Field C^* -algebra and spectral analysis of quantum many channel Hamiltonians.

August 31, 2023

Vladimir Georgescu CNRS and University of Cergy-Pontoise (*Retired*)

Angers Conference

High frequency analysis: from operator algebras to PDEs 28 Aug 2023 - 1 Sept 2023

The effort to understand the universe is one of the very few things which lifts human life a little above the level of farce and gives it some of the grace of tragedy.

Steven Weinberg, The First Three Minutes

4
8
11
18
26
27
30
35
38

39

The purpose of this lecture is to highlight the utility of C^* -algebras in the spectral theory of "complicated" quantum systems: N-body systems and beyond, quantum fields, etc.

To sum up the key idea: instead of studying by ad hoc means the properties of a Hamiltonian H, study the structure of the C^* -algebra generated by a class of Hamiltonians that are similar (in some sense) to H.

Main references: VG+A.Iftimovici, *On the structure of the C*-algebra generated by the field operators*, J. Func. Analysis 284(8), 2023; V.G. *On the structure of the essential spectrum of elliptic operators on metric spaces*, J. Func. Analysis, 260:1734-1765, 2011.

1. NOTATIONS

- (1) If \mathscr{C} is a C^* -algebra and $\mathcal{A}, \mathcal{B} \subset \mathscr{C}$ then
- \mathcal{AB} = linear span of $\{AB \mid A \in \mathcal{A}, B \in \mathcal{B}\}$ and $\mathcal{A} \cdot \mathcal{B}$ = closure of \mathcal{AB} .
- $\sum_{i\in I}^{c} \mathcal{A}_i$ = norm closure of the sum $\sum_{i\in I} \mathcal{A}_i$ of the subspaces \mathcal{A}_i of \mathscr{C} .

(2) Some algebras associated to a finite dimensional real vector space X:

 $C_{\rm c}(X) \subset C_0(X) \subset C_{\infty}(X) \subset C_{\rm b}^{\rm u}(X) \subset C_{\rm b}(X) \subset C(X).$

 $L^2(X)$ and its norm are defined by a translation invariant Radon measure on X but the norm in $B(L^2(X))$ is independent of this choice. We set

 $\mathscr{B}(X)=B(L^2(X)) \quad \text{and} \quad \mathscr{K}(X)=K(L^2(X)).$

Position and momentum observables q, *p*:

 $\varphi: X \to \mathbb{C} \text{ Borel} \Rightarrow \varphi(q) = \text{multiplication by } \varphi \text{ on } L^2(X),$ $\psi: X^* \to \mathbb{C} \text{ Borel} \Rightarrow F\psi(p)F^{-1} = \text{multiplication by } \psi \text{ on } L^2(X^*),$ (where $F: L^2(X) \to L^2(X^*)$ is a Fourier transform).

(1) $C_{\rm b}(X) \subset \mathscr{B}(X)$ via $\varphi \mapsto \varphi(q)$. (2) $C_b(X^*) \subset \mathscr{B}(X)$ via $\psi \mapsto \psi(p)$. (Also set $C^*(p) = C_0(X^*)$.)

2. Observables affiliated to C^* -algebras

Self-adjoint operators affiliated to a C*-algebra

Let \mathcal{H} a Hilbert space, $\mathscr{C} \subset B(\mathcal{H})$ a C^* -subalgebra, and A a self-adjoint operator with spectrum $\operatorname{Sp}(A)$. C^* -algebra generated by A: $C^*(A) \equiv C_0(A) \doteq \{\theta(A) \mid \theta \in C_0(\mathbb{R})\}$. A is affiliated to \mathscr{C} if the next equivalent conditions are satisfied: $C^*(A) \subset \mathscr{C} \Leftrightarrow \theta(A) \in \mathscr{C} \forall \theta \in C_0(\mathbb{R}) \Leftrightarrow (A-z)^{-1} \in \mathscr{C}$ for some $z \notin \sigma(A)$. A is strictly affiliated to \mathscr{C} if it is affiliated to \mathscr{C} and $C^*(A) \cdot \mathscr{C} = \mathscr{C}$.

Example. Let $\mathcal{H} = L^2(\mathbb{R})$ and q the operator defined by (qu)(x) = xu(x). Clearly $C^*(q) \equiv C_0(\mathbb{R})$. Then $q + q^{-1}$ is affiliated but not strictly to $C_0(\mathbb{R})$.

Affiliation criterion

1) H_0 = self-adjoint operator on \mathcal{H} and $\mathcal{G} = D(|H_0|^{\frac{1}{2}})$. Then

 $\mathcal{G} \subset \mathcal{H} \subset \mathcal{G}^*$ continuous dense embeddings

and H_0 extends to a continuous map $\mathcal{G} \to \mathcal{G}^*$.

2) V: G → G* symmetric such that for some numbers μ, ν ≥ 0 with μ < 1
±V ≤ μ|H₀| + ν or H₀ is bounded from below and V ≥ -μH₀ - ν.
3) Then the restriction of H = H₀ + V: G → G* to D(H) ≐ {g ∈ G | Hg ∈ H} is a self-adjoint operator on H still denoted H.

Theorem. If H_0 is strictly affiliated to \mathscr{C} and for some $s \ge 1/2$

 $(|H_0|+1)^{-s}V(|H_0|+1)^{-1/2} \in \mathscr{C}$

then H is strictly affiliated to \mathscr{C} .

Observables affiliated to C*-algebras

Let \mathscr{C} be an arbitrary C^* -algebra. An observable affiliated to \mathscr{C} is just a morphism $A : C_0(\mathbb{R}) \to \mathscr{C}$. We often use the notation $\theta(A) = A(\theta)$ and $C^*(A) \equiv C_0(A) \doteq \{\theta(A) \mid \theta \in C_0(\mathbb{R})\} = C^*$ -subalgebra of \mathscr{C} .

The zero morphism is an observable affiliated to \mathscr{C} denoted ∞ ; this is natural because $\theta(\infty) = 0$ for any $\theta \in C_0(\mathbb{R})$.

 $\mathcal{A} =$ set of observables affiliated to \mathscr{C} . The C^* -algebra generated by \mathcal{A} is $C^*(\mathcal{A}) =$ smallest C^* -subalgebra which contains $\theta(A)$ if $A \in \mathcal{A}, \theta \in C_0(\mathbb{R})$.

A is strictly affiliated to \mathscr{C} if it is affiliated to \mathscr{C} and $C^*(A) \cdot \mathscr{C} = \mathscr{C}$.

 $\mathcal{P}: \mathscr{C} \to \mathscr{D} = \text{morphism} \Rightarrow \mathcal{P}(A) \doteq \mathcal{P} \circ A \text{ observable affiliated to } \mathscr{D}.$

Notation: $A \in \mathscr{C} \Leftrightarrow A$ belongs to \mathscr{C} or is an observable affiliated to \mathscr{C} .

Fix a Hilbert space \mathcal{H} . Then a self-adjoint operator is identified with the observable defined by its C_0 -functional calculus.

Let $\mathscr{C} \subset B(\mathcal{H})$. The observables affiliated to \mathscr{C} can be identified with self-adjoint operators acting in closed subspaces of \mathcal{H} . The observable ∞ is the only operator with domain $\{0\}$.

Example. The Hamiltonians of N-body systems with hard core interactions are observables affiliated to the C^* -algebra generated by the usual N-body Hamiltonians but are not self-adjoint operators on \mathcal{H} .

If $\mathcal{P}: \mathscr{C} \to \mathscr{D} \subset B(\mathcal{K})$ and A is a self-adjoint operator on \mathcal{H} affiliated to \mathscr{C} , then $\mathcal{P}(A)$ in general is not associated to a (densely defined) self-adjoint operator on \mathcal{K} . But:

if A is a self-adjoint operator strictly affiliated to \mathscr{C} then $\mathcal{P}(A)$ is a (densely defined) self-adjoint operator in any non-degenerate representation \mathcal{P} of \mathscr{C} .

3. C^* -Algebras graded by semilattices

S = semilattice = ordered set s.t. the upper bound $a \lor b$ exists $\forall a, b \in S$.

Definition. A C^* -algebra \mathscr{C} is \mathcal{S} -graded if a linearly independent family $\{\mathscr{C}(a)\}_{a\in\mathcal{S}}$ of C^* -subalgebras of \mathscr{C} (called *components*) is given such that: (i) $\mathscr{C}(a) \cdot \mathscr{C}(b) \subset \mathscr{C}(a \lor b)$ for all $a, b \in \mathcal{S}$; (ii) $\sum_{a\in\mathcal{S}} \mathscr{C}(a)$ is dense in \mathscr{C} , i.e. $\sum_{a\in\mathcal{S}}^{c} \mathscr{C}(a) = \mathscr{C}$.

 $\mathscr{C}(\mathcal{E}) \doteq \sum_{a \in \mathcal{E}}^{c} \mathscr{C}(a)$ if $\mathcal{E} \subset \mathcal{S}$. If $\mathcal{E} \subset \mathcal{S}$ is \lor -stable then $\mathscr{C}(\mathcal{E})$ is \mathcal{E} -graded.

Remark. \mathcal{E} finite $\Rightarrow \sum_{a \in \mathcal{E}} \mathscr{C}(a)$ is a closed subspace.

Remark. We will also come across situations where S is a \land -semilattice, i.e. the lower bound $a \land b$ exists $\forall a, b \in S$, and the condition (i) is replaced by $\mathscr{C}(a) \cdot \mathscr{C}(b) \subset \mathscr{C}(a \land b)$. If needed to avoid confusion we then say that \mathscr{C} is \land -graded, or inf-graded, by S. Above, \mathscr{C} is \lor -graded, or sup-graded.

Remark. Only sub-semilattices of Grassmannians will be of interest. $\mathbb{G}(X) = Grassmannian$ of $X \doteq$ set of finite dimensional subspaces of the real vector space X with inclusion as order relation. This is a lattice: $Y \land Z = Y \cap Z$ and $Y \lor Z = Y + Z$.

Exercise

The simplest nontrivial example of graded C^* -algebra.

Let $\mathcal{H} = L^2(\mathbb{R})$. If $(\alpha, \beta) \in \mathbb{R}^2$ then $\alpha p + \beta q$ is a self-adjoint operator so we my consider the C^* -algebra generated by such operators:

$$\mathscr{F} \doteq C^*(\alpha p + \beta q \mid (\alpha, \beta) \in \mathbb{R}^2).$$

If $(\alpha', \beta') \in \mathbb{R}^2$ then

$$[\alpha p + \beta q, \alpha' p + \beta' q] = i(\alpha' \beta - \alpha \beta').$$

This is zero if and only if the vectors (a, b) and (a', b') are collinear and then $\alpha' p + \beta' q = \lambda(\alpha p + \beta q)$ for some real λ if $\alpha p + \beta q \neq 0$.

For each line $L \subset \mathbb{R}^2$ choose a nonzero $(a, b) \in L$ and denote $\mathscr{F}(L) = C^*(\alpha p + \beta q)$. Then set $\mathscr{F}(0) = \mathbb{C}$, $\mathscr{F}(\mathbb{R}^2) = K(\mathcal{H})$. Show that

 $\mathscr{F} = \text{ norm closure of } \mathbb{C} + \sum_{L \in \mathbb{P}} \mathscr{F}(L) + K(\mathcal{H}).$

 \mathscr{F} is $\mathbb{G}(\mathbb{R}^2)$ -graded by the family of C^* -subalgebras $\{\mathscr{F}(E)\}_{E\in\mathbb{G}(\mathbb{R}^2)}$.

Proposition. $a \in S \Rightarrow$ $S_a = \{b \in S | b \leq a\}$ and $S'_a = \{b \in S | b \nleq a\}$ are sub-semilattices. $\mathscr{C}_a = \mathscr{C}(S_a)$ is a C^* -subalgebra and $\mathscr{C}'_a = \mathscr{C}(S'_a)$ is an ideal of \mathscr{C} such that $\mathscr{C} = \mathscr{C}_a + \mathscr{C}'_a$ direct sum. The projection $\mathcal{P}_a : \mathscr{C} \to \mathscr{C}_a$ is a morphism.

HVZ Theorem. Assume S has a greatest element e and is co-atomic. Let S_{\max} = set of maximal elements of $S \setminus \{e\}$. Then $\mathcal{P} : S \mapsto (\mathcal{P}_a S)_{a \in \mathcal{S}_{\max}}$ is a morphism $\mathscr{C} \to \bigoplus_{a \in \mathcal{S}_{\max}} \mathscr{C}_a$ with kernel $\mathscr{C}(e)$, hence

$$\mathscr{C}/\mathscr{C}(e) \hookrightarrow \bigoplus_{a \in \mathcal{S}_{\max}} \mathscr{C}_a.$$

(i) If $T \in \mathscr{C}$ then:

C-Sp_{ess}(T) ≐ spectrum of P(T) ≡ Sp P(T) = Ū_{a∈Smax}Sp P_a(T).
(ii) If C ⊂ B(H) and C(e) = C ∩ K(H) then Sp_{ess}(T) = C-Sp_{ess}(T).
(iii) If S = G(X), so S_{max} = H = set of hyperplanes of X, then {P_a(S) | a ∈ H} is a compact in C and C-Sp_{ess}(T) = ∪_{a∈H}Sp P_a(T).

Remark. Everything is very easy. Only the assertion concerning the compactness requires a little bit of thinking! $\{\mathcal{P}_a(S) \mid a \in \mathcal{S}_{\max}\}$ is always a relatively compact subset of \mathscr{C} .

4. FIELD C^* -ALGEBRA OF A SYMPLECTIC SPACE

Symplectic space = real vector space Ξ equipped with a symplectic form (bilinear anti-symmetric non-degenerate map $\sigma : \Xi^2 \to \mathbb{R}$). Set

 $E \subset \Xi \Rightarrow E^{\sigma} \doteq \{\xi \in \Xi \mid \sigma(\xi, \eta) = 0 \; \forall \eta \in E\}.$

E is *isotropic* if $E \subset E^{\sigma}$, *Lagrangian* if $E = E^{\sigma}$, *symplectic* if σ is non-degenerate on it.

Remark. $\mathbb{G}_{s}(\Xi) \doteq$ set of symplectic finite dimensional subspaces. Then: $\forall E \in \mathbb{G}(\Xi) \exists F \in \mathbb{G}_{s}(\Xi) \text{ such that } E \subset F.$

Example. $X = \text{finite dimensional real vector space; } T^*X = X \oplus X^*$ with the symplectic form $\sigma(\xi, \eta) = \langle y, k \rangle - \langle x, l \rangle$ if $\xi = x + k, \eta = y + l$ with $x, y \in X$ and $k, l \in X^*$.

Representation of Ξ on a Hilbert space \mathcal{H} : a map $W : \Xi \to U(\mathcal{H})$ with $W(\xi + \eta) = e^{\frac{i}{2}\sigma(\xi,\eta)}W(\xi)W(\eta) \ \forall \xi, \eta \in \Xi$ and $\operatorname{w-lim}_{t\to 0}W(t\xi) = 1$.

Then $\forall \xi \in \Xi$ the *field operator* $\phi(\xi) \equiv \phi_W(\xi)$ is the self-adjoint operator such that $W(t\xi) = e^{it\phi(\xi)} \ \forall t \in \mathbb{R}$. We set $R_{\xi}(z) = (\phi(\xi) - z)^{-1}$.

Short history ...

D. Kastler. *The* C^{*}-algebras of a free boson field. I. Discussion of the basic facts, Commun. Math. Phys. 1:14-48, **1965**.

A. Boutet de Monvel and V. Georgescu. *Graded C*-algebras associated to symplectic spaces and spectral analysis of many channel Hamiltonians*, in Bielefeld Encount. Math. Phys. VIII, World Sci. Publishing, **1993**.

V. Georgescu and A. Iftimovici. C^{*}-algebras of energy observables. II. Graded Symplectic Algebras and Magnetic Hamiltonians, in Math.Phys.Arch. 01-99, **2001**.

D. Buchholz, H. Grundling. *The resolvent algebra: a new approach to canonical quantum systems*, J. Func. Anal. 254:2725-2779, **2008**.

V. Georgescu and A. Iftimovici. On the structure of the C*-algebra generated by the field operators, J. Func. Anal. 284(8), art. 109867, 73 pp, **2023**.

 $E \in \mathbb{G}(\Xi) \Rightarrow M(E) = \text{set of bounded Borel measures on } E \text{ and } L^1(E) = \text{subset of absolutely continuous measures (with } M(0) = L^1(0) = \mathbb{C}\delta_0$).

Definitions. The Kastler algebra was introduced by Kastler in 1965.

(1) The Kastler C^{*}-algebra \mathscr{K} of Ξ is the norm closure in $B(\mathcal{H})$ of the set of operators $W(\mu) = \int_E W(\xi)\mu(d\xi)$ with $E \in \mathbb{G}(\Xi), \mu \in M(E)$.

(2) The *field* C^* -algebra \mathscr{F} of Ξ is the norm closure of the set of operators $W(\mu)$ with $E \in \mathbb{G}(\Xi)$ and $\mu \in L^1(E)$ (AI+VG 2001).

(3) The resolvent algebra $\mathcal{R} \doteq C^*(\phi(\xi)|\xi \in \Xi)$ introduced by *Buchholz* and *Grundling in 2008* coincides with the field algebra.

Proposition. The Kastler C^* -algebras associated to different representations W are canonically isomorphic. Similarly for the field algebras.

Thus we may think of \mathscr{K}, \mathscr{F} as some abstractly given objects independent of W. In fact they were so constructed by Kastler (1965) by using the unital *-algebra structure on $\bigcup_{E \in \mathbb{G}(\Xi)} M(E)$ defined by the natural involution and the twisted convolution

$$\int f(\xi)(\mu \circledast \nu)(\mathrm{d}\xi) = \iint \mathrm{e}^{-\frac{\mathrm{i}}{2}\sigma(\xi,\eta)} f(\xi+\eta)\mu(\mathrm{d}\xi)\nu(\mathrm{d}\eta) \quad \forall f \in C_0(E).$$

G-grading of \mathcal{F}

Definition. $E \in \mathbb{G}(\Xi)$ and ξ_1, \ldots, ξ_n is a generating set for $E \in \mathbb{G}(\Xi)$

 $\mathscr{F}(E) \doteq$ norm closure of the set of operators $W(\mu)$ with $\mu \in L^1(E)$ = $C^*(\phi(\xi_1)) \cdot C^*(\phi(\xi_2)) \cdot \ldots \cdot C^*(\phi(\xi_n)).$

Theorem. The set of C^* -subalgebras $\mathscr{F}(E)$ of \mathscr{F} has the properties:

$$\begin{split} E, F \in \mathbb{G}(\Xi) \Rightarrow \mathscr{F}(E) \cdot \mathscr{F}(F) &= \mathscr{F}(E+F), \\ \mathscr{\mathring{F}} \doteq \sum_{E \in \mathbb{G}(\Xi)} \mathscr{F}(E) \text{ is a linear direct sum and is dense in } \mathscr{F}, \\ \text{if } \mathcal{S} \subset \mathbb{G}(\Xi) \text{ is finite then } \mathscr{F}(\mathcal{S}) \doteq \sum_{E \in \mathcal{S}} \mathscr{F}(E) \text{ is norm closed.} \end{split}$$

In other terms: \mathscr{F} is a $\mathbb{G}(\Xi)$ -graded C^* -algebra with components $\mathscr{F}(E)$.

 $\mathring{\mathscr{F}} \doteq \sum_{E \in \mathbb{G}(\Xi)} \mathscr{F}(E), \quad \mathscr{F} = \text{ closure of } \mathring{\mathscr{F}} = \sum_{E \in \mathbb{G}(\Xi)}^{c} \mathscr{F}(E).$

Remark. If $\mathcal{S} \subset \mathbb{G}(\Xi)$ is finite and $E \notin \mathcal{S}$ then $\mathscr{F}(E) \cap \mathscr{F}(\mathcal{S}) = 0$.

Any subspace $E \subset \Xi$ determines three C^* -subalgebras of \mathscr{F} :

$$\mathscr{F}_E \doteq \sum_{F \subset E}^{c} \mathscr{F}(F), \quad \mathscr{F}'_E \doteq \sum_{F \not\subset E}^{c} \mathscr{F}(F), \quad \mathscr{F}_{\supset E} \doteq \sum_{F \supset E}^{c} \mathscr{F}(F).$$

 \mathscr{F}_E = unital C*-subalgebra; \mathscr{F}'_E and $\mathscr{F}_{\supset E}$ are ideals. In terms of fields

$$\mathscr{F}_E = C^*(\phi(\xi) \mid \xi \in E).$$

Theorem. The C^* -algebra \mathscr{F}_E and the ideal \mathscr{F}'_E satisfy

$$\mathscr{F} = \mathscr{F}_E + \mathscr{F}'_E$$
 and $\mathscr{F}_E \cap \mathscr{F}'_E = 0.$

The projection $\mathcal{P}_E \colon \mathscr{F} \to \mathscr{F}_E$ determined by this direct sum decomposition is a morphism and it is the unique continuous linear map $\mathcal{P}_E \colon \mathscr{F} \to \mathscr{F}$ such that $T = \sum_F T(F) \in \mathring{\mathscr{F}} \Rightarrow \mathcal{P}_E T = \sum_{F \subset E} T(F)$. For any subspaces E, F we have

$$\mathscr{F}_{E\cap F} = \mathscr{F}_E \cap \mathscr{F}_F$$
 and $\mathcal{P}_{E\cap F} = \mathcal{P}_E \mathcal{P}_F = \mathcal{P}_F \mathcal{P}_E.$

If Ξ is finite dimensional we may describe \mathscr{F}_E and its commutant in \mathscr{F} independently of the graded structure of \mathscr{F} .

Theorem. If Ξ is finite dimensional, for any subspace $E \subset \Xi$ we have (1) $\mathscr{F}_E = \{T \in \mathscr{F} \mid [T, W(\xi)] = 0 \ \forall \xi \in E^{\sigma} \},$ (2) $\mathscr{F}_{E^{\sigma}} = \{T \in \mathscr{F} \mid [S, T] = 0 \ \forall S \in \mathscr{F}_E \}.$

Corollary. If $X \in \mathbb{G}(\Xi)$ is Lagrangian then \mathscr{F}_X is a maximal abelian subalgebra of \mathscr{F} , i.e. if $T \in \mathscr{F}$ then: $[S,T] = 0 \ \forall S \in \mathscr{F}_X \Leftrightarrow T \in \mathscr{F}_X$.

The next one is a much more subtle result and it requires a real proof!

Theorem. If Ξ is finite dimensional and W irreducible then $\mathscr{F}(E)$ is the set of $T \in B(\mathcal{H})$ such that:

 $\lim_{\xi \to 0} \| [W(\xi), T] \| = 0, \ \lim_{\xi \in E, \xi \to 0} \| (W(\xi) - 1)T \| = 0, \ [W(\xi), T] = 0 \, \forall \xi \in E^{\sigma}.$

The first condition is equivalent to:

 $\xi \mapsto W(\xi)^* TW(\xi)$ is norm continuous on finite dimensional subspaces.

We now consider the HVZ theorem for a finite dimensional Ξ . Then $\mathscr{F}(\Xi) \subset K(\mathcal{H})$ if W is of finite multiplicity and $\mathscr{F}(\Xi) = K(\mathcal{H})$ if W is irreducible. So if W is of finite multiplicity

$$\mathscr{C}\text{-}\mathrm{Sp}_{\mathrm{ess}}(T) = \mathrm{Sp}_{\mathrm{ess}}(T) \ \forall T \in \mathscr{F}.$$

Clearly $\mathbb{G}(\Xi)_{\max} = \mathbb{H}(\Xi)$ is the set of hyperplanes of Ξ .

Theorem. If $T \in \mathscr{F}$ then \mathscr{C} -Sp_{ess} $(T) = \bigcup_{H \in \mathbb{H}(\Xi)} \operatorname{Sp}(\mathcal{P}_H T)$. Moreover, for any $H \in \mathbb{H}(\Xi)$ and any nonzero $\xi \in H^{\sigma}$ we have

$$\mathcal{P}_H T = \operatorname{s-}\lim_{r \to \infty} W(r\xi)^* T W(r\xi).$$

If $\mathcal{S} \subset \mathbb{G}(\Xi)$ is a subsemilattice with $\Xi \in \mathcal{S}$ and $T \in \mathscr{F}(\mathcal{S})$ then

$$\mathscr{C}$$
-Sp_{ess} $(T) = \bigcup_{E \in \mathcal{S}_{max}} Sp(\mathcal{P}_E T).$

5. PHASE SPACE OF A FINITE DIMENSIONAL REAL SPACE

Let X be a finite dimensional real vector space.

If $Y \subset X$ linear subspace, $\pi_Y : X \to X/Y$ the natural surjection, embed

 $C_0(X/Y) \subset C^{\mathrm{u}}_{\mathrm{b}}(X)$ via $\varphi \mapsto \varphi \circ \pi_Y$

 $C_0(X/Y) = \text{set of continuous } \varphi : X \to \mathbb{C} \text{ with } \varphi(x+y) = \varphi(x) \text{ if } x \in X, y \in Y \text{ and such that } \varphi(x) \to 0 \text{ when } \operatorname{dist}(x, Y) \to \infty.$

Lemma. The family of C^* -subalgebras $C_0(X/Y)$ with $Y \in \mathbb{G}(X)$ is (1) linearly independent, (2) $C_0(X/Y) \cdot C_0(X/Z) = C_0(X/(Y \cap Z)) \quad \forall Y, Z \in \mathbb{G}.$

Definition. $\mathcal{G} \equiv \mathcal{G}^X \doteq \sum_{Y \in \mathbb{G}}^c C_0(X/Y) \subset C_b^u(X)$ is the (abelian) Grassmann C^* -algebra of X; it is \wedge -graded by $\mathbb{G}(X)$.

Lemma. If $\mathcal{S} \subset \mathbb{G}$ is finite and \wedge -stable then $\mathcal{G}(\mathcal{S}) \doteq \sum_{Y \in \mathcal{S}} C_0(X/Y)$ is a C^* -subalgebra of \mathcal{G} .

(Quantum) Grassmann C*-algebra

 $\mathscr{G} \doteq \mathcal{G} \cdot C^*(p) = \text{ closed linear span of } \{\varphi(q)\psi(p) \mid \varphi \in \mathcal{G}, \psi \in C_0(X^*)\}.$

For each $Y \in \mathbb{G}(X)$ set

 $\mathscr{G}(Y) \doteq \text{ closed linear span of } \{\varphi(q)\psi(p) \mid \varphi \in C_0(X/Y), \psi \in C_0(X^*)\}$

Proposition. $\mathscr{G}(Y)$ is a nondegenerate C^* -algebra of operators on \mathcal{H} and (1) the family $\{\mathscr{G}(Y) \text{ is linearly independent,}$ $(2) \mathscr{G}(Y) \cdot \mathscr{G}(Z) = \mathscr{G}(Y \cap Z) \quad \forall Y, Z \in \mathbb{G},$

(3) $\mathscr{G} = \sum_{Y \in \mathbb{G}}^{c} \mathscr{G}(Y).$

This means: the C^* -algebra \mathscr{G} is \wedge -graded by \mathbb{G} with components $\mathscr{G}(Y)$.

Proposition. Let Z be a subspace supplementary to Y, so $X = Y \oplus Z$ and $X/Y \cong Z$, and let us identify $\mathcal{H} = L^2(X) = L^2(Y) \otimes L^2(Z)$. Then

$$\mathscr{G}(Y) = C_0(Y^*) \otimes K(L^2(Z)) \cong C_0(Y^*, K(L^2(Z))).$$

In other terms: $T \in B(\mathcal{H})$ belongs to $\mathscr{G}(Y)$ if and only if FTF^{-1} is the operator of multiplication by a function $\widehat{T} : Y^* \to K(L^2(Z))$ of class C_0 .

Remarks.

The symplectic space is $\Xi = T^*X = X \oplus X^*$ with symplectic form

 $\sigma(\xi,\eta) = \langle y,k\rangle - \langle x,l\rangle \text{ if } \xi = x + k, \eta = y + l \text{ with } x,y \in X \text{ and } k,l \in X^*.$

Note that X and X^* are Lagrangian subspaces of Ξ . We have:

$$\mathscr{G}^{\scriptscriptstyle X} = \mathscr{F}_{{}_{\supset X}} = \sum_{E \supset X}^{\mathrm{c}} \mathscr{F}(E) \quad \text{and} \quad \mathscr{G}(Y) = \mathscr{F}(Y^{\sigma}) \; \forall Y \subset X.$$

There are very few functions of the position observable in \mathcal{F} . Indeed:

 $\varphi(q) \in \mathscr{F} \Leftrightarrow \varphi \in \mathcal{G}^{\mathsf{X}}.$

Half-Lagrangian decompositions of Ξ

A simple modification of the symplectic form allows one to introduce constant magnetic fields into the formalism and so to treat N-body systems which interact with an external asymptotically constant magnetic field. The constant magnetic field may be interpreted as a bilinear antisymmetric form $\beta : X \times X \to \mathbb{R}$. The new symplectic form on T^*X

$$\sigma(\xi,\eta) = \beta(x,y) + \langle y,k \rangle - \langle x,l \rangle.$$

HVZ theorem

 $\mathbb{G} \equiv \mathbb{G}(X)$ has a least element $0 = \{0\}$ and $\mathbb{G}_{\min} = \mathbb{P}$ = set of one dimensional subspaces L of X (projective space of X).

Lemma. If $T \in \mathscr{G}$ and $a \in L \setminus \{0\}$ then $\mathcal{P}_L(T) = \operatorname{s-lim}_{r \to \infty} \operatorname{e}^{\operatorname{irap}} T \operatorname{e}^{-\operatorname{irap}}$.

Lemma. H = self-adjoint operator affiliated to \mathscr{G}_Y with $Y \neq 0 \Rightarrow \sigma(H)$ is an interval.

Proposition. $\{\mathcal{P}_L(T) \mid L \in \mathbb{P}\}$ is a compact subset of \mathscr{G} for any $T \in \mathscr{G}$.

Theorem. $T \in \mathscr{G} \Longrightarrow \operatorname{Sp}_{\operatorname{ess}}(T) = \bigcup_{L \in \mathbb{P}} \operatorname{Sp}(\mathcal{P}_L T).$

Proof. If $Y \in \mathbb{G}$ and $\mathscr{G}_Y = \sum_{Z \supset Y}^c \mathscr{G}(Z)$ and $\mathscr{G}'_Y = \sum_{Z \not\supset Y}^c \mathscr{G}(Z)$ then $\mathscr{G} = \mathscr{G}_Y + \mathscr{G}'_Y$ direct sum and $\mathcal{P}_Y : \mathscr{G} \to \mathscr{G}_Y$ is the associated projection. Then $T \mapsto (\mathcal{P}_L T)_{L \in \mathbb{P}}$ is a morphism $\mathscr{G} \to \bigoplus_{L \in \mathbb{P}} \mathscr{G}_L$ with kernel $\mathscr{G}(0) = C_0(q) \cdot C_0(p) = K(\mathcal{H})$. Hence $\mathscr{G}/K(\mathcal{H}) \hookrightarrow \bigoplus_{L \in \mathbb{P}} \mathscr{G}_L$.

Intrinsic description of $\mathscr{G}(Y)$

Notations: if $f \in \mathcal{H}, x \in X, k \in X^*$ then

 $(e^{ixp}f)(y) = f(x+y)$ and $(e^{ikq}f)(y) = e^{iky}f(y)$ $\forall y \in X$.

 $\text{Simplest cases:} \quad \mathscr{G}(0) = K(\mathcal{H}) \text{ and } \mathscr{G}(X) = C^*(p) = C_0(p).$

Theorem (really!). $\mathscr{G}(Y)$ is the set of $T \in B(\mathcal{H})$ such that

- (i) $[e^{ixp}, T] = 0$ for all $x \in Y$,
- (ii) $\lim_{x\to 0} \|[e^{ixp}, T]\| = 0$ and $\lim_{x\to 0} \|(e^{ixp} 1)T\| = 0$,
- (iii) $\lim_{k \to 0} \|[e^{ikq}, T]\| = 0$ and $\lim_{k \to 0, k \in Y^{\perp}} \|(e^{ikq} 1)T\| = 0.$

G is generated by elementary N-body type Hamiltonians

First, un exercise:

Lemma. $\mathcal{G} = \{\varphi(q) \mid \varphi \in \mathcal{G}\} \subset B(\mathcal{H}) \text{ is the } C^*\text{-algebra generated by the self-adjoint operators } \alpha(q) \text{ with } \alpha \in X^*.$

 $\mathcal{S}_0 \subset \mathbb{G}$; \mathcal{S} = set of finite intersections of subspaces from \mathcal{S}_0 (so $X \in \mathcal{S}$).

$$\mathscr{G}(\mathcal{S}) = \sum_{Y \in \mathcal{S}}^{c} \mathscr{G}(Y)$$

Theorem. Let $h : X^* \to \mathbb{R}$ continuous with $\lim_{k\to\infty} h(k) = \infty$. Then $\mathscr{G}(\mathcal{S}) = C^*$ -algebra generated by the operators H = h(p+k) + v(q) with $k \in X^*$ and $v \in \sum_{Y \in \mathcal{S}_0} C_0(X/Y)$ real.

Proposition. If *h* is a real elliptic polynomial of order *m* on *X* then $\mathscr{G}(S)$ is the *C*^{*}-algebra generated by the self-adjoint operators h(p) + S, where *S* runs over the set of symmetric differential operators of order < m with coefficients in $\sum_{Y \in S_0} C_0^{\infty}(X/Y)$.

Hamiltonians affiliated to *G*

 $\mathcal{S} \subset \mathbb{G}$ sub-semilattice with $X \in \mathcal{S}$

 $h: X^* \to \mathbb{R}$ continuous positive and with $\lim_{k\to\infty} h(k) = \infty$.

Then h(p) is a kinetic energy operator strictly affiliated to $\mathscr{G}(X) = C_0(X^*)$, hence to $\mathscr{G}(\mathcal{S})$.

Let $\mathcal{H}_h = D(h(p)^{1/2})$ be the form domain of h(p) and $\mathcal{H}_h \subset \mathcal{H} \subset \mathcal{H}_h^*$ the associated scale.

Theorem. $\forall Y \in \mathcal{S} \text{ let } V(Y) \in B(\mathcal{H}_h, \mathcal{H}_h^*) \text{ a symmetric operator s.t.}$ (1) V(X) = 0 and $(h(p) + 1)^{-s}V(Y)(h(p) + 1)^{-1/2} \in \mathscr{G}(Y)$ with s > 1/2; (2) the family $\{V(Y)\}_{E \in \mathcal{S}}$ is norm summable in $B(\mathcal{H}_h, \mathcal{H}_h^*)$; (3) $V(Y) \ge -\mu_Y h(p) - \nu_Y$ with $\mu_Y, \nu_Y \ge 0$, $\sum_{Y \in \mathcal{S}} \mu_Y < 1$, $\sum_{Y \in \mathcal{S}} \nu_Y < \infty$. Let $V = \sum_{Y \in \mathcal{S}} V(Y)$ and $V_Y = \sum_{Z \supset Y} V(Z)$ for any $Y \in \mathcal{S}$. Then H = h(p) + V and $H_Y = h(p) + V_Y$ are bounded from below selfadjoint operators, with form domain \mathcal{H}_h , strictly affiliated to $\mathscr{G}(\mathcal{S})$, and $\mathcal{P}_Y H = H_Y \ \forall Y \in \mathcal{S}$. If $0 \in \mathcal{S}$ then

 $\operatorname{Sp}_{\operatorname{ess}}(H) = \bigcup_{Y \in \mathcal{S}_{\min}} \operatorname{Sp}(\mathcal{P}_Y H).$

Assume that for some s > 0

 $c'|k|^{2s} \le h(k) \le c''|k|^{2s}$ for some constants c', c'' and all large k.

Sobolev spaces \mathcal{H}^r , $r \in \mathbb{R}$.

Theorem. Let $V : \mathcal{H}^s \to \mathcal{H}^{-s}$ symmetric such that $V \ge -\mu h(p) - \nu$ with $\mu < 1, \nu \ge 0$ and $\langle p \rangle^{-t} V \langle p \rangle^{-s} \in \mathscr{G}(\mathcal{S})$ for some t > s. Then H = h(p) + V is a self-adjoint operator strictly affiliated to $\mathscr{G}(\mathcal{S})$.

Remark. The condition t > s allows perturbations of a differential operator by operators of the same order and locally irregular. For example, $\Delta + V$ with $V = \sum_{jk} \partial_j g_{jk} \partial_k$ and g_{jk} locally bounded or nonlocal operators with some conditions at infinity is allowed.

6. A REMARK ON THE INFINITE DIMENSIONAL CASE

Let Ξ be a complex infinite dimensional Hilbert space and $\mathcal{H} = \Gamma(\Xi)$ the symmetric Fock space associated to it. We keep the notation Ξ for the underlying real vector space of Ξ equipped with the symplectic structure defined by $\sigma(\xi, \eta) = \Im\langle \xi | \eta \rangle$.

Then \mathscr{F} is a C^* -algebra on \mathcal{H} which does not contain compact operators and the usual quantum field Hamiltonians are not affiliated to it. The problem comes from the fact that $\Gamma(A) \notin \mathscr{F}$ if A is a bounded operator on the one particle Hilbert space Ξ .

A solution is to extend \mathscr{F} by adding the necessary *free kinetic energies*. More precisely, if \mathcal{O} is an abelian C^* -algebra on the Hilbert space Ξ whose strong closure does not contain compact operators then

$\Phi(\mathcal{O}) \doteq C^*(\phi(\xi)\Gamma(A) \mid \xi \in \Xi, A \in \mathcal{O}, ||A|| < 1)$

is a C^* -algebra of operators on \mathcal{H} which contains the compacts and whose quotient with respect to the ideal of compact operators is canonically embedded in $\mathcal{O} \otimes \Phi(\mathcal{O})$ which allows one to describe the essential spectrum of the operators affiliated to $\Phi(\mathcal{O})$. The Hamiltonians of the $P(\varphi)_2$ models with a spatial cutoff are affiliated to such algebras. The algebra $\mathscr{A} \doteq \Phi(\mathbb{C})$ has a remarkable property: $K(\mathcal{H}) \subset \mathscr{A}$ and $\mathscr{A}/K(\mathcal{H}) \cong \mathscr{A}$.

[V.G. 2007 [9]]

7. MANY-BODY SYSTEMS

Many-body systems are obtained by coupling a certain number (finite or infinite) of N-body systems. An N-body system consists of a fixed number N of particles which interact through k-body forces which preserve N. The many-body type interactions include forces which allow the system to make transitions between states with different numbers of particles. These transitions are realized by creation-annihilation processes as in quantum field theory.

The main difficulty in the present algebraic approach is to isolate the correct C^* -algebra. This is especially problematic in the present situations since it is not a priori clear how to define the couplings between the various N-body systems but in very special situations. It is rather remarkable that the C^* -algebra generated by a small class of elementary and natural Hamiltonians will finally prove to be a fruitful choice. These elementary Hamiltonians are analogs of the Pauli-Fierz Hamiltonians.

[M. Damak and V.G. 2010 [6]]

 $\begin{aligned} &\mathcal{X} = \text{real prehilbert space; } \mathbb{G}(\mathcal{X}) = \text{set of finite dimensional subspaces.} \\ &X \in \mathbb{G} \text{ is an Euclidean space. Set (change of notations: } L(\mathcal{H}) \equiv B(\mathcal{H})\text{):} \\ &\mathcal{H}_X = L^2(X) \quad \mathscr{L}_X = L(\mathcal{H}_X) \quad \mathscr{K}_X = K(\mathcal{H}_X) \quad \mathscr{T}_X = C^*(p_X) \\ &\text{If } X, Y \in \mathbb{G} \text{ set } \mathscr{L}_{XY} = L(\mathcal{H}_Y, \mathcal{H}_X) \text{ and } \mathscr{K}_{XY} = K(\mathcal{H}_Y, \mathcal{H}_X). \\ &\text{If } \varphi \in \mathcal{C}_c(X + Y) \text{ then } (T_{XY}(\varphi)f)(x) = \int_Y \varphi(x - y)f(y)dy \text{ defines a continuous operator } \mathcal{H}_Y \to \mathcal{H}_X. \text{ Define } \mathscr{T}_{XY} \text{ by (clearly } \mathscr{T}_{XX} = \mathscr{T}_X) \\ &\mathscr{T}_{XY} = \text{ norm closure of the set of operators } T_{XY}(\varphi) \text{ with } \varphi \in \mathcal{C}_c(X + Y). \end{aligned}$

Fix a sub-semilattice $S \subset \mathbb{G}$. For each $X \in S$ the Hilbert space \mathcal{H}_X is thought as the state space of an N-body system with X as configuration space. The state space of the many-body system is

$$\mathcal{H} \equiv \mathcal{H}_{\mathcal{S}} = \bigoplus_{X \in \mathcal{S}} \mathcal{H}_X.$$

We have a natural embedding $\mathscr{L}_{XY} \subset L(\mathcal{H})$ and define

 $\mathscr{L} \equiv \mathscr{L}_{\mathcal{S}} =$ closed linear span of the subspaces \mathscr{L}_{XY} .

This is a C^* -subalgebra of $L(\mathcal{H})$ equal to $L(\mathcal{H})$ if and only if \mathcal{S} is finite.

We will be interested in subspaces \mathscr{R} of \mathscr{L} constructed as follows: for each couple X, Y we are given a closed subspace $\mathscr{R}_{XY} \subset \mathscr{L}_{XY}$ and $\mathscr{R} \equiv (\mathscr{R}_{XY})_{X,Y \in \mathcal{S}} = \sum_{X,Y \in \mathcal{S}}^{c} \mathscr{R}_{XY}$.

Note that $\mathscr{K} \equiv \mathscr{K}_{\mathcal{S}} = (\mathscr{K}_{XY})_{X,Y \in \mathcal{S}} = K(\mathcal{H}).$

Theorem. $\mathscr{T} \equiv \mathscr{T}_{\mathcal{S}} = (\mathscr{T}_{XY})_{X,Y \in \mathcal{S}}$ is a closed self-adjoint subspace of \mathscr{L} and $\mathscr{C} \equiv \mathscr{C}_{\mathcal{S}} = \mathscr{T}^2$ is a non-degenerate C^* -algebra of operators on \mathcal{H} .

We say that \mathscr{C} is the Hamiltonian algebra of the many-body system \mathcal{S} . We equip \mathscr{C} with an \mathcal{S} -graded C^* -algebras structure. Let

 $\mathcal{C}_X(Y) \cong \mathcal{C}_0(X/Y) \text{ if } Y \subset X \text{ and } \mathcal{C}_X(Y) = \{0\} \text{ if } Y \not\subset X.$

Then $\mathcal{C}_X \equiv \mathcal{C}_X(\mathcal{S}) := \sum_{Y \in \mathcal{S}}^{c} \mathcal{C}_X(Y) \subset \mathscr{L}_X$ by $\varphi = \varphi(q_x)$. Then $\mathcal{C} \equiv \mathcal{C}_{\mathcal{S}} = \bigoplus_{X \in \mathcal{S}} \mathcal{C}_X$

is a C^* -algebra of operators on \mathcal{H} included in \mathscr{L} . If $Z \in \mathcal{S}$ let

 $\mathcal{C}(Z) \equiv \mathcal{C}_{\mathcal{S}}(Z) = \oplus_X \mathcal{C}_X(Z) = \oplus_{X \supset Z} \mathcal{C}_X(Z) = C^*\text{-subalgebra of } \mathcal{C}.$

Theorem. We have $\mathscr{C} = \mathscr{T} \cdot \mathcal{C} = \mathcal{C} \cdot \mathscr{T}$. For each $Z \in \mathcal{S}$ the space $\mathscr{C}(Z) = \mathscr{T} \cdot \mathcal{C}(Z) = \mathcal{C}(Z) \cdot \mathscr{T}$ is a C^* -subalgebra of \mathscr{C} and the family $\{\mathscr{C}(Z)\}_{Z \in \mathcal{S}}$ defines a graded C^* -algebra structure on \mathscr{C} .

8. Elliptic C*-Algebra

X = finite dimensional real vector space.

Elliptic algebra $\mathscr{E}(X)$: defined by the following equivalent conditions: (i) $\mathscr{E} = C_{\rm b}^{\rm u}(X) \rtimes X$; (ii) $\mathscr{E} = \{T \in \mathscr{B} \mid \lim_{a \to 0} \|(e^{iap} - 1)T^{(*)}\| = 0, \lim_{a \to 0} \|[T, e^{iaq}]\| = 0\}$; (iii) $\mathscr{E} = C_{\rm b}^{\rm u}(X) \cdot C_0(X^*)$;

(iv) $\mathscr{E} = C^*$ -algebra generated by the operators h(p) + S, where h is a fixed real elliptic polynomial of order m on X and S runs over the set of symmetric differential operators of order < m with coefficients in $C_{\rm b}^{\infty}(X)$.

Let X^{\dagger} = set of all ultrafilters finer than the Fréchet filter on X.

Theorem. If $T \in \mathscr{E}$ then s- $\lim_{x \to \varkappa} e^{ixp} A e^{-ixp} \doteq A_{\varkappa}$ exists $\forall \varkappa \in X^{\dagger}$ and

 $\operatorname{Sp}_{\operatorname{ess}}(A) = \bigcup_{\varkappa \in X^{\dagger}} \operatorname{Sp}(A_{\varkappa}).$

Generalization

Let $C_{\infty}(X) \subset \mathcal{A} \subset C_{\mathrm{b}}^{\mathrm{u}}(X)$ a translation invariant C^* -subalgebra. Crossed product: $\mathscr{A} = \mathcal{A} \rtimes X = \mathcal{A} \cdot C_0(X^*)$.

Let h(p) be a real elliptic polynomial of order m on X. Then \mathscr{A} is the C^* -algebra generated by the self-adjoint operators of the form h(p) + S, where S runs over the set of symmetric differential operators of order < m with coefficients in $\mathcal{A}^{\infty} = \{\varphi \in C^{\infty}(X) \mid \varphi^{(\alpha)} \in \mathcal{A} \forall \alpha\}.$

The *character space*, or *spectrum*, of \mathcal{A} is the compact space $\sigma(\mathcal{A})$ consisting of nonzero morphisms $\mathcal{A} \to \mathbb{C}$ equipped with the weak^{*} topology inherited from the embedding $\sigma(\mathcal{A}) \subset$ dual of \mathcal{A} .

Each $x \in X$ defines a character $\chi_x : \varphi \mapsto \varphi(x)$ and the map $x \mapsto \chi_x$ is a homeomorphism of X onto an open dense subset of $\sigma(\mathcal{A})$ that we identify with X. The boundary of X in $\sigma(\mathcal{A})$ is the compact set

$$\mathcal{A}^{\dagger} = \sigma(\mathcal{A}) \setminus X = \{ \varkappa \in \sigma(\mathcal{A}) \mid \varkappa(\varphi) = 0 \; \forall \varphi \in C_0(X) \}.$$

Theorem. For any $A \in \mathscr{A}$ the map $x \mapsto A_x \doteq e^{ixp}Ae^{-ixp}$ is norm continuous and extends to a continuous map $\sigma(\mathcal{A}) \ni \chi \mapsto A_\chi \in \mathscr{E}_{\text{loc}}$ and

$$\tau_{\varkappa}(A) = 0 \; \forall \varkappa \in \mathcal{A}^{\dagger} \Longleftrightarrow A \in \mathscr{K}(X).$$

Thus the map $\Phi(A) = (A_{\varkappa})_{\varkappa \in \mathcal{A}^{\dagger}}$ defines a morphism

 $\Phi:\mathscr{A}\to \bigoplus_{\varkappa\in\mathcal{A}^{\dagger}}\mathscr{E}$

whose kernel is $K(\mathcal{H})$ hence it induces an embedding

$$\widehat{\Phi} : \mathscr{A}/\mathscr{K} \hookrightarrow \bigoplus_{\varkappa \in \mathcal{A}^{\dagger}} \mathscr{E}.$$

Theorem. For any $A \in \mathscr{A}$ we have

$$\operatorname{Sp}_{\operatorname{ess}}(A) = \bigcup_{\varkappa \in \mathcal{A}^{\dagger}} \operatorname{Sp}(A_{\varkappa}).$$

X = locally compact non-compact abelian group.

Let U_x be the operator of translation by $x \in X$ and V_k the operator of multiplication by the character $k \in X^*$. Then

 $\mathscr{C}(X) = \{T \in \mathscr{B}(X) \mid \lim_{k \to 0} \|[T, V_k]\| = 0 \text{ and } \lim_{x \to 0} \|(U_x - 1)T^{(*)}\| = 0\}$

is a C^* -algebra. $\mathscr{C}_s(X)$ is $\mathscr{C}(X)$ equipped with the topology defined by the seminorms $||S||_{\theta} = ||S\theta(q)|| + ||\theta(q)S||$ with $\theta \in C_0(X)$.

Theorem Let H be an observable affiliated to $\mathscr{C}(X)$. For each $\varkappa \in X^{\dagger}$ the limit $\varkappa.H := \lim_{x \to \varkappa} x.H$ exists in the following sense: there is an observable $\varkappa.H$ affiliated to $\mathscr{C}(X)$ such that $\lim_{x \to \varkappa} U_x \varphi(H) U_x^* = \varphi(\varkappa.H)$ in $\mathscr{C}_s(X)$ for all $\varphi \in C_0(\mathbb{R})$. We have

 $\operatorname{Sp}_{\operatorname{ess}}(H) = \overline{\bigcup}_{\varkappa} \operatorname{Sp}(\varkappa.H).$

General metric spaces

V.G. On the structure of the essential spectrum of elliptic operators on metric spaces; J. Func. Analysis 260:1734-1765 (2011).

Description of the essential spectrum of a large class of operators on metric measure spaces, analogues of the elliptic operators on Euclidean spaces, in terms of their *localizations at infinity*. The main result concerns the ideal structure of the C^* -algebra generated by them.

9. MOURRE ESTIMATE

A, H = self-adjoint operators on a Hilbert space \mathcal{H} .

H is of class $C^1(A)$ or $C^1_u(A)$ if $\tau \mapsto e^{-i\tau A}(H+i)^{-1}e^{i\tau A}$ is strongly C^1 or norm C^1_u respectively. Then $D(A) \cap D(H)$ is a core for H and [H, iA] extends to a continuous sesquilinear form on D(H).

H satisfies *Mourre estimate* at $\lambda \in \mathbb{R}$ if there are: a number c > 0, a real function $\varphi \in C_{c}(\mathbb{R})$ with $\varphi(\lambda) \neq 0$, and a compact operator K, such that $\varphi(H)[H, iA]\varphi(H) \geq c\varphi(H)^{2} + K.$

If this holds with K = 0 say that H satisfies a strict Mourre estimate at λ

Remark. We have $\varphi(H)[H, iA]\varphi(H) = \varphi(H)[\psi(H), iA]\varphi(H)$ if $\psi \in C_c^{\infty}(\mathbb{R})$ and $\psi(x) = x$ on supp φ , hence the Mourre estimate can be expressed in terms of the observable H.

The set of *A*-thresholds of *H* is the closed set

 $\tau_A(H) = \{\lambda \in \mathbb{R} \mid H \text{ does not satisfy a Mourre estimate at } \lambda\}$

and set of A-critical points of H is the closed set

 $\kappa_A(H) = \{\lambda \in \mathbb{R} \mid H \text{ does not satisfy a strict Mourre estimate at } \lambda \}.$

Define $\tilde{\rho}_H$ and ρ_H as the functions $\mathbb{R} \to (-\infty, +\infty]$ defined as follows:

 $\widetilde{\rho}_H(\lambda)$ = upper bound of the numbers c s.t. the Mourre estimate holds for some φ, K ;

 $\rho_H(\lambda)$ = upper bound of the numbers c s.t. the strict Mourre estimate holds for some φ .

Then $\tau_A(H) = \{\lambda \in \mathbb{R} \mid \tilde{\rho}_H(\lambda) \leq 0\}$ and $\kappa_A(H) = \{\lambda \in \mathbb{R} \mid \rho_H(\lambda) \leq 0\}.$

Proposition. $\rho_H(\lambda) = \tilde{\rho}_H(\lambda)$ with the exception of the points λ which are eigenvalues of H and $\tilde{\rho}_H(\lambda) > 0$; at these points $\rho_H(\lambda) = 0$.

In particular, $\rho_H(\lambda) > 0$ if and only if $\tilde{\rho}_H(\lambda) > 0$ and $\lambda \notin \sigma_p(H)$. In other terms

 $\kappa_A(H) = \tau_A(H) \cup \sigma_p(H).$

Theorem. Let S a \wedge -semilattice with a least element o and atomic and $\mathscr{C} \subset B(\mathcal{H})$ an S-graded C^* -algebra such that:

(i) each $\mathscr{C}(a)$ is nondegenerate on \mathcal{H} ;

(ii)
$$\mathscr{C}(o) = K(\mathcal{H});$$

(iii) $\forall S \in \mathscr{C}$ the set $\{\mathcal{P}_a(S) \mid a \in \mathcal{S}_{\min}\}$ is compact in \mathscr{C} ;

(iv) $\forall a \in \mathcal{S} \text{ and } \tau \in \mathbb{R} \text{ we have } e^{-i\tau A} \mathscr{C}(a) e^{i\tau A} \subset \mathscr{C}(a).$

Let *H* be a self-adjoint operator strictly affiliated to \mathscr{C} and of class $C_{\rm u}^1(A)$ and let $H_a = \mathcal{P}_a(H)$. Then H_a is a self-adjoint operator strictly affiliated to \mathscr{C}_a , of class $C_{\rm u}^1(A)$ and

$$\tilde{\rho}_H(\lambda) = \min_{a \in \mathcal{S}_{\min}} \rho_{H_a}(\lambda) \ \forall \lambda \quad \text{and} \quad t_A(H) = \bigcup_{a \in \mathcal{S}_{\min}} \kappa_A(H_a).$$

Idea. Need to think in terms of observables. Let $\tilde{H} = \mathcal{P}(H)$ where $\mathcal{P}: \mathscr{C} \to \mathscr{C}/K(\mathcal{H})$. The $e^{i\tau A}$ induce a group automorphisms of $\mathscr{C}/K(\mathcal{H})$, the observable \tilde{H} is of class C_u^1 with respect to this group, and the $\tilde{\rho}$ of H is the ρ of \tilde{H} . Finally, the ρ for a direct sum of H_a is $\inf_a \rho_a$ (due to (iii)).

References

- [1] V. Georgescu and A. Iftimovici. On the structure of the C*-algebra generated by the field operators. J. Func. Anal., 284(8), art. 109867, **15** April 2023, 73 pp; arXiv:1902.10026v2.
- [2] V. Georgescu. On the essential spectrum of elliptic differential operators. J. Math. Analysis Appl., 468:839–864, **2018**. ArXiv 1705.00379.
- [3] V. Georgescu and V. Nistor. On the essential spectrum of *N*-body Hamiltonians with asymptotically homogeneous interactions. *J. Op. Theory*, 77(2):333–376, **2017**.
- [4] E. B. Davies and V. Georgescu. C*-algebras associated with some second order differential operators. J. Op. Theory, 70(2): 437-450 **2013**. ArXiv 1103.3880.
- [5] V. Georgescu. On the structure of the essential spectrum of elliptic operators on metric spaces. *J. Func. Analysis*, 260:1734-1765, **2011**. ArXiv 1003.3454v2.
- [6] M. Damak and V. Georgescu. On the spectral analysis of many-body systems. J. Func. Analysis, 259:618-689, 2010. ArXiv 0911.5126.
- [7] S. Golénia and V. Georgescu. Compact perturbations and stability of the essential spectrum of singular differential operators. J. Op. Theory, 59(1):115-155, **2008**. Math. Phys. Arch. 04-355,
- [8] V. Georgescu. Hamiltonians with purely discrete spectrum, 2008. ArXiv 0810.5563.
- [9] V. Georgescu. On the spectral analysis of quantum field Hamiltonians. J. Func. Analysis, 245:89–143, **2007**. ArXiv /math-ph/0604072.
- [10] V. Georgescu and A. Iftimovici. Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory. *Rev. Math. Phys.*, 18(4):417–483, 2006.
- [11] S. Golénia and V. Georgescu. Isometries, Fock spaces, and spectral analysis of Schrödinger operators on trees. *J. Func. Analysis*, 227:389-429, **2005**.
- [12] M. Damak and V. Georgescu. Self-adjoint operators affiliated to C^* -algebras. *Rev. Math. Phys.*, 16(2):257–280, **2004**.

- [13] V. Georgescu and A. Iftimovici. C*-algebras of quantum Hamiltonians. Operator Algebras and Mathematical Physics, pp. 123–167; eds. J. M. Combes, J. Cuntz, G. A. Elliot, G. Nenciu, H. Siedentop and S. Stratila. Theta Foundation, Bucharest, 2003; Math.Phys.Arch. 02-410, 2002.
- [14] V. Georgescu and A. Iftimovici. Crossed products of C*-algebras and spectral analysis of quantum Hamiltonians. Comm. Math. Phys., 228(3):519–560, 2002.
- [15] V. Georgescu and A. Iftimovici. C*-algebras of energy observables. II. Graded Symplectic Algebras and Magnetic Hamiltonians. *Math.Phys.Arch.* 01-99, **2001**.
- [16] M. Damak and V. Georgescu. C*-algebras related to the N-body problem and the self-adjoint operators affiliated to them. *Math.Phys.Arch.* 99-482, **1999**.
- [17] M. Damak and V. Georgescu. C*- Crossed Products and a Generalized Quantum Mechanical N-Body Problem. Math. Phys. Arch. 99-481, 1999.
- [18] W. O. Amrein, A. Boutet de Monvel and V. Georgescu. C_0 -Groups, Commutator Methods, and Spectral Theory of N-Body Hamiltonians. *Birkhäuser*, **1996**.
- [19] A. Boutet de Monvel-Berthier and V. Georgescu. Graded C*-algebras associated to symplectic spaces and spectral analysis of many channel Hamiltonians. *Dynamics of complex and irregular systems (Bielefeld, 1991)*, pp. 22–66. Bielefeld Encount. Math. Phys., VIII, World Sci. Publishing, **1993**.
- [20] A. Boutet de Monvel-Berthier and V. Georgescu. Graded C*-algebras in the N-body problem. J. Math. Phys., 32(11):3101–3110, 1991.
- [21] V. Georgescu. Sur l'existence des opérateurs d'onde dans la théorie algébrique de la diffusion. *Ann. Inst. Henri Poincaré*, 27(1):9-29, **1977**.