Schrödinger evolution in a low-density random potential -Convergence to solutions of the linear Boltzmann equation

Søren Mikkelsen

High frequency analysis: from operator algebras to PDEs

Angers, August 2023

Department of Mathematical Sciences, Mathematics, University of Bath

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Søren Mikkelsen

Schrödinger evolution in microscopic coordinates

Consider the Schrödinger opereator

$$H_{\lambda,1} = -\frac{1}{2}\Delta_X + \lambda W(X),$$

where $-\Delta_X$ is the positive Laplacian, $\lambda > 0$ is a coupling constant and W(X) is the potential.

We have the associated time dependent Schrödinger equation

$$\begin{cases} i\partial_T \varphi(T, X) = H_{\lambda, 1} \varphi(T, X) \\ \varphi(0, X) = \varphi(X) \end{cases}$$

with suitable initial data φ .

Ideas in the proof

Schrödinger evolution in macroscopic coordinates

We call (X, T) the microscopic coordinates and define the macroscopic coordinates (x, t) to be

 $(x\hbar, t\hbar) = (X, T).$

Schrödinger evolution in macroscopic coordinates

We call (X, T) the microscopic coordinates and define the macroscopic coordinates (x, t) to be

 $(x\hbar,t\hbar)=(X,T).$

Our the Schrödinger opereator in macroscopic coordinates is given by

$$H_{\lambda,\hbar} = -\frac{\hbar^2}{2}\Delta_x + \lambda W(\frac{x}{\hbar}),$$

The time dependent Schrödinger equation is given by

$$\begin{cases} i\hbar\partial_t\varphi_{\hbar}(t,x) = H_{\lambda,\hbar}\varphi_{\hbar}(t,x) \\ \varphi_{\hbar}(0,x) = \varphi_{\hbar}(x) \end{cases}$$

with suitable initial data φ_{\hbar} .

Department of Mathematical Sciences, Mathematics, University of Bath

Schrödinger evolution in macroscopic coordinates

We call (X, T) the microscopic coordinates and define the macroscopic coordinates (x, t) to be

 $(x\hbar, t\hbar) = (X, T).$

Our the Schrödinger opereator in macroscopic coordinates is given by

$$H_{\lambda,\hbar} = -\frac{\hbar^2}{2}\Delta_x + \lambda W(\frac{x}{\hbar}),$$

The time dependent Schrödinger equation is given by

$$\begin{cases} i\hbar\partial_t\varphi_{\hbar}(t,x) = H_{\lambda,\hbar}\varphi_{\hbar}(t,x) \\ \varphi_{\hbar}(0,x) = \varphi_{\hbar}(x) \end{cases}$$

with suitable initial data φ_{\hbar} .

Assume that $\sup_{h \in (0,1]} \|\varphi_h\|_{L^2(\mathbb{R}^d)} < \infty$. Then along some subsequence $\{h_j\}_{j \in \mathbb{N}}$ we have

$$\langle \mathsf{Op}^{\mathsf{w}}_{\hbar}(a) \varphi_{\hbar_{j}}(t,x), \varphi_{\hbar_{j}}(t,x)
angle o \int_{\mathbb{R}^{2d}} a(x,p) \, d\mu_{t}(x,p)$$

for all $a \in \mathcal{S}(\mathbb{R}^{2d})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The model we consider

Let \mathcal{X} be a Poisson point process with intensity 1 and assume V is a positive Schwartz function. We are interested in solutions to the Schrödinger equation

$$egin{cases} i\hbar\partial_t arphi_\hbar(t,x) &= H_{\lambda,\hbar}arphi_\hbar(t,x) \ \psi_\hbar(0,x) &= arphi_\hbar(x), \end{cases}$$

where

$$H_{\lambda,\hbar} = -\frac{\hbar^2}{2}\Delta + \lambda \sum_{x_j \in \mathcal{X}} V(\frac{x - \hbar^{1 - 1/d} x_j}{\hbar}).$$

Department of Mathematical Sciences, Mathematics, University of Bath

Ideas in the proof

The model we consider

Let \mathcal{X} be a Poisson point process with intensity 1 and assume V is a positive Schwartz function. We are interested in solutions to the Schrödinger equation

$$\left\{ egin{aligned} &i\hbar\partial_t arphi_\hbar(t,x) = \mathcal{H}_{\lambda,\hbar} arphi_\hbar(t,x) \ &\psi_\hbar(0,x) = arphi_\hbar(x), \end{aligned}
ight.$$

where

$$H_{\lambda,\hbar} = -\frac{\hbar^2}{2}\Delta + \lambda \sum_{x_j \in \mathcal{X}} V(\frac{x - \hbar^{1 - 1/d} x_j}{\hbar}).$$

Under these assumption we have that $H_{\lambda,\hbar}$ is self-adjoint and the solutions is given by

$$\varphi_{\hbar}(t,x) = U_{\lambda,\hbar}(t)\varphi_{\hbar}(x) = e^{-it\hbar^{-1}H_{\lambda,\hbar}}\varphi_{\hbar}(x).$$

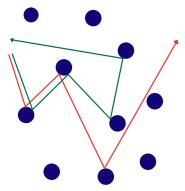
To investigate the behaviour as $\hbar \rightarrow 0$ we will consider the expectations

$$\mathbb{E}[\langle \mathsf{Op}^{\mathsf{w}}_{\hbar}(a)U_{\lambda,\hbar}(t)\varphi_{\hbar}, U_{\lambda,\hbar}(t)\varphi_{\hbar}\rangle],$$

where $a \in \mathcal{S}(\mathbb{R}^{2d})$ is some observable.

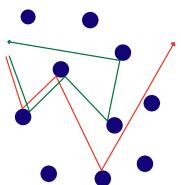
Ideas in the proof

The Lorentz gas and linear Boltzmann equation



Ideas in the proof

The Lorentz gas and linear Boltzmann equation



Time evolution of a particle cloud with density $f \in L^1(\mathbb{R}^{2d})$ is given by

$$f_t^{(r)}(x,p) = f(\Phi_r^{-t}(x,p)).$$

Department of Mathematical Sciences, Mathematics, University of Bath

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Søren Mikkelsen

Ideas in the proof

The Lorentz gas and linear Boltzmann equation

Time evolution of a particle cloud with density $f \in L^1(\mathbb{R}^{2d})$ is given by

$$f_t^{(r)}(x,p) = f(\Phi_r^{-t}(x,p)).$$

In 1905 Lorentz proposed that $f_t^{(r)}(x, p)$ is governed, as $r \to 0$, by the linear Boltzmann equation given by

$$\partial_t f(t, x, p) + \langle p, \nabla_x f(t, x, p) \rangle$$

=
$$\int_{\mathbb{R}^d} [\Sigma(p, q) f(t, x, q) - \Sigma(q, p) f(t, x, p)] dq$$

with initial condition f(0, x, p) = f(x, p), and where $\Sigma(p, q)$ is the collision kernel (differential cross section) of the individual scatterer.

Collision series for solutions to the linear Boltzmann equation

The solution of the linear Boltzmann equation can be expressed as the collision series

$$f(t, x, p) = \sum_{n=0}^{\infty} f^{(n)}(t, x, p),$$

where

$$\begin{split} f^{(n)}(t,x,q_0) &= \int_{[0,t]_{\leq}^n} \int_{\mathbb{R}^{nd}} \prod_{i=1}^n \Sigma(q_i,q_{i-1}) \prod_{i=1}^{n+1} e^{-(s_{i-1}-s_i)\Sigma_{\text{tot}}(q_i)} \\ &\times f_0(x-tq_0-\sum_{i=1}^n s_i(q_i-q_{i-1}),q_n) \, d\boldsymbol{q}_{1,n} d\boldsymbol{s}_{n,1}, \end{split}$$

with the convention $s_0 = t$, $s_{n+1} = 0$, the notation

$$[0, t]_{\leq}^{n} = \{s_{n} \leq \cdots \leq s_{1} \mid s_{i} \in [0, t]\},\$$

and the total scattering cross section

$$\Sigma_{\mathrm{tot}}(q) = \int_{\mathbb{R}^d} \Sigma(p,q) \, dp.$$

Measures solving the linear Boltzmann equation

The solution to the linear Boltzmann equation defines a semigroup $\{\mathcal{L}_t\}_{t\geq 0}$ of linear operators $\mathcal{L}_t: L^1(\mathbb{R}^{2d}) \to L^1(\mathbb{R}^{2d})$ so that

 $f(t, x, p) = \mathcal{L}_t f(x, p).$

Measures solving the linear Boltzmann equation

The solution to the linear Boltzmann equation defines a semigroup $\{\mathcal{L}_t\}_{t\geq 0}$ of linear operators $\mathcal{L}_t: L^1(\mathbb{R}^{2d}) \to L^1(\mathbb{R}^{2d})$ so that

$$f(t, x, p) = \mathcal{L}_t f(x, p).$$

We define the adjoint \mathcal{L}_t^* by

$$\int a(x,p)f(t,x,p)\,dx\,dp = \int [\mathcal{L}_t^*a](x,p)f_0(x,p)\,dx\,dp.$$

Measures solving the linear Boltzmann equation

The solution to the linear Boltzmann equation defines a semigroup $\{\mathcal{L}_t\}_{t\geq 0}$ of linear operators $\mathcal{L}_t: L^1(\mathbb{R}^{2d}) \to L^1(\mathbb{R}^{2d})$ so that

$$f(t, x, p) = \mathcal{L}_t f(x, p).$$

We define the adjoint \mathcal{L}_t^* by

$$\int a(x,p)f(t,x,p)\,dx\,dp = \int [\mathcal{L}_t^*a](x,p)f_0(x,p)\,dx\,dp.$$

Given a Borel measure μ_0 on \mathbb{R}^{2d} , we define the measure μ_t by

$$\int a(x,p) \, d\mu_t(x,p) = \int [\mathcal{L}_t^* a](x,p) \, d\mu_0(x,p).$$

We will say the family of measures $\{\mu_t\}_{t\geq 0}$ is a solution of the linear Boltzmann equation with initial data μ_0 .

T-operator and scattering matrix

The *T*-operator T(E) for the quantum mechanical scattering in the single-site potential *V* is defined as the limit

$$T(E) = \lim_{\gamma \to 0_+} T^{\gamma}(E), \qquad T^{\gamma}(E) = \lambda V + \lambda^2 V \frac{1}{E - (-\frac{1}{2}\Delta + \lambda V) + i\gamma} V.$$
(1)

T-operator and scattering matrix

The *T*-operator T(E) for the quantum mechanical scattering in the single-site potential *V* is defined as the limit

$$T(E) = \lim_{\gamma \to 0_+} T^{\gamma}(E), \qquad T^{\gamma}(E) = \lambda V + \lambda^2 V \frac{1}{E - (-\frac{1}{2}\Delta + \lambda V) + i\gamma} V.$$
(1)

An important quantity is the kernel of T(E) in momentum representation with $E = \frac{1}{2}p^2$, which we denote by $\hat{T}(p,q)$. This "*T*-matrix" is related to the scattering matrix S(p,q) by the relation

$$S(p,q) = \delta(p-q) - 2\pi i \,\delta(\frac{1}{2}p^2 - \frac{1}{2}q^2) \,\hat{T}(p,q).$$
⁽²⁾

T-operator and scattering matrix

The *T*-operator T(E) for the quantum mechanical scattering in the single-site potential *V* is defined as the limit

$$T(E) = \lim_{\gamma \to 0_+} T^{\gamma}(E), \qquad T^{\gamma}(E) = \lambda V + \lambda^2 V \frac{1}{E - (-\frac{1}{2}\Delta + \lambda V) + i\gamma} V.$$
(1)

An important quantity is the kernel of T(E) in momentum representation with $E = \frac{1}{2}\rho^2$, which we denote by $\hat{T}(p,q)$. This "*T*-matrix" is related to the scattering matrix S(p,q) by the relation

$$S(p,q) = \delta(p-q) - 2\pi i \,\delta(\frac{1}{2}p^2 - \frac{1}{2}q^2) \,\hat{T}(p,q).$$
⁽²⁾

From the resolvent formalism we obtain the formal series expansion given by

$$T^{\gamma}(E) = \lambda V \sum_{n=0}^{\infty} \left[\lambda \frac{1}{E - (-\frac{1}{2}\Delta) + i\gamma} V \right]^n.$$

Department of Mathematical Sciences, Mathematics, University of Bath

Main theorem

Theorem (M. 2022)

Let X be a Poisson point process with intensity 1 and assume V is a positive Schwartz function. We assume $\lambda > 0$ is small enough and let

$$\mathcal{H}_{\lambda,\hbar} = -rac{\hbar^2}{2}\Delta + \lambda\sum_{x_j\in\mathcal{X}}Vig(rac{x-\hbar^{1-1/d}x_j}{\hbar}ig).$$

Let $\{\varphi_{\hbar}\}_{\hbar \in I}$ be a uniform semiclassical family in $H^{20}_{\hbar}(\mathbb{R}^3)$ with Wigner measure μ_0 , and let $\varphi_{\hbar}(t) = U_{\lambda,\hbar}(t)\varphi_{\hbar}$. Then, for any t > 0, $a \in S(\mathbb{R}^{2d})$, we have that

$$\mathbb{E}\langle \mathsf{Op}_{\hbar}^{\mathsf{w}}(a)\varphi_{\hbar}(t),\varphi_{\hbar}(t)\rangle \to \int_{\mathbb{R}^{2d}} a(x,p)\,d\mu_{t}(x,p),\tag{3}$$

for $\hbar\to$ 0 in I, where μ_t is a solution of the linear Boltzmann equation with initial data μ_0 and collision kernel

$$\Sigma(p,q) = (2\pi)^{d+1} \rho \,\delta(\frac{1}{2}p^2 - \frac{1}{2}q^2) |\hat{T}(p,q)|^2. \tag{4}$$

Department of Mathematical Sciences, Mathematics, University of Bath

Previous known results

L. Erdős and H.-T. Yau.

Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation.

Comm. Pure Appl. Math., 53(6):667-735, 2000.

D. Eng and L. Erdős.

The linear Boltzmann equation as the low density limit of a random Schrödinger equation.

Rev. Math. Phys., 17(6):669-743, 2005.

J. Griffin and J. Marklof.

Quantum transport in a low-density periodic potential: homogenisation via homogeneous flows.

Pure Appl. Anal., 1(4):571-614, 2019.

J. Griffin and J. Marklof.

Quantum transport in a crystal with short-range interactions: the Boltzmann-Grad limit.

J. Stat. Phys., 184(2):Paper No. 16, 46, 2021.

J. Griffin.

Derivation of the linear boltzmann equation from the damped quantum lorentz gas with a general scatterer configuration.

Annales Henri Poincaré, 2022.

Ideas in the proof

Duhamel expansion

The proof is based on the following expansion

$$U_{\lambda,\hbar}(-t)U_{\hbar,0}(t) - I = \frac{i\lambda}{\hbar} \int_0^t U_{\lambda,\hbar}(-t_1)W_{\hbar}U_{\hbar,0}(-t_1) dt_1$$
$$= \frac{i\lambda}{\hbar} \int_0^t U_{\lambda,\hbar}(-t_1)U_{\hbar,0}(-t_1)W_{\hbar}^{t_1} dt_1,$$

where

$$W_{\hbar}^{t_1} = U_{\hbar,0}(t_1) W_{\hbar} U_{\hbar,0}(-t_1)$$

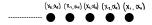
In each step we sort the terms in diagonal and off diagonal terms

$$W_{\hbar}^{t_2}W_{\hbar}^{t_1} = \sum_{x \in \mathcal{X}} V_{\hbar,x}^{t_2} \sum_{x \in \mathcal{X}} V_{\hbar,x}^{t_1} = \sum_{x \in \mathcal{X}} V_{\hbar,x_j}^{t_2} V_{\hbar,x_j}^{t_1} + \sum_{(x_1,x_2) \in \mathcal{X}_{\neq}^2} V_{\hbar,x_2}^{t_2} V_{\hbar,x_1}^{t_1}$$

Department of Mathematical Sciences, Mathematics, University of Bath

Ideas in the proof

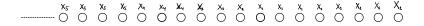
Duhamel expansion II

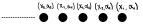


Søren Mikkelsen

Ideas in the proof

Duhamel expansion II





Lemma

Let $H_{\lambda,\hbar} = -\frac{\hbar^2}{2}\Delta + \lambda W_{\hbar}(x)$, where $\hbar \in (0, \hbar_0]$, W_{\hbar} and λ satisfy assumption of the main theorem and let $U_{\lambda,\hbar}(t) = e^{-it\hbar^{-1}H_{\lambda,\hbar}}$. Then for any $\tau_0 \in \mathbb{N}$ and $k_0 \in \mathbb{N}$ we have that

$$U_{\lambda,\hbar}(-t) = U_{\hbar,0}(-t) + \sum_{i=0}^{2} \sum_{k=k_i}^{k_0} \sum_{\boldsymbol{x} \in \mathcal{X}_{\neq}^{k-i}} \mathcal{I}_i(k, \boldsymbol{x}, t; \hbar) + \mathcal{R}^{\text{rec}}(k_0; \hbar) + \mathcal{R}^{k_0, \tau_0}(N; \hbar)$$

where $k_0 = 1$, $k_1 = 3$, and $k_2 = 4$.

Department of Mathematical Sciences, Mathematics, University of Bath

Ideas in the proof

Duhamel expansion III

The operators from the previous lemma are given "explicitly". For the operator $\mathcal{I}_0(k,\textbf{\textit{x}},t;\hbar)$ we have

$$\mathcal{I}_{0}(k,\boldsymbol{x},t;\hbar) = \sum_{\alpha \in \mathbb{N}^{k}} (i\lambda)^{|\alpha|} \int_{[0,t]_{\leq}^{k}} \prod_{m=1}^{k} \Theta_{\alpha_{m}}(s_{m-1},s_{m},x_{m};V,\hbar) \, d\boldsymbol{s}_{k,1} U_{\hbar,0}(-t),$$

where the operators $\Theta_m(s_1, s_2, z; V, \hbar)$ are given by

$$\begin{split} \frac{1}{\hbar} \int_{\mathbb{R}^{m-1}_+} \mathbf{1}_{[0,\hbar^{-1}(s_1-s_2)]}(t^+_{1,m-1}) U_{\hbar,0}(-s_2) V_{\hbar,z} \\ & \times \Big\{ \prod_{i=1}^{m-1} U_{\hbar,0}(-t_i) V_{\hbar,z} \Big\} U_{\hbar,0}(t^+_{1,m-1}+s_2) dt_{1,m-1}, \end{split}$$

with

$$V_{\hbar,z}(x) = V\left(\frac{x - \hbar^{1-1/d}z}{\hbar}\right).$$

Department of Mathematical Sciences, Mathematics, University of Bath

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

Ideas in the proof

Duhamel expansion III

The operators from the previous lemma are given "explicitly". For the operator $\mathcal{I}_0(k, \mathbf{x}, t; \hbar)$ we have

$$\mathcal{I}_{0}(k,\boldsymbol{x},t;\hbar) = \sum_{\alpha \in \mathbb{N}^{k}} (i\lambda)^{|\alpha|} \int_{[0,t]_{\leq}^{k}} \prod_{m=1}^{k} \Theta_{\alpha_{m}}(s_{m-1},s_{m},x_{m};V,\hbar) \, d\boldsymbol{s}_{k,1} U_{\hbar,0}(-t),$$

where the operators $\Theta_m(s_1, s_2, z; V, \hbar)$ are given by

$$\frac{1}{\hbar} \int_{\mathbb{R}^{m-1}_+} \mathbf{1}_{[0,\hbar^{-1}(s_1-s_2)]}(t^+_{1,m-1}) U_{\hbar,0}(-s_2) V_{\hbar,z} \\ \times \Big\{ \prod_{i=1}^{m-1} U_{\hbar,0}(-t_i) V_{\hbar,z} \Big\} U_{\hbar,0}(t^+_{1,m-1}+s_2) dt_{1,m-1},$$

with

$$V_{\hbar,z}(x) = V\left(\frac{x-\hbar^{1-1/d}z}{\hbar}\right).$$

Note that the kernel of $\Theta_m(s_1, s_2, z; V, \hbar)$ in momentum representation is given by

$$(p_m, p_0) \mapsto \frac{1}{\hbar} e^{-i\hbar^{-1/d} \langle z, p_m - p_0 \rangle} e^{is_2\hbar^{-1} \frac{1}{2} (p_m^2 - p_0^2)} \Psi_m(p_m, p_0, \hbar^{-1}(s_1 - s_2); V).$$

Convergence of the Duhamel expansion?

Assume $arphi \in H^{20}_{\hbar}(\mathbb{R}^3)$ and consider the expansion

$$U_{\lambda,\hbar}(-t)\varphi = U_{\hbar,0}(-t)\varphi + \sum_{i=0}^{2}\sum_{k=k_{i}}^{k_{0}}\sum_{\boldsymbol{x}\in\mathcal{X}_{\neq}^{k-i}}\mathcal{I}_{i}(k,\boldsymbol{x},t;\hbar)\varphi + \mathcal{R}^{\mathrm{rec}}(k_{0};\hbar)\varphi + \mathcal{R}^{k_{0},\tau_{0}}(\boldsymbol{N};\hbar)\varphi$$

Convergence of the Duhamel expansion?

Assume $\varphi \in H^{20}_{\hbar}(\mathbb{R}^3)$ and consider the expansion

$$U_{\lambda,\hbar}(-t)\varphi = U_{\hbar,0}(-t)\varphi + \sum_{i=0}^{2}\sum_{k=k_{i}}^{k_{0}}\sum_{\boldsymbol{x}\in\mathcal{X}_{\neq}^{k-i}}\mathcal{I}_{i}(k,\boldsymbol{x},t;\hbar)\varphi + \mathcal{R}^{\mathrm{rec}}(k_{0};\hbar)\varphi + \mathcal{R}^{k_{0},\tau_{0}}(\boldsymbol{N};\hbar)\varphi$$

A key step in the proof of the main theorem is to prove that this series converge on average in L^2 . For fixed i = 0 and k one of these norms is

$$\mathbb{E}\Big[\big\|\sum_{\boldsymbol{x}\in\mathcal{X}_{\neq}^{k}}\mathcal{I}_{0}(\boldsymbol{k},\boldsymbol{x},t;\hbar)\varphi\big\|_{L^{2}(\mathbb{R}^{d})}^{2}\Big] = \mathbb{E}\Big[\sum_{\boldsymbol{x}\in\mathcal{X}_{\neq}^{k}}\sum_{\tilde{\boldsymbol{x}}\in\mathcal{X}_{\neq}^{k}}\langle\mathcal{I}_{0}(\boldsymbol{k},\boldsymbol{x},t;\hbar)\varphi,\mathcal{I}_{0}(\boldsymbol{k},\tilde{\boldsymbol{x}},t;\hbar)\varphi\rangle_{L^{2}(\mathbb{R}^{d})}\Big].$$

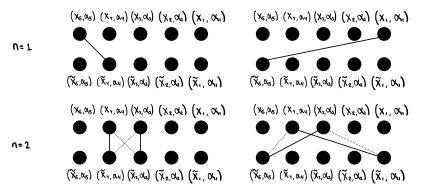
Ideas in the proof

Convergence of the Duhamel expansion?

We have the expression

$$\mathbb{E}\Big[\sum_{\boldsymbol{x}\in\mathcal{X}_{\neq}^{k}}\sum_{\tilde{\boldsymbol{x}}\in\mathcal{X}_{\neq}^{k}}\langle\mathcal{I}_{0}(\boldsymbol{k},\boldsymbol{x},t;\boldsymbol{\hbar})\varphi,\mathcal{I}_{0}(\boldsymbol{k},\tilde{\boldsymbol{x}},t;\boldsymbol{\hbar})\varphi\rangle_{L^{2}(\mathbb{R}^{d})}\Big].$$

What is the combinatorics?



This indicates that there is a combinatoric challenge in estimating these norms.

Ideas in the proof

What remains

After having established the convergence of the Duhamel expansion what remain is to establish the limits of the terms

$$\sum_{i=0}^{2} \sum_{j=0}^{2} \sum_{k=k_{j}}^{k_{0}} \sum_{\tilde{k}=k_{j}}^{k_{0}} \mathbb{E}\Big[\sum_{\boldsymbol{x}\in\mathcal{X}_{\neq}^{k-i}} \sum_{\tilde{\boldsymbol{x}}\in\mathcal{X}_{\neq}^{k-j}} \langle \mathsf{Op}_{\hbar}^{\mathsf{w}}(\boldsymbol{a})\mathcal{I}_{i}(\boldsymbol{k},\boldsymbol{x},t;\hbar)\varphi, \mathcal{I}_{j}(\tilde{\boldsymbol{k}},\tilde{\boldsymbol{x}},t;\hbar)\varphi \rangle_{L^{2}(\mathbb{R}^{d})}\Big].$$

This is done in a number of steps:

I Firstly when either i > 0 or j > 0 we can prove the average converges to zero.

Department of Mathematical Sciences, Mathematics, University of Bath

Ideas in the proof

What remains

After having established the convergence of the Duhamel expansion what remain is to establish the limits of the terms

$$\sum_{i=0}^{2} \sum_{j=0}^{2} \sum_{k=k_{j}}^{k_{0}} \sum_{\tilde{k}=k_{j}}^{k_{0}} \mathbb{E}\Big[\sum_{\boldsymbol{x}\in\mathcal{X}_{\neq}^{k-i}} \sum_{\tilde{\boldsymbol{x}}\in\mathcal{X}_{\neq}^{k-j}} \langle \mathsf{Op}_{\hbar}^{\mathsf{w}}(\boldsymbol{a})\mathcal{I}_{i}(\boldsymbol{k},\boldsymbol{x},t;\hbar)\varphi, \mathcal{I}_{j}(\tilde{\boldsymbol{k}},\tilde{\boldsymbol{x}},t;\hbar)\varphi \rangle_{L^{2}(\mathbb{R}^{d})}\Big].$$

This is done in a number of steps:

- **I** Firstly when either i > 0 or j > 0 we can prove the average converges to zero.
- **2** For the terms where i = j = 0 we consider two cases: The ladder terms and the crossing terms. The crossing terms are neglectable.

What remains

After having established the convergence of the Duhamel expansion what remain is to establish the limits of the terms

$$\sum_{i=0}^{2} \sum_{j=0}^{2} \sum_{k=k_{j}}^{k_{0}} \sum_{\tilde{k}=k_{j}}^{k_{0}} \mathbb{E}\Big[\sum_{\boldsymbol{x}\in\mathcal{X}_{\neq}^{k-i}} \sum_{\tilde{\boldsymbol{x}}\in\mathcal{X}_{\neq}^{k-j}} \langle \mathsf{Op}_{\hbar}^{\mathsf{w}}(\boldsymbol{a})\mathcal{I}_{i}(\boldsymbol{k},\boldsymbol{x},t;\hbar)\varphi, \mathcal{I}_{j}(\tilde{\boldsymbol{k}},\tilde{\boldsymbol{x}},t;\hbar)\varphi \rangle_{L^{2}(\mathbb{R}^{d})}\Big].$$

This is done in a number of steps:

- **I** Firstly when either i > 0 or j > 0 we can prove the average converges to zero.
- **2** For the terms where i = j = 0 we consider two cases: The ladder terms and the crossing terms. The crossing terms are neglectable.
- Solution For the ladder terms a number of "regulations" of the terms are needed. That is we replace Ψ_{α_m} and $\Psi_{\tilde{\alpha}_m}$ with regularised versions $\Psi_{\alpha_m}^{\gamma}$ and $\Psi_{\tilde{\alpha}_m}^{\gamma}$ depending on a parameter γ . These regularised versions will satisfy

$$\hat{\mathcal{T}}^{\gamma}(\boldsymbol{\rho},\boldsymbol{\rho}_{0}) = -i\sum_{n=1}^{\infty} (i\lambda)^{n} \Psi_{n}^{\gamma}(\boldsymbol{\rho},\boldsymbol{\rho}_{0},\infty;V).$$
(5)

What remains

After having established the convergence of the Duhamel expansion what remain is to establish the limits of the terms

$$\sum_{i=0}^{2}\sum_{j=0}^{2}\sum_{k=k_{i}}^{k_{0}}\sum_{\tilde{k}=k_{j}}^{k_{0}}\mathbb{E}\Big[\sum_{\boldsymbol{x}\in\mathcal{X}_{\neq}^{k-i}}\sum_{\tilde{\boldsymbol{x}}\in\mathcal{X}_{\neq}^{k-j}}\langle \mathsf{Op}_{\hbar}^{\mathsf{w}}(\boldsymbol{a})\mathcal{I}_{i}(\boldsymbol{k},\boldsymbol{x},t;\hbar)\varphi,\mathcal{I}_{j}(\tilde{\boldsymbol{k}},\tilde{\boldsymbol{x}},t;\hbar)\varphi\rangle_{L^{2}(\mathbb{R}^{d})}\Big].$$

This is done in a number of steps:

- **I** Firstly when either i > 0 or j > 0 we can prove the average converges to zero.
- **2** For the terms where i = j = 0 we consider two cases: The ladder terms and the crossing terms. The crossing terms are neglectable.
- Solution For the ladder terms a number of "regulations" of the terms are needed. That is we replace Ψ_{α_m} and $\Psi_{\tilde{\alpha}_m}$ with regularised versions $\Psi_{\alpha_m}^{\gamma}$ and $\Psi_{\tilde{\alpha}_m}^{\gamma}$ depending on a parameter γ . These regularised versions will satisfy

$$\hat{\mathcal{T}}^{\gamma}(\boldsymbol{\rho}, \boldsymbol{\rho}_0) = -i \sum_{n=1}^{\infty} (i\lambda)^n \Psi_n^{\gamma}(\boldsymbol{\rho}, \boldsymbol{\rho}_0, \infty; \boldsymbol{V}).$$
(5)

4 Then in the end one can prove convergence.

Thank you for your attention.

Туре	$\psi_{\hbar}(\mathbf{x})$	$d\mu(x,p)$
Lagrangian	$w(x) \exp(i\hbar^{-1}\langle x, p_0 \rangle)$	$ w(x) ^2\delta(p-p_0)dxdp$
Lagrangian	$\hbar^{-d/2}w(\hbar^{-1}(x-x_0))$	$\delta(x-x_0) \hat{w}(p) ^2 dx dp$
WKB	$w(x) \exp(i\hbar^{-1}S(x))$	$ w(x) ^2 \delta(p - \partial_x S(x)) dx dp$
Coherent	$(\pi\hbar)^{-d/4}\exp(i\hbar^{-1}\langle x-x_0,p_0+i2(x-x_0)\rangle)$	$\delta(x-x_0)\delta(p-p_0)dxdp$