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The effort to understand the universe is one of the very few things which lifts

human life a little above the level of farce and gives it some of the grace of tragedy.
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The purpose of this lecture is to highlight the utility of C∗-algebras in the spectral theory
of “complicated” quantum systems: N-body systems and beyond, quantum fields, etc.

To sum up the key idea: instead of studying by ad hoc means the properties of a Hamilton-
ian H , study the structure of the C∗-algebra generated by a class of Hamiltonians that are
similar (in some sense) to H .

Main references: VG+A.Iftimovici, On the structure of the C∗-algebra generated by the
field operators, J. Func. Analysis 284(8), 2023; V.G. On the structure of the essential
spectrum of elliptic operators on metric spaces, J. Func. Analysis, 260:1734-1765, 2011.



1. NOTATIONS

(1) If C is a C∗-algebra and A,B ⊂ C then

AB = linear span of {AB | A ∈ A, B ∈ B} and A·B = closure of AB.∑c
i∈I Ai = norm closure of the sum

∑
i∈I Ai of the subspaces Ai of C .

(2) Some algebras associated to a finite dimensional real vector space X:

Cc(X) ⊂ C0(X) ⊂ C∞(X) ⊂ Cu
b(X) ⊂ Cb(X) ⊂ C(X).

L2(X) and its norm are defined by a translation invariant Radon measure
on X but the norm in B(L2(X)) is independent of this choice. We set

B(X) = B(L2(X)) and K (X) = K(L2(X)).

Position and momentum observables q, p:

ϕ : X → C Borel⇒ ϕ(q) = multiplication by ϕ on L2(X),
ψ : X∗ → C Borel⇒ Fψ(p)F−1 = multiplication by ψ on L2(X∗),
(where F : L2(X)→ L2(X∗) is a Fourier transform).

(1) Cb(X) ⊂ B(X) via ϕ 7→ ϕ(q).
(2) Cb(X∗) ⊂ B(X) via ψ 7→ ψ(p). (Also set C∗(p) = C0(X∗).)



2. OBSERVABLES AFFILIATED TO C∗-ALGEBRAS

Self-adjoint operators affiliated to a C*-algebra

Let H a Hilbert space, C ⊂ B(H) a C∗-subalgebra, and A a self-adjoint
operator with spectrum Sp(A).

C∗-algebra generated by A: C∗(A) ≡ C0(A)
.
= {θ(A) | θ ∈ C0(R)}.

A is affiliated to C if the next equivalent conditions are satisfied:

C∗(A) ⊂ C ⇔ θ(A) ∈ C ∀θ ∈ C0(R)⇔ (A−z)−1 ∈ C for some z /∈ σ(A).

A is strictly affiliated to C if it is affiliated to C and C∗(A) · C = C .

Example. LetH = L2(R) and q the operator defined by (qu)(x) = xu(x).
Clearly C∗(q) ≡ C0(R). Then q+q−1 is affiliated but not strictly to C0(R).



Affiliation criterion

1) H0 = self-adjoint operator onH and G = D(|H0|
1
2 ). Then

G ⊂ H ⊂ G∗ continuous dense embeddings

and H0 extends to a continuous map G → G∗.

2) V : G → G∗ symmetric such that for some numbers µ, ν ≥ 0 with µ < 1

±V ≤ µ|H0|+ ν or H0 is bounded from below and V ≥ −µH0− ν.

3) Then the restriction of H = H0 + V : G → G∗ to D(H)
.
= {g ∈ G |

Hg ∈ H} is a self-adjoint operator onH still denoted H .

Theorem. If H0 is strictly affiliated to C and for some s ≥ 1/2

(|H0| + 1)−sV (|H0| + 1)−1/2 ∈ C

then H is strictly affiliated to C .



Observables affiliated to C*-algebras

Let C be an arbitrary C∗-algebra. An observable affiliated to C is just a
morphism A : C0(R)→ C . We often use the notation θ(A) = A(θ) and

C∗(A) ≡ C0(A)
.
= {θ(A) | θ ∈ C0(R)} = C∗-subalgebra of C .

The zero morphism is an observable affiliated to C denoted ∞; this is
natural because θ(∞) = 0 for any θ ∈ C0(R).

A = set of observables affiliated to C . The C∗-algebra generated by A is
C∗(A) = smallest C∗-subalgebra which contains θ(A) ifA∈A, θ∈C0(R).

A is strictly affiliated to C if it is affiliated to C and C∗(A) · C = C .

P : C → D = morphism⇒P(A)
.
= P ◦ A observable affiliated to D .

Notation: A ∈̃C ⇔ A belongs to C or is an observable affiliated to C .



Fix a Hilbert space H. Then a self-adjoint operator is identified with the
observable defined by its C0-functional calculus.

Let C ⊂ B(H). The observables affiliated to C can be identified with
self-adjoint operators acting in closed subspaces ofH. The observable∞
is the only operator with domain {0}.

Example. The Hamiltonians of N-body systems with hard core interac-
tions are observables affiliated to the C∗-algebra generated by the usual
N-body Hamiltonians but are not self-adjoint operators onH.

If P : C → D ⊂ B(K) and A is a self-adjoint operator on H affiliated
to C , then P(A) in general is not associated to a (densely defined) self-
adjoint operator on K. But:

if A is a self-adjoint operator strictly affiliated to C then P(A) is a
(densely defined) self-adjoint operator in any non-degenerate represen-
tation P of C .



3. C∗-ALGEBRAS GRADED BY SEMILATTICES

S = semilattice = ordered set s.t. the upper bound a ∨ b exists ∀a, b ∈ S.

Definition. A C∗-algebra C is S-graded if a linearly independent family
{C (a)}a∈S ofC∗-subalgebras of C (called components) is given such that:

(i) C (a) · C (b) ⊂ C (a ∨ b) for all a, b ∈ S;

(ii)
∑

a∈S C (a) is dense in C , i.e.
∑c

a∈S C (a) = C .

C (E)
.
=
∑c

a∈E C (a) if E ⊂ S. If E ⊂ S is∨-stable then C (E) is E-graded.

Remark. E finite⇒
∑

a∈E C (a) is a closed subspace.

Remark. We will also come across situations where S is a ∧-semilattice,
i.e. the lower bound a∧b exists ∀a, b ∈ S, and the condition (i) is replaced
by C (a) ·C (b) ⊂ C (a∧ b). If needed to avoid confusion we then say that
C is ∧-graded, or inf-graded, by S. Above, C is ∨-graded, or sup-graded.

Remark. Only sub-semilattices of Grassmannians will be of interest.
G(X) = Grassmannian of X .

= set of finite dimensional subspaces of
the real vector space X with inclusion as order relation. This is a lattice:
Y ∧ Z = Y ∩ Z and Y ∨ Z = Y + Z.



Exercise

The simplest nontrivial example of graded C∗-algebra.

Let H = L2(R). If (α, β) ∈ R2 then αp + βq is a self-adjoint operator so
we my consider the C∗-algebra generated by such operators:

F
.
= C∗(αp + βq | (α, β) ∈ R2).

If (α′, β′) ∈ R2 then

[αp + βq, α′p + β′q] = i(α′β − αβ′).

This is zero if and only if the vectors (a, b) and (a′, b′) are collinear and
then α′p + β′q = λ(αp + βq) for some real λ if αp + βq 6= 0.

For each line L ⊂ R2 choose a nonzero (a, b) ∈ L and denote F (L) =
C∗(αp + βq). Then set F (0) = C, F (R2) = K(H). Show that

F = norm closure of C +
∑

L∈PF (L) + K(H).

F is G(R2)-graded by the family of C∗-subalgebras {F (E)}E∈G(R2).



Proposition. a ∈ S ⇒
Sa = {b ∈ S|b ≤ a} and S ′a = {b ∈ S|b � a} are sub-semilattices.
Ca = C (Sa) is a C∗-subalgebra and C ′a = C (S ′a) is an ideal of C such that
C = Ca + C ′a direct sum. The projection Pa : C → Ca is a morphism.

HVZ Theorem. Assume S has a greatest element e and is co-atomic. Let
Smax = set of maximal elements of S \ {e}. Then P : S 7→ (PaS)a∈Smax

is a morphism C →
⊕

a∈Smax
Ca with kernel C (e), hence

C /C (e) ↪→
⊕

a∈Smax
Ca.

(i) If T ∈̃C then:

C -Spess(T )
.
= spectrum of P(T ) ≡ SpP(T ) = ∪a∈Smax

SpPa(T ).

(ii) If C ⊂ B(H) and C (e) = C ∩K(H) then Spess(T ) = C -Spess(T ).

(iii) If S = G(X), so Smax = H = set of hyperplanes of X , then
{Pa(S) | a ∈ H} is a compact in C and C -Spess(T ) = ∪a∈HSpPa(T ).

Remark. Everything is very easy. Only the assertion concerning the compactness requires
a little bit of thinking! {Pa(S) | a ∈ Smax} is always a relatively compact subset of C .



4. FIELD C∗-ALGEBRA OF A SYMPLECTIC SPACE

Symplectic space = real vector space Ξ equipped with a symplectic form
(bilinear anti-symmetric non-degenerate map σ : Ξ2 → R). Set
E ⊂ Ξ⇒ Eσ .

= {ξ ∈ Ξ | σ(ξ, η) = 0 ∀η ∈ E}.
E is isotropic if E ⊂ Eσ, Lagrangian if E = Eσ, symplectic if σ is non-
degenerate on it.

Remark. Gs(Ξ)
.
= set of symplectic finite dimensional subspaces. Then:
∀E ∈ G(Ξ) ∃F ∈ Gs(Ξ) such that E ⊂ F .

Example. X = finite dimensional real vector space; T ∗X = X ⊕ X∗

with the symplectic form σ(ξ, η) = 〈y, k〉 − 〈x, l〉 if
ξ = x + k, η = y + l with x, y ∈ X and k, l ∈ X∗.

Representation of Ξ on a Hilbert spaceH: a map W : Ξ→ U(H) with
W (ξ + η) = e

i
2σ(ξ,η)W (ξ)W (η) ∀ξ, η ∈ Ξ and w-limt→0W (tξ) = 1.

Then ∀ξ ∈ Ξ the field operator φ(ξ) ≡ φW (ξ) is the self-adjoint operator
such that W (tξ) = eitφ(ξ) ∀t ∈ R. We set Rξ(z) = (φ(ξ)− z)−1.
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E ∈ G(Ξ)⇒M(E) = set of bounded Borel measures on E and L1(E) =
subset of absolutely continuous measures (with M(0) = L1(0) = Cδ0).

Definitions. The Kastler algebra was introduced by Kastler in 1965.

(1) The Kastler C∗-algebra K of Ξ is the norm closure in B(H) of the
set of operators W (µ) =

∫
EW (ξ)µ(dξ) with E ∈ G(Ξ), µ ∈M(E).

(2) The field C∗-algebra F of Ξ is the norm closure of the set of operators
W (µ) with E ∈ G(Ξ) and µ ∈ L1(E) (AI+VG 2001).

(3) The resolvent algebra R .
= C∗(φ(ξ)|ξ ∈ Ξ) introduced by Buchholz

and Grundling in 2008 coincides with the field algebra.

Proposition. The Kastler C∗-algebras associated to different representa-
tions W are canonically isomorphic. Similarly for the field algebras.

Thus we may think of K ,F as some abstractly given objects independent of W . In
fact they were so constructed by Kastler (1965) by using the unital ∗-algebra structure on
∪E∈G(Ξ)M(E) defined by the natural involution and the twisted convolution∫

f (ξ)(µ~ ν)(dξ) =

∫∫
e−

i
2σ(ξ,η)f (ξ + η)µ(dξ)ν(dη) ∀f ∈ C0(E).



G-grading of F

Definition. E ∈ G(Ξ) and ξ1, . . . , ξn is a generating set for E ∈ G(Ξ)

F (E)
.
= norm closure of the set of operators W (µ) with µ ∈ L1(E)

= C∗(φ(ξ1)) · C∗(φ(ξ2)) · . . . · C∗(φ(ξn)).

Theorem. The set of C∗-subalgebras F (E) of F has the properties:

E,F ∈ G(Ξ)⇒ F (E) ·F (F ) = F (E + F ),

F̊
.
=
∑

E∈G(Ξ)F (E) is a linear direct sum and is dense in F ,

if S ⊂ G(Ξ) is finite then F (S)
.
=
∑

E∈SF (E) is norm closed.

In other terms:F is aG(Ξ)-gradedC∗-algebra with components F (E).

F̊
.
=
∑

E∈G(Ξ)F (E), F = closure of F̊ =
∑c

E∈G(Ξ)F (E).

Remark. If S ⊂ G(Ξ) is finite and E /∈ S then F (E) ∩F (S) = 0.



Any subspace E ⊂ Ξ determines three C∗-subalgebras of F :

FE
.
=
∑c

F⊂EF (F ), F ′
E
.
=
∑c

F 6⊂EF (F ), F⊃E
.
=
∑c

F⊃EF (F ).

FE = unital C∗-subalgebra; F ′
E and F⊃E are ideals. In terms of fields

FE = C∗(φ(ξ) | ξ ∈ E).

Theorem. The C∗-algebra FE and the ideal F ′
E satisfy

F = FE + F ′
E and FE ∩F ′

E = 0.

The projection PE : F → FE determined by this direct sum decomposi-
tion is a morphism and it is the unique continuous linear map PE : F →
F such that T =

∑
FT (F ) ∈ F̊ ⇒ PET =

∑
F⊂ET (F ).

For any subspaces E,F we have

FE∩F = FE ∩FF and PE∩F = PEPF = PFPE.



If Ξ is finite dimensional we may describe FE and its commutant in F
independently of the graded structure of F .

Theorem. If Ξ is finite dimensional, for any subspace E ⊂ Ξ we have
(1) FE = {T ∈ F | [T,W (ξ)] = 0 ∀ξ ∈ Eσ},
(2) FEσ = {T ∈ F | [S, T ] = 0 ∀S ∈ FE}.

Corollary. If X ∈ G(Ξ) is Lagrangian then FX is a maximal abelian
subalgebra of F , i.e. if T ∈ F then: [S, T ] = 0 ∀S ∈ FX ⇔ T ∈ FX.

The next one is a much more subtle result and it requires a real proof!

Theorem. If Ξ is finite dimensional and W irreducible then F (E) is the
set of T ∈ B(H) such that:

lim
ξ→0
‖[W (ξ), T ]‖ = 0, lim

ξ∈E, ξ→0
‖(W (ξ)−1)T‖ = 0, [W (ξ), T ] = 0∀ξ ∈ Eσ.

The first condition is equivalent to:

ξ 7→ W (ξ)∗TW (ξ) is norm continuous on finite dimensional subspaces.



We now consider the HVZ theorem for a finite dimensional Ξ. Then
F (Ξ) ⊂ K(H) if W is of finite multiplicity and F (Ξ) = K(H) if W
is irreducible. So if W is of finite multiplicity

C -Spess(T ) = Spess(T ) ∀T ∈̃F .

Clearly G(Ξ)max = H(Ξ) is the set of hyperplanes of Ξ.

Theorem. If T ∈̃F then C -Spess(T ) =
⋃
H∈H(Ξ)Sp(PHT ). Moreover, for

any H ∈ H(Ξ) and any nonzero ξ ∈ Hσ we have

PHT = s- lim
r→∞

W (rξ)∗TW (rξ).

If S ⊂ G(Ξ) is a subsemilattice with Ξ ∈ S and T ∈̃F (S) then

C -Spess(T ) =
⋃
E∈Smax

Sp(PET ).



5. PHASE SPACE OF A FINITE DIMENSIONAL REAL SPACE

Let X be a finite dimensional real vector space.

If Y ⊂ X linear subspace, πY : X → X/Y the natural surjection, embed

C0(X/Y ) ⊂ Cu
b(X) via ϕ 7→ ϕ ◦ πY

C0(X/Y ) = set of continuous ϕ : X → C with ϕ(x + y) = ϕ(x) if
x ∈ X, y ∈ Y and such that ϕ(x)→ 0 when dist(x, Y )→∞.

Lemma. The family of C∗-subalgebras C0(X/Y ) with Y ∈ G(X) is

(1) linearly independent,
(2) C0(X/Y ) · C0(X/Z) = C0(X/(Y ∩ Z)) ∀Y, Z ∈ G.

Definition. G ≡ GX .
=

∑c
Y ∈GC0(X/Y ) ⊂ Cu

b(X) is the (abelian) Grass-
mann C∗-algebra of X; it is ∧-graded by G(X).

Lemma. If S ⊂ G is finite and ∧-stable then G(S)
.
=
∑

Y ∈S C0(X/Y ) is
a C∗-subalgebra of G.



(Quantum) Grassmann C*-algebra

G
.
= G ·C∗(p) = closed linear span of {ϕ(q)ψ(p) | ϕ ∈ G, ψ ∈ C0(X∗)}.

For each Y ∈ G(X) set

G (Y )
.
= closed linear span of {ϕ(q)ψ(p) | ϕ ∈ C0(X/Y ), ψ ∈ C0(X∗)}

Proposition. G (Y ) is a nondegenerate C∗-algebra of operators onH and
(1) the family {G (Y ) is linearly independent,
(2) G (Y ) · G (Z) = G (Y ∩ Z) ∀Y, Z ∈ G,
(3) G =

∑c
Y ∈G G (Y ).

This means: the C∗-algebra G is ∧-graded by G with components G (Y ).

Proposition. Let Z be a subspace supplementary to Y , so X = Y ⊕ Z
and X/Y ∼= Z, and let us identifyH = L2(X) = L2(Y )⊗ L2(Z). Then

G (Y ) = C0(Y ∗)⊗K(L2(Z)) ∼= C0(Y ∗, K(L2(Z))).

In other terms: T ∈ B(H) belongs to G (Y ) if and only if FTF−1 is the
operator of multiplication by a function T̂ : Y ∗ → K(L2(Z)) of class C0.



Remarks.

The symplectic space is Ξ = T ∗X = X ⊕X∗ with symplectic form

σ(ξ, η) = 〈y, k〉−〈x, l〉 if ξ = x+k, η = y+l with x, y ∈ X and k, l ∈ X∗.

Note that X and X∗ are Lagrangian subspaces of Ξ. We have:

G X = F⊃X =
∑c

E⊃XF (E) and G (Y ) = F (Y σ) ∀Y ⊂ X.

There are very few functions of the position observable in F . Indeed:

ϕ(q) ∈ F ⇔ ϕ ∈ GX.

Half-Lagrangian decompositions of Ξ

A simple modification of the symplectic form allows one to introduce
constant magnetic fields into the formalism and so to treat N-body sys-
tems which interact with an external asymptotically constant magnetic
field. The constant magnetic field may be interpreted as a bilinear anti-
symmetric form β : X ×X → R. The new symplectic form on T ∗X

σ(ξ, η) = β(x, y) + 〈y, k〉 − 〈x, l〉.



HVZ theorem

G ≡ G(X) has a least element 0 = {0} and Gmin = P = set of one
dimensional subspaces L of X (projective space of X).

Lemma. If T ∈ G and a ∈ L \ {0} then PL(T ) = s-limr→∞ eirap T e−irap.

Lemma. H = self-adjoint operator affiliated to GY with Y 6= 0⇒
σ(H) is an interval.

Proposition. {PL(T ) | L ∈ P} is a compact subset of G for any T ∈ G .

Theorem. T ∈̃G =⇒ Spess(T ) =
⋃
L∈P Sp(PLT ).

Proof. If Y ∈ G and GY =
∑c

Z⊃Y G (Z) and G ′Y =
∑c

Z 6⊃Y G (Z) then G = GY +G ′Y direct
sum and PY : G → GY is the associated projection. Then T 7→ (PLT )L∈P is a morphism
G →

⊕
L∈PGL with kernel G (0) = C0(q)·C0(p) = K(H). Hence G /K(H) ↪→

⊕
L∈PGL.



Intrinsic description of G (Y )

Notations: if f ∈ H, x ∈ X , k ∈ X∗ then

(eixpf)(y) = f(x+ y) and (eikqf)(y) = eikyf(y) ∀y ∈ X.

Simplest cases: G (0) = K(H) and G (X) = C∗(p) = C0(p).

Theorem (really!). G (Y ) is the set of T ∈ B(H) such that

(i) [eixp, T ] = 0 for all x ∈ Y ,

(ii) lim
x→0
‖[eixp, T ]‖ = 0 and lim

x→0
‖(eixp − 1)T‖ = 0,

(iii) lim
k→0
‖[eikq, T ]‖ = 0 and lim

k→0,k∈Y ⊥
‖(eikq − 1)T‖ = 0.



G is generated by elementary N-body type Hamiltonians

First, un exercise:

Lemma. G = {ϕ(q) | ϕ ∈ G} ⊂ B(H) is the C∗-algebra generated by
the self-adjoint operators α(q) with α ∈ X∗.

S0 ⊂ G; S = set of finite intersections of subspaces from S0 (so X ∈ S).

G (S) =
∑c

Y ∈SG (Y )

Theorem. Let h : X∗ → R continuous with limk→∞ h(k) =∞.
Then G (S) = C∗-algebra generated by the operators H = h(p+ k) + v(q)
with k ∈ X∗ and v ∈

∑
Y ∈S0 C0(X/Y ) real.

Proposition. If h is a real elliptic polynomial of order m on X then G (S)
is the C∗-algebra generated by the self-adjoint operators h(p) + S, where
S runs over the set of symmetric differential operators of order < m with
coefficients in

∑
Y ∈S0 C

∞
0 (X/Y ).



Hamiltonians affiliated to G

S ⊂ G sub-semilattice with X ∈ S
h : X∗ → R continuous positive and with limk→∞ h(k) =∞.

Then h(p) is a kinetic energy operator strictly affiliated to G (X) =
C0(X∗), hence to G (S).

Let Hh = D(h(p)1/2) be the form domain of h(p) and Hh ⊂ H ⊂ H∗h the
associated scale.

Theorem. ∀Y ∈ S let V (Y ) ∈ B(Hh,H∗h) a symmetric operator s.t.

(1) V (X) = 0 and (h(p) + 1)−sV (Y )(h(p) + 1)−1/2 ∈ G (Y ) with s > 1/2;

(2) the family {V (Y )}E∈S is norm summable in B(Hh,H∗h);
(3) V (Y ) ≥ −µYh(p)−νY with µY , νY ≥ 0,

∑
Y∈S µY < 1,

∑
Y∈S νY <∞.

Let V =
∑

Y∈S V (Y ) and VY =
∑

Z⊃Y V (Z) for any Y ∈ S . Then
H = h(p) + V and HY = h(p) + VY are bounded from below self-
adjoint operators, with form domain Hh, strictly affiliated to G (S), and
PYH = HY ∀Y ∈ S. If 0 ∈ S then

Spess(H) = ∪Y ∈Smin
Sp(PYH).



Assume that for some s > 0

c′|k|2s ≤ h(k) ≤ c′′|k|2s for some constants c′, c′′ and all large k.

Sobolev spacesHr, r ∈ R.

Theorem. Let V : Hs → H−s symmetric such that V ≥ −µh(p) − ν
with µ < 1, ν ≥ 0 and 〈p〉−tV 〈p〉−s ∈ G (S) for some t > s. Then
H = h(p) + V is a self-adjoint operator strictly affiliated to G (S).

Remark. The condition t > s allows perturbations of a differential op-
erator by operators of the same order and locally irregular. For example,
∆ + V with V =

∑
jk ∂jgjk∂k and gjk locally bounded or nonlocal opera-

tors with some conditions at infinity is allowed.



6. A REMARK ON THE INFINITE DIMENSIONAL CASE

Let Ξ be a complex infinite dimensional Hilbert space and H = Γ(Ξ) the
symmetric Fock space associated to it. We keep the notation Ξ for the
underlying real vector space of Ξ equipped with the symplectic structure
defined by σ(ξ, η) = =〈ξ|η〉.

Then F is a C∗-algebra on H which does not contain compact operators
and the usual quantum field Hamiltonians are not affiliated to it. The
problem comes from the fact that Γ(A) /∈ F if A is a bounded operator
on the one particle Hilbert space Ξ.

A solution is to extend F by adding the necessary free kinetic energies.
More precisely, ifO is an abelianC∗-algebra on the Hilbert space Ξ whose
strong closure does not contain compact operators then

Φ(O)
.
= C∗(φ(ξ)Γ(A) | ξ ∈ Ξ, A ∈ O, ‖A‖ < 1)

is a C∗-algebra of operators onH which contains the compacts and whose
quotient with respect to the ideal of compact operators is canonically em-
bedded in O ⊗ Φ(O) which allows one to describe the essential spectrum
of the operators affiliated to Φ(O). The Hamiltonians of the P (ϕ)2 models
with a spatial cutoff are affiliated to such algebras. The algebra A

.
= Φ(C)

has a remarkable property: K(H) ⊂ A and A /K(H) ∼= A .

[V.G. 2007 [9]]



7. MANY-BODY SYSTEMS

Many-body systems are obtained by coupling a certain number (finite or
infinite) of N-body systems. An N-body system consists of a fixed number
N of particles which interact through k-body forces which preserve N.
The many-body type interactions include forces which allow the system to
make transitions between states with different numbers of particles. These
transitions are realized by creation-annihilation processes as in quantum
field theory.

The main difficulty in the present algebraic approach is to isolate the cor-
rect C∗-algebra. This is especially problematic in the present situations
since it is not a priori clear how to define the couplings between the vari-
ous N-body systems but in very special situations. It is rather remarkable
that the C∗-algebra generated by a small class of elementary and natural
Hamiltonians will finally prove to be a fruitful choice. These elementary
Hamiltonians are analogs of the Pauli-Fierz Hamiltonians.

[M. Damak and V.G. 2010 [6]]



X = real prehilbert space; G(X ) = set of finite dimensional subspaces.

X ∈ G is an Euclidean space. Set (change of notations: L(H) ≡ B(H)):
HX = L2(X) LX = L(HX) KX = K(HX) TX = C∗(pX)

If X, Y ∈ G set LXY = L(HY ,HX) and KXY = K(HY ,HX).

If ϕ ∈ Cc(X + Y ) then (TXY (ϕ)f )(x) =
∫
Y ϕ(x − y)f (y)dy defines a

continuous operatorHY → HX . Define TXY by (clearly TXX = TX)

TXY = norm closure of the set of operators TXY (ϕ) with ϕ ∈ Cc(X + Y ).

Fix a sub-semilattice S ⊂ G. For each X ∈ S the Hilbert space HX is
thought as the state space of an N -body system with X as configuration
space. The state space of the many-body system is

H ≡ HS = ⊕X∈SHX .

We have a natural embedding LXY ⊂ L(H) and define

L ≡ LS = closed linear span of the subspaces LXY .

This is a C∗-subalgebra of L(H) equal to L(H) if and only if S is finite.



We will be interested in subspaces R of L constructed as follows: for
each couple X, Y we are given a closed subspace RXY ⊂ LXY and R ≡
(RXY )X,Y ∈S =

∑c
X,Y ∈SRXY .

Note that K ≡ KS = (KXY )X,Y ∈S = K(H).

Theorem. T ≡ TS = (TXY )X,Y ∈S is a closed self-adjoint subspace of
L and C ≡ CS = T 2 is a non-degenerate C∗-algebra of operators onH.

We say that C is the Hamiltonian algebra of the many-body system S.
We equip C with an S-graded C∗-algebras structure. Let

CX(Y ) ∼= Co(X/Y ) if Y ⊂ X and CX(Y ) = {0} if Y 6⊂ X.

Then CX ≡ CX(S) :=
∑c

Y ∈S CX(Y ) ⊂ LX by ϕ = ϕ(qX). Then

C ≡ CS = ⊕X∈SCX

is a C∗-algebra of operators onH included in L . If Z ∈ S let

C(Z) ≡ CS(Z) = ⊕XCX(Z) = ⊕X⊃ZCX(Z) = C∗-subalgebra of C.

Theorem. We have C = T · C = C · T . For each Z ∈ S the space
C (Z) = T · C(Z) = C(Z) · T is a C∗-subalgebra of C and the family
{C (Z)}Z∈S defines a graded C∗-algebra structure on C .



8. ELLIPTIC C*-ALGEBRA

X = finite dimensional real vector space.

Elliptic algebra E (X): defined by the following equivalent conditions:

(i) E = Cu
b(X)oX;

(ii) E = {T ∈ B | lima→0 ‖(eiap − 1)T (∗)‖ = 0, lima→0 ‖[T, eiaq]‖ = 0};
(iii) E = Cu

b(X) · C0(X∗);

(iv) E =C∗-algebra generated by the operators h(p)+S, where h is a fixed
real elliptic polynomial of order m on X and S runs over the set of sym-
metric differential operators of order < m with coefficients in C∞b (X).

Let X† = set of all ultrafilters finer than the Fréchet filter on X .

Theorem. If T ∈̃E then s-limx→κ eixpAe−ixp .= Aκ exists ∀κ ∈ X† and

Spess(A) = ∪κ∈X†Sp(Aκ).



Generalization

Let C∞(X) ⊂ A ⊂ Cu
b(X) a translation invariant C∗-subalgebra.

Crossed product: A = AoX = A · C0(X∗).

Let h(p) be a real elliptic polynomial of order m on X . Then A is the
C∗-algebra generated by the self-adjoint operators of the form h(p) + S,
where S runs over the set of symmetric differential operators of order< m
with coefficients in A∞ = {ϕ ∈ C∞(X) | ϕ(α) ∈ A ∀α}.

The character space, or spectrum, of A is the compact space σ(A) con-
sisting of nonzero morphisms A → C equipped with the weak∗ topology
inherited from the embedding σ(A) ⊂ dual of A.

Each x ∈ X defines a character χx : ϕ 7→ ϕ(x) and the map x 7→ χx is a
homeomorphism of X onto an open dense subset of σ(A) that we identify
with X . The boundary of X in σ(A) is the compact set

A† = σ(A) \X = {κ ∈ σ(A) | κ(ϕ) = 0 ∀ϕ ∈ C0(X)}.



Theorem. For any A ∈ A the map x 7→ Ax
.
= eixpAe−ixp is norm

continuous and extends to a continuous map σ(A) 3 χ 7→ Aχ ∈ Eloc and

τκ(A) = 0 ∀κ ∈ A† ⇐⇒ A ∈ K (X).

Thus the map Φ(A) = (Aκ)κ∈A† defines a morphism

Φ : A →
⊕

κ∈A† E

whose kernel is K(H) hence it induces an embedding

Φ̂ : A /K ↪→
⊕

κ∈A† E .

Theorem. For any A ∈̃A we have

Spess(A) = ∪κ∈A†Sp(Aκ).



X = locally compact non-compact abelian group.

Let Ux be the operator of translation by x ∈ X and Vk the operator of
multiplication by the character k ∈ X∗. Then

C (X) = {T ∈ B(X) | lim
k→0
‖[T, Vk]‖ = 0 and lim

x→0
‖(Ux − 1)T (∗)‖ = 0}

is a C∗-algebra. Cs(X) is C (X) equipped with the topology defined by
the seminorms ‖S‖θ = ‖Sθ(q)‖ + ‖θ(q)S‖ with θ ∈ C0(X).

Theorem Let H be an observable affiliated to C (X). For each κ ∈ X†
the limit κ.H := limx→κ x.H exists in the following sense: there is an ob-
servable κ.H affiliated to C (X) such that limx→κ Uxϕ(H)U∗x = ϕ(κ.H)
in Cs(X) for all ϕ ∈ C0(R). We have

Spess(H) =
⋃
κSp(κ.H).



General metric spaces

V.G. On the structure of the essential spectrum of elliptic operators on
metric spaces; J. Func. Analysis 260:1734-1765 (2011).

Description of the essential spectrum of a large class of operators on
metric measure spaces, analogues of the elliptic operators on Euclidean
spaces, in terms of their localizations at infinity. The main result concerns
the ideal structure of the C∗-algebra generated by them.



9. MOURRE ESTIMATE

A,H = self-adjoint operators on a Hilbert spaceH.

H is of class C1(A) or C1
u(A) if τ 7→ e−iτA(H + i)−1eiτA is strongly C1

or norm C1
u respectively. Then D(A) ∩D(H) is a core for H and [H, iA]

extends to a continuous sesquilinear form on D(H).

H satisfies Mourre estimate at λ ∈ R if there are: a number c > 0, a real
function ϕ ∈ Cc(R) with ϕ(λ) 6= 0, and a compact operator K, such that

ϕ(H)[H, iA]ϕ(H) ≥ cϕ(H)2 + K.
If this holds with K = 0 say that H satisfies a strict Mourre estimate at λ

Remark. We have ϕ(H)[H, iA]ϕ(H) = ϕ(H)[ψ(H), iA]ϕ(H) if ψ ∈ C∞c (R) and ψ(x) =
x on suppϕ, hence the Mourre estimate can be expressed in terms of the observable H .

The set of A-thresholds of H is the closed set

τA(H) = {λ ∈ R | Hdoes not satisfy a Mourre estimate atλ}

and set of A-critical points of H is the closed set

κA(H) = {λ ∈ R | H does not satisfy a strict Mourre estimate at λ }.



Define ρ̃H and ρH as the functions R→ (−∞,+∞] defined as follows:

ρ̃H(λ) = upper bound of the numbers c s.t. the Mourre estimate holds for
some ϕ,K;

ρH(λ) = upper bound of the numbers c s.t. the strict Mourre estimate holds
for some ϕ.

Then τA(H) = {λ ∈ R | ρ̃H(λ) ≤ 0} and κA(H) = {λ ∈ R | ρH(λ) ≤ 0}.

Proposition. ρH(λ) = ρ̃H(λ) with the exception of the points λ which are
eigenvalues of H and ρ̃H(λ) > 0; at these points ρH(λ) = 0.

In particular, ρH(λ) > 0 if and only if ρ̃H(λ) > 0 and λ /∈ σp(H). In other
terms

κA(H) = τA(H) ∪ σp(H).



Theorem. Let S a ∧-semilattice with a least element o and atomic and
C ⊂ B(H) an S-graded C∗-algebra such that:

(i) each C (a) is nondegenerate onH;
(ii) C (o) = K(H);
(iii) ∀S ∈ C the set {Pa(S) | a ∈ Smin} is compact in C ;
(iv) ∀a ∈ S and τ ∈ R we have e−iτAC (a)eiτA ⊂ C (a).

Let H be a self-adjoint operator strictly affiliated to C and of class C1
u(A)

and let Ha = Pa(H). Then Ha is a self-adjoint operator strictly affiliated
to Ca, of class C1

u(A) and

ρ̃H(λ) = min
a∈Smin

ρHa
(λ) ∀λ and τA(H) = ∪a∈Smin

κA(Ha).

Idea. Need to think in terms of observables. Let H̃ = P(H) where
P : C → C /K(H). The eiτA induce a group automorphisms of C /K(H),
the observable H̃ is of class C1

u with respect to this group, and the ρ̃ of H
is the ρ of H̃ . Finally, the ρ for a direct sum of Ha is infa ρa (due to (iii)).



References

[1] V. Georgescu and A. Iftimovici. On the structure of the C∗-algebra generated by the field
operators. J. Func. Anal., 284(8), art. 109867, 15 April 2023, 73 pp; arXiv:1902.10026v2.

[2] V. Georgescu. On the essential spectrum of elliptic differential operators. J. Math. Analysis
Appl., 468:839–864, 2018. ArXiv 1705.00379.

[3] V. Georgescu and V. Nistor. On the essential spectrum of N -body Hamiltonians with asymp-
totically homogeneous interactions. J. Op. Theory, 77(2):333–376, 2017.

[4] E. B. Davies and V. Georgescu. C∗-algebras associated with some second order differential
operators. J. Op. Theory, 70(2): 437-450 2013. ArXiv 1103.3880.

[5] V. Georgescu. On the structure of the essential spectrum of elliptic operators on metric spaces.
J. Func. Analysis, 260:1734-1765, 2011. ArXiv 1003.3454v2.

[6] M. Damak and V. Georgescu. On the spectral analysis of many-body systems. J. Func. Anal-
ysis, 259:618-689, 2010. ArXiv 0911.5126.

[7] S. Golénia and V. Georgescu. Compact perturbations and stability of the essential spectrum of
singular differential operators. J. Op. Theory, 59(1):115-155, 2008. Math.Phys.Arch. 04-355,

[8] V. Georgescu. Hamiltonians with purely discrete spectrum, 2008. ArXiv 0810.5563.
[9] V. Georgescu. On the spectral analysis of quantum field Hamiltonians. J. Func. Analysis,

245:89–143, 2007. ArXiv /math-ph/0604072.
[10] V. Georgescu and A. Iftimovici. Localizations at infinity and essential spectrum of quantum

Hamiltonians. I. General theory. Rev. Math. Phys., 18(4):417–483, 2006.
[11] S. Golénia and V. Georgescu. Isometries, Fock spaces, and spectral analysis of Schrödinger

operators on trees. J. Func. Analysis, 227:389-429, 2005.
[12] M. Damak and V. Georgescu. Self-adjoint operators affiliated to C∗-algebras. Rev. Math.

Phys., 16(2):257–280, 2004.

https://arxiv.org/abs/1902.10026v2
https://arxiv.org/abs/1705.00379
https://arxiv.org/abs/1103.3880
http://arxiv.org/abs/1003.3454v2
http://arxiv.org/abs/0911.5126
http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=04-355
http://arxiv.org/abs/0810.5563
http://arxiv.org/abs/math-ph/0604072


[13] V. Georgescu and A. Iftimovici. C∗-algebras of quantum Hamiltonians. Operator Algebras
and Mathematical Physics, pp. 123–167; eds. J. M. Combes, J. Cuntz, G. A. Elliot, G. Nen-
ciu, H. Siedentop and S. Stratila. Theta Foundation, Bucharest, 2003; Math.Phys.Arch. 02-
410, 2002.

[14] V. Georgescu and A. Iftimovici. Crossed products of C∗-algebras and spectral analysis of
quantum Hamiltonians. Comm. Math. Phys., 228(3):519–560, 2002.

[15] V. Georgescu and A. Iftimovici. C∗-algebras of energy observables. II. Graded Symplectic
Algebras and Magnetic Hamiltonians. Math.Phys.Arch. 01-99, 2001.

[16] M. Damak and V. Georgescu.C∗-algebras related to theN -body problem and the self-adjoint
operators affiliated to them. Math.Phys.Arch. 99-482, 1999.

[17] M. Damak and V. Georgescu. C∗- Crossed Products and a Generalized Quantum Mechanical
N -Body Problem. Math.Phys.Arch. 99-481, 1999.

[18] W. O. Amrein, A. Boutet de Monvel and V. Georgescu. C0-Groups, Commutator Methods,
and Spectral Theory of N-Body Hamiltonians. Birkhäuser, 1996.

[19] A. Boutet de Monvel-Berthier and V. Georgescu. Graded C∗-algebras associated to symplec-
tic spaces and spectral analysis of many channel Hamiltonians. Dynamics of complex and
irregular systems (Bielefeld, 1991), pp. 22–66. Bielefeld Encount. Math. Phys., VIII, World
Sci. Publishing, 1993.

[20] A. Boutet de Monvel-Berthier and V. Georgescu. Graded C∗-algebras in the N -body prob-
lem. J. Math. Phys., 32(11):3101–3110, 1991.

[21] V. Georgescu. Sur l’existence des opérateurs d’onde dans la théorie algébrique de la diffusion.
Ann. Inst. Henri Poincaré, 27(1):9-29, 1977.

http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=02-410
http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=02-410
http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=01-99
http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=99-482
http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=99-481

	1. Notations
	2. Observables affiliated to C*-algebras
	3. C*-Algebras graded by semilattices
	4. Field C*-algebra of a symplectic space
	5. Phase space of a finite dimensional real space
	6. A remark on the infinite dimensional case
	7. Many-body systems
	8. Elliptic C*-algebra
	9. Mourre estimate
	
	

