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Open Systems

Open Systems: System coupled to environment, treated as noise.
• Classical mechanics:

• Langevin equation
• Fokker-Planck-Kolmogorov (FPK) equation

• Quantum mechanics:
• Lindblad equation, quantum analogue of FPK equation
• short time behaviour: Hypoellipticity and Decoherence
• long time behavior: Hypocoercivity and Thermalisation

Main question: Assume noise is coupled only to some degrees of
freedom, how is the e↵ect of the noise transported through the
system?
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Density operators
General states in Quantum Mechanics are given by density
operators ⇢̂: trace class, positive, self-adjoint and normalised
tr ⇢̂ = 1.

• Â observable, expectation value hÂi⇢̂ = tr[Â⇢̂]

• pure state: if tr[⇢̂2] = 1 then ⇢̂ = | ih | for some | i

• In general ⇢̂ =
P

n �n| nih n| with �n � 0 and
P
�n = 1.

• If H = HA ⌦HB and | i 2 H, then reduced state for A,

⇢̂A := trB [| ih |] ,

is typically not pure.

• Schrödinger equation gives von Neumann equation:

i~@t ⇢̂ = [Ĥ, ⇢̂] .
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The Lindblad Equation I
• Lindblad-Gorini-Kossakowski-Sudarshan equation

i~@t ⇢̂ = [Ĥ, ⇢̂] +
i

2

X

k

2L̂k ⇢̂L̂
⇤
k � L̂⇤k L̂k ⇢̂� ⇢̂L̂⇤k L̂k

• Ĥ internal Hamiltonian, L̂k Lindblad operators, describing
coupling to the environment.

• most general form of generator of completely positive trace
preserving semigroup. Quantum channel.

Examples:

• L̂ = � q̂, scattering on environmental ”dust”-particles

• L̂1 = �� â, L2 = �+ â⇤, where â = p̂ � iq̂ creation operator,
coupling to heat bath.

• L = ↵H, dephasing.
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The Lindblad Equation II
• If L̂⇤k = L̂k for all k , then

i~@t ⇢̂ = [Ĥ, ⇢̂] +
i

2

X

k

[L̂k , [L̂k , ⇢̂]]

• dual equation for observables Â

i~@tÂ = [Â, Ĥ] +
i

2

X

k

[L̂k Â, L̂
⇤
k ] + [L̂k , ÂL̂

⇤
k ]

Generalisation of Heisenberg equation

• write semigroups as V (t) = etL and V †(t) = etL
†
, so that

⇢̂(t) = etL⇢̂0 and Â(t) = etL
†
Â0.

• Consider evolution on Banach space of trace class operators
B1(H) and on Hilbert space of Hilbert Schmidt operators
B2(H).
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Phase Space Representation

Let ⇢,H, Lk be Weyl-symbols of ⇢̂, Ĥ, L̂k , then the Lindblad
equation gives

@t⇢ = X0⇢+ divX0 ⇢+
~
2

X

k

X 2

k ⇢+ O(k⇢kC3~2)

where vector fields Xk , k = 0, 1, · · · , 2K are given by

• X0⇢ = {H, ⇢}+
P

k Im(L̄k{Lk , ⇢})

• X 2

k ⇢ = {Re Lk , ⇢} and Xk+K⇢ = {Im Lk , ⇢}

Remarks:

• X0 describes transport, Lindblad parts give dissipation

• X 2

k terms describe di↵usion, due to external noise

• O(~2) = 0 if H quadratic and Lk linear.

• equation in Hörmander ”sum of squares form”.
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Examples

• Let ⇢̂ = | ih |
• if | i = |zi is coherent state centred at z = (p, q), then

⇢(x) = Ne�
1

~ |x�z|2

• if | i = |z1i+ |z2i is superposition of two coherent states,
then

⇢(x) = Ne�
1

~ |x�z1|2 +Ne�
1

~ |x�z2|2 +N cos
�
�z · x/~

�
e�

1

~ |x�z̄|2

where �z = ⌦(z1 � z1) and z̄ = (z1 + z2)/2 with ⌦ =

✓
0 �I
I 0

◆

• Let H = 1

2
p2 and L =

p
� q, x = (p, q), then

@t⇢ = �p@q⇢+
~�
2
@2p⇢

• transport and di↵usion in momentum. L models impact of
random scatterers, collisional decoherence
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Example

Figure: Cat state Wigner function, free evolution and L = q̂. Times
(t = 0, 0.01, 0.1), ~ = 1/50. etL(|zihz 0|) ! 0 if z 6= z 0.
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Decoherence

We say ⇢ 2 S 1

2

if for all ↵ there exists C↵

|@↵x ⇢(x)|  C↵~�
|↵|
2 .

Examples: ⇢(x) = e�
1

~ |x�y |
2

2 S 1

2

, cos(�y · x/~) /2 S 1

2

.

Definition
We say a system defined by the Lindblad equation shows
decoherence in phase space if for any T > 0 and ⇢0 the time
evolved symbol ⇢t(x) is in S 1

2

for any t � T > 0 uniformly, i.e., for

any ↵ there exist CT ,↵ > 0 such that

sup
x2R2n

|@↵x ⇢t(x)|  k⇢0k1CT ,↵~�
|↵|
2 (1)

for all ~ 2 (0, 1] and t � T .
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Hörmander condition (Special case)

Definition
Suppose Xj , j = 0, 1, · · · ,K , is a set of vector fields on Rn, and
consider the subspaces Vk(x) ⇢ Rn, k = 0, 1, 2, · · · , spanned by
the Xj and iterated commutators,

V0(x) := span{X1(x), · · · ,XK (x)}

Vk(x) := span{Y (x), [Y ,X0](x), ; Y 2 Vk�1(x), j = 0, 1, 2, · · · ,K} .

We say that Xj , j = 0, 1, · · · ,K , satisfy the Hörmander

condition if for some r we have Vr (x) = Rn for all x 2 Rn.

Example: H = 1

2
p2 + V (q), L = q, then

X0 = �p@q + V 0(q)@p , X1 = @p , [X0,X1] = @q .

So V0(x) = span {@p}, V1(x) = R2 for all x .
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Hörmander condition: geometric meaning

Let �tk(x) be flow generated by Xk , then

• �tk(x) = tXk(x) + O(t2)

• ��tk � ��tk 0 � �tk � �
t
k 0 = t2[Xk ,Xk 0 ] + O(t3)

Can transport in direction of commutators: Hörmander condition
gives transport in any direction.

Theorem (Chow ’39, Rashevski ’38)

Assume the Hörmander condition condition holds. Then for any
x0, x1 there exists a C 1 path x(t) with x0 = x(0) and x1 = x(1)
and controls u(t) 2 L1([0, 1]) such that

ẋ(t) =
X

k

uk(t)Xk(x(t)) .
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Hypoellipticity and Hörmander’s Theorem

Definition
A linear operator L is called hypoelliptic if Lf 2 C1 implies
f 2 C1.

Theorem (Hörmander 67)

Assume Hörmander’s condition holds for the vector fields
X0,X1, · · · ,Xr , then the operator

L = X0 +
rX

k=1

X 2

k

is hypoelliptic.
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Decoherence and Hörmander’s condition
Theorem (Plastow, RS 23)

Suppose H(x) = 1

2
x · Qx is quadratic and Lk = lk · ⌦x are linear

and the Hamiltonian vector fields of H and Re Lk and Im Lk satisfy
Hörmander’s condition. Then the systems shows decoherence in
phase space.
Furthermore, if z � z 0 2 V⌦

j , then

k|zihz 0|kHS = e�
1

2~ t
2j+1

(dj (z�z 0)+O(t))(1 + O(t))

where dj(z � z 0) = 1

(2j+1)(j!)2
P

k |Lk(F
j(z � z 0))|2.

• Decoherence is semiclassical manifestation of hypoellipticity.

• Theorem is direct application of previous results by Kuptsov
’72-’83, Lanconelli and Polidoro ’94.

• One can as well derive more quantitative estimates, see proof.
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Ingredients in proof I

• Let
P

k l̄k l
T
k = M + iN, M,N real, F = ⌦Q and A = F +N⌦.

• Characteristic function �(t, ⇠) := 1

(2⇡~)n
R
e�

i
~ x ·⇠⇢(t, x) dx is

given by

�(t, ⇠) = �0(R
T
t ⇠)e

� 1

2~ ⇠·Dt⇠ ,

where Rt = etA and Dt =
R t
0
RsMRT

s ds.

• Decoherence equivalent to Dt > 0 for t > 0.

Hörmander condition: Vr = R2n for some r  2n where

V0 = span{Re lk , Im lk} , Vr = V0 + FV0 + · · ·+ F rV0 .

orthogonal decomposition: R2n = W0 �W1 � · · ·�Wr with
W0 = V0 and Vk = Vk�1 �Wk .
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Ingredients in proof II, nilpotentisation

A =

0

BBBBB@

A00 A01 · · ·

F10 F11
0 F21
...

. . .
0 0 Fr ,r�1 Fr ,r

1

CCCCCA
,F ] :=

0

BBBBB@

0 0 0 · · ·

F10 0 0
0 F21 0
...

. . .
0 0 0 Fk,k�1 0

1

CCCCCA
,

Lemma
Let ⇠ 2 Wj , then with R]

t = etF
]

⇠ · Dt⇠ =
X

k

Z t

0

|⇠ · R]
s lk |

2 ds + O(t2j+2)

=
t2j+1

(2j + 1)(j!)2

X

k

|⇠ · F j lk |
2 + O(t2j+2) .
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Examples

Collisional Decoherence: H = 1

2
p2, L = q, V0 = h@pi, V1 = R2

ketL(|zihz 0|)kHS ⇠

(
e�

t
2~ |q�q

0|2 q 6= q0

e�
t3

6~ |p�p
0|2 q = q0

Coupled oscillators: H =
P

k !kaka⇤k +
P

k 6=l �k,l(aka
⇤
l + ala⇤l ),

couple k ’th oscillator to thermal bath L1 ⇠ ak , L2 ⇠ a⇤k .

• Linear chain with noise coupled to first oscillator: Decoherence
in k ’th oscillator ⇠ exp(� t2k+1

2(2k+1)(k!)2~�
2k
|zk � z 0k |

2)

• Linear chain of 3 oscillators, noise coupled to 2’nd one.
Hörmander condition not fulfilled, states anti-symmetric under
exchange of oscillator 1 and 3 protected from decoherence.
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Dilations and Carnot Groups

Short time approximation defined by F ] gives rise to

L] = X ]
0
+

~
2

X

k�1
X 2

k ,where X ]
0
= �(F ]x) ·r .

• Dilations: ��(⇠) = �2j+1 for ⇠ 2 Wj , then
�1/� � L] � �� = �2L], so @t � L] invariant under
(t, x) 7! (�2t, ��(x)). Gives geometric explanation of di↵erent
time scales of decoherence.

• F ] nilpotent: gives rise to nilpotent Lie group with Lie
Algebra given by X ]

0
,X1, · · · , graded and with dilation, hence

a Carnot group (Lanconnelli Polidoro ’92).

• Underlying geometry of Decoherence is sub-Riemannian
Geometry described by distribution of Hörmander vector fields.
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Beyond quadratic case: Gaussian propagation

Consider hz |⇢̂t |z 0i = tr
⇥
⇢̂t(|zihz 0|)

⇤
:

• Weyl symbol of |zihz 0| is Gaussian.

• FBI transform of ⇢t , z̄ = 1

2
(z + z 0) �z = z2 � z1:

hz |⇢̂t |z
0
i =

Z

R2d
⇢t(x)

1

(⇡~)d e
� 1

~ |x�z̄|
2

e
i
~ �z·⌦x dx

• hz |⇢̂t |z 0i = tr[⇢̂0etL
†
(|zihz 0|)] and so

|hz |⇢̂t |z
0
i|  k⇢̂0kHSke

tL†
(|zihz 0|)kHS

• Use estimates on Gaussian propagation to prove decoherence
for general states.
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Lindblad equation as non-Hermitian Schrödinger equation
(Graefe, Longsta↵, Plastow, RS 2018)

Goal: Write the Lindblad equation for Hilbert Schmidt operators ⇢̂
as Schrödinger equation for ⇢(x) with (possibly) non-Hermitian
Hamiltonian.

• recall h⇢̂, �̂i = tr[⇢̂⇤�̂] = 1

(2⇡~)n
R
⇢̄(x)�(x) dx

• key identities: Â ⇢̂ = dA]⇢ and ⇢̂ Â = d⇢]A with

A]B = Ae
i~
2

 �r⌦
�!rB

• A]⇢(x) = Â(�)⇢ and ⇢]A = Â(+)⇢ with

Â(±) = A
�
x ± 2⌦⇠̂

�
⇠̂ =

~
i
rx

Weyl quantisation on doubled phase space of
A(±)(x , ⇠) = A(x ±

1

2
⌦⇠).
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Lindblad equation on doubled phase space

i~@t ⇢̂ = [Ĥ, ⇢̂] +
i

2

X

k

2L̂k ⇢̂L̂
⇤
k � L̂⇤k L̂k ⇢̂� ⇢̂L̂⇤k L̂k

then translates into

i~@t⇢ = K̂⇢

with K = K (0) + ~K (1) + · · · and

K (0) = H(+)
� H(�) +

X

k

Im
�
L̄(�)k L(+)

k

�
�

i

2

X

k

��L(+)

k � L(�)k

��2

K (1) =
1

2

X

k

{L̄k , Lk}
(+) + {L̄k , Lk}

(�)

ImK (0)
 0 for ⇠ > 0 responsible for decoherence.
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Decoherence
Decoherence related to

R t
0

P
k

��Lk(x + 1

2
⌦⇠)� Lk(x �

1

2
⌦⇠)

��2ds,
where x(s), ⇠(s) satisfy mixed Hamiltonian/gradient equation from
Graefe, RS 2011.

• Tayler expansion around t = 0 reveals iterated Poissonbrackets
related to commutators and Hörmander condition.

• Hamiltonian K and semiclassical approximation for
wavepackets simplify for small y (formally �y ⇠

p
~):

H(x +
1

2
⌦⇠)� H(x �

1

2
⌦⇠) = H 0(x) · ⌦⇠ + O(⇠3)

• Simplified Hamiltonian for small y :

K (⇠, x) ⇡ X0(x) · ⇠ �
i

2

X

k

|Xk(x) · ⇠|
2

where X0 = ⌦H 0 + ⌦
P

k Im(L⇤kL
0
k) and Xk = ⌦L0k .
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Summary and Outlook

• Open quantum systems described by Lindblad equation, which
gives rise to phase-space evolution of ”sum of squares” type

@t⇢ = X0⇢+
~
2

X

k�1
X 2

k ⇢ .

• Decoherence: rapid suppression of interference e↵ects due to
smoothing by noise.

• Decoherence is semiclassical manifestation of hypoellipticity,
expect Hörmander condition to give su�cient condition for
decoherence. We demonstrated this for special class of
Hamiltonian and Lindblad operators.

• Decoherence is connected to sub-Riemannian geometry.

• Future directions: extend to non-quadratic case by using
non-Hermitian propagation on doubled phase space.


