Hypoellipticity, pseudodifferential operators, tangent groupoids, and the Helffer-Nourrigat conjecture

Robert Yuncken

Université de Lorraine, Metz

Angers, August 2023

Hypoelliptic differential operators

Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

Angers, August 2023 2 / 33

Hypoelliptic differential operators

M — smooth manifold. Recall...

Definition (Hypoellipticity)

A differential operator P on M is hypoelliptic if the differential equation

has the smoothness of solutions property :

$$f|_V \in C^\infty \Rightarrow u|_V \in C^\infty$$

for any open subset $V \subseteq M$.

(B)

Hypoelliptic differential operators

M — smooth manifold. Recall...

Definition (Hypoellipticity)

A differential operator P on M is hypoelliptic if the differential equation

Pu = f

has the smoothness of solutions property :

$$f|_V \in C^\infty \Rightarrow u|_V \in C^\infty$$

for any open subset $V \subseteq M$.

Remark.

P is maximally hypoelliptic if moreover we have Sobolev estimates.

イロト イポト イヨト イヨト 二日

The Laplace operator

$$P = -\partial_x^2 - \partial_y^2$$
 is hypoelliptic.

Robert Yuncken (UL)

3

・ロト ・ 四ト ・ ヨト ・ ヨト

The Laplace operator The heat operator $P = -\partial_x^2 - \partial_y^2 \text{ is hypoelliptic.}$ $P = \partial_t - \partial_x^2 \text{ is hypoelliptic.}$

3

A B F A B F

< 47 ▶

The Laplace operator

The heat operator

The wave operator

 $P = -\partial_x^2 - \partial_y^2$ is hypoelliptic. $P = \partial_t - \partial_x^2$ is hypoelliptic. $P = \partial_t^2 - \partial_y^2$ is **not** hypoelliptic.

3

- The Laplace operator
- The heat operator
- The wave operator
- 2D Kolmogorov operator
- $P = -\partial_x^2 \partial_y^2 \text{ is hypoelliptic.}$ $P = \partial_t - \partial_x^2 \text{ is hypoelliptic.}$ $P = \partial_t^2 - \partial_x^2 \text{ is not hypoelliptic.}$ $P = -\partial_x^2 - x\partial_y \text{ is hypoelliptic.}$

- 4 回 ト 4 回 ト

- The Laplace operator
- The heat operator
- The wave operator
- 2D Kolmogorov operator
- The Grushin sublaplacian
- $P = -\partial_x^2 \partial_y^2 \text{ is hypoelliptic.}$ $P = \partial_t \partial_x^2 \text{ is hypoelliptic.}$ $P = \partial_t^2 \partial_x^2 \text{ is not hypoelliptic.}$
- $P = -\partial_x^2 x\partial_y$ is hypoelliptic.
- $P = -\partial_x^2 x^2 \partial_y^2 + \alpha \partial_y \text{ is hypoelliptic iff} \\ \alpha \notin \{\pm i, \pm 3i, \pm 5i, \ldots\}.$

- The Laplace operator
- The heat operator
- The wave operator
- 2D Kolmogorov operator
- The Grushin sublaplacian
- $$\begin{split} P &= -\partial_x^2 \partial_y^2 \text{ is hypoelliptic.} \\ P &= \partial_t \partial_x^2 \text{ is hypoelliptic.} \\ P &= \partial_t^2 \partial_x^2 \text{ is not hypoelliptic.} \\ P &= -\partial_x^2 x\partial_y \text{ is hypoelliptic.} \\ P &= -\partial_x^2 x^2\partial_y^2 + \alpha\partial_y \text{ is hypoelliptic iff} \\ \alpha \notin \{\pm i, \pm 3i, \pm 5i, \ldots\}. \end{split}$$
- Q. What governs hypoellipticity?
- A. [Rockland, Helffer-Nourrigat]: Representation theory of osculating nilpotent Lie groups.

- 3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given vector fields $V_1, \ldots, V_n \in \Gamma^{\infty}(M)$, Helffer-Nourrigat construct:

3

< □ > < 同 > < 回 > < 回 > < 回 >

Given vector fields $V_1, \ldots, V_n \in \Gamma^{\infty}(M)$, Helffer-Nourrigat construct:

 an "osculating" nilpotent Lie group Gr*F_p* at each *p* ∈ *M* (depending on the infinitesimal geometry of the vector fields *V_i*),

Given vector fields $V_1, \ldots, V_n \in \Gamma^{\infty}(M)$, Helffer-Nourrigat construct:

- an "osculating" nilpotent Lie group Gr*F_p* at each *p* ∈ *M* (depending on the infinitesimal geometry of the vector fields *V_i*),
- a family $HN(\mathcal{F})_p \subseteq \widehat{Gr\mathcal{F}_p}$ of unitary irreps of each osculating group (depending on the singular geometry of the vector fields V_i),

(本部) (本語) (本語) (二語)

Given vector fields $V_1, \ldots, V_n \in \Gamma^{\infty}(M)$, Helffer-Nourrigat construct:

- an "osculating" nilpotent Lie group Gr*F_p* at each *p* ∈ *M* (depending on the infinitesimal geometry of the vector fields *V_i*),
- a family $HN(\mathcal{F})_p \subseteq \widehat{Gr\mathcal{F}_p}$ of unitary irreps of each osculating group (depending on the singular geometry of the vector fields V_i),

such that:

The Helffer-Nourrigat conjecture

A polynomial P in V_i is maximally hypoelliptic iff $\pi([P]_p)$ is left-invertible on $\mathcal{H}^{\infty}_{\pi}$ for every $\pi \in \bigsqcup_{p} \operatorname{HN}(\mathcal{F})_{p}$.

・ロット (日本) (日本) (日本) (日本)

Given vector fields $V_1, \ldots, V_n \in \Gamma^{\infty}(M)$, Helffer-Nourrigat construct:

- an "osculating" nilpotent Lie group Gr*F_p* at each *p* ∈ *M* (depending on the infinitesimal geometry of the vector fields *V_i*),
- a family $HN(\mathcal{F})_p \subseteq \widehat{Gr\mathcal{F}_p}$ of unitary irreps of each osculating group (depending on the singular geometry of the vector fields V_i),

such that:

The Helffer-Nourrigat conjecture

A polynomial P in V_i is maximally hypoelliptic iff $\pi([P]_p)$ is left-invertible on $\mathcal{H}^{\infty}_{\pi}$ for every $\pi \in \bigsqcup_{p} \operatorname{HN}(\mathcal{F})_{p}$.

Remarks.

• Here, $[P]_p$ is an image of P in the enveloping algebra $\mathcal{U}(\mathfrak{gr}\mathcal{F}_p)$.

イロト 不得下 イヨト イヨト 二日

Given vector fields $V_1, \ldots, V_n \in \Gamma^{\infty}(M)$, Helffer-Nourrigat construct:

- an "osculating" nilpotent Lie group Gr*F_p* at each *p* ∈ *M* (depending on the infinitesimal geometry of the vector fields *V_i*),
- a family $HN(\mathcal{F})_p \subseteq \widehat{Gr\mathcal{F}_p}$ of unitary irreps of each osculating group (depending on the singular geometry of the vector fields V_i),

such that:

The Helffer-Nourrigat conjecture

A polynomial P in V_i is maximally hypoelliptic iff $\pi([P]_p)$ is left-invertible on $\mathcal{H}^{\infty}_{\pi}$ for every $\pi \in \bigsqcup_{p} \operatorname{HN}(\mathcal{F})_{p}$.

Remarks.

- Here, $[P]_p$ is an image of P in the enveloping algebra $\mathcal{U}(\mathfrak{gr}\mathcal{F}_p)$.
- **2** We can prove the conjecture using the groupoid approach to ΨD calculus (pioneered by Connes and Debord-Skandalis).

Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

The groupoid approach to pseudodifferential operators

Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

Angers, August 2023 6 / 33

A pseudodifferential calculus on M is an extension of the \mathbb{N} -filtered algebra $\mathrm{DO}^m(M)$ to a \mathbb{Z} -filtered algebra $\Psi^m(M)$ s.t.

A pseudodifferential calculus on M is an extension of the \mathbb{N} -filtered algebra $\mathrm{DO}^m(M)$ to a \mathbb{Z} -filtered algebra $\Psi^m(M)$ s.t.

Regularity: $\Psi^{-\infty} := \bigcap_{m \in \mathbb{Z}} \Psi^m(M) = \{ \text{smoothing ops} \}.$

(本語) (本語) (本語) (二語)

A pseudodifferential calculus on M is an extension of the \mathbb{N} -filtered algebra $\mathrm{DO}^m(M)$ to a \mathbb{Z} -filtered algebra $\Psi^m(M)$ s.t.

Regularity: $\Psi^{-\infty} := \bigcap_{m \in \mathbb{Z}} \Psi^m(M) = \{ \text{smoothing ops} \}.$

Pseudolocality: Schwartz kernels of $P \in \Psi^m(M)$ are smooth off the diag.

Robert Yuncken (UL)

What is a pseudodifferential calculus?

A pseudodifferential calculus on M is an extension of the \mathbb{N} -filtered algebra $\mathrm{DO}^m(M)$ to a \mathbb{Z} -filtered algebra $\Psi^m(M)$ s.t. Regularity: $\Psi^{-\infty} := \bigcap_{m \in \mathbb{Z}} \Psi^m(M) = \{ \text{smoothing ops} \}.$ Pseudolocality: Schwartz kernels of $P \in \Psi^m(M)$ are smooth off the diag. Parametrices: $P \in \mathrm{DO}^m(M)$ with invertible principal symbol $\Rightarrow \exists Q \in \Psi^{-m}(M)$ such that $QP - I \in \Psi^{-\infty}(M)$.

A pseudodifferential calculus on M is an extension of the \mathbb{N} -filtered algebra $\mathrm{DO}^m(M)$ to a \mathbb{Z} -filtered algebra $\Psi^m(M)$ s.t. Regularity: $\Psi^{-\infty} := \bigcap_{m \in \mathbb{Z}} \Psi^m(M) = \{ \text{smoothing ops} \}.$ Pseudolocality: Schwartz kernels of $P \in \Psi^m(M)$ are smooth off the diag. Parametrices: $P \in \mathrm{DO}^m(M)$ with invertible principal symbol $\Rightarrow \exists Q \in \Psi^{-m}(M)$ such that $QP - I \in \Psi^{-\infty}(M)$.

Why?

A pseudodifferential calculus on M is an extension of the \mathbb{N} -filtered algebra $\mathrm{DO}^m(M)$ to a \mathbb{Z} -filtered algebra $\Psi^m(M)$ s.t. Regularity: $\Psi^{-\infty} := \bigcap_{m \in \mathbb{Z}} \Psi^m(M) = \{ \text{smoothing ops} \}.$ Pseudolocality: Schwartz kernels of $P \in \Psi^m(M)$ are smooth off the diag. Parametrices: $P \in \mathrm{DO}^m(M)$ with invertible principal symbol $\Rightarrow \exists Q \in \Psi^{-m}(M)$ such that $QP - I \in \Psi^{-\infty}(M)$.

Why? Given a pseudodifferential calculus, we can prove:

Theorem

Invertible principal symbol ("elliptic") \Rightarrow Hypoelliptic.

A pseudodifferential calculus on M is an extension of the \mathbb{N} -filtered algebra $\mathrm{DO}^m(M)$ to a \mathbb{Z} -filtered algebra $\Psi^m(M)$ s.t. Regularity: $\Psi^{-\infty} := \bigcap_{m \in \mathbb{Z}} \Psi^m(M) = \{ \text{smoothing ops} \}$. Pseudolocality: Schwartz kernels of $P \in \Psi^m(M)$ are smooth off the diag. Parametrices: $P \in \mathrm{DO}^m(M)$ with invertible principal symbol $\Rightarrow \exists Q \in \Psi^{-m}(M)$ such that $QP - I \in \Psi^{-\infty}(M)$.

Why? Given a pseudodifferential calculus, we can prove:

Theorem

Invertible principal symbol ("elliptic") \Rightarrow Hypoelliptic.

Proof.

Given
$$Pu = f$$
, write $u = \underbrace{(I - QP)u}_{\text{smooth}} + \underbrace{Q(Pu)}_{\text{by regularity}}$

Groupoids and ΨDOs

Two revolutionary ideas...

Robert Yuncken (UL)

3

(a)

Groupoids and ΨDOs

Two revolutionary ideas...

```
Connes (1980s)
```

A pseudodifferential operator P and its principal symbol $\sigma^m(P)$ are the restrictions at t = 1 and t = 0, respectively, of a larger deformation family (\mathbb{P}_t) over $t \in \mathbb{R}$.

 \rightsquigarrow Connes' tangent groupoid $\mathbb{T}M$.

A B M A B M

Groupoids and ΨDOs

Two revolutionary ideas...

```
Connes (1980s)
```

A pseudodifferential operator P and its principal symbol $\sigma^m(P)$ are the restrictions at t = 1 and t = 0, respectively, of a larger deformation family (\mathbb{P}_t) over $t \in \mathbb{R}$.

 \rightsquigarrow Connes' tangent groupoid $\mathbb{T}M$.

Debord-Skandalis (2010s)

Can characterize these deformation families (\mathbb{P}_t) using a canonical \mathbb{R}_+^{\times} -action on $\mathbb{T}M$.

A basic fact about homogeneous polynomials

Proposition There is a 1–1 correspondence $\begin{cases} polynomials on \mathbb{R}^n \text{ of } \\ order \leq m \end{cases} \longleftrightarrow \begin{cases} homog. \ polynomials on \mathbb{R}^{n+1} \\ of \ degree = m \end{cases}$

Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

▲ ⑦ ▶ ▲ ≧ ▶ ▲ ≧ ▶ ■ Angers, August 2023

9/33

A basic fact about homogeneous polynomials

Proposition

There is a 1–1 correspondence

$$\left\{\begin{array}{c} \text{polynomials on } \mathbb{R}^n \text{ of } \\ \text{order} \leqslant m \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{homog. polynomials on } \mathbb{R}^{n+1} \\ \text{of degree} = m \end{array}\right\}$$

$$a(\xi_1,\ldots,\xi_n) = \underline{a}(\xi_1,\ldots,\xi_n,1) \quad \longleftarrow \quad \underline{a}(\xi_1,\ldots,\xi_n,t)$$

given by restriction at t = 1.

Robert Yuncken (UL)

3

(B)

A basic fact about homogeneous polynomials

Proposition

There is a 1–1 correspondence

$$\left\{\begin{array}{c} \text{polynomials on } \mathbb{R}^n \text{ of } \\ \text{order} \leqslant m \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{homog. polynomials on } \mathbb{R}^{n+1} \\ \text{of degree} = m \end{array}\right\}$$

$$a(\xi_1,\ldots,\xi_n) = \underline{a}(\xi_1,\ldots,\xi_n,1) \quad \longleftarrow \quad \underline{a}(\xi_1,\ldots,\xi_n,t)$$

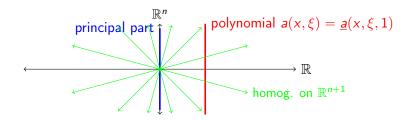
given by restriction at t = 1.

Remark.

• The restriction $\underline{a}(\xi_1, \ldots, \xi_n, 0)$ at t = 0 is the principal part of a.

< □ > < 同 > < 回 > < 回 > < 回 >

A basic fact about polynomials



Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

Angers, August 2023

▶ < ≣ >

10/33

3

A basic fact about polyhomogeneous symbols

Recall: A classical Ψ DO on \mathbb{R}^n is an operator of the form

$$\mathsf{Pf}(x) = \int_{\mathbb{R}^n} \mathsf{a}(x,\xi) \widehat{f}(\xi) e^{i\langle \xi,x
angle} d\xi,$$

where $a(x,\xi)$ is a **polyhomog. symbol** (generalizing a polynomial in ξ).

A basic fact about polyhomogeneous symbols

Recall: A classical Ψ DO on \mathbb{R}^n is an operator of the form

$${\sf P} f(x) = \int_{\mathbb{R}^n} {\sf a}(x,\xi) \widehat{f}(\xi) {\sf e}^{i\langle \xi,x
angle} {\sf d}\xi,$$

where $a(x,\xi)$ is a **polyhomog. symbol** (generalizing a polynomial in ξ).

Theorem (Couchet-Y., following Van Erp-Y.)
There is a 1–1 correspondence

$$\begin{cases} polyhomog. symbols on \\ \mathbb{R}^{n} \times \mathbb{R}^{n} \text{ of order} \leq m \end{cases} \longleftrightarrow \begin{cases} smooth functions on \\ \mathbb{R}^{n} \times \mathbb{R}^{n+1} \text{ homog. of} \\ degree = m \mod Schwartz \end{cases}$$

$$a(x,\xi) = \underline{a}(x,\xi,1) \longleftrightarrow \underline{a}(x,\xi,t)$$

11/33

A basic fact about polyhomogeneous symbols

Recall: A classical Ψ DO on \mathbb{R}^n is an operator of the form

$${\sf P} f(x) = \int_{\mathbb{R}^n} {\sf a}(x,\xi) \widehat{f}(\xi) {\sf e}^{i\langle \xi,x
angle} {\sf d}\xi,$$

where $a(x,\xi)$ is a **polyhomog. symbol** (generalizing a polynomial in ξ).

Theorem (Couchet-Y., following Van Erp-Y.)
There is a 1–1 correspondence

$$\begin{cases} polyhomog. symbols on \\ \mathbb{R}^{n} \times \mathbb{R}^{n} \text{ of order} \leq m \end{cases} \longleftrightarrow \begin{cases} smooth functions on \\ \mathbb{R}^{n} \times \mathbb{R}^{n+1} \text{ homog. of} \\ degree = m \mod Schwartz \end{cases}$$

$$a(x,\xi) = \underline{a}(x,\xi,1) \quad \longleftrightarrow \quad \underline{a}(x,\xi,t)$$

Homog. mod Schwartz means

 $a(x,s\xi,st) - s^{m}a(x,\xi,t) \in C^{\infty}(\mathbb{R}^{n},\mathcal{S}(\mathbb{R}^{n+1})) \quad \forall s > 0.$ Angers, August 2023 11/33

Robert Yuncken (UL)

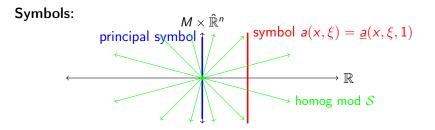
The Helffer-Nourrigat conjecture

Symbols & kernels as slices at t = 1

1

(a)

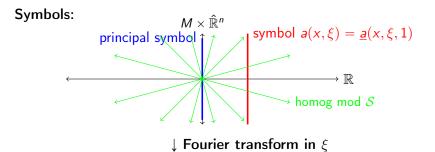
Symbols & kernels as slices at t = 1



3 × 4 3 × Angers, August 2023 12/33

3

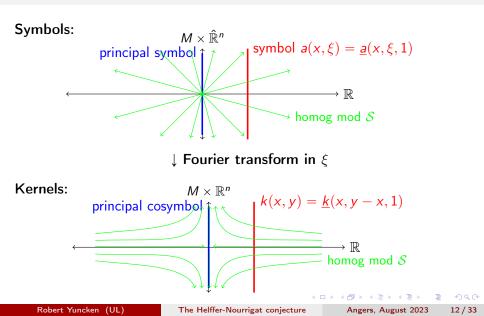
Symbols & kernels as slices at t = 1



3

∃ ► < ∃ ►</p>

Symbols & kernels as slices at t = 1

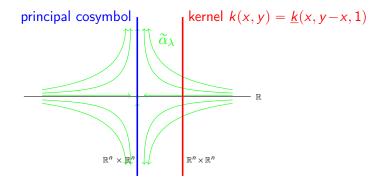


The groupoid approach to classical Ψ DOs

This definition is **coordinate independent**...

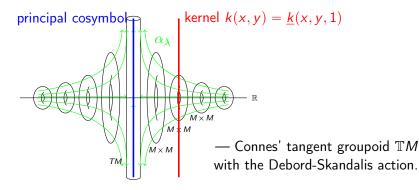
The groupoid approach to classical ΨDOs

This definition is coordinate independent...



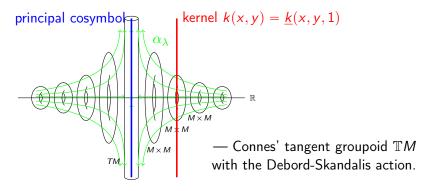
The groupoid approach to classical ΨDOs

This definition is coordinate independent...



The groupoid approach to classical ΨDOs

This definition is coordinate independent...

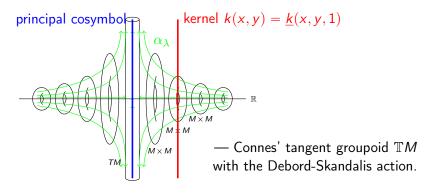


 $\mathbb{T}M = (M \times M \times \mathbb{R}^{\times}) \sqcup (TM \times \{0\})$

Robert Yuncken (UL)

The groupoid approach to classical ΨDOs

This definition is coordinate independent...



$$\mathbb{T}M = (M \times M \times \mathbb{R}^{\times}) \sqcup (TM \times \{0\})$$
Topology: $(x_i, y_i, t_i) \to (V_x, 0) \text{ iff } t_i \to 0 \text{ and } \frac{x_i - y_i}{t_i} \to V_x.$
Robert Yuncken (III)
The Helffer-Nourrigat conjecture
Angers August 2023 13/33

The groupoid approach to classical ΨDOs

Definition (Van Erp-Y., inspired by Debord-Skandalis)

A (properly supported, classical polyhomogeneous) Ψ DO of order $\leq m$ on M is an operator with Schwartz kernel $k(x, y) = \underline{k}(x, y, 1)$, where

 $\underline{k}(x, y, t) \in \mathcal{E}'_r(\mathbb{T}M)$ [Lescure-Manchon-Vassout]

is homogeneous of degree m modulo $C_{
m p}^\infty$ for the Debord-Skandalis action:

$$\alpha_{s}: \begin{cases} (x, y, t) = (x, y, s^{-1}t), & t \neq 0, \\ (x, v, 0) = (x, sv, 0), & t=0. \end{cases}$$

The groupoid approach to classical ΨDOs

Definition (Van Erp-Y., inspired by Debord-Skandalis)

A (properly supported, classical polyhomogeneous) Ψ DO of order $\leq m$ on M is an operator with Schwartz kernel $k(x, y) = \underline{k}(x, y, 1)$, where

 $\underline{k}(x, y, t) \in \mathcal{E}'_r(\mathbb{T}M)$ [Lescure-Manchon-Vassout]

is homogeneous of degree m modulo $C_{\rm p}^{\infty}$ for the Debord-Skandalis action:

$$\alpha_{s}: \begin{cases} (x, y, t) = (x, y, s^{-1}t), & t \neq 0, \\ (x, v, 0) = (x, sv, 0), & t=0. \end{cases}$$

Theorem (Van Erp-Y.)

 This is equivalent to the usual definition of classical ΨDOs [Kohn-Nirenberg].

2 The restriction $\underline{k}|_{t=0}$ is the principal cosymbol.

Theorem (Lescure-Manchon-Vassout)

The product of the Lie groupoid $\mathbb{T}M$ integrates to a **convolution product** of *r*-fibred distributions on $\mathbb{T}M$,

$$u * v(\gamma) = \int_{\beta \in G^{r(\gamma)}} u(\beta) v(\beta^{-1}\gamma) d\beta.$$

 Robert Yuncken (UL)
 The Helffer-Nourrigat conjecture
 Angers, August 2023

15/33

Theorem (Lescure-Manchon-Vassout)

The product of the Lie groupoid $\mathbb{T}M$ integrates to a **convolution product** of r-fibred distributions on $\mathbb{T}M$.

$$u * v(\gamma) = \int_{\beta \in G^{r(\gamma)}} u(\beta) v(\beta^{-1}\gamma) d\beta.$$

Examples

• Pair groupoid $M \times M$:

$$(x,z) =$$

(x, y) (y, z)

Theorem (Lescure-Manchon-Vassout)

The product of the Lie groupoid $\mathbb{T}M$ integrates to a **convolution product** of *r*-fibred distributions on $\mathbb{T}M$,

$$u * v(\gamma) = \int_{\beta \in G^{r(\gamma)}} u(\beta) v(\beta^{-1}\gamma) d\beta.$$

Examples

• Pair groupoid $M \times M$:

*
$$b(x, z) = \int_{y \in M} a(x, y) b(y, z) dy$$

— composition of Schwartz kernels.

▶ < ∃ >

15/33

а

Theorem (Lescure-Manchon-Vassout)

The product of the Lie groupoid $\mathbb{T}M$ integrates to a **convolution product** of *r*-fibred distributions on $\mathbb{T}M$,

$$u * v(\gamma) = \int_{\beta \in G^{r(\gamma)}} u(\beta) v(\beta^{-1}\gamma) d\beta.$$

а

Examples

① Pair groupoid $M \times M$:

*
$$b(x, z) = \int_{y \in M} a(x, y)b(y, z) dy$$

— composition of Schwartz kernels

2 Tangent bundle *TM*:

$$v_x = (v_x - w_x) + (w_x)$$

Theorem (Lescure-Manchon-Vassout)

The product of the Lie groupoid $\mathbb{T}M$ integrates to a **convolution product** of *r*-fibred distributions on $\mathbb{T}M$,

$$u * v(\gamma) = \int_{\beta \in G^{r(\gamma)}} u(\beta) v(\beta^{-1}\gamma) d\beta.$$

Examples

 Pair groupoid M × M: a * b(x, z) = ∫_{y∈M} a(x, y)b(y, z) dy — composition of Schwartz kernels.
 Tangent bundle TM: a * b(v_x) = ∫_{w∈TM_x} a(v_x - w_x) b(w_x) dw

- (Fourier transform of) product of principal symbols.

イロト イポト イヨト イヨト 一日

Theorem (Lescure-Manchon-Vassout)

The product of the Lie groupoid $\mathbb{T}M$ integrates to a **convolution product** of *r*-fibred distributions on $\mathbb{T}M$,

$$u * v(\gamma) = \int_{\beta \in G^{r(\gamma)}} u(\beta) v(\beta^{-1}\gamma) d\beta.$$

Examples

• Pair groupoid $M \times M$: $a * b(x, z) = \int_{y \in M} a(x, y)b(y, z) dy$ — composition of Schwartz kernels.

a Tangent bundle TM: $a * b(v_x) = \int_{w \in TM_x} a(v_x - w_x) b(w_x) dw$ (Fourier transform of) product of principal symbols.

⇒ Groupoid convolution in $\mathcal{E}'_r(\mathbb{T}M)$ describes both composition of Ψ DOs (at t = 1) and product of symbols (at t = 0).

Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

15/33

Definition

A differential operator $P \in DO^m(M)$ is **elliptic** if its principal symbol is invertible outside 0 for pointwise product.

Definition

A differential operator $P \in DO^m(M)$ is elliptic if its principal cosymbol is invertible modulo Schwartz for fibrewise convolution product.

Definition

A differential operator $P \in DO^m(M)$ is elliptic if its principal cosymbol is invertible modulo Schwartz for fibrewise convolution product.

Easy to check that $\Psi^m(M)$ has the three keys properties of a ΨD calculus:

- Regularity
- Pseudolocality
- Parametrices of elliptic elements.

Definition

A differential operator $P \in DO^m(M)$ is **elliptic** if its principal cosymbol is invertible modulo Schwartz for fibrewise convolution product.

Easy to check that $\Psi^m(M)$ has the three keys properties of a ΨD calculus:

- Regularity
- Pseudolocality
- Parametrices of elliptic elements.

Corollary

P elliptic \Rightarrow P hypoelliptic.

A calculus for Helffer-Nourrigat operators

Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

Angers, August 2023

17/33

Robert Yuncken (UL)

- 2

▲口> ▲圖> ▲国> ▲国>

Goal

Generalize the groupoid calculus to Helffer-Nourrigat operators.

3

< □ > < ^[] >

Goal

Generalize the groupoid calculus to Helffer-Nourrigat operators.

 Construct an appropriate tangent groupoid TF. (using Androulidakis-Skandalis' singular holonomy groupoid).

Goal

Generalize the groupoid calculus to Helffer-Nourrigat operators.

- Construct an appropriate tangent groupoid TF. (using Androulidakis-Skandalis' singular holonomy groupoid).
- Obfine Ψ^m(M) as above: Restriction at t = 1 of homogeneous distributions on TF modulo C[∞].

 \Rightarrow pseudolocality, regularity.

A B F A B F

Goal

Generalize the groupoid calculus to Helffer-Nourrigat operators.

- Construct an appropriate tangent groupoid TF. (using Androulidakis-Skandalis' singular holonomy groupoid).
- Of Define Ψ^m(M) as above: Restriction at t = 1 of homogeneous distributions on TF modulo C[∞].

 \Rightarrow pseudolocality, regularity.

Image And Arrowski and Arro

A B F A B F

Goal

Generalize the groupoid calculus to Helffer-Nourrigat operators.

- Construct an appropriate tangent groupoid TF. (using Androulidakis-Skandalis' singular holonomy groupoid).
- Of Define Ψ^m(M) as above: Restriction at t = 1 of homogeneous distributions on TF modulo C[∞].

 \Rightarrow pseudolocality, regularity.

Image And Arrowski and Arro

Corollary (The Helffer-Nourrigat Conjecture)

Helffer-Nourrigat operators are (maximally) hypoelliptic.

Robert Yuncken (UL)

3

< □ > < 同 > < 回 > < 回 > < 回 >

The singular tangent groupoid

Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

Angers, August 2023 19/33

M — manifold

 V_1, \ldots, V_n — vector fields on M.

M — manifold

 V_1, \ldots, V_n — vector fields on M.

 $\mathcal{F}^k := C^{\infty}(M)$ -module gen. by iterated Lie brackets of V_i 's of length $\leq k$.

M — manifold

 V_1, \ldots, V_n — vector fields on M.

 $\mathcal{F}^k := C^\infty(M)$ -module gen. by iterated Lie brackets of V_i 's of length $\leq k$.

By construction, $[\mathcal{F}^j, \mathcal{F}^k] \subseteq \mathcal{F}^{j+k}$.

M — manifold

 V_1, \ldots, V_n — vector fields on M.

 $\mathcal{F}^k := C^\infty(M)$ -module gen. by iterated Lie brackets of V_i 's of length $\leq k$.

By construction, $[\mathcal{F}^j, \mathcal{F}^k] \subseteq \mathcal{F}^{j+k}$. $\Rightarrow \mathcal{F} = \bigcup_{k \leq 1} \mathcal{F}^k$ is a filtered Lie algebra of vector fields.

M — manifold

 V_1, \ldots, V_n — vector fields on M.

 $\mathcal{F}^k := C^\infty(M)$ -module gen. by iterated Lie brackets of V_i 's of length $\leqslant k$.

By construction, $[\mathcal{F}^j, \mathcal{F}^k] \subseteq \mathcal{F}^{j+k}$. $\Rightarrow \mathcal{F} = \bigcup_{k \leq 1} \mathcal{F}^k$ is a filtered Lie algebra of vector fields.

Definition

If $\mathcal{F}^N = \Gamma^{\infty}(TM)$, we say the family (V_1, \ldots, V_d) satisfies Hörmander's bracket-generating condition.

M — manifold

 V_1, \ldots, V_n — vector fields on M.

 $\mathcal{F}^k := C^{\infty}(M)$ -module gen. by iterated Lie brackets of V_i 's of length $\leq k$.

By construction, $[\mathcal{F}^j, \mathcal{F}^k] \subseteq \mathcal{F}^{j+k}$. $\Rightarrow \mathcal{F} = \bigcup_{k \leq 1} \mathcal{F}^k$ is a filtered Lie algebra of vector fields.

Definition

If $\mathcal{F}^N = \Gamma^{\infty}(TM)$, we say the family (V_1, \ldots, V_d) satisfies Hörmander's bracket-generating condition.

NB. More general frameworks are possible, eg, by ascribing an *order* to each V_i .

The osculating groups

Not'n.
$$I_p := \{f \in C^{\infty}(M) | f(p) = 0\}$$
 — vanishing ideal.
 $\mathcal{F}_p^k := \mathcal{F}^k / I_p \mathcal{F}^k$ — fibre of \mathcal{F}^k at p .

2

(a)

The osculating groups

Not'n.
$$I_p := \{f \in C^{\infty}(M) \mid f(p) = 0\}$$
 — vanishing ideal
 $\mathcal{F}_p^k := \mathcal{F}^k / I_p \mathcal{F}^k$ — fibre of \mathcal{F}^k at p .

Definition (Osculating groups)

Robert Yuncken (UL)

w

The osculating Lie algebra of \mathcal{F} at p is the "associated graded of \mathcal{F}_p ",

$$\mathfrak{gr}\mathcal{F}_p := \bigoplus_k \mathfrak{gr}_k \mathcal{F}_p,$$

where $\mathfrak{gr}_k \mathcal{F}_p := \mathcal{F}_p^k / \mathcal{F}_p^{k-1} = \mathcal{F}^k / (\mathcal{F}^{k-1} + I_p \mathcal{F}^k).$

The Helffer-Nourrigat conjecture

The osculating groups

Not'n.
$$I_p := \{f \in C^{\infty}(M) \mid f(p) = 0\}$$
 — vanishing ideal
 $\mathcal{F}_p^k := \mathcal{F}^k / I_p \mathcal{F}^k$ — fibre of \mathcal{F}^k at p .

Definition (Osculating groups)

The osculating Lie algebra of \mathcal{F} at p is the "associated graded of \mathcal{F}_p ",

$$\mathfrak{gr}\mathcal{F}_p := \bigoplus_k \mathfrak{gr}_k \mathcal{F}_p,$$

where $\mathfrak{gr}_k \mathcal{F}_p := \mathcal{F}_p^k / \mathcal{F}_p^{k-1} = \mathcal{F}^k / (\mathcal{F}^{k-1} + I_p \mathcal{F}^k).$

• [!] In this generality, the "inclusion" $\mathcal{F}_{p}^{k-1} \to \mathcal{F}_{p}^{k}$ may not be injective. \Rightarrow may have dimension jumps: dim $gr \mathcal{F}_p > \dim \mathcal{F}_p$.

w

21/33

The osculating groups

Not'n.
$$I_p := \{f \in C^{\infty}(M) \mid f(p) = 0\}$$
 — vanishing ideal
 $\mathcal{F}_p^k := \mathcal{F}^k / I_p \mathcal{F}^k$ — fibre of \mathcal{F}^k at p .

Definition (Osculating groups)

The osculating Lie algebra of \mathcal{F} at p is the "associated graded of \mathcal{F}_p ",

$$\mathfrak{gr}\mathcal{F}_p := \bigoplus_k \mathfrak{gr}_k \mathcal{F}_p,$$

ere $\mathfrak{gr}_k \mathcal{F}_p := \mathcal{F}_p^k / \mathcal{F}_p^{k-1} = \mathcal{F}^k / (\mathcal{F}^{k-1} + I_p \mathcal{F}^k).$

- [!] In this generality, the "inclusion" $\mathcal{F}_{p}^{k-1} \to \mathcal{F}_{p}^{k}$ may not be injective. \Rightarrow may have dimension jumps: dim $\mathfrak{gt}\mathcal{F}_{p} > \dim \mathcal{F}_{p}$.
- Filtered Lie alg. structure on $\mathcal{F} \rightsquigarrow$ Graded Lie alg. structure on $\mathfrak{gr}\mathcal{F}_p$.

wh

21/33

The osculating groups

Not'n.
$$I_p := \{f \in C^{\infty}(M) \mid f(p) = 0\}$$
 — vanishing ideal
 $\mathcal{F}_p^k := \mathcal{F}^k / I_p \mathcal{F}^k$ — fibre of \mathcal{F}^k at p .

Definition (Osculating groups)

The osculating Lie algebra of \mathcal{F} at p is the "associated graded of \mathcal{F}_p ",

$$\mathfrak{gr}\mathcal{F}_{p} := \bigoplus_{k} \mathfrak{gr}_{k}\mathcal{F}_{p},$$

where $\mathfrak{gr}_k \mathcal{F}_p := \mathcal{F}_p^k / \mathcal{F}_p^{k-1} = \mathcal{F}^k / (\mathcal{F}^{k-1} + I_p \mathcal{F}^k).$

The osculating Lie group is $Gr \mathcal{F}_p = \mathfrak{gr} \mathcal{F}_p$ with BCH product.

- [!] In this generality, the "inclusion" $\mathcal{F}_{p}^{k-1} \to \mathcal{F}_{p}^{k}$ may not be injective. \Rightarrow may have dimension jumps: dim $\mathfrak{gr}\mathcal{F}_p > \dim \mathcal{F}_p$.
- Filtered Lie alg. structure on $\mathcal{F} \rightsquigarrow$ Graded Lie alg. structure on $\mathfrak{gr}\mathcal{F}_p$.

$$P = \partial_x^2 + x \partial_y$$
 on $M = \mathbb{R}^2$.

1

< ロ > < 同 > < 三 > < 三 > <

$$P = \partial_x^2 + x \partial_y$$
 on $M = \mathbb{R}^2$.

•
$$X = \partial_x$$
, $Y = x\partial_y$, $Z = [X, Y] = \partial_y$.

1

< ロ > < 同 > < 三 > < 三 > <

$$P = \partial_x^2 + x \partial_y$$
 on $M = \mathbb{R}^2$.

Robert Yuncken (UL)

•
$$X = \partial_x$$
, $Y = x\partial_y$, $Z = [X, Y] = \partial_y$.

•
$$\mathcal{F}^1 = \langle X \rangle \subseteq \mathcal{F}^2 = \langle X, Y \rangle \subseteq \mathcal{F}^3 = \langle X, Y, Z \rangle = \Gamma^{\infty}(M)$$

(depth 3)

1

< ロ > < 同 > < 三 > < 三 > <

$$P = \partial_x^2 + x \partial_y$$
 on $M = \mathbb{R}^2$.

•
$$X = \partial_x$$
, $Y = x\partial_y$, $Z = [X, Y] = \partial_y$.
• $\mathcal{F}^1 = \langle X \rangle \subseteq \mathcal{F}^2 = \langle X, Y \rangle \subseteq \mathcal{F}^3 = \langle X, Y, Z \rangle = \Gamma^{\infty}(M)$
(depth 3)

• In a neighbourhood of
$$p = (x, y)$$
:
If $x \neq 0$ then $Z \in \mathcal{F}_{\rho}^2 \implies [Z]_{\rho} = 0 \in \mathfrak{gr}_3\mathcal{F}_{\rho}$,
If $x = 0$ then $Z \notin \mathcal{F}_{\rho}^2 \implies [Z]_{\rho} \neq 0 \in \mathfrak{gr}_3\mathcal{F}_{\rho}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

22 / 33

$$P = \partial_x^2 + x \partial_y$$
 on $M = \mathbb{R}^2$.

•
$$X = \partial_x$$
, $Y = x\partial_y$, $Z = [X, Y] = \partial_y$.
• $\mathcal{F}^1 = \langle X \rangle \subseteq \mathcal{F}^2 = \langle X, Y \rangle \subseteq \mathcal{F}^3 = \langle X, Y, Z \rangle = \Gamma^{\infty}(M)$
(depth 3)

• In a neighbourhood of
$$p = (x, y)$$
:
If $x \neq 0$ then $Z \in \mathcal{F}_p^2 \implies [Z]_p = 0 \in \mathfrak{gr}_3\mathcal{F}_p$,
If $x = 0$ then $Z \notin \mathcal{F}_p^2 \implies [Z]_p \neq 0 \in \mathfrak{gr}_3\mathcal{F}_p$.

Osculating Lie algebras

$$\mathfrak{gr}\mathcal{F}_{p} = \begin{cases} \langle [X]_{p} \rangle \oplus \langle [Y]_{p} \rangle & \cong \mathbb{R}^{2}, & \text{if } x \neq 0, \\ \langle [X]_{p} \rangle \oplus \langle [Y]_{p} \rangle \oplus \langle [Z]_{p} \rangle \cong \mathfrak{h}^{3}, & \text{if } x = 0, \end{cases}$$

Robert Yuncken (UL)

Angers, August 2023

(a)

イロト イポト イヨト イヨト

Definition

• The pair groupoid is $M \times M$ with partially defined product (p,q)(q,r) = (p,r)

Definition

- The pair groupoid is M × M with partially defined product (p, q)(q, r) = (p, r)
- The osculating groupoid of \mathcal{F} is $\operatorname{Gr} \mathcal{F} := \bigsqcup_p \operatorname{Gr} \mathcal{F}_p$ with product defined only in each fibre

Definition

- The pair groupoid is M × M with partially defined product (p, q)(q, r) = (p, r)
- The osculating groupoid of \mathcal{F} is $\operatorname{Gr} \mathcal{F} := \bigsqcup_{p} \operatorname{Gr} \mathcal{F}_{p}$ with product defined only in each fibre
- The tangent groupoid of \mathcal{F} is the family over \mathbb{R} : $\mathbb{T}\mathcal{F} := (M \times M \times \mathbb{R}^{\times}) \sqcup (Gr\mathcal{F} \times \{0\}).$

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

Definition

- The pair groupoid is M × M with partially defined product (p, q)(q, r) = (p, r)
- The osculating groupoid of \mathcal{F} is $\operatorname{Gr} \mathcal{F} := \bigsqcup_p \operatorname{Gr} \mathcal{F}_p$ with product defined only in each fibre
- The tangent groupoid of \mathcal{F} is the family over \mathbb{R} : $\mathbb{T}\mathcal{F} := (M \times M \times \mathbb{R}^{\times}) \sqcup (Gr\mathcal{F} \times \{0\}).$

... but this doesn't explain the smooth structure.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Tangent algebroid $\mathfrak{tF} := (TM \times \mathbb{R}^{\times}) \sqcup (\mathfrak{grF} \times \{0\})$

— tangent bundle to *r*-fibres along base.

• Tangent algebroid $\mathfrak{tF} := (TM \times \mathbb{R}^{\times}) \sqcup (\mathfrak{grF} \times \{0\})$

— tangent bundle to *r*-fibres along base.

• Define a (not necessarily Hausdorff) vector bundle topology on \mathfrak{tF} such that the following sections are continuous: $\forall X \in \mathcal{F}^k$

$$(p,t)\mapsto \begin{cases} t^k X(p) &\in TM_p, \quad t\neq 0,\\ [X]_p &\in \mathfrak{gr}_k \mathcal{F}_p, \quad t=0. \end{cases}$$

• Tangent algebroid $\mathfrak{tF} := (TM \times \mathbb{R}^{\times}) \sqcup (\mathfrak{grF} \times \{0\})$

— tangent bundle to *r*-fibres along base.

Define a (not necessarily Hausdorff) vector bundle diffeology on t*F* such that the following sections are smooth: ∀X ∈ *F^k*

$$(p,t)\mapsto \begin{cases} t^k X(p) &\in TM_p, \quad t\neq 0,\\ [X]_p &\in \mathfrak{gr}_k \mathcal{F}_p, \quad t=0. \end{cases}$$

• Tangent algebroid $\mathfrak{tF} := (TM \times \mathbb{R}^{\times}) \sqcup (\mathfrak{grF} \times \{0\})$

— tangent bundle to *r*-fibres along base.

 Define a (not necessarily Hausdorff) vector bundle diffeology on tF such that the following sections are smooth: ∀X ∈ F^k

$$(\boldsymbol{p},t)\mapsto \begin{cases} t^{k}X(\boldsymbol{p}) & \in TM_{\boldsymbol{p}}, \quad t\neq 0, \\ [X]_{\boldsymbol{p}} & \in \mathfrak{gr}_{k}\mathcal{F}_{\boldsymbol{p}}, \quad t=0. \end{cases}$$

• This induces a smooth structure on the tangent groupoid $\mathbb{T}\mathcal{F}$ by a tubular neighbourhood construction (exponential charts).

ΨDOs & the Helffer-Nourrigat Conjecture

Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

Angers, August 2023 25 / 33

The \mathbb{R}^{\times}_+ -action

• The osculating groups $\mathfrak{gr}\mathcal{F}_p$ admit dilations δ_s , given by multiplication by s^k on $\mathfrak{gr}_k \mathcal{F}_p$.

4 A N

The \mathbb{R}^{\times}_+ -action

- The osculating groups gr*F_p* admit dilations δ_s, given by multiplication by s^k on gr_k*F_p*.
- The Debord-Skandalis action $\alpha_s : \mathbb{T}\mathcal{F} \to \mathbb{T}\mathcal{F}$,

$$\alpha_{s}: \begin{cases} (p,q,t) \to (p,q,s^{-1}t), & t \neq 0\\ (p,v,t) \to (p,\delta_{s}(v),t), & t = 0 \end{cases}$$

is an action by smooth groupoid automorphisms.

The \mathbb{R}^{\times}_+ -action

- The osculating groups gr*F_p* admit dilations δ_s, given by multiplication by s^k on gr_k*F_p*.
- The Debord-Skandalis action $\alpha_s : \mathbb{T}\mathcal{F} \to \mathbb{T}\mathcal{F}$,

$$\alpha_{s}: \begin{cases} (p,q,t) \to (p,q,s^{-1}t), & t \neq 0\\ (p,v,t) \to (p,\delta_{s}(v),t), & t = 0 \end{cases}$$

is an action by smooth groupoid automorphisms.

Definition

A distribution $\underline{k} \in \mathcal{E}'_r(\mathbb{T}\mathcal{F})$ is essentially homogeneous of degree *m* if

$$\alpha_{s*}\underline{k} - s^{m}\underline{k} \in C_{p}^{\infty}(\mathbb{T}\mathcal{F}) \qquad \forall s > 0.$$

Pseudodifferential operators

Henceforth, suppose the bracket-generating condition: $\mathcal{F}^N = \Gamma^{\infty}(M)$.

Pseudodifferential operators

Henceforth, suppose the bracket-generating condition: $\mathcal{F}^N = \Gamma^{\infty}(M)$.

Definition

- A pseudodifferential operator adapted to *F* is an operator with Schwartz kernel k = <u>k</u>|_{t=1}, where <u>k</u> ∈ *E*'_r(T*F*) is ess. homogeneous of degree *m*.
- The set of such Ψ DOs is denored $\Psi^m(\mathcal{F})$.

Pseudodifferential operators

Henceforth, suppose the bracket-generating condition: $\mathcal{F}^N = \Gamma^{\infty}(M)$.

Definition

- A pseudodifferential operator adapted to *F* is an operator with Schwartz kernel k = <u>k</u>|_{t=1}, where <u>k</u> ∈ *E*'_r(T*F*) is ess. homogeneous of degree *m*.
- The set of such Ψ DOs is denored $\Psi^m(\mathcal{F})$.

It is easy to show that $\Psi^m(\mathcal{F})$ is a $\mathbb{Z}\text{-filtered}$ algebra satisfying

- Regularity
- Pseudolocality

The question of parametrices of "elliptic" elements is far more subtle. [Helffer-Nourrigat]

イロト 不得 とくき とくき とうき

Definition (Local generating family of vector fields)

A family of vector fields (X_1, \ldots, X_d) is a **local generating family** for \mathcal{F} on $U \subseteq M$ if there are d_1, \ldots, d_N s.t. (X_1, \ldots, X_{d_k}) spans \mathcal{F}^k on U.

Definition (Local generating family of vector fields)

A family of vector fields (X_1, \ldots, X_d) is a **local generating family** for \mathcal{F} on $U \subseteq M$ if there are d_1, \ldots, d_N s.t. (X_1, \ldots, X_{d_k}) spans \mathcal{F}^k on U.

• The smooth "charts" of $\mathfrak{t}\mathcal{F}$,

$$\begin{array}{rcl} U \times \mathbb{R}^{d} \times \mathbb{R} & \to & \mathrm{t}\mathcal{F} \\ (p, \xi, t) & \mapsto & \begin{cases} (p, \sum_{i} \xi_{i} t^{a_{i}} X_{i}(p), t), & t \neq 0 & (a_{i} = \mathrm{ord}(X_{i})) \\ (p, \sum_{i} \xi_{i} [X_{i}]_{p}, & 0), & t = 0, \end{cases}$$

are locally surjective bundle maps.

28 / 33

Definition (Local generating family of vector fields)

A family of vector fields (X_1, \ldots, X_d) is a **local generating family** for \mathcal{F} on $U \subseteq M$ if there are d_1, \ldots, d_N s.t. (X_1, \ldots, X_{d_k}) spans \mathcal{F}^k on U.

• The smooth "charts" of $\mathfrak{t}\mathcal{F}$,

$$\begin{array}{rcl} U \times \mathbb{R}^d \times \mathbb{R} & \to & \mathrm{t}\mathcal{F} \\ (p,\xi,t) & \mapsto & \begin{cases} (p,\sum_i \xi_i t^{a_i} X_i(p),t), & t \neq 0 & (a_i = \mathrm{ord}(X_i)) \\ (p, & \sum_i \xi_i [X_i]_p, & 0), & t = 0, \end{cases}$$

are locally surjective bundle maps.

 \Rightarrow Dual maps $\mathfrak{t}^*\mathcal{F} \to U \times \mathbb{R}^{d*} \times \mathbb{R}$ are locally injective bundle maps.

Definition (Local generating family of vector fields)

A family of vector fields (X_1, \ldots, X_d) is a **local generating family** for \mathcal{F} on $U \subseteq M$ if there are d_1, \ldots, d_N s.t. (X_1, \ldots, X_{d_k}) spans \mathcal{F}^k on U.

• The smooth "charts" of $\mathfrak{t}\mathcal{F}$,

$$\begin{array}{rcl} U \times \mathbb{R}^d \times \mathbb{R} & \to & \mathrm{t}\mathcal{F} \\ (p,\xi,t) & \mapsto & \begin{cases} (p,\sum_i \xi_i t^{a_i} X_i(p),t), & t \neq 0 & (a_i = \mathrm{ord}(X_i)) \\ (p, & \sum_i \xi_i [X_i]_p, & 0), & t = 0, \end{cases}$$

are locally surjective bundle maps.

 \Rightarrow Dual maps $\mathfrak{t}^*\mathcal{F} \to U \times \mathbb{R}^{d*} \times \mathbb{R}$ are locally injective bundle maps.

⇒ $\mathfrak{t}^* \mathcal{F}$ is a locally compact Hausdorff bundle (non locally trivial), with $\mathfrak{t}^* \mathcal{F}|_{t>0} = T^* M$, but potential dimension jumps at $\mathfrak{t}^* \mathcal{F}|_{t=0}$.

Definition (Local generating family of vector fields)

A family of vector fields (X_1, \ldots, X_d) is a **local generating family** for \mathcal{F} on $U \subseteq M$ if there are d_1, \ldots, d_N s.t. (X_1, \ldots, X_{d_k}) spans \mathcal{F}^k on U.

• The smooth "charts" of $\mathfrak{t}\mathcal{F}$,

$$\begin{array}{rcl} U \times \mathbb{R}^{d} \times \mathbb{R} & \to & \mathfrak{t}\mathcal{F} \\ (p,\xi,t) & \mapsto & \begin{cases} (p,\sum_{i}\xi_{i}t^{a_{i}}X_{i}(p),t), & t \neq 0 & (a_{i}=\operatorname{ord}(X_{i})) \\ (p,\sum_{i}\xi_{i}[X_{i}]_{p}, & 0), & t=0, \end{cases}$$

are locally surjective bundle maps.

 \Rightarrow Dual maps $\mathfrak{t}^*\mathcal{F} \to U \times \mathbb{R}^{d*} \times \mathbb{R}$ are locally injective bundle maps.

⇒ t*F is a locally compact Hausdorff bundle (non locally trivial), with t*F|t>0 = T*M, but potential dimension jumps at t*F|t=0.
[!] Not all of gtF^{*}_p = t*F|t=0 will be a limit of t*F|t>0 as t → 0.

$$P = \partial_x^2 + x \partial_y$$
 on $M = \mathbb{R}^2$.

3

$$P = \partial_x^2 + x \partial_y \text{ on } M = \mathbb{R}^2.$$

• $X = \partial_x, Y = x \partial_y, Z = [X, Y] = \partial_y.$

3

$$P = \partial_x^2 + x \partial_y \text{ on } M = \mathbb{R}^2.$$

• $X = \partial_x, Y = x \partial_y, Z = [X, Y] = \partial_y.$
• $\mathcal{F}^1 = \langle X \rangle \subseteq \mathcal{F}^2 = \langle X, Y \rangle \subseteq \mathcal{F}^3 = \langle X, Y, Z \rangle = \Gamma^{\infty}(M)$

3

$$\begin{split} P &= \partial_x^2 + x \partial_y \text{ on } M = \mathbb{R}^2. \\ \bullet & X = \partial_x, \ Y = x \partial_y, \ Z = [X, Y] = \partial_y. \\ \bullet & \mathcal{F}^1 = \langle X \rangle \quad \subseteq \quad \mathcal{F}^2 = \langle X, Y \rangle \quad \subseteq \quad \mathcal{F}^3 = \langle X, Y, Z \rangle = \Gamma^{\infty}(M) \\ \bullet & \mathfrak{gr}\mathcal{F}_p = \begin{cases} \langle [X]_p \rangle \oplus \langle [Y]_p \rangle &\cong \mathbb{R}^2, & \text{if } x \neq 0, \\ \langle [X]_p \rangle \oplus \langle [Y]_p \rangle \oplus \langle [Z]_p \rangle \cong \mathfrak{h}^3, & \text{if } x = 0, \end{cases} \end{split}$$

Robert Yuncken (UL)

3

$$\begin{split} P &= \partial_x^2 + x \partial_y \text{ on } M = \mathbb{R}^2. \\ \bullet & X = \partial_x, \ Y = x \partial_y, \ Z = [X, Y] = \partial_y. \\ \bullet & \mathcal{F}^1 = \langle X \rangle \quad \subseteq \quad \mathcal{F}^2 = \langle X, Y \rangle \quad \subseteq \quad \mathcal{F}^3 = \langle X, Y, Z \rangle = \Gamma^{\infty}(M) \\ \bullet & \mathfrak{gr}\mathcal{F}_p = \begin{cases} \langle [X]_p \rangle \oplus \langle [Y]_p \rangle &\cong \mathbb{R}^2, & \text{if } x \neq 0, \\ \langle [X]_p \rangle \oplus \langle [Y]_p \rangle \oplus \langle [Z]_p \rangle \cong \mathfrak{h}^3, & \text{if } x = 0, \end{cases} \\ \bullet \text{ Chart } \mathbb{R}^3 \twoheadrightarrow \mathfrak{t}\mathcal{F}_{(x,y,t)} \text{ is} \\ & (a, b, c) \mapsto \begin{cases} ta\partial_x + (t^2xb + t^3c)\partial_y, & t \neq 0, \\ a[X]_p + b[Y]_p, & t = 0, \ x \neq 0, \\ a[X]_p + b[Y]_p + c[Z]_p, & t = 0, \ x = 0. \end{cases} \end{split}$$

(a)

$$\begin{split} \mathcal{P} &= \partial_x^2 + x \partial_y \text{ on } M = \mathbb{R}^2. \\ \bullet & X = \partial_x, \ Y = x \partial_y, \ Z = [X, Y] = \partial_y. \\ \bullet & \mathcal{F}^1 = \langle X \rangle \quad \subseteq \quad \mathcal{F}^2 = \langle X, Y \rangle \quad \subseteq \quad \mathcal{F}^3 = \langle X, Y, Z \rangle = \Gamma^{\infty}(M) \\ \bullet & \mathfrak{gr}\mathcal{F}_p = \begin{cases} \langle [X]_p \rangle \oplus \langle [Y]_p \rangle &\cong \mathbb{R}^2, & \text{if } x \neq 0, \\ \langle [X]_p \rangle \oplus \langle [Y]_p \rangle \oplus \langle [Z]_p \rangle \cong \mathfrak{h}^3, & \text{if } x = 0, \end{cases} \\ \bullet \text{ Chart } \mathbb{R}^3 \twoheadrightarrow \mathfrak{t}\mathcal{F}_{(x,y,t)} \text{ is} \\ & (a, b, c) \mapsto \begin{cases} ta\partial_x + (t^2xb + t^3c)\partial_y, & t \neq 0, \\ a[X]_p + b[Y]_p, & t = 0, \ x \neq 0, \\ a[X]_p + b[Y]_p + c[Z]_p, & t = 0, \ x = 0. \end{cases} \\ \bullet \text{ Image of } \mathfrak{t}^*\mathcal{F}|_{(x,y,t)} \hookrightarrow \mathbb{R}^{3*} \text{ is:} \end{split}$$

 $\mathrm{span}\{(1,0,0),(0,t^2x,t^3)\}=(0,t,x)^{\perp}.$

$$P = \partial_x^2 + \frac{x^2}{2} \partial_y \text{ on } M = \mathbb{R}^2.$$

• $X = \partial_x, Y = \frac{x^2}{2} \partial_y, Z = [X, Y] = x \partial_y, W = [X, Z] = \partial_y.$
• $\mathcal{F}^1 = \langle X \rangle \subseteq \mathcal{F}^2 = \langle X, Y \rangle \subseteq \mathcal{F}^3 = \langle X, Y, Z \rangle$
 $\subseteq \mathcal{F}^4 = \langle X, Y, Z, W \rangle = \Gamma^{\infty}(M)$
• $\mathfrak{gr}\mathcal{F}_p = \begin{cases} \langle [X]_p \rangle \oplus \langle [Y]_p \rangle \oplus \langle [Z]_p \rangle \oplus \langle [W]_p \rangle \cong \mathfrak{n}^4, & \text{if } x \neq 0, \\ \langle [X]_p \rangle \oplus \langle [Y]_p \rangle \oplus \langle [Z]_p \rangle \oplus \langle [W]_p \rangle \cong \mathfrak{n}^4, & \text{if } x = 0, \end{cases}$
• Chart $\mathbb{R}^4 \to \mathfrak{t}\mathcal{F}_{(x,y,t)}$ is
 $(a, b, c, d) \mapsto \begin{cases} ta\partial_x + (\frac{1}{2}t^2x^2b + t^3xc + t^4d)\partial_y, & t \neq 0, \\ a[X]_p + b[Y]_p, & t = 0, x \neq 0, \\ a[X]_p + b[Y]_p + c[Z]_p + d[W]_p, & t = 0, x = 0. \end{cases}$

• Image of dual $\mathfrak{t}^*\mathcal{F}|_{(x,y,t)}$ is:

 $\mathrm{span}\{(1,0,0),(0,\tfrac{1}{2}t^2x^2,t^3x,t^4)\}.$

3 × 4 3 ×

Image: A matrix

Definition (Helffer-Nourrigat cone)

 $\mathrm{HN}(\mathcal{F}) := \overline{\mathfrak{t}^* \mathcal{F}|_{t>0}} \cap \mathfrak{t}^* \mathcal{F}|_{t=0}$

Definition (Helffer-Nourrigat cone)

 $\mathrm{HN}(\mathcal{F}) := \overline{\mathfrak{t}^* \mathcal{F}|_{t>0}} \cap \mathfrak{t}^* \mathcal{F}|_{t=0}$

Examples

• For
$$P = -\partial_x^2 + x\partial_y$$
, $\operatorname{HN}(\mathcal{F})_p = \mathfrak{t}^*\mathcal{F}_p$ for all $p \in M$.

ヨト・イヨト

Definition (Helffer-Nourrigat cone)

 $\mathrm{HN}(\mathcal{F}) := \overline{\mathfrak{t}^* \mathcal{F}|_{t>0}} \cap \mathfrak{t}^* \mathcal{F}|_{t=0}$

Examples

a For
$$P = -\partial_x^2 + x\partial_y$$
, $HN(\mathcal{F})_p = t^*\mathcal{F}_p$ for all $p \in M$.
a For $P = -\partial_x^2 + \frac{x^2}{2}\partial_y$, $HN(\mathcal{F})_p = \begin{cases} \mathbb{R}^{2*} = t^*\mathcal{F}_p, & x \neq 0, \\ \{(\alpha, \beta, \gamma, \delta) \mid \beta\delta = \frac{1}{2}\gamma^2\}, & x = 0. \end{cases}$

Robert Yuncken (UL)

3

31/33

Definition (Helffer-Nourrigat cone)

 $\mathrm{HN}(\mathcal{F}) := \overline{\mathfrak{t}^* \mathcal{F}|_{t>0}} \cap \mathfrak{t}^* \mathcal{F}|_{t=0}$

Examples

a For
$$P = -\partial_x^2 + x\partial_y$$
, $HN(\mathcal{F})_p = t^*\mathcal{F}_p$ for all $p \in M$.
a For $P = -\partial_x^2 + \frac{x^2}{2}\partial_y$, $HN(\mathcal{F})_p = \begin{cases} \mathbb{R}^{2*} = t^*\mathcal{F}_p, & x \neq 0, \\ \{(\alpha, \beta, \gamma, \delta) \mid \beta\delta = \frac{1}{2}\gamma^2\}, & x = 0. \end{cases}$

Lemma (Helffer-Nourrigat)

The Helffer-Nourrigat cone $HN(\mathcal{F})_p \subseteq \mathfrak{gr}\mathcal{F}_p^*$ is invariant under the coadjoint action of $Gr\mathcal{F}_p$.

イロト イポト イヨト イヨト 一日

Definition (Helffer-Nourrigat cone)

 $\mathrm{HN}(\mathcal{F}) := \overline{\mathfrak{t}^* \mathcal{F}|_{t>0}} \cap \mathfrak{t}^* \mathcal{F}|_{t=0}$

Examples

a For
$$P = -\partial_x^2 + x\partial_y$$
, $HN(\mathcal{F})_p = t^*\mathcal{F}_p$ for all $p \in M$.
a For $P = -\partial_x^2 + \frac{x^2}{2}\partial_y$, $HN(\mathcal{F})_p = \begin{cases} \mathbb{R}^{2*} = t^*\mathcal{F}_p, & x \neq 0, \\ \{(\alpha, \beta, \gamma, \delta) \mid \beta\delta = \frac{1}{2}\gamma^2\}, & x = 0. \end{cases}$

Lemma (Helffer-Nourrigat)

The Helffer-Nourrigat cone $HN(\mathcal{F})_p \subseteq \mathfrak{gr}\mathcal{F}_p^*$ is invariant under the coadjoint action of $Gr\mathcal{F}_p$.

Kirillov \Rightarrow HN(\mathcal{F})_p corresponds to a family of unitary irreps of Gr \mathcal{F}_{p} .

Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

Angers, August 2023

Theorem (Androulidakis-Mohsen-Y.)

- $P \in DO(M)$ polynomial in vector fields of \mathcal{F} with total order $\leq m$,
- $k \in \mathcal{E}'_r(M \times M)$ its Schwartz kernel,
- $\underline{k} \in \mathcal{E}'_r(\mathbb{T}\mathcal{F})$ any extension to an ess. homog. distribution of degree m.

Theorem (Androulidakis-Mohsen-Y.)

• $P \in DO(M)$ — polynomial in vector fields of \mathcal{F} with total order $\leq m$,

• $k \in \mathcal{E}'_r(M \times M)$ its Schwartz kernel,

• $\underline{k} \in \mathcal{E}'_r(\mathbb{T}\mathcal{F})$ any extension to an ess. homog. distribution of degree m. Then:

• For $\pi \in HN(\mathcal{F})_p$, the op. $\pi(\underline{k}|_0)$ depends only on P (and not on \underline{k}).

32 / 33

Robert Yuncken (UL)

Theorem (Androulidakis-Mohsen-Y.)

• $P \in DO(M)$ — polynomial in vector fields of \mathcal{F} with total order $\leq m$,

• $k \in \mathcal{E}'_r(M \times M)$ its Schwartz kernel,

• $\underline{k} \in \mathcal{E}'_r(\mathbb{T}\mathcal{F})$ any extension to an ess. homog. distribution of degree m. Then:

• For $\pi \in HN(\mathcal{F})_p$, the op. $\pi(\underline{k}|_0)$ depends only on P (and not on \underline{k}).

If π(<u>k</u>|₀) is left-invertible ∀π ∈ HN(F), then ∃<u>l</u> ∈ C'_r(TF) ess. homog. of degree −m s.t. <u>l</u> * <u>k</u> − 1 = t<u>u</u> with <u>u</u> ess. homog. of degree −1.

Theorem (Androulidakis-Mohsen-Y.)

• $P \in DO(M)$ — polynomial in vector fields of \mathcal{F} with total order $\leq m$,

• $k \in \mathcal{E}'_r(M \times M)$ its Schwartz kernel,

• $\underline{k} \in \mathcal{E}'_r(\mathbb{T}\mathcal{F})$ any extension to an ess. homog. distribution of degree m. Then:

• For $\pi \in HN(\mathcal{F})_p$, the op. $\pi(\underline{k}|_0)$ depends only on P (and not on \underline{k}).

- ② If $\pi(\underline{k}|_0)$ is left-invertible $\forall \pi \in HN(\mathcal{F})$, then $\exists \underline{l} \in \mathcal{E}'_r(\mathbb{T}\mathcal{F})$ ess. homog. of degree -m s.t. $\underline{l} * \underline{k} 1 = t\underline{u}$ with \underline{u} ess. homog. of degree -1.
- **3** Consequently, such P has a parametrix in $\Psi^{\bullet}(\mathcal{F})$, \Rightarrow hypoelliptic.

Theorem (Androulidakis-Mohsen-Y.)

• $P \in DO(M)$ — polynomial in vector fields of \mathcal{F} with total order $\leqslant m$,

• $k \in \mathcal{E}'_r(M \times M)$ its Schwartz kernel,

• $\underline{k} \in \mathcal{E}'_r(\mathbb{T}\mathcal{F})$ any extension to an ess. homog. distribution of degree m. Then:

• For $\pi \in HN(\mathcal{F})_p$, the op. $\pi(\underline{k}|_0)$ depends only on P (and not on \underline{k}).

- ② If $\pi(\underline{k}|_0)$ is left-invertible $\forall \pi \in HN(\mathcal{F})$, then $\exists \underline{l} \in \mathcal{E}'_r(\mathbb{T}\mathcal{F})$ ess. homog. of degree -m s.t. $\underline{l} * \underline{k} 1 = t\underline{u}$ with \underline{u} ess. homog. of degree -1.
- So Consequently, such P has a parametrix in $\Psi^{\bullet}(\mathcal{F})$, \Rightarrow hypoelliptic.

The statement suggests that the appropriate osculating groupoid is **not** in fact $Gr\mathcal{F}$, but a new groupoid whose reps are only $HN(\mathcal{F})$:

 $\operatorname{Moh}(\mathfrak{aF}) = \mathsf{Mohsen's}$ blow-up groupoid.

Thank you

Robert Yuncken (UL)

The Helffer-Nourrigat conjecture

Angers, August 2023

・ロト ・ 四ト ・ ヨト ・ ヨト

33 / 33