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The Schrödinger equation on Rn

The Schrödinger sequation on Rn{
i∂tu −∆u = 0
u|t=0 = u0 ,

From the explicit expression of the solution, using Fourier analysis:

u(t, ·) = ei
|·|2
4t

(4πit)
n
2
⋆ u0 .

one obtains the basic dispersive estimate (for t ̸= 0)

∥u(t, ·)∥L∞(Rn) ≤
1

(4π|t|) n
2
∥u0∥L1(Rn) (1)
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Strichartz estimates

From the basic dispersive estimate (using so-called TT ∗ argument)

For initial data u0 ∈ L2(Rn) we have the following Strichartz estimate

∥u∥Lq(R,Lp(Rn)) ≤ Cp,q∥u0∥L2(Rn) , (2)

where (p, q) satisfies the scaling admissibility condition

2

q
+

n

p
=

n

2
, q ≥ 2, (n, q, p) ̸= (2, 2,∞)

Similar dispersive inequality for the inhomogeneous Schrödinger
equation i∂tu −∆u = f

crucial in the study of semilinear and quasilinear Schrödinger
equations

4 of 35



No dispersion in Heisenberg

The linear Schrödinger equations on H associated with the sublaplacian

(SH)

{
i∂tu −∆Hu = f

u|t=0 = u0 ,

Theorem (Bahouri-Gérard-Xu 2000)

There exists a function u0 in the Schwartz class S(H) such that the
solution to the free Schrödinger equation (SH) satisfies

u(t, x1, x2, x3) = u0(x1, x2, x3 + t) .

In particular for all 1 ≤ p ≤ ∞

∥u(t, ·)∥Lp(Hd ) = ∥u0∥Lp(Hd )

→ no dispersion
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The Heisenberg group H

H ∼ R3

X1 := ∂1 −
x2
2
∂3 , X2 := ∂2 +

x1
2
∂3 , X3 := ∂3 .

Group law: x1
x2
x3

 ·

y1
y2
y3

 =

 x1 + y1
x2 + y2

x3 + y3 +
1
2 (x1y2 − y1x2)


The Haar measure is equal to the Lebesgue measure.

Convolution product f ⋆ g(x) :=

∫
H
f (x · y−1)g(y) dy .

Homogeneous dimension
Q =

∑
j j dimgj = 4 ,

∣∣BH(x , r)
∣∣ = rQ

∣∣BH(0, 1)
∣∣
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Carnot groups

The Lie algebra g of a Carnot (stratified Lie) group of step r admits the
following stratification

g =
r⊕

i=1

gi with gi+1 = [g1, gi ] .

A sub-Riemannian structure is given by a scalar product on g1

Heisenberg group H (step 2)

g = g1 ⊕ g2 ,

g1︷ ︸︸ ︷
X1,X2 ,

g2︷ ︸︸ ︷
X3 = [X1,X2]

Engel group E (step 3)

g = g1 ⊕ g2 ⊕ g3 ,

g1︷ ︸︸ ︷
X1,X2 ,

g2︷ ︸︸ ︷
X3 = [X1,X2] ,

g3︷ ︸︸ ︷
X4 = [X1,X3]
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Goal: prove (some) Strichartz estimates in the Heisenberg group

→ the original approach of Strichartz, 1977

The Fourier dual of Rn is Rn

The Fourier dual of Hd is not Hd

→ anisotropic norms due to the no-dispersion effect
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The result

A function f on H1 is said to be radial if f (x , y , z) = ϕ(x2 + y2, z).

Theorem (Bahouri, DB, Gallagher, ’19)

Given (p, q) belonging to the admissible set

A =
{
(p, q) ∈ [2,∞]2 / p ≤ q and

2

q
+

2d

p
=

Q

2

}
,

the solution to the Schrödinger equation (SH) with radial data satisfies

∥u∥L∞
z Lq

t L
p
x,y

≤ Cp,q,p1,q1

(
∥u0∥L2(Hd )

)
.

very restrictive due to p ≤ q then p = q = 2

we stress that L∞z Lqt Lpx,y ̸= L∞t Lqz Lpx,y
similar for inhomogeneous and wave
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Fourier restriction problem
Stein, Fefferman, Tomas, etc:

Can we restrict the Fourier transform of an Lp function to hypersurfaces ?

f in L1(Rn) implies F(f ) continuous → OK.

f in L2(Rn) implies F(f ) in L2(R̂n) → arbitrary on a zero meas set

Tomas and Stein

For which 1 ≤ p ≤ 2 then F(f ) can be restricted to a hypersurfaces Ŝ
and is in Lq?

S should be “sufficiently curved” since

f (x) =
e−|x′|2

1 + |x1|
x = (x1, x

′) ∈ Rn, (3)

is in Lp for p > 1 but cannot be restricted to hyperplane.
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Tomas-Stein

Theorem (Tomas-Stein, 1975)

Let Ŝ be a smooth compact hypersurface in R̂n with non vanishing
Gaussian curvature at every point, dσ a smooth measure on Ŝ .

∥F(f )|Ŝ∥L2(Ŝ,dσ) ≤ Cp∥f ∥Lp(Rn) .

for every f ∈ S(Rn) and every p ≤ (2n + 2)/(n + 3),

A necessary condition p ≤ (2n + 2)/(n + 3) Knapp counterexample

A similar result is possible for surfaces with vanishing Gaussian
curvature (that are not flat).

In this case the range of p is smaller depending on the order of
tangency of the surface to its tangent space.

for q ̸= 2 not completely solved
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From restriction to Strichartz estimates

The classical Schrödinger equation in Rn: taking the inverse Fourier
transform

u(t, x) =

∫
R̂n

e i(x·ξ+t|ξ|2)û0(ξ)dξ . (4)

Consider the paraboloid Ŝ in the space of frequencies R̂n+1 = R̂× R̂n

Ŝ =
{
(α, ξ) ∈ R̂× R̂n | α = |ξ|2

}
.

Given û0 : R̂n → C define g : Ŝ → C as g(|ξ|2, ξ) = û0(ξ). Then

u(t, x) =

∫
Rn

e i(x·ξ+t|ξ|2)û0(ξ)dξ =

∫
Ŝ

e iy ·zg(z)dσ(z)

where y = (t, x) and z = (α, ξ).
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Some obervations

1. Prove a Fourier restriction on the Heisenberg group

a (spectral) restriction result of D.Müller → specific for the “sphere”

what is the sphere? what about paraboloid?

2. We do not exactly need restriction theorems for Hd

we applied the result to a surface in the space Rn+1 = R× Rn

→ the paraboloid for the Schrödinger eq. (the cone for the wave

equation) is in R̂× Ĥd ,

which is not related to Hd′
for some d ′.
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The Fourier transform on H

It is defined using irreducible unitary representations : for any integrable
function u on H (Kirillov theory)

∀λ ∈ R∗ , û(λ) :=

∫
H
u(x)Rλ

x dx ,

with Rλ the group homomorphism between H and the unitary
group U(L2(R)) of L2(R) given for all x in H and ϕ in L2(R), by

Rλ
x ϕ(θ) := exp

(
iλx3 + iλθx2

)
ϕ(θ + x1) .

Then û(λ) is a family of bounded operators on L2(R), with many
properties similar to Rd : inversion formula︸ ︷︷ ︸

Trace

, Fourier-Plancherel identity︸ ︷︷ ︸
Hilbert−Schmidt
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The Fourier transform of the sublaplacian on H

The sub-Laplacian
∆H = X 2

1 + X 2
2

There holds

−̂∆Hu(λ) = û(λ) ◦ Pλ , with Pλ := − d2

dθ2
+ λ2θ2 .

The spectrum of the rescaled harmonic oscillator is

Sp(Pλ) =
{
|λ|(2m + 1) ,m ∈ N

}
and the eigenfunctions are the Hermite functions ψλ

m. So for all m ∈ N,

−̂∆Hu(λ)ψ
λ
m = Em(λ)û(λ)ψ

λ
m .
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The frequency space on H

Set x̂ := (n,m, λ) ∈ Ĥ = N2 × R∗, and

FH(u)(n,m, λ) := (û(λ)ψλ
m|ψλ

n )L2(R)

=

∫
H
W(x̂ , x)u(x)dx

where W(x̂ , x) := e iλx3e−|λ|(x2
1+x2

2 ) Lm(2|λ|(x21 + x22 ))︸ ︷︷ ︸
Laguerre polynomial

.

Then
FH(−∆Hu)(n,m, λ) = Em(λ)︸ ︷︷ ︸

frequency

FH(u)(n,m, λ) .

Bahouri, Chemin, Danchin
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First observation in the Heisenberg group

Let u0 in S(Hd) be radial and consider the Cauchy problem{
i∂tu −∆Hu = 0

u|t=0 = u0 .

Taking the partial Fourier transform with respect to the variable w{
i d
dtFH(u)(t, n,m, λ) = −|λ|(2|m|+ d)FH(u)(t, n,m, λ)

FH(u)|t=0 = FHu0 .

FH(u)(t, n,m, λ) = e it|λ|(2|m|+d)FH(u0)(n,m, λ)δn,m .

→ Notice that if we set n = m = 0 we see the “transport” part

FH(u)(t, 0, 0, λ) = e it|λ|dFH(u0)(0, 0, λ) .
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What we proved is the following restriction theorem

Theorem (Bahouri, DB, Gallagher, ’19)

If 1 ≤ q ≤ p ≤ 2, then for f radial

∥FR̂×Ĥd (f )|Σ∥L2(dΣ) ≤ Cp,q∥f ∥L1
zL

q
t L

p
x,y
, (5)

where Σ is the paraboloid

Σ =
{(
α, (n, n, λ)

)
∈ R̂× Ĥd /α = |λ|(2|n|+ d)

}
.

Using the dual inequality and assuming that FHu0 is localized in a ball

For any 2 ≤ p ≤ q ≤ ∞

∥u∥L∞
z Lq

t L
p
x,y

≤ C∥FHu0∥L2(Ĥd ) = C∥u0∥L2(Hd ) ,
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Comments

On the positive side:

an interpretation of Müller result

extension to other surfaces in the dual of Heisenberg group

some new Strichartz estimates for linear Shrödinger/wave equations

Still to do (→ a lot!):

remove the radial assumption on the initial data ?

extend this analysis to more general groups ? every 2-step ?

obtain applications to sub-Riemannian NLS ? (seems difficult)

what about 3 steps?
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The Engel group

E ∼ R4

X1 := ∂1 , X2 := ∂2 + x1∂3 +
x21
2
∂4 , X3 := ∂3 + x1∂4 , X4 := ∂4 .

Group law: 
x1
x2
x3
x4

 ·


y1
y2
y3
y4

 =


x1 + y1
x2 + y2

x3 + y3 + x1y2

x4y4 + x1y3 +
x2
1

2 y2



Homogeneous dimension: Q =
∑

j j dimgj = 7

δε(x1, x2, x3, x4) = (εx1, εx2, ε
2x3, ε

3x4)
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The sublaplacian

In general

∆ :=
∑
Xj∈g1

X 2
j

so on H and E
∆ = X 2

1 + X 2
2 .

Homogeneous and inhomogeneous Sobolev spaces are defined by

∥u∥Ḣs = ∥(−∆)
s
2 u∥L2 , ∥f ∥Hs = ∥(Id−∆)

s
2 u∥L2 .

Questions :

- “Space of frequencies” for Fourier Analysis

- Summation formula

- Some applications
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The Fourier transform on E

For any integrable function u on E

∀(ν, λ) ∈ R× R∗ , û(ν, λ) :=

∫
E
u(x)Rν,λ

x dx ,

Rν,λ the group homomorphism between E and U(L2(R))
for all x in E and ϕ in L2(R), by

Rν,λ
x ϕ(θ) := exp

(
iλx4 + iλθx3 − i

ν

λ
x2 + iλ

θ2

2
x2
)
ϕ(θ + x1) .

λ is dual to the center X4 (homogeneous of degree 3)

ν is representing the operator (homogeneous of degree 4)

X4X2 −
1

2
X 2
3
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The Fourier transform of the sublaplacian on E

−̂∆Eu(ν, λ) = û(ν, λ) ◦ Pν,λ , with Pν,λ := − d2

dθ2
+

(
λ
θ2

2
− ν

λ

)2

.

Sp(Pν,λ) = {Em(ν, λ),m ∈ N} not explicit!

ψν,λ
m the eigenfunctions of Pν,λ associated with Em(ν, λ).

Homogeneity reduces to the study

Pµ := − d2

dθ2
+

(
θ2

2
− µ

)2

Setting Tαφ := α
1
2φ(α ·) and µ =

ν

|λ|4/3
then Pν,λ = |λ|2/3T|λ|1/3PµT|λ|−1/3

Em(ν, λ) = |λ|2/3Em(µ) and ψν,λ
m = T|λ|1/3φ

µ
m

The Lai-Robert, Colin de Verdière-Letrouit,

Helffer, Helffer-Léautaud...
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The frequency space on E

Set x̂ := (n,m, ν, λ) ∈ Ê = N2 × R× R∗, and

FE(u)(n,m, ν, λ) :=
(
û(λ)ψν,λ

m |ψν,λ
n

)
L2(R)

=:

∫
H
W(x̂ , x)u(x)dx

where

W((n,m, ν, λ), x) := e i(λx4−
ν
λ x2)

∫
R
e iλ(θx3+

θ2

2 x2)ψν,λ
m (θ + x1)ψ

ν,λ
n (θ)dθ .

Then
FE(−∆Eu)(n,m, ν, λ) = Em(ν, λ)︸ ︷︷ ︸

frequency

FE(u)(n,m, ν, λ) .
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Spectral summability

Theorem (Bahouri-DB-Gallagher-Léautaud 2023)

∑
m∈N

∫
R

1

Em(µ)γ
dµ <∞ ⇐⇒ γ > 2

Moreover assume Φ ∈ L1(R+, r
5
2 dr)∑

m∈N

∫
R×R∗

Φ
(
Em(ν, λ)

)
dνdλ = C

∫ ∞

0

Φ(r)r
5
2 dr .

where

C =
∑
m∈N

∫
R

3

Em(µ)
7
2

dµ .

it splits the contribution of the spectrum and the one of F

it is a summability result for all the spectra
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On the summability of the spectrum

It relies on a refined analysis of the spectrum of Pµ: recall

Pµ = − d2

dθ2
+
(θ2
2

− µ
)2
, µ ∈ R

The behavior of the potential depends on the sign of the parameter µ:

It admits a single well when µ < 0

It admits a double well when µ > 0.

need combination of microlocal and semiclassical analysis along with
known spectral results.

Another observation for later

it is the square of a polynomial of degree 2 (with no 1st order term)
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Formula in simpler situations

Analogue in Heisenberg Hd

∑
m∈Nd

∫ ∞

0

Φ
(
|λ|(2|m|+d)

)
|λ|ddλ =

∑
m∈Nd

2

(2|m|+ d)d+1

∫ ∞

0

Φ(r)rd dr .

notice the Plancherel measure in LHS and d = (Q − 2)/2,
d + 1 = Q/2.

the convergence in this case is easy

Analogue in Rn would be the spherical coordinate formula∫ ∞

0

Φ
(
|ξ|2
)
dξ = |Sd−1|

∫ ∞

0

Φ(r)r
n−2
2 dr .

28 of 35



Recover known results

As for instance some Sobolev embeddings. Remember here Q = 7.

Proposition

For s > Q/2, then Hs(E) embeds in L∞(E).

Start from the inversion formula

u(x) = (2π)−3

∫
Ê

W(x̂ , x−1)FE(u)(x̂) dx̂

so that

|u(x)| ≤
∫
Ê

|W(x̂ , x)||FE(u)(x̂)| dx̂

Recall that

∥u∥2Hs (E) :=

∫
Ê

|FE(u)(x̂)|2(1 + Em(ν, λ))
s dx̂
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Sobolev embeddings

Multiplying/dividing (1 + Em(ν, λ))
s/2 and using Cauchy-Schwartz

|u(x)| ≤ ∥u∥Hs

(∫
Ê

|W(x̂ , x−1)|2(1 + Em(ν, λ))
−s dx̂

)1/2

Since
∑

n∈N |W(x̂ , x−1)|2 = 1 due to the fact that representation are
unitary it remains to estimate(∑

m∈N

∫
R×R∗

(1 + Em(ν, λ))
−sdλdν

)1/2

which thanks to the summation formula is finite for s > Q/2

≤
(∫ ∞

0

(1 + r)−s r
Q−2
2 dr

)(∑
m∈N

∫
R

1

Em(µ)
Q
2

dµ

)
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An application

We are interested in the assumptions on Φ giving,

Φ(−∆E)u = u ⋆ kΦ , for all u ∈ S(E) , (6)

Theorem (BBGL, 23)

Assume Φ ∈ L1(R+, r
5
2 dr). Then

For any u ∈ S(E), the operator Φ(−∆E) : S → L∞ is well-defined
through

Φ(−∆E)u
def
= F−1

E

(
Φ
(
Em(ν, λ)

)
FE(u)(x̂)

)
.

Moreover, there is kΦ in S′(E) such that Φ(−∆E)u = u ⋆ kΦ and we
have the continuous map

L1(R+, r
5
2 dr) −→ S′(E)

Φ 7−→ kΦ
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Indeed kΦ belongs to C 0 ∩ L∞(E) and there holds

∥kΦ∥L∞(E) ≤ (2π)−3C

∫ ∞

0

r5/2|Φ(r)|dr and

kΦ(0) = (2π)−3C

∫ ∞

0

r5/2Φ(r)dr ,

where

C
def
=
∑
m∈N

∫
R

3

Em(µ)
7
2

dµ <∞ .

Finally kΦ ∈ L2(E) if and only if Φ ∈ L2(R+, r
5/2dr) and there holds

∥kΦ∥2L2(E) = (2π)−3C

∫ ∞

0

r5/2|Φ(r)|2dr .
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The filiform/Goursat group in general dimension

This is the nilpotent Lie group of dimension n and step s = n − 1 with a
basis of the Lie algebra satisfying

[X1,Xi ] = Xi+1, i = 2, . . . , n

Example: Filiform/Goursat group (step 4)

g1︷ ︸︸ ︷
X1,X2 ,

g2︷ ︸︸ ︷
X3 = [X1,X2] ,

g3︷ ︸︸ ︷
X4 = [X1,X3],

g4︷ ︸︸ ︷
X5 = [X1,X4]

dimension increase each time by 1

s step, then n = s + 1 dimension

it is always rank 2

it is always the same vector field of g1 generating the new direction
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Generalization of summability

Generalization (only for this class of groups at the moment) as follows :

the set of parameters will be s − 1 = n − 2 dimensional : (ν, λ)

ν = (ν2, . . . , νs−1) a set of s − 2 parameters

the Plancherel measure as f (λ)dλdν,

Q = 1 + s(s + 1)/2 be the homogeneous dimension∑
m∈N

∫
Φ
(
Em(ν, λ)

)
f (λ)dλdν = cn

(∫
r (Q−2)/2Φ(r)dr

)(∑
m∈N

∫
1

Em(ν, 1)Q/2
dν

)
(7)

where Em(ν, 1) is the family of eigenvalue of a 1D oscillator of the form

− d2

dθ2
+ (Vs(ν; θ))

2

with Vs(ν; ·) polynomial of degree s − 1 with no term of degree s − 2
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Formula for the Vs

Better to show in dim n + 2 (or step s, with s = n + 1)

Vs(ν; ·) =
d2

dθ2
−

(
λ

n!
θn +

n∑
k=2

(−1)k−1 νk
(k − 2)!λk−1

θn−k

n − k!

)2

λ is the dual variable to the center

the ν represents the casimirs

1

k
X k
2 +

k−1∑
ℓ=1

(−1)ℓ
(k − 2)!

(k − ℓ− 1)!
X ℓ
1X

k−ℓ−1
2 Xℓ+2

explicit homogeneity
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Generalization of summability

The next case would be

− d2

dθ2
+

(
λ

6
θ3 − ν2

λ
θ +

ν3
λ2

)2

with ν3, ν2, λ homogeneous of degree 9, 6, 4 respectively.

Denoting Em(ν2, ν3, λ) the corresponding eigenvalues we are asking
for which γ ∑

m∈N

∫
1

Em(ν2, ν3, 1)γ
dν <∞

in progress!

thanks for your attention!
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Wave equation

The wave equation on Rn

(W )

{
∂2t u −∆u = 0

(u, ∂tu)|t=0 = (u0, u1) ,

The classical dispersive estimate writes (for t ̸= 0)

∥u(t, ·)∥L∞(Rn) ≤
C

|t| n−1
2

(∥u0∥L1(Rn) + ∥u1∥L1(Rn)) .

→ oscillatory integrals and stationary phase theorem.

Strichartz estimate for wave equation

∥u∥Lq(R,Lp(Rn)) ≤ C (p, q)
(
∥∇u0∥L2(Rn) + ∥u1∥L2(Rn)

)
,

where (p, q) satisfies the scaling admissibility condition

1

q
+

n

p
=

n

2
− 1, p, q ≥ 2, q <∞ .
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Previous Stricharts estimate for wave on H

On Hd one can prove a dimension-independent dispersive estimate

∥u(t, ·)∥L∞(Hd ) ≤
C

|t| 12
(∥u0∥L1(Hd ) + ∥u1∥L1(Hd )) ,

only the center is involved in the dispersive effect.

this estimate is optimal.

This dispersive estimate gives rise to a Strichartz estimate

[Bahouri, Gérard, Xu, ’00]

∥u∥Lq
t L

p
z,s

≤ Cp,q,p1,q1

(
∥∇Hdu0∥L2(Hd ) + ∥u1∥L2(Hd ) + ∥f ∥

L
q′
1

t L
p′
1

z,s

)
with 1

q + Q
p = Q

2 − 1 and q ≥ 2Q − 1.
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Our result for wave

In the case of the wave equation on H we obtain the following Strichartz
estimate.

Theorem (Bahouri, DB, Gallagher, ’19)

With the above notation, given (p, q) and (p1, q1) belonging to the
admissible set

AW =
{
(p, q) ∈ [2,∞]2 / q ≤ p and

1

q
+

2d

p
=

Q

2
− 1
}
,

there is a constant Cp,q,p1,q1 such that the solution to the wave equation
(WH) associated with radial data satisfies the following Strichartz
estimate:

∥u∥L∞
s Lq

t L
p
z
≤ Cp,q,p1,q1

(
∥∇Hdu0∥L2(Hd ) + ∥u1∥L2(Hd ) + ∥f ∥

L1
sL

q′
1

t L
p′
1

z

)
.

q can be small. In the previous q ≥ 2Q − 1.

we pay a price in the s variable
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The Schrödinger Local Strichartz estimate

Theorem [Bahouri-Gallagher 2022]

If Supp u0 ⊂ B(x0,R) then for all κ < 1 and |t| 12 ≥ R/(1− κ)

∥u(t)∥
L∞(B(x0,κ|t|

1
2 ))

≤ C

|t| Q2
∥u0∥L1(H) .
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The Schrödinger equation on E

Theorem [Bahouri-DB-Gallagher-Léautaud 2023] The following holds

∃u0 ∈ S(E) , lim inf
t→∞

|t|∥u(t)∥L∞(E) ≥ C

Moreover for any u0 ∈ L1(E),

sup
x∈E

∣∣⟨x⟩−1u(t, x)
∣∣ ≤ C

t
∥u0∥L1(E) .
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