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Schrödinger evolution in microscopic coordinates

Consider the Schrödinger opereator

Hλ,1 = − 1
2 ∆X + λW (X),

where −∆X is the positive Laplacian, λ > 0 is a coupling constant and W (X) is the
potential.

We have the associated time dependent Schrödinger equation{
i∂Tϕ(T ,X) = Hλ,1ϕ(T ,X)

ϕ(0,X) = ϕ(X)

with suitable initial data ϕ.
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Schrödinger evolution in macroscopic coordinates

We call (X ,T ) the microscopic coordinates and define the macroscopic coordinates
(x , t) to be

(x~, t~) = (X ,T ).

Our the Schrödinger opereator in macroscopic coordinates is given by

Hλ,~ = − ~2

2 ∆x + λW ( x
~ ),

The time dependent Schrödinger equation is given by{
i~∂tϕ~(t , x) = Hλ,~ϕ~(t , x)

ϕ~(0, x) = ϕ~(x)

with suitable initial data ϕ~.

Assume that sup~∈(0,1]‖ϕ~‖L2(Rd ) <∞. Then along some subsequence {~j}j∈N we
have

〈Opw
~ (a)ϕ~j (t , x), ϕ~j (t , x)〉 →

∫
R2d

a(x , p) dµt (x , p)

for all a ∈ S(R2d ).
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The model we consider

Let X be a Poisson point process with intensity 1 and assume V is a positive Schwartz
function. We are interested in solutions to the Schrödinger equation{

i~∂tϕ~(t , x) = Hλ,~ϕ~(t , x)

ψ~(0, x) = ϕ~(x),

where

Hλ,~ = − ~2

2 ∆ + λ
∑

xj∈X
V
( x−~1−1/d xj

~
)
.

Under these assumption we have that Hλ,~ is self-adjoint and the solutions is given by

ϕ~(t , x) = Uλ,~(t)ϕ~(x) = e−it~−1Hλ,~ϕ~(x).

To investigate the behaviour as ~→ 0 we will consider the expectations

E[〈Opw
~ (a)Uλ,~(t)ϕ~,Uλ,~(t)ϕ~〉],

where a ∈ S(R2d ) is some observable.
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The Lorentz gas and linear Boltzmann equation

 

Time evolution of a particle cloud with density
f ∈ L1(R2d ) is given by

f (r)
t (x , p) = f (Φ−t

r (x , p)).

In 1905 Lorentz proposed that f (r)
t (x , p) is gov-

erned, as r → 0, by the linear Boltzmann equa-
tion given by

∂t f (t , x , p) + 〈p,∇x f (t , x , p)〉

=

∫
Rd

[Σ(p, q)f (t , x , q)− Σ(q, p)f (t , x , p)] dq

with initial condition f (0, x , p) = f (x , p), and
where Σ(p, q) is the collision kernel (differen-
tial cross section) of the individual scatterer.
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Collision series for solutions to the linear Boltzmann equation

The solution of the linear Boltzmann equation can be expressed as the collision series

f (t , x , p) =
∞∑

n=0

f (n)(t , x , p),

where

f (n)(t , x , q0) =

∫
[0,t]n≤

∫
Rnd

n∏
i=1

Σ(qi , qi−1)
n+1∏
i=1

e−(si−1−si )Σtot(qi )

× f0(x − tq0 −
n∑

i=1

si (qi − qi−1), qn) dq1,ndsn,1,

with the convention s0 = t , sn+1 = 0, the notation

[0, t]n≤ = {sn ≤ · · · ≤ s1 | si ∈ [0, t]},

and the total scattering cross section

Σtot(q) =

∫
Rd

Σ(p, q) dp.
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Measures solving the linear Boltzmann equation

The solution to the linear Boltzmann equation defines a semigroup {Lt}t≥0 of linear
operators Lt : L1(R2d )→ L1(R2d ) so that

f (t , x , p) = Lt f (x , p).

We define the adjoint L∗t by∫
a(x , p)f (t , x , p) dx dp =

∫
[L∗t a](x , p)f0(x , p) dx dp.

Given a Borel measure µ0 on R2d , we define the measure µt by∫
a(x , p) dµt (x , p) =

∫
[L∗t a](x , p) dµ0(x , p).

We will say the family of measures {µt}t≥0 is a solution of the linear Boltzmann
equation with initial data µ0.
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T -operator and scattering matrix

The T -operator T (E) for the quantum mechanical scattering in the single-site potential
V is defined as the limit

T (E) = lim
γ→0+

Tγ(E), Tγ(E) = λV + λ2V
1

E − (− 1
2 ∆ + λV ) + iγ

V . (1)

An important quantity is the kernel of T (E) in momentum representation with E = 1
2 p2,

which we denote by T̂ (p, q). This “T -matrix” is related to the scattering matrix S(p, q)
by the relation

S(p, q) = δ(p − q)− 2πi δ( 1
2 p2 − 1

2 q2) T̂ (p, q). (2)

From the resolvent formalism we obtain the formal series expansion given by

Tγ(E) = λV
∞∑

n=0

[
λ

1
E − (− 1

2 ∆) + iγ
V
]n
.
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Main theorem

Theorem (M. 2022)

Let X be a Poisson point process with intensity 1 and assume V is a positive Schwartz
function. We assume λ > 0 is small enough and let

Hλ,~ = − ~2

2 ∆ + λ
∑

xj∈X
V
( x−~1−1/d xj

~
)
.

Let {ϕ~}~∈I be a uniform semiclassical family in H20
~ (R3) with Wigner measure µ0,

and let ϕ~(t) = Uλ,~(t)ϕ~. Then, for any t > 0, a ∈ S(R2d ), we have that

E〈Opw
~ (a)ϕ~(t), ϕ~(t)〉 →

∫
R2d

a(x , p) dµt (x , p), (3)

for ~→ 0 in I, where µt is a solution of the linear Boltzmann equation with initial data
µ0 and collision kernel

Σ(p, q) = (2π)d+1ρ δ( 1
2 p2 − 1

2 q2)|T̂ (p, q)|2. (4)
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Duhamel expansion

The proof is based on the following expansion

Uλ,~(−t)U~,0(t)− I =
iλ
~

∫ t

0
Uλ,~(−t1)W~U~,0(−t1) dt1

=
iλ
~

∫ t

0
Uλ,~(−t1)U~,0(−t1)W t1

~ dt1,

where
W t1

~ = U~,0(t1)W~U~,0(−t1)

In each step we sort the terms in diagonal and off diagonal terms

W t2
~ W t1

~ =
∑
x∈X

V t2
~,x

∑
x∈X

V t1
~,x =

∑
x∈X

V t2
~,xj

V t1
~,xj

+
∑

(x1,x2)∈X 2
6=

V t2
~,x2

V t1
~,x1

.
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Duhamel expansion II

Lemma
Let Hλ,~ = − ~2

2 ∆ + λW~(x), where ~ ∈ (0, ~0], W~ and λ satisfy assumption of the

main theorem and let Uλ,~(t) = e−it~−1Hλ,~ . Then for any τ0 ∈ N and k0 ∈ N we have
that

Uλ,~(−t) = U~,0(−t) +
2∑

i=0

k0∑
k=ki

∑
x∈X k−i

6=

Ii (k , x , t ; ~) +Rrec(k0; ~) +Rk0,τ0 (N; ~)

where k0 = 1, k1 = 3, and k2 = 4.
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Duhamel expansion III

The operators from the previous lemma are given “explicitly”. For the operator
I0(k , x , t ; ~) we have

I0(k , x , t ; ~) =
∑
α∈Nk

(iλ)|α|
∫

[0,t]k≤

k∏
m=1

Θαm (sm−1, sm, xm; V , ~) dsk,1U~,0(−t),

where the operators Θm(s1, s2, z; V , ~) are given by

1
~

∫
Rm−1

+

1[0,~−1(s1−s2)]

(
t+

1,m−1

)
U~,0(−s2)V~,z

×
{m−1∏

i=1

U~,0(−ti )V~,z
}

U~,0(t+
1,m−1 + s2) dt1,m−1,

with

V~,z (x) = V
(

x − ~1−1/d z
~

)
.

Note that the kernel of Θm(s1, s2, z; V , ~) in momentum representation is given by

(pm, p0) 7→
1
~

e−i~−1/d 〈z,pm−p0〉eis2~−1 1
2 (p2

m−p2
0)Ψm(pm, p0, ~−1(s1 − s2); V ).
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Convergence of the Duhamel expansion?

Assume ϕ ∈ H20
~ (R3) and consider the expansion

Uλ,~(−t)ϕ = U~,0(−t)ϕ+
2∑

i=0

k0∑
k=ki

∑
x∈X k−i

6=

Ii (k , x , t ; ~)ϕ+Rrec(k0; ~)ϕ+Rk0,τ0 (N; ~)ϕ

A key step in the proof of the main theorem is to prove that this series converge on
average in L2. For fixed i = 0 and k one of these norms is

E
[∥∥ ∑

x∈X k
6=

I0(k , x , t ; ~)ϕ
∥∥2

L2(Rd )

]
= E

[ ∑
x∈X k

6=

∑
x̃∈X k

6=

〈I0(k , x , t ; ~)ϕ, I0(k , x̃ , t ; ~)ϕ〉L2(Rd )

]
.
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Convergence of the Duhamel expansion?

We have the expression

E
[ ∑

x∈X k
6=

∑
x̃∈X k

6=

〈I0(k , x , t ; ~)ϕ, I0(k , x̃ , t ; ~)ϕ〉L2(Rd )

]
.

What is the combinatorics?

This indicates that there is a combinatoric challenge in estimating these norms.
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What remains

After having established the convergence of the Duhamel expansion what remain is to
establish the limits of the terms

2∑
i=0

2∑
j=0

k0∑
k=ki

k0∑
k̃=kj

E
[ ∑

x∈X k−i
6=

∑
x̃∈X k−j

6=

〈Opw
~ (a)Ii (k , x , t ; ~)ϕ, Ij (k̃ , x̃ , t ; ~)ϕ〉L2(Rd )

]
.

This is done in a number of steps:

1 Firstly when either i > 0 or j > 0 we can prove the average converges to zero.

2 For the terms where i = j = 0 we consider two cases: The ladder terms and the
crossing terms. The crossing terms are neglectable.

3 For the ladder terms a number of “regulations” of the terms are needed. That is
we replace Ψαm and Ψα̃m with regularised versions Ψγαm and Ψγα̃m

depending on
a parameter γ. These regularised versions will satisfy

T̂γ(p, p0) = −i
∞∑

n=1

(iλ)nΨγn (p, p0,∞; V ). (5)

4 Then in the end one can prove convergence.
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we replace Ψαm and Ψα̃m with regularised versions Ψγαm and Ψγα̃m

depending on
a parameter γ. These regularised versions will satisfy

T̂γ(p, p0) = −i
∞∑

n=1

(iλ)nΨγn (p, p0,∞; V ). (5)

4 Then in the end one can prove convergence.
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Thank you for your attention.



Examples of semiclassical Wigner measures

Type ψ~(x) dµ(x , p)

Lagrangian w(x) exp(i~−1〈x , p0〉) |w(x)|2δ(p − p0) dx dp
Lagrangian ~−d/2w(~−1(x − x0)) δ(x − x0)|ŵ(p)|2 dx dp
WKB w(x) exp(i~−1S(x)) |w(x)|2δ(p − ∂x S(x)) dx dp
Coherent (π~)−d/4 exp(i~−1〈x − x0, p0 + i2(x − x0)〉) δ(x − x0)δ(p − p0) dx dp
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