Semiclassical normal forms for the magnetic Laplacian

Léo Morin

Copenhagen University
Sept. 2023

The operator

Consider the magnetic Laplacian,

$$
\mathcal{H}_{h}=(-i h \nabla-\mathrm{A})^{2}=\sum_{j=1}^{d}\left(-i h \partial_{q_{j}}-A_{j}\right)^{2}
$$

- Self-adjoint realization on \mathbb{R}^{d}.
- Potential vector field $\mathrm{A}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ (smooth). In fact A is a 1 -form, $A=\sum_{j=1} A_{j} d q_{j}$.
- The magnetic field is a $d \times d$ matrix $\mathbb{B}=\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right)_{i<j}$. In fact B is a 2 -form, $B=\mathrm{d} A$.
- Assumption $|B(q)| \rightarrow \infty$ as $q \rightarrow \infty$.

The operator

Consider the magnetic Laplacian,

$$
\mathcal{H}_{h}=(-i h \nabla-\mathrm{A})^{2}=\sum_{j=1}^{d}\left(-i h \partial_{q_{j}}-A_{j}\right)^{2}
$$

- Self-adjoint realization on \mathbb{R}^{d}.
- Potential vector field $\mathrm{A}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ (smooth). In fact A is a 1 -form, $A=\sum_{j=1} A_{j} d q_{j}$.
- The magnetic field is a $d \times d$ matrix $\mathbb{B}=\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right)_{i<j}$. In fact B is a 2 -form, $B=\mathrm{d} A$.
- Assumption $|B(q)| \rightarrow \infty$ as $q \rightarrow \infty$.

Goal
\rightarrow Study the spectrum when $h \rightarrow 0$ depending on the variations of B.
\rightarrow Construct a normal form for \mathcal{H}_{h}.

The symbol

$$
\mathcal{H}_{h}=(-i h \nabla-A)^{2}
$$

- Note that $\mathbb{B}_{j k}=\frac{i}{h}\left[-i h \nabla_{j}-A_{j},-i h \nabla_{k}-A_{k}\right]$. To be related with hypoelliptic sum of squares?
- The semiclassical symbol is,

$$
H(q, p)=\sum_{j=1}^{d}\left(p_{j}-A_{j}(q)\right)^{2}=|p-A(q)|^{2}
$$

The symbol

$$
\mathcal{H}_{h}=(-i h \nabla-A)^{2}
$$

- Note that $\mathbb{B}_{j k}=\frac{i}{h}\left[-i h \nabla_{j}-A_{j},-i h \nabla_{k}-A_{k}\right]$. To be related with hypoelliptic sum of squares?
- The semiclassical symbol is,

$$
H(q, p)=\sum_{j=1}^{d}\left(p_{j}-A_{j}(q)\right)^{2}=|p-A(q)|^{2}
$$

For example, in $d=2$, you can compare H with the $d+1$ dimensional symbol

$$
H_{\mathrm{hyp}}=\left(p_{1}-A_{1} p_{3}\right)^{2}+\left(p_{2}-A_{2} p_{3}\right)^{2} \quad ?
$$

Caracteristic surface

Construct a normal form for H microlocally near the surface

$$
\Sigma=H^{-1}(0)=\left\{(q, p) \in \mathbb{R}^{2 d} ; p=A(q)\right\} .
$$

Of importance is the symplectic structure $\mathrm{d} p \wedge \mathrm{~d} q$ on the phase space.

Proposition

The restriction of $\mathrm{d} p \wedge \mathrm{~d} q$ to Σ is $\pi^{*} B$.
Here π is the canonical projection $\pi(q, p)=q$.

- The rank of B will have strong influence. We use

$$
d=2 s+k, \quad k=\operatorname{dim}(\operatorname{Ker} \mathbb{B})
$$

We assume s, k are constant i.e. independent of q.
(1) Symplectic magnetic fields $d=2 s, k=0$.

- Normal form
- Applications
(2) Constant rank magnetic fields $d=2 s+k, k>0$.

When B is symplectic

Assume $d=2 s$. Then (Σ, B) is a symplectic submanifold of $\mathbb{R}^{2 d}$ and

$$
T \mathbb{R}^{2 d}=T \Sigma \oplus T \Sigma^{\perp}
$$

When B is symplectic

Assume $d=2 s$. Then (Σ, B) is a symplectic submanifold of $\mathbb{R}^{2 d}$ and

$$
T \mathbb{R}^{2 d}=T \Sigma \oplus T \Sigma^{\perp}
$$

Near Σ, we can approximate H by its Hessian.

Proposition

The Hessian of H satisfies

$$
\nabla^{2} H(\mathcal{V}, \mathcal{V})=2\left|\mathbb{B}(q) \pi_{*} \mathcal{V}\right|^{2} \quad \text { for } \mathcal{V} \in T \Sigma^{\perp} .
$$

Hence B appears at two different places:

- The curvature of Σ,
- The Hessian of H.

Normal form I

We obtain the following normal form for the symbol. We denote by $\left(\pm i \beta_{j}(q)\right)_{1 \leq j \leq d}$ the eigenvalues of \mathbb{B} and assume they are simple.

Proposition

Assume B is symplectic, i.e. $d=2 s$. Then there exist local variables $(x, \xi, y, \eta)=\Phi(q, p)$ near Σ such that

$$
H \circ \Phi^{-1}(x, \xi, y, \eta)=\sum_{j=1}^{s} \beta_{j}(y, \eta)\left(\xi_{j}^{2}+x_{j}^{2}\right)+\mathcal{O}\left((x, \xi)^{3}\right)
$$

and $\Phi_{*}(\mathrm{~d} p \wedge \mathrm{~d} q)=\mathrm{d} \xi \wedge \mathrm{d} x+\mathrm{d} \eta \wedge \mathrm{d} y$.

Remarks

- We can use a Birkhoff normal form to get a higher order precision.
- In dimension $d=2$, you have only one oscillator $\beta(y, \eta)\left(\xi^{2}+x^{2}\right)$.
- The oscillator $\xi^{2}+x^{2}$ is the cyclotron motion.

Classical dynamics

Champs B double puit

Normal form II

We come back to the operator...

$$
\mathcal{H}_{h}=(-i h \nabla-A)^{2}=\mathrm{Op}_{h}^{w} H
$$

where $O p_{h}^{w}$ is the semiclassical Weyl quantization.

- We recall the normal form on the symbol

$$
H \circ \Phi^{-1}=\sum_{j=1}^{s} \beta_{j}(y, \eta)\left(\xi_{j}^{2}+x_{j}^{2}\right)+\ldots
$$

- We quantize this result. To main order, \mathcal{H}_{h} will be described by

$$
\mathcal{N}_{h}=\sum_{j=1}^{s} \mathrm{Op}_{h}^{w}\left(\beta_{j}\right)\left(-h^{2} \partial_{x_{j}}^{2}+x_{j}^{2}\right)
$$

and the spectrum is given by a familly of operators,

$$
\mathcal{N}_{h}^{[n]}=\sum_{j=1}^{s} h\left(2 n_{j}+1\right) \operatorname{Op}_{h}^{w}\left(\beta_{j}\right)
$$

Table of contents

(1) Symplectic magnetic fields $d=2 s, k=0$.

- Normal form
- Applications
(2) Constant rank magnetic fields $d=2 s+k, k>0$.

Application 1

We have the following Weyl law.

Theorem

Assume $\left(\beta_{j}(q)\right)_{j}$ are pairwise distinct for $\left\{b_{0}(q) \leq b_{1}\right\}$. The number of eigenvalues of \mathcal{H}_{h} below $b_{1} h$ is given by

$$
N\left(\mathcal{H}_{h}, b_{1} h\right) \sim \frac{1}{(2 \pi h)^{s}} \sum_{n \in \mathbb{N}^{s}} \int_{\left\{b_{n}(q) \leq b_{1}\right\}} \frac{B^{s}}{s!} .
$$

with $b_{n}(q)=\sum_{j=1}^{s}\left(2 n_{j}+1\right) \beta_{j}(q)$.

References.

[1] J.P. Demailly, Champs magnétiques et inégalités de Morse pour la d"-cohomologie. CMP, 1986.
[2] L. Morin, A semiclassical Birkhoff normal form for symplectic magnetic fields. Journal of spectral theory. 2022.

Application 2

We can also deduce eigenvalue asymptotics.

Application 2

We can also deduce eigenvalue asymptotics.

Theorem

Assume $d=2$. Assume $|B|$ admits a unique and non-degenerate minimum b_{0}. Then for $p, n \in \mathbb{N}$, you can find eigenvalues of \mathcal{H}_{h} such that

$$
\lambda_{n, p}(h)=(2 n+1) b_{0} h\left(1+\left((2 p+1) c_{0}+c_{1}\right) h\right)+o\left(h^{2}\right) .
$$

There is also a full expansion in powers of h. Moreover, the first eigenvalues of \mathcal{H}_{h} are

$$
\left.\lambda_{0, p}(h)=b_{0} h\left(1+\left((2 p+1) c_{0}+c_{1}\right) h\right)+o\left(h^{2}\right)\right)
$$

Here c_{0}, c_{1} are explicit constants depending on the Hessian of β at the minimum.

Application 2

Also in higher dimension.

Theorem

Assume $d=2 s$. Assume $b=\sum_{j} \beta_{j}$ admits a unique and non-degenerate minimum b_{0}. Then the first eigenvalues of \mathcal{H}_{h} are of the form

$$
\lambda_{j}(q)=h b_{0}\left(1+\left(E_{j}+c\right) h\right)+o\left(h^{2}\right)
$$

where $h E_{j}$ are the eigenvalues of a s-dim. oscillator with symbol $\nabla^{2} b\left(q_{0}\right)$.

References.

[1] B. Helffer, Y. Kordyukov, Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator. 2011.
[2] N. Raymond, S. Vu Ngoc, Geometry and spectrum in 2d magnetic wells. 2015.
[3] L. Morin, A semiclassical Birkhoff normal form for symplectic magnetic fields. 2022.

Application 3

In $d=2$, we used the same ideas to describe the spectrum of non-selfadjoint operators of the form

$$
(-i h \nabla-A)^{2}+h V
$$

with V complex valued. Note that V acts at same order as B. Under suitable assumptions on B, V, we prove existence of discrete eigenvalues,

$$
\lambda_{n}(h)=\mu_{0} h+\left((2 n+1) c_{0}+c_{1}\right) h^{2}+o\left(h^{2}\right)
$$

where $c_{0}, c_{1} \in \mathbb{C}$.
[4] L. Morin, N. Raymond, S. Vu Ngoc, Eigenvalue asymptotics for confining magnetic Schrödinger operators with complex potentials. 2022.

Application 4

These ideas are also behind other works:

- Propagation of coherent states in 2D magnetic fields
[5] G. Boil, S. Vu Ngoc, Long-time dynamics of coherent states in strong magnetic fields. Amer. J. Math. 2021.
- Results on the decay of the eigenfunctions in 2D magnetic wells
[6] Y. G. Bonthonneau, N. Raymond, S. Vu Ngoc, Exponential localization in 2D pure magnetic wells. Arkiv for Mat. 2021.

(1) Symplectic magnetic fields $d=2 s, k=0$.

- Normal form
- Applications
(2) Constant rank magnetic fields $d=2 s+k, k>0$.

When B has non-zero kernel.

We come back to the caracteristic surface

$$
\Sigma=H^{-1}(0)=\left\{(q, p) \in \mathbb{R}^{2 d} ; p=A(q)\right\} .
$$

If the 2 -form B has constant rank, we have another splitting of the tangent phase-space,

$$
T \mathbb{R}^{2 d}=\underbrace{E \oplus}_{T \Sigma} \overbrace{K \oplus F}^{T \Sigma^{\perp}} \oplus L
$$

where

- $K=\operatorname{Ker} B$,
- E, F are symplectic with dimension $2 s$,
- L is a Lagrangian complement of K in $(E \oplus F)^{\perp}$.

We use three sets of variables $(x, \xi) \in \mathbb{R}^{2 s},(y, \eta) \in \mathbb{R}^{2 s},(t, \tau) \in \mathbb{R}^{2 k}$.

Normal form

Theorem

Assume B has constant rank and non-zero kernel $(k>0)$. Then there exist local variables $(x, \xi, y, \eta, t, \tau)=\Phi(q, p)$ such that

$$
H \circ \Phi^{-1}=\langle M(y, \eta, t) \tau, \tau\rangle+\sum_{j=1}^{s} \beta_{j}(y, \eta, t)\left(\xi_{j}^{2}+x_{j}^{2}\right)+\mathcal{O}\left((x, \xi, \tau)^{3}\right),
$$

and $\Phi^{*}(\mathrm{~d} \xi \wedge \mathrm{~d} x+\mathrm{d} \eta \wedge \mathrm{d} y+\mathrm{d} \tau \wedge \mathrm{d} t)=\mathrm{d} p \wedge \mathrm{~d} q$, for some $k \times k$ positive matrix $M(y, \eta, t)$.

Here $\left(\pm i \beta_{j}\right)_{1 \leq j \leq s}$ are the non-zero eigenvalues of \mathbb{B}.

- Again, we can use a Birkhoff normal form to improve the precision order.
- We deduce eigenvalue asymptotics as $h \rightarrow 0$.

Applications

- We deduce eigenvalue asymptotics. For instance in $d=3$ if $|B|$ admits a non-degenerate minimum, you can find eigenvalues of the form

$$
\lambda_{n, p, j}(h)=(2 n+1) b_{0} h\left(1+\frac{(2 p+1)}{(2 n+1)^{1 / 2}} \nu_{0} h^{1 / 2}+\left((2 j+1) \alpha+c_{n, p}\right) h\right)+o\left(h^{2}\right.
$$

- In any dimension the first eigenvalues of \mathcal{H}_{h} are of the form

$$
\lambda_{j}(h)=b_{0} h\left(1+\nu_{0} h^{1 / 2}+\left(E_{j}+c\right) h\right)+o\left(h^{2}\right)
$$

References.
[1] B. Helffer, Y. Kordyukov, Eigenvalue estimates for a three-dimensional magnetic Schrödinger operator, Asymptotic Analysis. 2013.
[2] B. Helffer, Y. Kordyukov, N. Raymond, S. Vu Ngoc, Magnetic wells in dimension three, Analysis and PDE. 2016.
[3] L. Morin, A semiclassical Birkhoff normal form for constant-rank magnetic fields, Analysis and PDE. 2022.

Discussions.

(1) Do these results have non-semiclassical analogues? How much is known?
(2) Can we describe semiclassical operators with more general symbols

$$
H(q, p)=\sum_{j=1}^{\ell} X_{j}(q, p)^{2}
$$

depending on the symplectic structure of $\Sigma=H^{-1}(0)$? Applications?
(When B has eigenvalue crossings?

- Effect of resonances between the $\left(\beta_{j}(q)\right)$?
(When the rank of B is not constant?

Discussions.

(1) Do these results have non-semiclassical analogues? How much is known?
(2) Can we describe semiclassical operators with more general symbols

$$
H(q, p)=\sum_{j=1}^{\ell} X_{j}(q, p)^{2}
$$

depending on the symplectic structure of $\Sigma=H^{-1}(0)$? Applications?
(When B has eigenvalue crossings?

- Effect of resonances between the $\left(\beta_{j}(q)\right)$?
(When the rank of B is not constant?

> Thank you!

