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Strichartz estimates in the Heisenberg group




I ADOVA

The Schrodinger equation on R”

The Schrodinger sequation on R”
iOru—Au=20
Ujt=0 = Uo,

;L
e'4
* up .

t,) = ;
u(t,-) (4mit)2
one obtains the basic dispersive estimate (for ¢t # 0)
|
e I (1)
ult, - o (Rn) S 77 || U n
Lo (Rn) T OE oll11(rn)

From the explicit expression of the solution, using Fourier analysis:




Strichartz estimates

From the basic dispersive estimate (using so-called TT* argument)

|
For initial data up € L?(R") we have the following Strichartz estimate

lull Lo, o)) < Cp,qlluollzqe) » (2)
where (p, q) satisfies the scaling admissibility condition

2 n
— 4+ — =

n
q p Ea q22a (n,q,p);ﬁ(2,2,oo)

m Similar dispersive inequality for the inhomogeneous Schrodinger
equation iO;u — Au=1f

m crucial in the study of semilinear and quasilinear Schrodinger
equations

T



No dispersion in Heisenberg e

The linear Schrodinger equations on H associated with the sublaplacian

(SH) { i(?tu — AHU =f

Ujt=0 = Uo,

Theorem (Bahouri-Gérard-Xu 2000)

There exists a function uq in the Schwartz class S(H) such that the
solution to the free Schrédinger equation (Sg) satisfies

u(t,x1, X2, x3) = tp(x1, X2, %3 + t).

In particular for all 1 < p < o0

lu(t, )l ooy = lluoll co(me)

— no dispersion _



The Heisenberg group H

I ADOVA

H~ R3
p X, p X1 . .
X1 = dl— 52(93 s X2 = ()2+ 5103, X3 = 03.
Group law:
X1 %1 X1+ w1
Xy | = X2+ y2
X3 3 X3+ y3 + %(sz — y1x2)

The Haar measure is equal to the Lebesgue measure.

Convolution product f * g(x) := / f(x-y He(y)dy.
JH

Homogeneous dimension
Q= jdmg; =4, |Be(x.n)| = r9|Ba(0.1)

S
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Carnot groups (L5 s

The Lie algebra g of a Carnot (stratified Lie) group of step r admits the
following stratification

g=oi with g1 =1[o1,0].
i=1
A sub-Riemannian structure is given by a scalar product on g
Heisenberg group H (step 2)
g1 92
—_—— —_—

g=01 @927 X15X27 X3:[X17X2]

Engel group E (step 3)

g 92 g
1 3
g=01DP 0 Dgs, Xi,Xo, Xz=[X;,Xo], Xa=I[Xi,X5]

S o




m Goal: prove (some) Strichartz estimates in the Heisenberg group

— the original approach of Strichartz, 1977

Vol. 44, No. 3 DUKE MATHEMATICAL JOURNAL®  September 1977

RESTRICTIONS OF FOURIER TRANSFORMS TO
QUADRATIC SURFACES AND DECAY OF SOLUTIONS
OF WAVE EQUATIONS

ROBERT S. STRICHARTZ

§1. Introduction
Let S be a subset of IR" and du a positive measure supported on S and of
temperate growth at infinity. We consider the following two problems:

Problem A. For which values of p, 1 = p < 2, is it true that f € L*(IR")
implies f has a well-defined restriction to § in L*(dp) with

w Umuﬂ)”z = af?

m The Fourier dual of R” is R"”
m The Fourier dual of H? is not HY

— anisotropic norms due to the no-dispersion effect




The result sy

A function f on H' is said to be radial if f(x,y,z) = ¢(x>+ y?, 2).

Theorem (Bahouri, DB, Gallagher, '19)

Given (p, q) belonging to the admissible set

2 2d
AZ{(p,q)E[Zoo]z/qu and Gt = g}

the solution to the Schrodinger equation (Sm) with radial data satisfies
||“||Lz°°LfL§,y < Cp,q,p1,q1 (HUOHLZ(HG’)) .
m very restrictive due to p < g then p=g =2

m we stress that L° L{ LP  # L° LI L7,

m similar for inhomogeneous and wave

T o



The result sy

A function f on H' is said to be radial if f(x,y,z) = ¢(x> + y?, 2).

Theorem (Bahouri, DB, Gallagher, '19)

Given (p, q) belonging to the admissible set

2 2d _Q
_ 2 z
A—{(p,q)e[ZOO] /p<gq and ot §2},

the solution to the Schrodinger equation (Sg) with radial data satisfies

||U||LgoL;7L5,y < Cp,q,pl,q1(||U0HHv(Hd)) .
mo=9-2_ % is the loss of derivatives, 0 = 0 forces p = g
m we stress that L° L{ LP  # L° LI L7,

m similar for inhomogeneous and wave
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Fourier restriction problem e

Stein, Fefferman, Tomas, etc:

Can we restrict the Fourier transform of an LP function to hypersurfaces 7
m £ in LY(R") implies F(f) continuous — OK.

m fin [2(R") implies F(f) in L2(R") — arbitrary on a zero meas set

Tomas and Stein

For which 1 < p < 2 then J(f) can be restricted to a hypersurfaces S
and is in L97

S should be “sufficiently curved” since
e_lx/lz

= = ! R".
x) T+l x = (x1,x") € R, (3)

is in LP for p > 1 but cannot be restricted to hyperplane.

S



Tomas-Stein

Theorem (Tomas-Stein, 1975)

Let S be a smooth compact hypersurface in R" with non vanishing
Gaussian curvature at every point, do a smooth measure on S.

||3:(f)‘§||L2(§,do) < CP”f”LP(R")-
for every f € S(R™) and every p < (2n+2)/(n+ 3),

m A necessary condition p < (2n 4 2)/(n+ 3) Knapp counterexample

m A similar result is possible for surfaces with vanishing Gaussian
curvature (that are not flat).

m In this case the range of p is smaller depending on the order of
tangency of the surface to its tangent space.

m for g # 2 not completely solved

S



From restriction to Strichartz estimates

The classical Schrodinger equation in R": taking the inverse Fourier
transform

(ex)= [ e m(eae, (4)

Consider the paraboloid Sin the space of frequencies R =R xR"

~

5:{(a,5)e@x@"|a:\g|2}.

|
m Given G : R” — C define g : 5 — C as g(|¢]2,€) = Go(€). Then

u(t, x) :/ iCegttie) &)d¢ = / Vzg(z)do(z

where y = (t,x) and z = («, &).

S e
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Obervations V ; }l DI PADOVA

1. Prove a Fourier restriction on the Heisenberg group
m a (spectral) restriction result of D.Miiller — specific for the “sphere”

m what is the sphere? what about paraboloid?

2. We do not exactly need restriction theorems for H¢
m we applied the result to a surface in the space R"*! =R x R”
— the paraboloid fi)r thAe Schrodinger eq. (the cone for the wave
equation) is in R x HY,
m which is not related to HY for some d’.

T



The Fourier transform on H st

It is defined using irreducible unitary representations : for any integrable
function u on H (Kirillov theory)

YAER*, 1)) ::/u(x)fR;\dx,
H

with R* the group homomorphism between H and the unitary
group U(L2(R)) of L2(R) given for all x in H and ¢ in L2(R), by

RAH(6) = exp (i)\Xg + /'/\sz)gb(a +x1).

Then G()) is a family of bounded operators on L?(IR), with many
properties similar to RY : inversion formula, Fourier-Plancherel identity

Trace Hilbert—Schmidt

S



The Fourier transform of the sublaplacian on

The sub-Laplacian
Ay =X + X5

There holds

— R ] d?
—Agu(A) =0(N) o Py, with Py := i + 2202
The spectrum of the rescaled harmonic oscillator is
Sp(Py) = {|A\l(2m+ 1), m € N}

and the eigenfunctions are the Hermite functions .. So for all m € N,

“Agu(A) = En(Na(N)) -

S
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The frequency space on H e

Set x := (n,m,\) € H = N2 x R*, and

Fr(u)(n, m,A) = (@A) UR) )

W(X, x)u(x)dx
H

where W(X, x) := eMee=N0EH2) [ (21N (x2 + x2)) .

Laguerre polynomial

Then

Fu(—Agu)(n,m, ) = En(\) Fu(u)(n,m,A).
——
frequency

Bahouri, Chemin, Danchin

S
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First observation in the Heisenberg group

Let ug in 8(H?) be radial and consider the Cauchy problem

{ iO:u — Agu =0
U|t:0 = U .

Taking the partial Fourier transform with respect to the variable w

i%fﬂﬂ(u)(t, n,m,\) = —|A\(2|m| + d)Fu(u)(t, n,m,\)
Fu(u)|e=0 = Fuuo .

|
Fa(u)(t, n, m, \) = eNCMFD gy (4o)(n, m, A)opm -

— Notice that if we set n = m = 0 we see the “transport” part

Fua(u)(t,0,0,\) = eM9Fy(ug)(0,0,)).

S



What we proved is the following restriction theorem

Theorem (Bahouri, DB, Gallagher, '19)
If1<q<p<2, then for f radial

1Fz e (D= llz@s) < Coqllfllizeore, (5)

where ¥ is the paraboloid
- {(a,(n, nA) € R x B /a = [\(2]n] + d)} .

Using the dual inequality and assuming that Jyug is localized in a ball

.
Forany2 < p<g <o

||U||L;>°L§L‘;,y < C||?HU0||Lz(ﬁd) = C||u0||L2(Hd)7

S
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Comments ) e S

On the positive side:
m an interpretation of Miiller result
m extension to other surfaces in the dual of Heisenberg group

m some new Strichartz estimates for linear Shrodinger/wave equations

Still to do (— a lot!):

m remove the radial assumption on the initial data ?

m extend this analysis to more general groups 7 every 2-step 7
m obtain applications to sub-Riemannian NLS ? (seems difficult)
m

what about 3 steps?

S o
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Spectral summability of quartic oscillators and the Engel group
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The Engel group 1 s

E ~ R*

2
X
X1:=01, Xp:= (92+X1(r)3+§1(94, X3:=03+x104, X4:=04.

Group law:
X1 V1 X1+ y1
X2 2 X2+ 2
x| |y | X3+ 3 "‘leg
X4 Ya XaYs + X1Y3 + 5y

Homogeneous dimension: Q = ijdimgj =7

(55(X1, X2, X3, X4) = (€X1, EXo, 62X37 €3X4)

S
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The sublaplacian 1 s

In general
A=) X
Xi€g1
soon H and E
A=X?+X5.

Homogeneous and inhomogeneous Sobolev spaces are defined by

i

fe = (=2 2ulle, [IFllme = 1(1d = A)ul 2.

Questions :

- “Space of frequencies” for Fourier Analysis
- Summation formula

- Some applications

S o
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The Fourier transform on E s S

For any integrable function u on E

V(r,A) ERxR*, G(r,\) := / u(x)Ru dx
E

m R“* the group homomorphism between E and U(L?(R))
m for all x in E and ¢ in L?(R), by

92
RUAH(0) := exp (/')\X4 + iNOx3 — i%)@ + I'/\§X2> o0+ x1) .

m ) is dual to the center X, (homogeneous of degree 3)

m v is representing the operator (homogeneous of degree 4)

1
XaXo — §x32

T e



— d2 92 2
7A]EU(V7>‘) = ZJ\(V7>‘) © PV,)\7 with Pu,A = *ﬁ = (/\ = I/) .

m Sp(P,.\) = {Em(v, \), m € N} not explicit!
m 2> the eigenfunctions of P, associated with E,(v, ).

Homogeneity reduces to the study
d? (62 ?
P,u == d92 ( - ILL>

Setting Top = a%ga(a-) and p = then P, 5 = |A\[?/3 TiasPuTiy-1s

|A‘4/3

En(v,)) = [A°Em(p) and v = Ty /500

The Lai-Robert, Colin de Verdiére-Letrouit,
Helffer, Helffer-Léautaud...
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The frequency space on [E s oo

Set X := (n,m, v, \) cE=N2xR x R*, and
Falu)(n, m, v, ) = (@) iy

=: / W(X, x)u(x)dx
JH
where

W((n, m, v, \),x) = ele—5x) / N OsHER) N (g 4 Vb (0)d6 .
R

Then

Fe(—Agu)(n,m, v, \) = En(v,\) Fe(u)(n,m,v, \).
——
frequency

S o



Spectral summability i

Theorem (Bahouri-DB-Gallagher-Léautaud 2023)

1
——du<oo<=v>2
n%/REm(M)V

Moreover assume ® € L(R., r? dr)

Z/ ¢(Em(u,>\))dudA:C/ &(r)r? dr.
men Y RxR* 0

where

m it splits the contribution of the spectrum and the one of F

m it is a summability result for all the spectri n



Spectral summability

Theorem (Bahouri-DB-Gallagher-Léautaud 2023)

1
———du<oo<=vy>2
n%/REm(u)V

07
Moreover assume ® € L}(R., s dr)

> /RXR* & (Enm(v, A)) dvdA = c/ooo o(r)r s dr.

meN

where

C:Z/R 3 du.

Q
meN Em(ﬂ) 2

m it splits the contribution of the spectrum and the one of F

m it is a summability result for all the siecti-



On the summability of the spectrum

It relies on a refined analysis of the spectrum of P,: recall

2 2
The behavior of the potential depends on the sign of the parameter u:
m It admits a single well when 1 < 0
m It admits a double well when p > 0.

m need combination of microlocal and semiclassical analysis along with
known spectral results.

Another observation for later

m it is the square of a polynomial of degree 2 (with no 1st order term)

S o
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Formula in simpler situations (L5 s

Analogue in Heisenberg H¢

2 oo
Z/ (IN@[m[+d))[Aldx = { Y P /0 &(r)rd dr.

meNd meNd

m notice the Plancherel measure in LHS and d = (Q — 2)/2,
d+1=Q/2.

m the convergence in this case is easy

Analogue in R" would be the spherical coordinate formula

[ oter)ae =152 [~ o) o
JO JO
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Recover known results s

As for instance some Sobolev embeddings. Remember here Q = 7.

Proposition
Fors > Q/2, then H*(E) embeds in L*°(E).

Start from the inversion formula
u(x) = (277)*3 /A W()?.,x*l)(TE(u)()?) dx
JE

so that

u(x)] < / W, )| T () (%))
Recall that

HUHHS(E /|?]E 1+E (l/.)\))sd))(\

;
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Sobolev embeddings (15 oo

Multiplying/dividing (1 + E,(v, \))*/? and using Cauchy-Schwartz

. 1/2
G < o (/E|W(zx1)2(1 + En(1,0) d?)

Since 3, cn IW(X, x71)[? = 1 due to the fact that representation are
unitary it remains to estimate

i 1/2
(n%./naw(l + En(v, ) d)\dz/>

which thanks to the summation formula is finite for s > Q/2

< (/Om(1+r)—5r022 dr> (Z/REm(lu)?d”)

meN

S o
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An application 11:<.)|.|S'|‘l|n

We are interested in the assumptions on ® giving,

O(—Ag)u = ux ke, forall ue§(E), (6)

Theorem (BBGL, 23)

Assume & € LY(R,., ridr). Then
m For any u € 8(E), the operator (—Ag) : § — L is well-defined
through

def

O(—Ag)u T (O(En(v, 1) Fu(u)(R))

m Moreover, there is ko in 8'(E) such that ®(—Ag)u = u* ke and we
have the continuous map

LY(Ry, r2dr) —s 8/(E)
b — kq>




m Indeed k¢ belongs to CON L°(E) and there holds

ko llieqe) < (2m)3C / /S/20(r)|dr and
0

0) = (2m)~3C /030 52 (r)dr

defz/

meN

where

du<oo

m Finally ko € L2(E) if and only if ® € L2(R,, r%/?dr) and there holds

Ko aqey = (27)°C / P5/2(0(r) P

S o
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Comments and generalizations
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The filiform /Goursat group in general dimension::”

This is the nilpotent Lie group of dimension n and step s = n — 1 with a
basis of the Lie algebra satisfying

[XI:XI]:Xi+17 i:27"'7n
Example: Filiform/Goursat group (step 4)

g1 92 g3 94
—~N
X17X2 9 X3 — [X17 X2] ) X4 — [X17X3]7 X5 — [X17X4]

dimension increase each time by 1
s step, then n = s + 1 dimension
it is always rank 2

it is always the same vector field of g; generating the new direction

S o
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Generalization of summability ST

Generalization (only for this class of groups at the moment) as follows :
m the set of parameters will be s — 1 = n — 2 dimensional : (v, \)
mv=(va...,Vs_1) a set of s — 2 parameters
m the Plancherel measure as f(\)dAdv,

m Q=14 s(s+1)/2 be the homogeneous dimension

Z/ )F(A)dAdv = c, (/ Q=224 > (Z/ E.nen?

meN meN
(7)

where E,(v,1) is the family of eigenvalue of a 1D oscillator of the form

\_/

L Vo))
dgz T

with Vs(v;-) polynomial of degree s — 1 with no term of degree s — 2

S o



UNIVERSITA

Formula for the V, 15 oo

Better to show in dim n+ 2 (or step s, with s = n+ 1)

2
d2 Vk enfk
Velvi) = Gz — <n| +Z —z)w—ln—k!)

m )\ is the dual variable to the center

m the v represents the casimirs

2)!
*X2 *Z T_l)Xle “Xeso

m explicit homogeneity

T
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Generalization of summability ST

m The next case would be

d? A v v\’
— 23— Zp 4+ 2
dez " (6 PRADY
with v3, 5, A homogeneous of degree 9,6, 4 respectively.

m Denoting E,,(12, 13, \) the corresponding eigenvalues we are asking

for which ~
1
S [ e <o
meN Em(V2-,V371)’

m in progress!

S o



Generalization of summability e

m The next case would be

d? A s v\ °
_w+<69 - 50+ A2>

with v3, 5, A homogeneous of degree 9,6, 4 respectively.

m Denoting E,,(12, 13, \) the corresponding eigenvalues we are asking

for which ~
Z / dl/ < 0
= (v2,v3, 1)

m in progress!

m thanks for your attention!

S o
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Wave equation e

The wave equation on R”

0?u—Au=0
(W) { (U,atu)‘t:o:(UOaul)s

The classical dispersive estimate writes (for t # 0)

ut, )l Lo mny <

?(HUOHU(R") + ol wey) -

|t

— oscillatory integrals and stationary phase theorem.

Strichartz estimate for wave equation

|ull o, oy < C(p, @) (I Vtoll 2y + |l 2n)) »

where (p, q) satisfies the scaling admissibility condition

1 n n
7+7:7_17 paq227 q<OO
qg p 2




Previous Stricharts estimate for wave on st

On HY one can prove a dimension-independent dispersive estimate

[Ju(t, M@y < —1 (lvoll ey + lurlle@e)

1|2

m only the center is involved in the dispersive effect.
m this estimate is optimal.

This dispersive estimate gives rise to a Strichartz estimate

[Bahouri, Gérard, Xu, '00]

lullesee, < Cogpran (||VHdU0HL2(Hd) + [unll 2 (mey + Hf”Lq{LP{ )
t Lzis

FPI | Q _ Q@

S o



Our result for wave

In the case of the wave equation on H we obtain the following Strichartz
estimate.

Theorem (Bahouri, DB, Gallagher, '19)

With the above notation, given (p,q) and (p1, q1) belonging to the
admissible set

1 2d Q@
w 2
= < = —_— = = —
A {(p,q)€[2,oo]/q p and q+p 5 1},

there is a constant Cp g p, .o, Such that the solution to the wave equation
(W) associated with radial data satisfies the following Strichartz
estimate:

lullieerare < Coqpr,a (||VHdUo||L2(Hd) + [lunll 2 (mey + Hf”LlL"iL"i) :
st 'z

m g can be small. In the previous g > 2Q — 1.

m we pay a price in the s van




The Schrodinger Local Strichartz estima

Theorem [Bahouri-Gallagher 2022]
If Supp o C B(xo, R) then for all k < 1 and ||z > R/(1 — k)

C
P e L )

S o



The Schrodinger equation on E

Theorem [Bahouri-DB-Gallagher-Léautaud 2023] The following holds

dug € S(E) |Itn_1>!>gf ‘t|||u(t)||L°°(]E) > C
Moreover for any uy € L1(E),

sup ‘(X>*1u(t,x)| < ¢

o =7 ||U0HL1(E)-

S o
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