P}_{\mu}=-\frac{d^{2}}{d \theta^{2}}+\left(\frac{\theta^{2}}{2}-\mu\right)^{2}, \quad \mu \in \mathbb{R}
$$

The behavior of the potential depends on the sign of the parameter μ :
■ It admits a single well when $\mu<0$

- It admits a double well when $\mu>0$.

■ need combination of microlocal and semiclassical analysis along with known spectral results.
Another observation for later
■ it is the square of a polynomial of degree 2 (with no 1st order term)

Formula in simpler situations

Analogue in Heisenberg \mathbb{H}^{d}
$\sum_{m \in \mathbb{N}^{d}} \int_{0}^{\infty} \Phi(|\lambda|(2|m|+d))|\lambda|^{d} d \lambda=\left(\sum_{m \in \mathbb{N}^{d}} \frac{2}{(2|m|+d)^{d+1}}\right) \int_{0}^{\infty} \Phi(r) r^{d} d r$.

- notice the Plancherel measure in LHS and $d=(Q-2) / 2$, $d+1=Q / 2$.
- the convergence in this case is easy

Analogue in \mathbb{R}^{n} would be the spherical coordinate formula

$$
\int_{0}^{\infty} \Phi\left(|\xi|^{2}\right) d \xi=\left|S^{d-1}\right| \int_{0}^{\infty} \Phi(r) r^{\frac{n-2}{2}} d r .
$$

Recover known results

As for instance some Sobolev embeddings. Remember here $Q=7$.

Proposition

For $s>Q / 2$, then $H^{s}(\mathbb{E})$ embeds in $L^{\infty}(\mathbb{E})$.
Start from the inversion formula

$$
u(x)=(2 \pi)^{-3} \int_{\widehat{E}} \mathcal{W}\left(\widehat{x}, x^{-1}\right) \mathcal{F}_{\mathbb{E}}(u)(\widehat{x}) d \widehat{x}
$$

so that

$$
|u(x)| \leq \int_{\widehat{E}}|\mathcal{W}(\widehat{x}, x)|\left|\mathcal{F}_{\mathbb{E}}(u)(\widehat{x})\right| d \widehat{x}
$$

Recall that

$$
\|u\|_{H^{s}(\mathbb{E})}^{2}:=\int_{\widehat{E}}\left|\mathcal{F}_{\mathbb{E}}(u)(\widehat{x})\right|^{2}\left(1+E_{m}(\nu, \lambda)\right)^{s} d \widehat{x}
$$

Sobolev embeddings

Multiplying/dividing $\left(1+E_{m}(\nu, \lambda)\right)^{s / 2}$ and using Cauchy-Schwartz

$$
|u(x)| \leq\|u\|_{H^{s}}\left(\int_{\widehat{E}}\left|\mathcal{W}\left(\widehat{x}, x^{-1}\right)\right|^{2}\left(1+E_{m}(\nu, \lambda)\right)^{-s} d \widehat{x}\right)^{1 / 2}
$$

Since $\sum_{n \in \mathbb{N}}\left|\mathcal{W}\left(\widehat{x}, x^{-1}\right)\right|^{2}=1$ due to the fact that representation are unitary it remains to estimate

$$
\left(\sum_{m \in \mathbb{N}} \int_{\mathbb{R} \times \mathbb{R}^{*}}\left(1+E_{m}(\nu, \lambda)\right)^{-s} d \lambda d \nu\right)^{1 / 2}
$$

which thanks to the summation formula is finite for $s>Q / 2$

$$
\leq\left(\int_{0}^{\infty}(1+r)^{-s} r^{\frac{Q-2}{2}} d r\right)\left(\sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{1}{\mathrm{E}_{m}(\mu)^{\frac{Q}{2}}} d \mu\right)
$$

An application

We are interested in the assumptions on Φ giving,

$$
\begin{equation*}
\Phi\left(-\Delta_{\mathbb{E}}\right) u=u \star k_{\phi}, \quad \text { for all } u \in \mathcal{S}(\mathbb{E}) \tag{6}
\end{equation*}
$$

Theorem (BBGL, 23)

Assume $\Phi \in L^{1}\left(\mathbb{R}_{+}, r^{\frac{5}{2}} d r\right)$. Then

- For any $u \in \mathcal{S}(\mathbb{E})$, the operator $\Phi\left(-\Delta_{\mathbb{E}}\right): \mathcal{S} \rightarrow L^{\infty}$ is well-defined through

$$
\Phi\left(-\Delta_{\mathbb{E}}\right) u \stackrel{\text { def }}{=} \mathcal{F}_{\mathbb{E}}^{-1}\left(\Phi\left(E_{m}(\nu, \lambda)\right) \mathcal{F}_{\mathbb{E}}(u)(\widehat{x})\right) .
$$

- Moreover, there is k_{Φ} in $\mathcal{S}^{\prime}(\mathbb{E})$ such that $\Phi\left(-\Delta_{\mathbb{E}}\right) u=u \star k_{\phi}$ and we have the continuous map

$$
\begin{aligned}
L^{1}\left(\mathbb{R}_{+}, r^{\frac{5}{2}} d r\right) & \longrightarrow \delta^{\prime}(\mathbb{E}) \\
\Phi & \longmapsto k_{\Phi}
\end{aligned}
$$

- Indeed k_{Φ} belongs to $C^{0} \cap L^{\infty}(\mathbb{E})$ and there holds

$$
\begin{aligned}
\left\|k_{\Phi}\right\|_{L \infty(\mathbb{E})} & \leq(2 \pi)^{-3} \mathrm{C} \int_{0}^{\infty} r^{5 / 2}|\Phi(r)| d r \quad \text { and } \\
k_{\Phi}(0) & =(2 \pi)^{-3} C \int_{0}^{\infty} r^{5 / 2} \Phi(r) d r
\end{aligned}
$$

where

$$
\mathrm{C} \stackrel{\text { def }}{=} \sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{3}{E_{m}(\mu)^{\frac{7}{2}}} d \mu<\infty .
$$

- Finally $k_{\phi} \in L^{2}(\mathbb{E})$ if and only if $\Phi \in L^{2}\left(\mathbb{R}_{+}, r^{5 / 2} d r\right)$ and there holds

$$
\left\|k_{\Phi}\right\|_{L^{2}(\mathbb{E})}^{2}=(2 \pi)^{-3} C \int_{0}^{\infty} r^{5 / 2}|\Phi(r)|^{2} d r .
$$

Outline

1 Strichartz estimates in the Heisenberg group

2 Spectral summability of quartic oscillators and the Engel group

3 Comments and generalizations

This is the nilpotent Lie group of dimension n and step $s=n-1$ with a basis of the Lie algebra satisfying

$$
\left[X_{1}, X_{i}\right]=X_{i+1}, \quad i=2, \ldots, n
$$

Example: Filiform/Goursat group (step 4)

$$
\overbrace{X_{1}, X_{2}}^{\mathrm{g}_{1}}, \overbrace{X_{3}=\left[X_{1}, X_{2}\right]}^{\mathrm{g}_{2}}, \overbrace{X_{4}=\left[X_{1}, X_{3}\right]}^{\mathrm{g}_{3}}, \quad \overbrace{X_{5}=\left[X_{1}, X_{4}\right]}^{\mathrm{g}_{4}}
$$

- dimension increase each time by 1
- s step, then $n=s+1$ dimension
- it is always rank 2
- it is always the same vector field of \mathfrak{g}_{1} generating the new direction

Generalization of summability

Generalization (only for this class of groups at the moment) as follows :
■ the set of parameters will be $s-1=n-2$ dimensional : (ν, λ)
■ $\nu=\left(\nu_{2}, \ldots, \nu_{s-1}\right)$ a set of $s-2$ parameters
■ the Plancherel measure as $f(\lambda) d \lambda d \nu$,
■ $Q=1+s(s+1) / 2$ be the homogeneous dimension
$\sum_{m \in \mathbb{N}} \int \Phi\left(E_{m}(\nu, \lambda)\right) f(\lambda) d \lambda d \nu=c_{n}\left(\int r^{(Q-2) / 2} \Phi(r) d r\right)\left(\sum_{m \in \mathbb{N}} \int \frac{1}{E_{m}(\nu, 1)^{Q / 2}} d \nu\right)$
where $E_{m}(\nu, 1)$ is the family of eigenvalue of a 1D oscillator of the form

$$
-\frac{d^{2}}{d \theta^{2}}+\left(V_{s}(\nu ; \theta)\right)^{2}
$$

with $V_{s}(\nu ; \cdot)$ polynomial of degree $s-1$ with no term of degree $s-2$

Formula for the V_{s}

Better to show in $\operatorname{dim} n+2$ (or step s, with $s=n+1$)

$$
V_{s}(\nu ; \cdot)=\frac{d^{2}}{d \theta^{2}}-\left(\frac{\lambda}{n!} \theta^{n}+\sum_{k=2}^{n}(-1)^{k-1} \frac{\nu_{k}}{(k-2)!\lambda^{k-1}} \frac{\theta^{n-k}}{n-k!}\right)^{2}
$$

- λ is the dual variable to the center
- the ν represents the casimirs

$$
\frac{1}{k} X_{2}^{k}+\sum_{\ell=1}^{k-1}(-1)^{\ell} \frac{(k-2)!}{(k-\ell-1)!} X_{1}^{\ell} X_{2}^{k-\ell-1} X_{\ell+2}
$$

- explicit homogeneity

Generalization of summability

- The next case would be

$$
-\frac{d^{2}}{d \theta^{2}}+\left(\frac{\lambda}{6} \theta^{3}-\frac{\nu_{2}}{\lambda} \theta+\frac{\nu_{3}}{\lambda^{2}}\right)^{2}
$$

with ν_{3}, ν_{2}, λ homogeneous of degree $9,6,4$ respectively.
■ Denoting $E_{m}\left(\nu_{2}, \nu_{3}, \lambda\right)$ the corresponding eigenvalues we are asking for which γ

$$
\sum_{m \in \mathbb{N}} \int \frac{1}{E_{m}\left(\nu_{2}, \nu_{3}, 1\right)^{\gamma}} d \nu<\infty
$$

■ in progress!

Generalization of summability

- The next case would be

$$
-\frac{d^{2}}{d \theta^{2}}+\left(\frac{\lambda}{6} \theta^{3}-\frac{\nu_{2}}{\lambda} \theta+\frac{\nu_{3}}{\lambda^{2}}\right)^{2}
$$

with ν_{3}, ν_{2}, λ homogeneous of degree $9,6,4$ respectively.
■ Denoting $E_{m}\left(\nu_{2}, \nu_{3}, \lambda\right)$ the corresponding eigenvalues we are asking for which γ

$$
\sum_{m \in \mathbb{N}} \int \frac{1}{E_{m}\left(\nu_{2}, \nu_{3}, 1\right)^{\gamma}} d \nu<\infty
$$

■ in progress!

- thanks for your attention!

THE - END - OF - MY - TALK

Wave equation

The wave equation on \mathbb{R}^{n}

$$
(W) \quad\left\{\begin{array}{c}
\partial_{t}^{2} u-\Delta u=0 \\
\left(u, \partial_{t} u\right)_{\mid t=0}=\left(u_{0}, u_{1}\right),
\end{array}\right.
$$

The classical dispersive estimate writes (for $t \neq 0$)

$$
\|u(t, \cdot)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq \frac{C}{|t|^{\frac{n-1}{2}}}\left(\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}+\left\|u_{1}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}\right) .
$$

\rightarrow oscillatory integrals and stationary phase theorem.

Strichartz estimate for wave equation

$$
\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)} \leq C(p, q)\left(\left\|\nabla u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}+\left\|u_{1}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\right)
$$

where (p, q) satisfies the scaling admissibility condition

$$
\frac{1}{q}+\frac{n}{p}=\frac{n}{2}-1, \quad p, q \geq 2, \quad q<\infty
$$

Previous Stricharts estimate for wave on \mathbb{H}

On \mathbb{H}^{d} one can prove a dimension-independent dispersive estimate

$$
\left.\|u(t, \cdot)\|_{L^{\infty}\left(\mathbb{H}^{d}\right)} \leq \frac{C}{|t|^{\frac{1}{2}}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{H}^{d}\right)}+\left\|u_{1}\right\|_{L^{1}\left(\mathbb{H}^{d}\right)}\right),
$$

- only the center is involved in the dispersive effect.
- this estimate is optimal.

This dispersive estimate gives rise to a Strichartz estimate

[Bahouri, Gérard, Xu, '00]

$$
\|u\|_{L_{t}^{q} L_{2, s}^{p}} \leq C_{p, q, p_{1}, q_{1}}\left(\left\|\nabla_{\mathbb{H}^{d}} u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)}+\left\|u_{1}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)}+\|f\|_{L_{t}^{q_{1}^{\prime}}} L_{L_{2, s}^{p_{1}^{\prime}}}\right)
$$

with $\frac{1}{q}+\frac{Q}{p}=\frac{Q}{2}-1$ and $q \geq 2 Q-1$.

Our result for wave

In the case of the wave equation on \mathbb{H} we obtain the following Strichartz estimate.

Theorem (Bahouri, DB, Gallagher, '19)

With the above notation, given (p, q) and $\left(p_{1}, q_{1}\right)$ belonging to the admissible set

$$
\mathcal{A}^{W}=\left\{(p, q) \in[2, \infty]^{2} / q \leq p \quad \text { and } \quad \frac{1}{q}+\frac{2 d}{p}=\frac{Q}{2}-1\right\}
$$

there is a constant $C_{p, q, p_{1}, q_{1}}$ such that the solution to the wave equation $\left(W_{\mathbb{H}}\right)$ associated with radial data satisfies the following Strichartz estimate:

$$
\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{z}^{p}} \leq C_{p, q, p_{1}, q_{1}}\left(\left\|\nabla_{\mathbb{H}^{d}} u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)}+\left\|u_{1}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)}+\|f\|_{L_{s}^{1} L_{t}^{q_{1}^{\prime}} L_{z}^{p_{1}^{\prime}}}\right) .
$$

- q can be small. In the previous $q \geq 2 Q-1$.
- we pay a price in the s variablo

The Schrödinger Local Strichartz estimate

Theorem [Bahouri-Gallagher 2022]
If Supp $u_{0} \subset B\left(x_{0}, R\right)$ then for all $\kappa<1$ and $|t|^{\frac{1}{2}} \geq R /(1-\kappa)$

$$
\|u(t)\|_{L^{\infty}\left(B\left(x_{0}, \kappa|t|^{\frac{1}{2}}\right)\right)} \leq \frac{C}{|t|^{\frac{Q}{2}}}\left\|u_{0}\right\|_{L^{1}(\mathbb{H})} .
$$

The Schrödinger equation on \mathbb{E}

Theorem [Bahouri-DB-Gallagher-Léautaud 2023] The following holds

$$
\exists u_{0} \in \mathcal{S}(\mathbb{E}), \quad \liminf _{t \rightarrow \infty}|t|\|u(t)\|_{L_{(}(\mathbb{E})} \geq C
$$

Moreover for any $u_{0} \in L^{1}(\mathbb{E})$,

$$
\sup _{x \in \mathbb{E}}\left|\langle x\rangle^{-1} u(t, x)\right| \leq \frac{C}{t}\left\|u_{0}\right\|_{L^{1}(\mathbb{E})} .
$$

