Semiclassical normal forms for the magnetic Laplacian

Léo Morin

Copenhagen University

Sept. 2023

The operator

Consider the magnetic Laplacian,

$$\mathcal{H}_h = (-ih\nabla - A)^2 = \sum_{j=1}^d (-ih\partial_{q_j} - A_j)^2.$$

- Self-adjoint realization on \mathbb{R}^d .
- Potential vector field A : $\mathbb{R}^d \to \mathbb{R}^d$ (smooth). In fact A is a 1-form, $A = \sum_{j=1} A_j dq_j$.
- The magnetic field is a $d \times d$ matrix $\mathbb{B} = (\partial_i A_j \partial_j A_i)_{i < j}$. In fact B is a 2-form, B = dA.
- Assumption $|B(q)| o \infty$ as $q o \infty$.

The operator

Consider the magnetic Laplacian,

$$\mathcal{H}_h = (-ih\nabla - A)^2 = \sum_{j=1}^d (-ih\partial_{q_j} - A_j)^2.$$

- Self-adjoint realization on \mathbb{R}^d .
- Potential vector field A : $\mathbb{R}^d \to \mathbb{R}^d$ (smooth). In fact A is a 1-form, $A = \sum_{j=1} A_j dq_j$.
- The magnetic field is a $d \times d$ matrix $\mathbb{B} = (\partial_i A_j \partial_j A_i)_{i < j}$. In fact B is a 2-form, B = dA.
- Assumption $|B(q)| \to \infty$ as $q \to \infty$.

Goal

- \rightarrow Study the spectrum when $h \rightarrow 0$ depending on the variations of B.
- \rightarrow Construct a normal form for \mathcal{H}_h .

2 / 20

$$\mathcal{H}_h = (-ih\nabla - A)^2$$

- Note that $\mathbb{B}_{jk} = \frac{i}{h} \left[-ih\nabla_j A_j, -ih\nabla_k A_k \right]$. To be related with hypoelliptic sum of squares?
- The semiclassical symbol is,

$$H(q,p) = \sum_{j=1}^{d} (p_j - A_j(q))^2 = |p - A(q)|^2.$$

$$\mathcal{H}_h = (-ih\nabla - A)^2$$

- Note that $\mathbb{B}_{jk} = \frac{i}{h} \left[-ih\nabla_j A_j, -ih\nabla_k A_k \right]$. To be related with hypoelliptic sum of squares?
- The semiclassical symbol is,

$$H(q,p) = \sum_{j=1}^{d} (p_j - A_j(q))^2 = |p - A(q)|^2.$$

For example, in d = 2, you can compare H with the d + 1 dimensional symbol

$$H_{
m hyp} = (p_1 - A_1 p_3)^2 + (p_2 - A_2 p_3)^2$$
 ?

Construct a normal form for H microlocally near the surface

$$\Sigma=H^{-1}(0)=\Big\{(q,p)\in\mathbb{R}^{2d};\ p=A(q)\Big\}.$$

Of importance is the symplectic structure $dp \wedge dq$ on the phase space.

Proposition

The restriction of $d\mathbf{p} \wedge d\mathbf{q}$ to Σ is $\pi^* B$.

Here π is the canonical projection $\pi(q, p) = q$.

• The rank of B will have strong influence. We use

$$d = 2s + k, \quad k = \dim(\operatorname{Ker}\mathbb{B}).$$

We assume s, k are constant i.e. independent of q.

Symplectic magnetic fields d = 2s, k = 0. Normal form

Applications

2 Constant rank magnetic fields d = 2s + k, k > 0.

Assume d = 2s. Then (Σ, B) is a symplectic submanifold of \mathbb{R}^{2d} and

$$T\mathbb{R}^{2d}=T\Sigma\oplus T\Sigma^{\perp}.$$

Assume d = 2s. Then (Σ, B) is a symplectic submanifold of \mathbb{R}^{2d} and

 $T\mathbb{R}^{2d}=T\Sigma\oplus T\Sigma^{\perp}.$

Near Σ , we can approximate H by its Hessian.

Proposition

The Hessian of H satisfies

$$abla^2 {\it H}({\cal V},{\cal V})=2|\mathbb{B}(q)\pi_*{\cal V}|^2 \quad {\it for} \; {\cal V}\in T\Sigma^\perp.$$

Hence B appears at two different places :

- The curvature of Σ ,
- The Hessian of *H*.

Normal form 1

We obtain the following normal form for the symbol. We denote by $(\pm i\beta_j(q))_{1\leq j\leq d}$ the eigenvalues of $\mathbb B$ and assume they are simple.

Proposition

Assume B is symplectic, i.e. d = 2s. Then there exist local variables $(x, \xi, y, \eta) = \Phi(q, p)$ near Σ such that

$$H \circ \Phi^{-1}(x,\xi,y,\eta) = \sum_{j=1}^{s} \beta_j(y,\eta)(\xi_j^2 + x_j^2) + \mathcal{O}((x,\xi)^3),$$

and $\Phi_*(\mathrm{d}p \wedge \mathrm{d}q) = \mathrm{d}\xi \wedge \mathrm{d}x + \mathrm{d}\eta \wedge \mathrm{d}y.$

Remarks

- We can use a Birkhoff normal form to get a higher order precision.
- In dimension d = 2, you have only one oscillator $\beta(y, \eta)(\xi^2 + x^2)$.
- The oscillator $\xi^2 + x^2$ is the cyclotron motion.

Classical dynamics

/ 20

Normal form II

We come back to the operator...

$$\mathcal{H}_h = (-ih\nabla - A)^2 = \operatorname{Op}_h^w H,$$

where Op_h^w is the semiclassical Weyl quantization.

• We recall the normal form on the symbol

$$H \circ \Phi^{-1} = \sum_{j=1}^{s} \beta_j(y,\eta)(\xi_j^2 + x_j^2) + \dots$$

• We quantize this result. To main order, \mathcal{H}_h will be described by

$$\mathcal{N}_h = \sum_{j=1}^s \mathsf{Op}_h^w(\beta_j)(-h^2\partial_{x_j}^2 + x_j^2),$$

and the spectrum is given by a familly of operators,

$$\mathcal{N}_h^{[n]} = \sum_{j=1}^s h(2n_j+1) \operatorname{Op}_h^w(\beta_j).$$

Applications

2 Constant rank magnetic fields d = 2s + k, k > 0.

Application 1

We have the following Weyl law.

Theorem

Assume $(\beta_j(q))_j$ are pairwise distinct for $\{b_0(q) \leq b_1\}$. The number of eigenvalues of \mathcal{H}_h below b_1h is given by

$$N(\mathcal{H}_h, b_1 h) \sim rac{1}{(2\pi h)^s} \sum_{n \in \mathbb{N}^s} \int_{\{b_n(q) \leq b_1\}} rac{B^s}{s!}.$$

with $b_n(q) = \sum_{j=1}^{s} (2n_j + 1)\beta_j(q)$.

References.

- [1] J.P. Demailly, *Champs magnétiques et inégalités de Morse pour la d"-cohomologie*. CMP, 1986.
- [2] L. Morin, A semiclassical Birkhoff normal form for symplectic magnetic fields. Journal of spectral theory. 2022.

We can also deduce eigenvalue asymptotics.

We can also deduce eigenvalue asymptotics.

Theorem

Assume d = 2. Assume |B| admits a unique and non-degenerate minimum b_0 . Then for $p, n \in \mathbb{N}$, you can find eigenvalues of \mathcal{H}_h such that

 $\lambda_{n,p}(h) = (2n+1)b_0h(1+((2p+1)c_0+c_1)h)+o(h^2).$

There is also a full expansion in powers of h. Moreover, the first eigenvalues of \mathcal{H}_h are

$$\lambda_{0,p}(h) = b_0 h \big(1 + \big((2p+1)c_0 + c_1 \big) h \big) + o(h^2) \big).$$

Here c_0 , c_1 are explicit constants depending on the Hessian of β at the minimum.

Application 2

Also in higher dimension.

Theorem

Assume d = 2s. Assume $b = \sum_{j} \beta_{j}$ admits a unique and non-degenerate minimum b_{0} . Then the first eigenvalues of \mathcal{H}_{h} are of the form

$$\lambda_j(q) = hb_0\left(1 + (E_j + c)h\right) + o(h^2),$$

where hE_j are the eigenvalues of a s-dim. oscillator with symbol $\nabla^2 b(q_0)$.

References.

- [1] B. Helffer, Y. Kordyukov, *Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator.* 2011.
- [2] N. Raymond, S. Vu Ngoc, *Geometry and spectrum in 2d magnetic wells*. 2015.
- [3] L. Morin, A semiclassical Birkhoff normal form for symplectic magnetic fields. 2022.

In d = 2, we used the same ideas to describe the spectrum of non-selfadjoint operators of the form

$$(-ih\nabla - A)^2 + hV,$$

with V complex valued. Note that V acts at same order as B. Under suitable assumptions on B, V, we prove existence of discrete eigenvalues,

$$\lambda_n(h) = \mu_0 h + ((2n+1)c_0 + c_1)h^2 + o(h^2),$$

where $c_0, \ c_1 \in \mathbb{C}$.

 [4] L. Morin, N. Raymond, S. Vu Ngoc, Eigenvalue asymptotics for confining magnetic Schrödinger operators with complex potentials. 2022. These ideas are also behind other works :

- Propagation of coherent states in 2D magnetic fields
 - [5] G. Boil, S. Vu Ngoc, Long-time dynamics of coherent states in strong magnetic fields. Amer. J. Math. 2021.
- Results on the decay of the eigenfunctions in 2D magnetic wells
 - [6] Y. G. Bonthonneau, N. Raymond, S. Vu Ngoc, *Exponential localization in 2D pure magnetic wells*. Arkiv for Mat. 2021.

Symplectic magnetic fields d = 2s, k = 0.

- Normal form
- Applications

2 Constant rank magnetic fields d = 2s + k, k > 0.

We come back to the caracteristic surface

$$\Sigma=H^{-1}(0)=\Big\{(q,p)\in\mathbb{R}^{2d};\ p=A(q)\Big\}.$$

If the 2-form B has constant rank, we have another splitting of the tangent phase-space,

$$T\mathbb{R}^{2d} = \underbrace{E \oplus K \oplus F \oplus L}_{T\Sigma}$$

where

- $K = \operatorname{Ker} B$,
- E, F are symplectic with dimension 2s,
- L is a Lagrangian complement of K in $(E \oplus F)^{\perp}$.

We use three sets of variables $(x,\xi)\in\mathbb{R}^{2s}$, $(y,\eta)\in\mathbb{R}^{2s}$, $(t,\tau)\in\mathbb{R}^{2k}$.

Theorem

Assume B has constant rank and non-zero kernel (k > 0). Then there exist local variables (x, ξ, y, η, t, τ) = $\Phi(q, p)$ such that

$$H \circ \Phi^{-1} = \langle M(y,\eta,t)\tau,\tau \rangle + \sum_{j=1}^{s} \beta_j(y,\eta,t)(\xi_j^2 + x_j^2) + \mathcal{O}((x,\xi,\tau)^3),$$

and $\Phi^*(d\xi \wedge dx + d\eta \wedge dy + d\tau \wedge dt) = dp \wedge dq$, for some $k \times k$ positive matrix $M(y, \eta, t)$.

Here $(\pm i\beta_j)_{1\leq j\leq s}$ are the non-zero eigenvalues of \mathbb{B} .

- Again, we can use a Birkhoff normal form to improve the precision order.
- We deduce eigenvalue asymptotics as h
 ightarrow 0 .

Applications

• We deduce eigenvalue asymptotics. For instance in d = 3 if |B| admits a non-degenerate minimum, you can find eigenvalues of the form

• In any dimension the first eigenvalues of \mathcal{H}_h are of the form

$$\lambda_j(h) = b_0 h \Big(1 + \nu_0 h^{1/2} + (E_j + c) h \Big) + o(h^2).$$

References.

- [1] B. Helffer, Y. Kordyukov, *Eigenvalue estimates for a three-dimensional magnetic Schrödinger operator*, Asymptotic Analysis. 2013.
- [2] B. Helffer, Y. Kordyukov, N. Raymond, S. Vu Ngoc, *Magnetic wells in dimension three*, Analysis and PDE. 2016.
- [3] L. Morin, A semiclassical Birkhoff normal form for constant-rank magnetic fields, Analysis and PDE. 2022.

Discussions.

- O these results have non-semiclassical analogues? How much is known?
- ② Can we describe semiclassical operators with more general symbols

$$H(q,p)=\sum_{j=1}^{\ell}X_j(q,p)^2,$$

depending on the symplectic structure of $\Sigma = H^{-1}(0)$? Applications?

- When B has eigenvalue crossings?
- Effect of resonances between the $(eta_j(q))$?
- When the rank of B is not constant?

Discussions.

- O these results have non-semiclassical analogues? How much is known?
- ② Can we describe semiclassical operators with more general symbols

$$H(q,p)=\sum_{j=1}^{\ell}X_j(q,p)^2,$$

depending on the symplectic structure of $\Sigma = H^{-1}(0)$? Applications?

- When B has eigenvalue crossings?
- Effect of resonances between the $(eta_j(q))$?
- When the rank of B is not constant?

Thank you!