Introduction Ooo

Decoherence timescales and the Hörmander Condition

Roman Schubert Bristol Joint work with Tom Plastow

Angers, August 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

The Lindblad equation

Decoherence and the Hörmander condition

Main result, quadratic case

Beyond quadratic case: Gaussian propagation

Summary and outlook

うしん 前 ふかく ボット 間 くらく

Open Systems

Open Systems: System coupled to environment, treated as noise.

- Classical mechanics:
 - Langevin equation
 - Fokker-Planck-Kolmogorov (FPK) equation
- Quantum mechanics:
 - Lindblad equation, quantum analogue of FPK equation
 - short time behaviour: Hypoellipticity and Decoherence
 - long time behavior: Hypocoercivity and Thermalisation

Main question: Assume noise is coupled only to some degrees of freedom, how is the effect of the noise transported through the system?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Density operators

General states in Quantum Mechanics are given by density operators $\hat{\rho}$: trace class, positive, self-adjoint and normalised tr $\hat{\rho} = 1$.

- \hat{A} observable, expectation value $\langle \hat{A}
 angle_{\hat{
 ho}} = {
 m tr}[\hat{A} \hat{
 ho}]$
- pure state: if ${\rm tr}[\hat{\rho}^2]=1$ then $\hat{\rho}=|\psi\rangle\langle\psi|$ for some $|\psi\rangle$
- In general $\hat{\rho} = \sum_n \lambda_n |\psi_n\rangle \langle \psi_n|$ with $\lambda_n \ge 0$ and $\sum \lambda_n = 1$.
- If $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ and $|\psi\rangle \in \mathcal{H}$, then reduced state for A,

$$\hat{\rho}_{\mathcal{A}} := \operatorname{tr}_{\mathcal{B}}[|\psi\rangle\langle\psi|] ,$$

is typically not pure.

Schrödinger equation gives von Neumann equation:

$$\mathrm{i}\hbar\partial_t\hat{\rho} = [\hat{H},\hat{\rho}]$$
.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction on the Lindblad equation Decoherence and the Hörmander condition Main result, quadratic case 0000 good

The Lindblad Equation I

Lindblad-Gorini-Kossakowski-Sudarshan equation

$$i\hbar\partial_t\hat{\rho} = [\hat{H},\hat{\rho}] + \frac{i}{2}\sum_k 2\hat{L}_k\hat{\rho}\hat{L}_k^* - \hat{L}_k^*\hat{L}_k\hat{\rho} - \hat{\rho}\hat{L}_k^*\hat{L}_k$$

- \hat{H} internal Hamiltonian, \hat{L}_k Lindblad operators, describing coupling to the environment.
- most general form of generator of completely positive trace preserving semigroup. Quantum channel.

Examples:

- $\hat{L} = \sigma \hat{q}$, scattering on environmental "dust"-particles
- $\hat{L}_1 = \gamma_- \hat{a}$, $L_2 = \gamma_+ \hat{a}^*$, where $\hat{a} = \hat{p} i\hat{q}$ creation operator, coupling to heat bath.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $L = \alpha H$, dephasing.

Introduction of the Lindblad equation Decoherence and the Hörmander condition Main result, quadratic case 0000 0000 0000

• If
$$\hat{L}_k^* = \hat{L}_k$$
 for all k , then

$$i\hbar\partial_t\hat{\rho} = [\hat{H},\hat{\rho}] + \frac{i}{2}\sum_k [\hat{L}_k,[\hat{L}_k,\hat{\rho}]]$$

• dual equation for observables \hat{A}

$$i\hbar\partial_t \hat{A} = [\hat{A}, \hat{H}] + \frac{i}{2} \sum_k [\hat{L}_k \hat{A}, \hat{L}_k^*] + [\hat{L}_k, \hat{A}\hat{L}_k^*]$$

Generalisation of Heisenberg equation

- write semigroups as $V(t) = e^{t\mathcal{L}}$ and $V^{\dagger}(t) = e^{t\mathcal{L}^{\dagger}}$, so that $\hat{\rho}(t) = e^{t\mathcal{L}}\hat{\rho}_{0}$ and $\hat{A}(t) = e^{t\mathcal{L}^{\dagger}}\hat{A}_{0}$.
- Consider evolution on Banach space of trace class operators $\mathcal{B}_1(\mathcal{H})$ and on Hilbert space of Hilbert Schmidt operators $\mathcal{B}_2(\mathcal{H})$.

Phase Space Representation

Let ρ , H, L_k be Weyl-symbols of $\hat{\rho}$, \hat{H} , \hat{L}_k , then the Lindblad equation gives

$$\partial_t \rho = X_0 \rho + \operatorname{div} X_0 \rho + \frac{\hbar}{2} \sum_k X_k^2 \rho + O(\|\rho\|_{C^3} \hbar^2)$$

where vector fields X_k , $k = 0, 1, \cdots, 2K$ are given by

• $X_0 \rho = \{H, \rho\} + \sum_k \operatorname{Im}(\bar{L}_k \{L_k, \rho\})$

•
$$X_k^2 \rho = \{\operatorname{Re} L_k, \rho\}$$
 and $X_{k+K} \rho = \{\operatorname{Im} L_k, \rho\}$

Remarks:

- X₀ describes transport, Lindblad parts give dissipation
- X_k^2 terms describe diffusion, due to external noise
- $O(\hbar^2) = 0$ if H quadratic and L_k linear.
- equation in Hörmander "sum of squares form".

Examples

• if $|\psi\rangle = |z_1\rangle + |z_2\rangle$ is superposition of two coherent states, then

$$\rho(x) = N \mathrm{e}^{-\frac{1}{\hbar}|x-z_1|^2} + N \mathrm{e}^{-\frac{1}{\hbar}|x-z_2|^2} + N \cos\left(\delta z \cdot x/\hbar\right) \mathrm{e}^{-\frac{1}{\hbar}|x-\bar{z}|^2}$$

where
$$\delta z = \Omega(z_1 - z_1)$$
 and $\bar{z} = (z_1 + z_2)/2$ with $\Omega = \begin{pmatrix} 0 & -l \\ l & 0 \end{pmatrix}$

• Let $H = \frac{1}{2}p^2$ and $L = \sqrt{\sigma} q$, x = (p, q), then

$$\partial_t \rho = -p \partial_q \rho + \frac{\hbar \sigma}{2} \partial_p^2 \rho$$

 transport and diffusion in momentum. L models impact of random scatterers, collisional decoherence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example

Figure: Cat state Wigner function, free evolution and $L = \hat{q}$. Times $(t = 0, 0.01, 0.1), \hbar = 1/50. e^{t\mathcal{L}}(|z\rangle\langle z'|) \rightarrow 0$ if $z \neq z'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

0000

Introduction The Lindblad equation Decoherence and the Hörmander condition Main result, guadratic case Beyond guadratic case

Decoherence

We say $\rho \in S_{\frac{1}{2}}$ if for all α there exists C_{α}

$$|\partial_x^{lpha}
ho(x)| \leq C_{lpha} \hbar^{-rac{|lpha|}{2}}$$

Examples: $\rho(x) = e^{-\frac{1}{\hbar}|x-y|^2} \in S_{\frac{1}{2}}, \cos(\delta y \cdot x/\hbar) \notin S_{\frac{1}{2}}.$

Definition

We say a system defined by the Lindblad equation shows **decoherence in phase space** if for any T > 0 and ρ_0 the time evolved symbol $\rho_t(x)$ is in $S_{\frac{1}{2}}$ for any $t \ge T > 0$ uniformly, i.e., for any α there exist $C_{T,\alpha} > 0$ such that

$$\sup_{x \in \mathbb{R}^{2n}} |\partial_x^{\alpha} \rho_t(x)| \le \|\rho_0\|_{\infty} C_{\mathcal{T},\alpha} \hbar^{-\frac{|\alpha|}{2}}$$
(1)

for all $\hbar \in (0,1]$ and $t \geq T$.

Hörmander condition (Special case)

Definition

Suppose X_j , $j = 0, 1, \dots, K$, is a set of vector fields on \mathbb{R}^n , and consider the subspaces $V_k(x) \subset \mathbb{R}^n$, $k = 0, 1, 2, \dots$, spanned by the X_j and iterated commutators,

 $V_0(x) := \operatorname{span}\{X_1(x), \cdots, X_K(x)\}$ $V_k(x) := \operatorname{span}\{Y(x), [Y, X_0](x), \; ; \; Y \in V_{k-1}(x), j = 0, 1, 2, \cdots, K\} \; .$

We say that X_j , $j = 0, 1, \dots, K$, satisfy the Hörmander condition if for some r we have $V_r(x) = \mathbb{R}^n$ for all $x \in \mathbb{R}^n$. Example: $H = \frac{1}{2}p^2 + V(q)$, L = q, then

 $X_0 = -p\partial_q + V'(q)\partial_p$, $X_1 = \partial_p$, $[X_0, X_1] = \partial_q$.

So $V_0(x) = \text{span} \{\partial_p\}$, $V_1(x) = \mathbb{R}^2$ for all x.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Hörmander condition: geometric meaning

Let $\phi_k^t(x)$ be flow generated by X_k , then

- $\phi_k^t(x) = tX_k(x) + O(t^2)$
- $\phi_k^{-t} \circ \phi_{k'}^{-t} \circ \phi_k^t \circ \phi_{k'}^t = t^2[X_k, X_{k'}] + O(t^3)$

Can transport in direction of commutators: Hörmander condition gives transport in any direction.

Theorem (Chow '39, Rashevski '38)

Assume the Hörmander condition condition holds. Then for any x_0, x_1 there exists a C^1 path x(t) with $x_0 = x(0)$ and $x_1 = x(1)$ and controls $u(t) \in L^1([0, 1])$ such that

$$\dot{x}(t) = \sum_{k} u_k(t) X_k(x(t)) \; .$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hypoellipticity and Hörmander's Theorem

Definition

A linear operator L is called hypoelliptic if $Lf \in \mathbb{C}^{\infty}$ implies $f \in C^{\infty}$.

Theorem (Hörmander 67)

Assume Hörmander's condition holds for the vector fields X_0, X_1, \cdots, X_r , then the operator

$$L = X_0 + \sum_{k=1}^r X_k^2$$

is hypoelliptic.

Decoherence and Hörmander's condition

Theorem (Plastow, RS 23)

Suppose $H(x) = \frac{1}{2}x \cdot Qx$ is quadratic and $L_k = I_k \cdot \Omega x$ are linear and the Hamiltonian vector fields of H and Re L_k and Im L_k satisfy Hörmander's condition. Then the systems shows decoherence in phase space.

Furthermore, if $z - z' \in V_j^{\Omega}$, then

$$|||z\rangle\langle z'|||_{HS} = e^{-\frac{1}{2\hbar}t^{2j+1}(d_j(z-z')+O(t))}(1+O(t))$$

where $d_j(z - z') = \frac{1}{(2j+1)(j!)^2} \sum_k |L_k(F^j(z - z'))|^2$.

- Decoherence is semiclassical manifestation of hypoellipticity.
- Theorem is direct application of previous results by Kuptsov '72-'83, Lanconelli and Polidoro '94.
- One can as well derive more quantitative estimates, see proof.

Ingredients in proof I

- Let $\sum_{k} \overline{l}_{k} I_{k}^{T} = M + iN$, M, N real, $F = \Omega Q$ and $A = F + N\Omega$.
- Characteristic function $\chi(t,\xi) := \frac{1}{(2\pi\hbar)^n} \int e^{-\frac{i}{\hbar}x\cdot\xi} \rho(t,x) dx$ is given by

 $\chi(t,\xi) = \chi_0(R_t^T\xi) \mathrm{e}^{-\frac{1}{2\hbar}\xi \cdot D_t\xi} ,$

where $R_t = e^{tA}$ and $D_t = \int_0^t R_s M R_s^T ds$.

• Decoherence equivalent to $D_t > 0$ for t > 0.

Hörmander condition: $V_r = \mathbb{R}^{2n}$ for some $r \leq 2n$ where

 $V_0 = \text{span}\{\text{Re } I_k, \text{Im } I_k\}, \quad V_r = V_0 + FV_0 + \dots + F^r V_0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

orthogonal decomposition: $\mathbb{R}^{2n} = W_0 \oplus W_1 \oplus \cdots \oplus W_r$ with $W_0 = V_0$ and $V_k = V_{k-1} \oplus W_k$.

Ingredients in proof II, nilpotentisation

$$A = \begin{pmatrix} A_{00} & A_{01} & \cdots & & \\ F_{10} & F_{11} & & & \\ 0 & F_{21} & & & \\ \vdots & & \ddots & & \\ 0 & 0 & F_{r,r-1} & F_{r,r} \end{pmatrix}, F^{\sharp} := \begin{pmatrix} 0 & 0 & 0 & \cdots & \\ F_{10} & 0 & 0 & & \\ 0 & F_{21} & 0 & & \\ \vdots & & & \ddots & \\ 0 & 0 & 0 & F_{k,k-1} & 0 \end{pmatrix}$$

Lemma Let $\xi \in W_j$, then with $R_t^{\sharp} = e^{tF^{\sharp}}$

$$\begin{split} \xi \cdot D_t \xi &= \sum_k \int_0^t |\xi \cdot R_s^\sharp l_k|^2 \, \mathrm{d}s + O(t^{2j+2}) \\ &= \frac{t^{2j+1}}{(2j+1)(j!)^2} \sum_k |\xi \cdot F^j l_k|^2 + O(t^{2j+2}) \; . \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples

Collisional Decoherence: $H = \frac{1}{2}p^2$, L = q, $V_0 = \langle \partial_p \rangle$, $V_1 = \mathbb{R}^2$

$$\|\mathrm{e}^{t\mathcal{L}}(|z\rangle\langle z'|)\|_{HS}\sim egin{cases} \mathrm{e}^{-rac{t}{2\hbar}|q-q'|^2} & q
eq q'\ \mathrm{e}^{-rac{t^3}{6\hbar}|p-p'|^2} & q=q' \end{cases}$$

Coupled oscillators: $H = \sum_{k} \omega_k a_k a_k^* + \sum_{k \neq l} \delta_{k,l} (a_k a_l^* + a_l a_l^*)$, couple *k*'th oscillator to thermal bath $L_1 \sim a_k$, $L_2 \sim a_k^*$.

- Linear chain with noise coupled to first oscillator: Decoherence in k'th oscillator $\sim \exp(-\frac{t^{2k+1}}{2(2k+1)(k!)^{2\hbar}}\delta^{2k}|z_k z'_k|^2)$
- Linear chain of 3 oscillators, noise coupled to 2'nd one.
 Hörmander condition not fulfilled, states anti-symmetric under exchange of oscillator 1 and 3 protected from decoherence.

Dilations and Carnot Groups

Short time approximation defined by F^{\sharp} gives rise to

$$L^{\sharp} = X_0^{\sharp} + rac{\hbar}{2} \sum_{k \geq 1} X_k^2$$
, where $X_0^{\sharp} = -(F^{\sharp}x) \cdot \nabla$.

- Dilations: δ_λ(ξ) = λ^{2j+1} for ξ ∈ W_j, then δ₁/λ ∘ L[♯] ∘ δ_λ = λ²L[♯], so ∂_t − L[♯] invariant under (t, x) ↦ (λ²t, δ_λ(x)). Gives geometric explanation of different time scales of decoherence.
- F^{\sharp} nilpotent: gives rise to nilpotent Lie group with Lie Algebra given by $X_0^{\sharp}, X_1, \cdots$, graded and with dilation, hence a Carnot group (Lanconnelli Polidoro '92).
- Underlying geometry of Decoherence is sub-Riemannian Geometry described by distribution of Hörmander vector fields.

Beyond quadratic case: Gaussian propagation

Consider $\langle z | \hat{\rho}_t | z' \rangle = \operatorname{tr} \left[\hat{\rho}_t (|z\rangle \langle z'|) \right]$:

- Weyl symbol of $|z\rangle\langle z'|$ is Gaussian.
- FBI transform of ρ_t , $\bar{z} = \frac{1}{2}(z + z') \ \delta z = z_2 z_1$:

$$\langle z|\hat{\rho}_t|z'\rangle = \int_{\mathbb{R}^{2d}} \rho_t(x) \frac{1}{(\pi\hbar)^d} \mathrm{e}^{-\frac{1}{\hbar}|x-\bar{z}|^2} \mathrm{e}^{\frac{\mathrm{i}}{\hbar}\delta z \cdot \Omega x} \, \mathrm{d}x$$

•
$$\langle z|\hat{
ho}_t|z'
angle= ext{tr}[\hat{
ho}_0 ext{e}^{t\mathcal{L}^\dagger}(|z
angle\langle z'|)]$$
 and so

 $|\langle z|\hat{
ho}_t|z'
angle| \le \|\hat{
ho}_0\|_{HS} \|\mathrm{e}^{t\mathcal{L}^{\dagger}}(|z
angle\langle z'|)\|_{HS}$

• Use estimates on Gaussian propagation to prove decoherence for general states.

Lindblad equation as non-Hermitian Schrödinger equation (Graefe, Longstaff, Plastow, RS 2018)

Goal: Write the Lindblad equation for Hilbert Schmidt operators $\hat{\rho}$ as Schrödinger equation for $\rho(x)$ with (possibly) non-Hermitian Hamiltonian.

- recall $\langle \hat{\rho}, \hat{\sigma} \rangle = \operatorname{tr}[\hat{\rho}^* \hat{\sigma}] = \frac{1}{(2\pi\hbar)^n} \int \bar{\rho}(x) \sigma(x) \, \mathrm{d}x$
- key identities: $\hat{A}\,\hat{\rho}=\widehat{A\sharp\rho}$ and $\hat{\rho}\,\hat{A}=\widehat{\rho\sharp A}$ with

$$A \sharp B = A \mathrm{e}^{\frac{\mathrm{i}\hbar}{2}\overleftarrow{\nabla}\Omega\overrightarrow{\nabla}}B$$

• $A \sharp \rho(x) = \hat{A}^{(-)} \rho$ and $\rho \sharp A = \hat{A}^{(+)} \rho$ with

$$\hat{\mathcal{A}}^{(\pm)} = \mathcal{A}(x \pm 2\Omega\hat{\xi}) \quad \hat{\xi} = \frac{\hbar}{\mathrm{i}}
abla_x$$

Weyl quantisation on doubled phase space of $A^{(\pm)}(x,\xi) = A(x \pm \frac{1}{2}\Omega\xi).$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Introduction Oooo Decoherence and the Hörmander condition Main result, quadratic case Oooo Ooo

Lindblad equation on doubled phase space

$$i\hbar\partial_t\hat{\rho} = [\hat{H},\hat{\rho}] + \frac{i}{2}\sum_k 2\hat{L}_k\hat{\rho}\hat{L}_k^* - \hat{L}_k^*\hat{L}_k\hat{\rho} - \hat{\rho}\hat{L}_k^*\hat{L}_k$$

then translates into

 $i\hbar\partial_t \rho = \hat{K}\rho$

with $K = K^{(0)} + \hbar K^{(1)} + \cdots$ and

$$\begin{aligned} \mathcal{K}^{(0)} &= \mathcal{H}^{(+)} - \mathcal{H}^{(-)} + \sum_{k} \operatorname{Im} \left(\bar{L}_{k}^{(-)} \mathcal{L}_{k}^{(+)} \right) - \frac{\mathrm{i}}{2} \sum_{k} \left| \mathcal{L}_{k}^{(+)} - \mathcal{L}_{k}^{(-)} \right|^{2} \\ \mathcal{K}^{(1)} &= \frac{1}{2} \sum_{k} \{ \bar{L}_{k}, \mathcal{L}_{k} \}^{(+)} + \{ \bar{L}_{k}, \mathcal{L}_{k} \}^{(-)} \end{aligned}$$

Im $\mathcal{K}^{(0)} \leq 0$ for $\xi > 0$ responsible for decoherence.

Decoherence

Decoherence related to $\int_0^t \sum_k |L_k(x + \frac{1}{2}\Omega\xi) - L_k(x - \frac{1}{2}\Omega\xi)|^2 ds$, where $x(s), \xi(s)$ satisfy mixed Hamiltonian/gradient equation from Graefe, RS 2011.

- Tayler expansion around t = 0 reveals iterated Poissonbrackets related to commutators and Hörmander condition.
- Hamiltonian K and semiclassical approximation for wavepackets simplify for small y (formally $\delta y \sim \sqrt{\hbar}$):

$$H(x+\frac{1}{2}\Omega\xi)-H(x-\frac{1}{2}\Omega\xi)=H'(x)\cdot\Omega\xi+O(\xi^3)$$

• Simplified Hamiltonian for small y:

$$\mathcal{K}(\xi, x) pprox X_0(x) \cdot \xi - rac{\mathrm{i}}{2} \sum_k |X_k(x) \cdot \xi|^2$$

where $X_0 = \Omega H' + \Omega \sum_k \operatorname{Im}(L_k^* L_k')$ and $X_k = \Omega L_k'$.

Summary and Outlook

• Open quantum systems described by Lindblad equation, which gives rise to phase-space evolution of "sum of squares" type

$$\partial_t \rho = X_0 \rho + \frac{\hbar}{2} \sum_{k \ge 1} X_k^2 \rho \; .$$

- Decoherence: rapid suppression of interference effects due to smoothing by noise.
- Decoherence is semiclassical manifestation of hypoellipticity, expect Hörmander condition to give sufficient condition for decoherence. We demonstrated this for special class of Hamiltonian and Lindblad operators.
- Decoherence is connected to sub-Riemannian geometry.
- Future directions: extend to non-quadratic case by using non-Hermitian propagation on doubled phase space.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●