Field C^{*}-algebra and spectral analysis of quantum many channel Hamiltonians.

August 31, 2023

Vladimir Georgescu
CNRS and University of Cergy-Pontoise (Retired)

Angers Conference
High frequency analysis: from operator algebras to PDEs
28 Aug 2023-1 Sept 2023

The effort to understand the universe is one of the very few things which lifts human life a little above the level of farce and gives it some of the grace of tragedy.

1. Notations 3
2. Observables affiliated to C^{*}-algebras 4
3. C^{*}-Algebras graded by semilattices 8
4. Field C^{*}-algebra of a symplectic space 11
5. Phase space of a finite dimensional real space 18
6. A remark on the infinite dimensional case 26
7. Many-body systems 27
8. Elliptic C*-algebra 30
9. Mourre estimate 353839

The purpose of this lecture is to highlight the utility of C^{*}-algebras in the spectral theory of "complicated" quantum systems: N -body systems and beyond, quantum fields, etc.

To sum up the key idea: instead of studying by ad hoc means the properties of a Hamiltonian H, study the structure of the C^{*}-algebra generated by a class of Hamiltonians that are similar (in some sense) to H.

Main references: VG+A.Iftimovici, On the structure of the C^{*}-algebra generated by the field operators, J. Func. Analysis 284(8), 2023; V.G. On the structure of the essential spectrum of elliptic operators on metric spaces, J. Func. Analysis, 260:1734-1765, 2011.

1. Notations

(1) If \mathscr{C} is a C^{*}-algebra and $\mathcal{A}, \mathcal{B} \subset \mathscr{C}$ then
$\mathcal{A B}=$ linear span of $\{A B \mid A \in \mathcal{A}, B \in \mathcal{B}\}$ and $\mathcal{A} \cdot \mathcal{B}=$ closure of $\mathcal{A B}$.
$\sum_{i \in I}^{\mathrm{c}} \mathcal{A}_{i}=$ norm closure of the sum $\sum_{i \in I} \mathcal{A}_{i}$ of the subspaces \mathcal{A}_{i} of \mathscr{C}.
(2) Some algebras associated to a finite dimensional real vector space X :

$$
C_{\mathrm{c}}(X) \subset C_{0}(X) \subset C_{\infty}(X) \subset C_{\mathrm{b}}^{\mathrm{u}}(X) \subset C_{\mathrm{b}}(X) \subset C(X)
$$

$L^{2}(X)$ and its norm are defined by a translation invariant Radon measure on X but the norm in $B\left(L^{2}(X)\right)$ is independent of this choice. We set

$$
\mathscr{B}(X)=B\left(L^{2}(X)\right) \quad \text { and } \quad \mathscr{K}(X)=K\left(L^{2}(X)\right) .
$$

Position and momentum observables q, p :
$\varphi: X \rightarrow \mathbb{C}$ Borel $\Rightarrow \varphi(q)=$ multiplication by φ on $L^{2}(X)$,
$\psi: X^{*} \rightarrow \mathbb{C}$ Borel $\Rightarrow F \psi(p) F^{-1}=$ multiplication by ψ on $L^{2}\left(X^{*}\right)$, (where $F: L^{2}(X) \rightarrow L^{2}\left(X^{*}\right)$ is a Fourier transform).
(1) $C_{\mathrm{b}}(X) \subset \mathscr{B}(X)$ via $\varphi \mapsto \varphi(q)$.
(2) $C_{b}\left(X^{*}\right) \subset \mathscr{B}(X)$ via $\psi \mapsto \psi(p)$. (Also set $C^{*}(p)=C_{0}\left(X^{*}\right)$.)

2. ObsERVABLES AFFILIATED TO C^{*}-ALGEBRAS

Self-adjoint operators affiliated to a C*-algebra

Let \mathcal{H} a Hilbert space, $\mathscr{C} \subset B(\mathcal{H})$ a C^{*}-subalgebra, and A a self-adjoint operator with spectrum $\mathrm{Sp}(A)$.
C^{*}-algebra generated by $A: \quad C^{*}(A) \equiv C_{0}(A) \doteq\left\{\theta(A) \mid \theta \in C_{0}(\mathbb{R})\right\}$.
A is affiliated to \mathscr{C} if the next equivalent conditions are satisfied:
$C^{*}(A) \subset \mathscr{C} \Leftrightarrow \theta(A) \in \mathscr{C} \forall \theta \in C_{0}(\mathbb{R}) \Leftrightarrow(A-z)^{-1} \in \mathscr{C}$ for some $z \notin \sigma(A)$.
A is strictly affiliated to \mathscr{C} if it is affiliated to \mathscr{C} and $C^{*}(A) \cdot \mathscr{C}=\mathscr{C}$.
Example. Let $\mathcal{H}=L^{2}(\mathbb{R})$ and q the operator defined by $(q u)(x)=x u(x)$. Clearly $C^{*}(q) \equiv C_{0}(\mathbb{R})$. Then $q+q^{-1}$ is affiliated but not strictly to $C_{0}(\mathbb{R})$.

Affiliation criterion

1) $H_{0}=$ self-adjoint operator on \mathcal{H} and $\mathcal{G}=D\left(\left|H_{0}\right|^{\frac{1}{2}}\right)$. Then

$$
\mathcal{G} \subset \mathcal{H} \subset \mathcal{G}^{*} \quad \text { continuous dense embeddings }
$$

and H_{0} extends to a continuous map $\mathcal{G} \rightarrow \mathcal{G}^{*}$.
2) $V: \mathcal{G} \rightarrow \mathcal{G}^{*}$ symmetric such that for some numbers $\mu, \nu \geq 0$ with $\mu<1$ $\pm V \leq \mu\left|H_{0}\right|+\nu \quad$ or $\quad H_{0}$ is bounded from below and $V \geq-\mu H_{0}-\nu$.
3) Then the restriction of $H=H_{0}+V: \mathcal{G} \rightarrow \mathcal{G}^{*}$ to $D(H) \doteq\{g \in \mathcal{G} \mid$ $H g \in \mathcal{H}\}$ is a self-adjoint operator on \mathcal{H} still denoted H.

Theorem. If H_{0} is strictly affiliated to \mathscr{C} and for some $s \geq 1 / 2$

$$
\left(\left|H_{0}\right|+1\right)^{-s} V\left(\left|H_{0}\right|+1\right)^{-1 / 2} \in \mathscr{C}
$$

then H is strictly affiliated to \mathscr{C}.

Observables affiliated to \mathbf{C}^{*}-algebras

Let \mathscr{C} be an arbitrary C^{*}-algebra. An observable affiliated to \mathscr{C} is just a morphism $A: C_{0}(\mathbb{R}) \rightarrow \mathscr{C}$. We often use the notation $\theta(A)=A(\theta)$ and $C^{*}(A) \equiv C_{0}(A) \doteq\left\{\theta(A) \mid \theta \in C_{0}(\mathbb{R})\right\}=C^{*}$-subalgebra of \mathscr{C}.

The zero morphism is an observable affiliated to \mathscr{C} denoted ∞; this is natural because $\theta(\infty)=0$ for any $\theta \in C_{0}(\mathbb{R})$.
$\mathcal{A}=$ set of observables affiliated to \mathscr{C}. The C^{*}-algebra generated by \mathcal{A} is $C^{*}(\mathcal{A})=$ smallest C^{*}-subalgebra which contains $\theta(A)$ if $A \in \mathcal{A}, \theta \in C_{0}(\mathbb{R})$.
A is strictly affiliated to \mathscr{C} if it is affiliated to \mathscr{C} and $C^{*}(A) \cdot \mathscr{C}=\mathscr{C}$.
$\mathcal{P}: \mathscr{C} \rightarrow \mathscr{D}=$ morphism $\Rightarrow \mathcal{P}(A) \doteq \mathcal{P} \circ A$ observable affiliated to \mathscr{D}.

Notation: $A \widetilde{\in} \mathscr{C} \Leftrightarrow A$ belongs to \mathscr{C} or is an observable affiliated to \mathscr{C}.

Fix a Hilbert space \mathcal{H}. Then a self-adjoint operator is identified with the observable defined by its C_{0}-functional calculus.
Let $\mathscr{C} \subset B(\mathcal{H})$. The observables affiliated to \mathscr{C} can be identified with self-adjoint operators acting in closed subspaces of \mathcal{H}. The observable ∞ is the only operator with domain $\{0\}$.

Example. The Hamiltonians of N-body systems with hard core interactions are observables affiliated to the C^{*}-algebra generated by the usual N -body Hamiltonians but are not self-adjoint operators on \mathcal{H}.

If $\mathcal{P}: \mathscr{C} \rightarrow \mathscr{D} \subset B(\mathcal{K})$ and A is a self-adjoint operator on \mathcal{H} affiliated to \mathscr{C}, then $\mathcal{P}(A)$ in general is not associated to a (densely defined) selfadjoint operator on \mathcal{K}. But:
if A is a self-adjoint operator strictly affiliated to \mathscr{C} then $\mathcal{P}(A)$ is a (densely defined) self-adjoint operator in any non-degenerate representation \mathcal{P} of \mathscr{C}.

3. C^{*}-Algebras graded by Semilattices

$\mathcal{S}=$ semilattice $=$ ordered set s.t. the upper bound $a \vee b$ exists $\forall a, b \in \mathcal{S}$.
Definition. A C^{*}-algebra \mathscr{C} is \mathcal{S}-graded if a linearly independent family $\{\mathscr{C}(a)\}_{a \in \mathcal{S}}$ of C^{*}-subalgebras of \mathscr{C} (called components) is given such that:
(i) $\mathscr{C}(a) \cdot \mathscr{C}(b) \subset \mathscr{C}(a \vee b)$ for all $a, b \in \mathcal{S}$;
(ii) $\sum_{a \in \mathcal{S}} \mathscr{C}(a)$ is dense in \mathscr{C}, i.e. $\sum_{a \in \mathcal{S}}^{c} \mathscr{C}(a)=\mathscr{C}$.
$\mathscr{C}(\mathcal{E}) \doteq \sum_{a \in \mathcal{E}}^{c} \mathscr{C}(a)$ if $\mathcal{E} \subset \mathcal{S}$. If $\mathcal{E} \subset \mathcal{S}$ is \vee-stable then $\mathscr{C}(\mathcal{E})$ is \mathcal{E}-graded.
Remark. \mathcal{E} finite $\Rightarrow \sum_{a \in \mathcal{E}} \mathscr{C}(a)$ is a closed subspace.
Remark. We will also come across situations where \mathcal{S} is a \wedge-semilattice, i.e. the lower bound $a \wedge b$ exists $\forall a, b \in \mathcal{S}$, and the condition (i) is replaced by $\mathscr{C}(a) \cdot \mathscr{C}(b) \subset \mathscr{C}(a \wedge b)$. If needed to avoid confusion we then say that \mathscr{C} is \wedge-graded, or inf-graded, by \mathcal{S}. Above, \mathscr{C} is \vee-graded, or sup-graded.

Remark. Only sub-semilattices of Grassmannians will be of interest.
$\mathbb{G}(X)=$ Grassmannian of $X \doteq$ set of finite dimensional subspaces of the real vector space X with inclusion as order relation. This is a lattice: $Y \wedge Z=Y \cap Z$ and $Y \vee Z=Y+Z$.

Exercise

The simplest nontrivial example of graded C^{*}-algebra.

Let $\mathcal{H}=L^{2}(\mathbb{R})$. If $(\alpha, \beta) \in \mathbb{R}^{2}$ then $\alpha p+\beta q$ is a self-adjoint operator so we my consider the C^{*}-algebra generated by such operators:

$$
\mathscr{F} \doteq C^{*}\left(\alpha p+\beta q \mid(\alpha, \beta) \in \mathbb{R}^{2}\right)
$$

If $\left(\alpha^{\prime}, \beta^{\prime}\right) \in \mathbb{R}^{2}$ then

$$
\left[\alpha p+\beta q, \alpha^{\prime} p+\beta^{\prime} q\right]=\mathrm{i}\left(\alpha^{\prime} \beta-\alpha \beta^{\prime}\right)
$$

This is zero if and only if the vectors (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ are collinear and then $\alpha^{\prime} p+\beta^{\prime} q=\lambda(\alpha p+\beta q)$ for some real λ if $\alpha p+\beta q \neq 0$.
For each line $L \subset \mathbb{R}^{2}$ choose a nonzero $(a, b) \in L$ and denote $\mathscr{F}(L)=$ $C^{*}(\alpha p+\beta q)$. Then set $\mathscr{F}(0)=\mathbb{C}, \mathscr{F}\left(\mathbb{R}^{2}\right)=K(\mathcal{H})$. Show that

$$
\mathscr{F}=\text { norm closure of } \mathbb{C}+\sum_{L \in \mathbb{P}} \mathscr{F}(L)+K(\mathcal{H}) .
$$

\mathscr{F} is $\mathbb{G}\left(\mathbb{R}^{2}\right)$-graded by the family of C^{*}-subalgebras $\{\mathscr{F}(E)\}_{E \in \mathbb{G}\left(\mathbb{R}^{2}\right)}$.

Proposition. $a \in \mathcal{S} \Rightarrow$
$\mathcal{S}_{a}=\{b \in \mathcal{S} \mid b \leq a\}$ and $\mathcal{S}_{a}^{\prime}=\{b \in \mathcal{S} \mid b \not \leq a\}$ are sub-semilattices. $\mathscr{C}_{a}=\mathscr{C}\left(\mathcal{S}_{a}\right)$ is a C^{*}-subalgebra and $\mathscr{C}_{a}^{\prime}=\mathscr{C}\left(\mathcal{S}_{a}^{\prime}\right)$ is an ideal of \mathscr{C} such that $\mathscr{C}=\mathscr{C}_{a}+\mathscr{C}_{a}^{\prime}$ direct sum. The projection $\mathcal{P}_{a}: \mathscr{C} \rightarrow \mathscr{C}_{a}$ is a morphism.

HVZ Theorem. Assume \mathcal{S} has a greatest element e and is co-atomic. Let $\mathcal{S}_{\text {max }}=$ set of maximal elements of $\mathcal{S} \backslash\{e\}$. Then $\mathcal{P}: S \mapsto\left(\mathcal{P}_{a} S\right)_{a \in \mathcal{S}_{\text {max }}}$ is a morphism $\mathscr{C} \rightarrow \bigoplus_{a \in \mathcal{S}_{\text {max }}} \mathscr{C}_{a}$ with kernel $\mathscr{C}(e)$, hence

$$
\mathscr{C} / \mathscr{C}(e) \hookrightarrow \bigoplus_{a \in \mathcal{S}_{\max }} \mathscr{C}_{a} .
$$

(i) If $T \widetilde{\in} \mathscr{C}$ then:
(ii) If $\mathscr{C} \subset B(\mathcal{H})$ and $\mathscr{C}(e)=\mathscr{C} \cap K(\mathcal{H})$ then $\operatorname{Sp}_{\text {ess }}(T)=\mathscr{C}-\mathrm{Sp}_{\text {ess }}(T)$.
(iii) If $\mathcal{S}=\mathbb{G}(X)$, so $\mathcal{S}_{\max }=\mathbb{H}=$ set of hyperplanes of X, then $\left\{\mathcal{P}_{a}(S) \mid a \in \mathbb{H}\right\}$ is a compact in \mathscr{C} and $\mathscr{C}-\operatorname{Spess}(T)=\cup_{a \in \mathbb{H}} S p \mathcal{P}_{a}(T)$.

Remark. Everything is very easy. Only the assertion concerning the compactness requires a little bit of thinking! $\left\{\mathcal{P}_{a}(S) \mid a \in \mathcal{S}_{\text {max }}\right\}$ is always a relatively compact subset of \mathscr{C}.

4. FiELD C^{*}-ALGEBRA OF A SYMPLECTIC SPACE

Symplectic space $=$ real vector space Ξ equipped with a symplectic form (bilinear anti-symmetric non-degenerate map $\sigma: \Xi^{2} \rightarrow \mathbb{R}$). Set $E \subset \Xi \Rightarrow E^{\sigma} \doteq\{\xi \in \Xi \mid \sigma(\xi, \eta)=0 \forall \eta \in E\}$.
E is isotropic if $E \subset E^{\sigma}$, Lagrangian if $E=E^{\sigma}$, symplectic if σ is nondegenerate on it.

Remark. $\mathbb{G}_{s}(\Xi) \doteq$ set of symplectic finite dimensional subspaces. Then: $\forall E \in \mathbb{G}(\Xi) \exists F \in \mathbb{G}_{\mathrm{s}}(\Xi)$ such that $E \subset F$.
Example. $X=$ finite dimensional real vector space; $T^{*} X=X \oplus X^{*}$ with the symplectic form $\sigma(\xi, \eta)=\langle y, k\rangle-\langle x, l\rangle$ if $\xi=x+k, \eta=y+l$ with $x, y \in X$ and $k, l \in X^{*}$.

Representation of Ξ on a Hilbert space \mathcal{H} : a map $W: \Xi \rightarrow U(\mathcal{H})$ with $W(\xi+\eta)=\mathrm{e}^{\frac{\mathrm{i}}{2} \sigma(\xi, \eta)} W(\xi) W(\eta) \forall \xi, \eta \in \Xi \quad$ and $\quad \mathrm{w}-\lim _{t \rightarrow 0} W(t \xi)=1$.

Then $\forall \xi \in \Xi$ the field operator $\phi(\xi) \equiv \phi_{W}(\xi)$ is the self-adjoint operator such that $W(t \xi)=\mathrm{e}^{\mathrm{i} t \phi(\xi)} \forall t \in \mathbb{R}$. We set $R_{\xi}(z)=(\phi(\xi)-z)^{-1}$.

Short history ...

D. Kastler. The C*-algebras of a free boson field. I. Discussion of the basic facts, Commun. Math. Phys. 1:14-48, 1965.
A. Boutet de Monvel and V. Georgescu. Graded C*-algebras associated to symplectic spaces and spectral analysis of many channel Hamiltonians, in Bielefeld Encount. Math. Phys. VIII, World Sci. Publishing, 1993.
V. Georgescu and A. Iftimovici. C*-algebras of energy observables. II. Graded Symplectic Algebras and Magnetic Hamiltonians, in Math.Phys.Arch. 01-99, 2001.
D. Buchholz, H. Grundling. The resolvent algebra: a new approach to canonical quantum systems, J. Func. Anal. 254:2725-2779, 2008.
V. Georgescu and A. Iftimovici. On the structure of the C^{*}-algebra generated by the field operators, J. Func. Anal. 284(8), art. 109867, 73 pp, 2023.
$E \in \mathbb{G}(\Xi) \Rightarrow M(E)=$ set of bounded Borel measures on E and $L^{1}(E)=$ subset of absolutely continuous measures (with $\left.M(0)=L^{1}(0)=\mathbb{C} \delta_{0}\right)$.

Definitions. The Kastler algebra was introduced by Kastler in 1965.
(1) The Kastler C^{*}-algebra \mathscr{K} of Ξ is the norm closure in $B(\mathcal{H})$ of the set of operators $W(\mu)=\int_{E} W(\xi) \mu(d \xi)$ with $E \in \mathbb{G}(\Xi), \mu \in M(E)$.
(2) The field C^{*}-algebra \mathscr{F} of Ξ is the norm closure of the set of operators $W(\mu)$ with $E \in \mathbb{G}(\Xi)$ and $\mu \in L^{1}(E) \quad(A I+V G 2001)$.
(3) The resolvent algebra $\mathcal{R} \doteq C^{*}(\phi(\xi) \mid \xi \in \Xi)$ introduced by Buchholz and Grundling in 2008 coincides with the field algebra.

Proposition. The Kastler C^{*}-algebras associated to different representations W are canonically isomorphic. Similarly for the field algebras.

Thus we may think of \mathscr{K}, \mathscr{F} as some abstractly given objects independent of W. In fact they were so constructed by Kastler (1965) by using the unital $*$-algebra structure on $\cup_{E \in \mathbb{G}(\Xi)} M(E)$ defined by the natural involution and the twisted convolution

$$
\int f(\xi)(\mu \circledast \nu)(\mathrm{d} \xi)=\iint \mathrm{e}^{-\frac{\mathrm{i}}{2} \sigma(\xi, \eta)} f(\xi+\eta) \mu(\mathrm{d} \xi) \nu(\mathrm{d} \eta) \quad \forall f \in C_{0}(E)
$$

\mathbb{G}-grading of

Definition. $E \in \mathbb{G}(\Xi)$ and ξ_{1}, \ldots, ξ_{n} is a generating set for $E \in \mathbb{G}(\Xi)$

$$
\begin{aligned}
\mathscr{F}(E) & \doteq \text { norm closure of the set of operators } W(\mu) \text { with } \mu \in L^{1}(E) \\
& =C^{*}\left(\phi\left(\xi_{1}\right)\right) \cdot C^{*}\left(\phi\left(\xi_{2}\right)\right) \cdot \ldots \cdot C^{*}\left(\phi\left(\xi_{n}\right)\right) .
\end{aligned}
$$

Theorem. The set of C^{*}-subalgebras $\mathscr{F}(E)$ of \mathscr{F} has the properties:

$$
\begin{aligned}
& E, F \in \mathbb{G}(\Xi) \Rightarrow \mathscr{F}(E) \cdot \mathscr{F}(F)=\mathscr{F}(E+F), \\
& \mathscr{F} \doteq \sum_{E \in \mathbb{G}(\Xi)} \mathscr{F}(E) \text { is a linear direct sum and is dense in } \mathscr{F}, \\
& \text { if } \mathcal{S} \subset \mathbb{G}(\Xi) \text { is finite then } \mathscr{F}(\mathcal{S}) \doteq \sum_{E \in \mathcal{S}} \mathscr{F}(E) \text { is norm closed. }
\end{aligned}
$$

In other terms: \mathscr{F} is $\mathbf{a} \mathbb{G}(\Xi)$-graded C^{*}-algebra with components $\mathscr{F}(E)$.

$$
\stackrel{\mathscr{F}}{\doteq} \sum_{E \in \mathbb{G}(\Xi)} \mathscr{F}(E), \quad \mathscr{\mathscr { F }}=\text { closure of } \stackrel{\mathscr{F}}{ }=\sum_{E \in \mathbb{G}(E)}^{c} \mathscr{F}(E) .
$$

Remark. If $\mathcal{S} \subset \mathbb{G}(\Xi)$ is finite and $E \notin \mathcal{S}$ then $\mathscr{F}(E) \cap \mathscr{F}(\mathcal{S})=0$.

Any subspace $E \subset \Xi$ determines three C^{*}-subalgebras of \mathscr{F} :

$$
\mathscr{F}_{E} \doteq \sum_{F \subset E}^{c} \mathscr{F}(F), \quad \mathscr{F}_{E}^{\prime} \doteq \sum_{F \not \subset E}^{c} \mathscr{F}(F), \quad \mathscr{F}_{\supset E} \doteq \sum_{F \supset E}^{c} \mathscr{F}(F) .
$$

$\mathscr{F}_{E}=$ unital C^{*}-subalgebra; \mathscr{F}_{E}^{\prime} and $\mathscr{F}_{\supset E}$ are ideals. In terms of fields

$$
\mathscr{F}_{E}=C^{*}(\phi(\xi) \mid \xi \in E) .
$$

Theorem. The C^{*}-algebra \mathscr{F}_{E} and the ideal \mathscr{F}_{E}^{\prime} satisfy

$$
\mathscr{\mathscr { F }}=\mathscr{F}_{E}+\mathscr{F}_{E}^{\prime} \quad \text { and } \quad \mathscr{F}_{E} \cap \mathscr{F}_{E}^{\prime}=0 .
$$

The projection $\mathcal{P}_{E}: \mathscr{F} \rightarrow \mathscr{F}_{E}$ determined by this direct sum decomposition is a morphism and it is the unique continuous linear map $\mathcal{P}_{E}: \mathscr{F} \rightarrow$ \mathscr{F} such that $T=\sum_{F} T(F) \in \mathscr{F} \Rightarrow \mathcal{P}_{E} T=\sum_{F \subset E} T(F)$. For any subspaces E, F we have

$$
\mathscr{F}_{E \cap F}=\mathscr{F}_{E} \cap \mathscr{F}_{F} \quad \text { and } \quad \mathcal{P}_{E \cap F}=\mathcal{P}_{E} \mathcal{P}_{F}=\mathcal{P}_{F} \mathcal{P}_{E} .
$$

If Ξ is finite dimensional we may describe \mathscr{F}_{E} and its commutant in \mathscr{F} independently of the graded structure of \mathscr{F}.

Theorem. If Ξ is finite dimensional, for any subspace $E \subset \Xi$ we have
(1) $\mathscr{F}_{E}=\left\{T \in \mathscr{F} \mid[T, W(\xi)]=0 \forall \xi \in E^{\sigma}\right\}$,
(2) $\mathscr{F}_{E^{\sigma}}=\left\{T \in \mathscr{F} \mid[S, T]=0 \forall S \in \mathscr{F}_{E}\right\}$.

Corollary. If $X \in \mathbb{G}(\Xi)$ is Lagrangian then \mathscr{F}_{X} is a maximal abelian subalgebra of \mathscr{F}, i.e. if $T \in \mathscr{F}$ then: $\quad[S, T]=0 \forall S \in \mathscr{F}_{X} \Leftrightarrow T \in \mathscr{F}_{x}$.

The next one is a much more subtle result and it requires a real proof!
Theorem. If Ξ is finite dimensional and W irreducible then $\mathscr{F}(E)$ is the set of $T \in B(\mathcal{H})$ such that:

$$
\lim _{\xi \rightarrow 0}\|[W(\xi), T]\|=0, \lim _{\xi \in E, \xi \rightarrow 0}\|(W(\xi)-1) T\|=0, \quad[W(\xi), T]=0 \forall \xi \in E^{\sigma} .
$$

The first condition is equivalent to:
$\xi \mapsto W(\xi)^{*} T W(\xi)$ is norm continuous on finite dimensional subspaces.

We now consider the HVZ theorem for a finite dimensional Ξ. Then $\mathscr{F}(\Xi) \subset K(\mathcal{H})$ if W is of finite multiplicity and $\mathscr{F}(\Xi)=K(\mathcal{H})$ if W is irreducible. So if W is of finite multiplicity

$$
\mathscr{C}-\operatorname{Sp}_{\text {ess }}(T)=\operatorname{Sp}_{\text {ess }}(T) \forall T \widetilde{\in} \mathscr{F} .
$$

Clearly $\mathbb{G}(\Xi)_{\max }=\mathbb{H}(\Xi)$ is the set of hyperplanes of Ξ.
Theorem. If $T \widetilde{\in} \mathscr{F}$ then $\mathscr{C}-\operatorname{Sp}_{\text {ess }}(T)=\bigcup_{H \in \mathbb{H}(\Xi)} \operatorname{Sp}\left(\mathcal{P}_{H} T\right)$. Moreover, for any $H \in \mathbb{H}(\Xi)$ and any nonzero $\xi \in H^{\sigma}$ we have

$$
\mathcal{P}_{H} T=\mathrm{s}-\lim _{r \rightarrow \infty} W(r \xi)^{*} T W(r \xi) .
$$

If $\mathcal{S} \subset \mathbb{G}(\Xi)$ is a subsemilattice with $\Xi \in \mathcal{S}$ and $T \widetilde{\in} \mathscr{F}(\mathcal{S})$ then

$$
\mathscr{C}-\operatorname{Sp}_{\text {ess }}(T)=\bigcup_{E \in \mathcal{S}_{\max }} \operatorname{Sp}\left(\mathcal{P}_{E} T\right) .
$$

5. PHASE SPACE OF A FINITE DIMENSIONAL REAL SPACE

Let X be a finite dimensional real vector space.
If $Y \subset X$ linear subspace, $\pi_{Y}: X \rightarrow X / Y$ the natural surjection, embed

$$
C_{0}(X / Y) \subset C_{\mathrm{b}}^{\mathrm{u}}(X) \operatorname{via} \varphi \mapsto \varphi \circ \pi_{Y}
$$

$C_{0}(X / Y)=$ set of continuous $\varphi: X \rightarrow \mathbb{C}$ with $\varphi(x+y)=\varphi(x)$ if $x \in X, y \in Y$ and such that $\varphi(x) \rightarrow 0$ when $\operatorname{dist}(x, Y) \rightarrow \infty$.

Lemma. The family of C^{*}-subalgebras $C_{0}(X / Y)$ with $Y \in \mathbb{G}(X)$ is
(1) linearly independent,
(2) $C_{0}(X / Y) \cdot C_{0}(X / Z)=C_{0}(X /(Y \cap Z)) \quad \forall Y, Z \in \mathbb{G}$.

Definition. $\mathcal{G} \equiv \mathcal{G}^{X} \doteq \sum_{Y \in \mathbb{G}}^{\mathrm{c}} C_{0}(X / Y) \subset C_{\mathrm{b}}^{\mathrm{u}}(X)$ is the (abelian) Grassmann C^{*}-algebra of X; it is \wedge-graded by $\mathbb{G}(X)$.

Lemma. If $\mathcal{S} \subset \mathbb{G}$ is finite and \wedge-stable then $\mathcal{G}(\mathcal{S}) \doteq \sum_{Y \in \mathcal{S}} C_{0}(X / Y)$ is a C^{*}-subalgebra of \mathcal{G}.

(Quantum) Grassmann C*-algebra

$\mathscr{G} \doteq \mathcal{G} \cdot C^{*}(p)=$ closed linear span of $\left\{\varphi(q) \psi(p) \mid \varphi \in \mathcal{G}, \psi \in C_{0}\left(X^{*}\right)\right\}$.

For each $Y \in \mathbb{G}(X)$ set
$\mathscr{G}(Y) \doteq$ closed linear span of $\left\{\varphi(q) \psi(p) \mid \varphi \in C_{0}(X / Y), \psi \in C_{0}\left(X^{*}\right)\right\}$
Proposition. $\mathscr{G}(Y)$ is a nondegenerate C^{*}-algebra of operators on \mathcal{H} and (1) the family $\{\mathscr{G}(Y)$ is linearly independent, (2) $\mathscr{G}(Y) \cdot \mathscr{G}(Z)=\mathscr{G}(Y \cap Z) \quad \forall Y, Z \in \mathbb{G}$, (3) $\mathscr{G}=\sum_{Y \in \mathbb{G}}^{\mathrm{c}} \mathscr{G}(Y)$.

This means: the C^{*}-algebra \mathscr{G} is \wedge-graded by \mathbb{G} with components $\mathscr{G}(Y)$.
Proposition. Let Z be a subspace supplementary to Y, so $X=Y \oplus Z$ and $X / Y \cong Z$, and let us identify $\mathcal{H}=L^{2}(X)=L^{2}(Y) \otimes L^{2}(Z)$. Then

$$
\mathscr{G}(Y)=C_{0}\left(Y^{*}\right) \otimes K\left(L^{2}(Z)\right) \cong C_{0}\left(Y^{*}, K\left(L^{2}(Z)\right)\right) .
$$

In other terms: $T \in B(\mathcal{H})$ belongs to $\mathscr{G}(Y)$ if and only if $F T F^{-1}$ is the operator of multiplication by a function $\widehat{T}: Y^{*} \rightarrow K\left(L^{2}(Z)\right)$ of class C_{0}.

Remarks.

The symplectic space is $\Xi=T^{*} X=X \oplus X^{*}$ with symplectic form $\sigma(\xi, \eta)=\langle y, k\rangle-\langle x, l\rangle$ if $\xi=x+k, \eta=y+l$ with $x, y \in X$ and $k, l \in X^{*}$.

Note that X and X^{*} are Lagrangian subspaces of Ξ. We have:

$$
\mathscr{G}^{X}=\mathscr{F}_{\supset X}=\sum_{E \supset X}^{c} \mathscr{F}(E) \quad \text { and } \quad \mathscr{G}(Y)=\mathscr{F}\left(Y^{\sigma}\right) \forall Y \subset X .
$$

There are very few functions of the position observable in \mathscr{F}. Indeed:

$$
\varphi(q) \in \mathscr{F} \Leftrightarrow \varphi \in \mathcal{G}^{X} .
$$

Half-Lagrangian decompositions of Ξ

A simple modification of the symplectic form allows one to introduce constant magnetic fields into the formalism and so to treat N -body systems which interact with an external asymptotically constant magnetic field. The constant magnetic field may be interpreted as a bilinear antisymmetric form $\beta: X \times X \rightarrow \mathbb{R}$. The new symplectic form on $T^{*} X$

$$
\sigma(\xi, \eta)=\beta(x, y)+\langle y, k\rangle-\langle x, l\rangle
$$

HVZ theorem

$\mathbb{G} \equiv \mathbb{G}(X)$ has a least element $0=\{0\}$ and $\mathbb{G}_{\min }=\mathbb{P}=$ set of one dimensional subspaces L of X (projective space of X).

Lemma. If $T \in \mathscr{G}$ and $a \in L \backslash\{0\}$ then $\mathcal{P}_{L}(T)=\mathrm{s}-\lim _{r \rightarrow \infty} \mathrm{e}^{\mathrm{i} r a p} T \mathrm{e}^{-\mathrm{i} r a p}$.
Lemma. $H=$ self-adjoint operator affiliated to \mathscr{G}_{Y} with $Y \neq 0 \Rightarrow$ $\sigma(H)$ is an interval.

Proposition. $\left\{\mathcal{P}_{L}(T) \mid L \in \mathbb{P}\right\}$ is a compact subset of \mathscr{G} for any $T \in \mathscr{G}$.
Theorem. $T \widetilde{\in} \mathscr{G} \Longrightarrow \operatorname{Sp}_{\text {ess }}(T)=\bigcup_{L \in \mathbb{P}} \operatorname{Sp}\left(\mathcal{P}_{L} T\right)$.

Proof. If $Y \in \mathbb{G}$ and $\mathscr{G}_{Y}=\sum_{Z \supset Y}^{c} \mathscr{G}(Z)$ and $\mathscr{G}_{Y}^{\prime}=\sum_{Z \not \supset Y}^{c} \mathscr{G}(Z)$ then $\mathscr{G}=\mathscr{G}_{Y}+\mathscr{G}_{Y}^{\prime}$ direct sum and $\mathcal{P}_{Y}: \mathscr{G} \rightarrow \mathscr{G}_{Y}$ is the associated projection. Then $T \mapsto\left(\mathcal{P}_{L} T\right)_{L \in \mathbb{P}}$ is a morphism $\mathscr{G} \rightarrow \bigoplus_{L \in \mathbb{P}^{2}} \mathscr{G}_{L}$ with kernel $\mathscr{G}(0)=C_{0}(q) \cdot C_{0}(p)=K(\mathcal{H})$. Hence $\mathscr{G} \mid K(\mathcal{H}) \hookrightarrow \bigoplus_{L \in \mathbb{P}} \mathscr{G}_{L}$.

Intrinsic description of $\mathscr{G}(Y)$

Notations: if $f \in \mathcal{H}, x \in X, k \in X^{*}$ then

$$
\left(\mathrm{e}^{\mathrm{i} x p} f\right)(y)=f(x+y) \quad \text { and } \quad\left(\mathrm{e}^{\mathrm{i} k q} f\right)(y)=\mathrm{e}^{\mathrm{i} k y} f(y) \quad \forall y \in X
$$

Simplest cases: $\quad \mathscr{G}(0)=K(\mathcal{H})$ and $\mathscr{G}(X)=C^{*}(p)=C_{0}(p)$.

Theorem (really!). $\mathscr{G}(Y)$ is the set of $T \in B(\mathcal{H})$ such that
(i) $\left[\mathrm{e}^{\mathrm{i} x p}, T\right]=0$ for all $x \in Y$,
(ii) $\lim _{x \rightarrow 0}\left\|\left[\mathrm{e}^{\mathrm{i} x p}, T\right]\right\|=0$ and $\lim _{x \rightarrow 0}\left\|\left(\mathrm{e}^{\mathrm{i} x p}-1\right) T\right\|=0$,
(iii) $\lim _{k \rightarrow 0}\left\|\left[\mathrm{e}^{\mathrm{i} k q}, T\right]\right\|=0$ and $\lim _{k \rightarrow 0, k \in Y^{\perp}}\left\|\left(\mathrm{e}^{\mathrm{i} k q}-1\right) T\right\|=0$.

\mathscr{G} is generated by elementary \mathbf{N}-body type Hamiltonians

First, un exercise:
Lemma. $\mathcal{G}=\{\varphi(q) \mid \varphi \in \mathcal{G}\} \subset B(\mathcal{H})$ is the C^{*}-algebra generated by the self-adjoint operators $\alpha(q)$ with $\alpha \in X^{*}$.
$\mathcal{S}_{0} \subset \mathbb{G} ; \mathcal{S}=$ set of finite intersections of subspaces from $\mathcal{S}_{0}($ so $X \in \mathcal{S})$.

$$
\mathscr{G}(\mathcal{S})=\sum_{Y \in \mathcal{S}}^{c} \mathscr{G}(Y)
$$

Theorem. Let $h: X^{*} \rightarrow \mathbb{R}$ continuous with $\lim _{k \rightarrow \infty} h(k)=\infty$.
Then $\mathscr{G}(\mathcal{S})=C^{*}$-algebra generated by the operators $H=h(p+k)+v(q)$ with $k \in X^{*}$ and $v \in \sum_{Y \in \mathcal{S}_{0}} C_{0}(X / Y)$ real.

Proposition. If h is a real elliptic polynomial of order m on X then $\mathscr{G}(\mathcal{S})$ is the C^{*}-algebra generated by the self-adjoint operators $h(p)+S$, where S runs over the set of symmetric differential operators of order $<m$ with coefficients in $\sum_{Y \in \mathcal{S}_{0}} C_{0}^{\infty}(X / Y)$.

Hamiltonians affiliated to \mathscr{G}

$\mathcal{S} \subset \mathbb{G}$ sub-semilattice with $X \in \mathcal{S}$
$h: X^{*} \rightarrow \mathbb{R}$ continuous positive and with $\lim _{k \rightarrow \infty} h(k)=\infty$.
Then $h(p)$ is a kinetic energy operator strictly affiliated to $\mathscr{G}(X)=$ $C_{0}\left(X^{*}\right)$, hence to $\mathscr{G}(\mathcal{S})$.
Let $\mathcal{H}_{h}=D\left(h(p)^{1 / 2}\right)$ be the form domain of $h(p)$ and $\mathcal{H}_{h} \subset \mathcal{H} \subset \mathcal{H}_{h}^{*}$ the associated scale.

Theorem. $\forall Y \in \mathcal{S}$ let $V(Y) \in B\left(\mathcal{H}_{h}, \mathcal{H}_{h}^{*}\right)$ a symmetric operator s.t.
(1) $V(X)=0$ and $(h(p)+1)^{-s} V(Y)(h(p)+1)^{-1 / 2} \in \mathscr{G}(Y)$ with $s>1 / 2$;
(2) the family $\{V(Y)\}_{E \in \mathcal{S}}$ is norm summable in $B\left(\mathcal{H}_{h}, \mathcal{H}_{h}^{*}\right)$;
(3) $V(Y) \geq-\mu_{Y} h(p)-\nu_{Y}$ with $\mu_{Y}, \nu_{Y} \geq 0, \sum_{Y \in \mathcal{S}} \mu_{Y}<1, \sum_{Y \in \mathcal{S}} \nu_{Y}<\infty$.

Let $V=\sum_{Y \in \mathcal{S}} V(Y)$ and $V_{Y}=\sum_{Z \supset Y} V(Z)$ for any $Y \in \mathcal{S}$. Then $H=h(p)+V$ and $H_{Y}=h(p)+V_{Y}$ are bounded from below selfadjoint operators, with form domain \mathcal{H}_{h}, strictly affiliated to $\mathscr{G}(\mathcal{S})$, and $\mathcal{P}_{Y} H=H_{Y} \forall Y \in \mathcal{S}$. If $0 \in \mathcal{S}$ then

$$
\operatorname{Sp}_{\mathrm{ess}}(H)=\cup_{Y \in \mathcal{S}_{\min }} \operatorname{Sp}\left(\mathcal{P}_{Y} H\right) .
$$

Assume that for some $s>0$

$$
c^{\prime}|k|^{2 s} \leq h(k) \leq c^{\prime \prime}|k|^{2 s} \quad \text { for some constants } c^{\prime}, c^{\prime \prime} \text { and all large } k \text {. }
$$

Sobolev spaces $\mathcal{H}^{r}, r \in \mathbb{R}$.
Theorem. Let $V: \mathcal{H}^{s} \rightarrow \mathcal{H}^{-s}$ symmetric such that $V \geq-\mu h(p)-\nu$ with $\mu<1, \nu \geq 0$ and $\langle p\rangle^{-t} V\langle p\rangle^{-s} \in \mathscr{G}(\mathcal{S})$ for some $t>s$. Then $H=h(p)+V$ is a self-adjoint operator strictly affiliated to $\mathscr{G}(\mathcal{S})$.

Remark. The condition $t>s$ allows perturbations of a differential operator by operators of the same order and locally irregular. For example, $\Delta+V$ with $V=\sum_{j k} \partial_{j} g_{j k} \partial_{k}$ and $g_{j k}$ locally bounded or nonlocal operators with some conditions at infinity is allowed.

6. A REMARK ON THE INFINITE DIMENSIONAL CASE

Let Ξ be a complex infinite dimensional Hilbert space and $\mathcal{H}=\Gamma(\Xi)$ the symmetric Fock space associated to it. We keep the notation Ξ for the underlying real vector space of Ξ equipped with the symplectic structure defined by $\sigma(\xi, \eta)=\Im\langle\xi \mid \eta\rangle$.

Then \mathscr{F} is a C^{*}-algebra on \mathcal{H} which does not contain compact operators and the usual quantum field Hamiltonians are not affiliated to it. The problem comes from the fact that $\Gamma(A) \notin \mathscr{F}$ if A is a bounded operator on the one particle Hilbert space Ξ.

A solution is to extend \mathscr{F} by adding the necessary free kinetic energies. More precisely, if \mathcal{O} is an abelian C^{*}-algebra on the Hilbert space Ξ whose strong closure does not contain compact operators then

$$
\Phi(\mathcal{O}) \doteq C^{*}(\phi(\xi) \Gamma(A) \mid \xi \in \Xi, A \in \mathcal{O},\|A\|<1)
$$

is a C^{*}-algebra of operators on \mathcal{H} which contains the compacts and whose quotient with respect to the ideal of compact operators is canonically embedded in $\mathcal{O} \otimes \Phi(\mathcal{O})$ which allows one to describe the essential spectrum of the operators affiliated to $\Phi(\mathcal{O})$. The Hamiltonians of the $P(\varphi)_{2}$ models with a spatial cutoff are affiliated to such algebras. The algebra $\mathscr{A} \doteq \Phi(\mathbb{C})$ has a remarkable property: $K(\mathcal{H}) \subset \mathscr{A}$ and $\mathscr{A} / K(\mathcal{H}) \cong \mathscr{A}$.
[V.G. 2007 [9]]

7. MANY-BODY SYSTEMS

Many-body systems are obtained by coupling a certain number (finite or infinite) of N -body systems. An N -body system consists of a fixed number N of particles which interact through k-body forces which preserve N . The many-body type interactions include forces which allow the system to make transitions between states with different numbers of particles. These transitions are realized by creation-annihilation processes as in quantum field theory.

The main difficulty in the present algebraic approach is to isolate the correct C^{*}-algebra. This is especially problematic in the present situations since it is not a priori clear how to define the couplings between the various N-body systems but in very special situations. It is rather remarkable that the C^{*}-algebra generated by a small class of elementary and natural Hamiltonians will finally prove to be a fruitful choice. These elementary Hamiltonians are analogs of the Pauli-Fierz Hamiltonians.
[M. Damak and V.G. 2010 [6]]
$\mathcal{X}=$ real prehilbert space; $\mathbb{G}(\mathcal{X})=$ set of finite dimensional subspaces.
$X \in \mathbb{G}$ is an Euclidean space. Set (change of notations: $L(\mathcal{H}) \equiv B(\mathcal{H})$):
$\mathcal{H}_{X}=L^{2}(X) \quad \mathscr{L}_{X}=L\left(\mathcal{H}_{X}\right) \quad \mathscr{K}_{X}=K\left(\mathcal{H}_{X}\right) \quad \mathscr{T}_{X}=C^{*}\left(p_{X}\right)$
If $X, Y \in \mathbb{G}$ set $\mathscr{L}_{X Y}=L\left(\mathcal{H}_{Y}, \mathcal{H}_{X}\right)$ and $\mathscr{K}_{X Y}=K\left(\mathcal{H}_{Y}, \mathcal{H}_{X}\right)$.
If $\varphi \in \mathcal{C}_{\mathrm{c}}(X+Y)$ then $\left(T_{X Y}(\varphi) f\right)(x)=\int_{Y} \varphi(x-y) f(y) \mathrm{d} y$ defines a continuous operator $\mathcal{H}_{Y} \rightarrow \mathcal{H}_{X}$. Define $\mathscr{T}_{X Y}$ by (clearly $\mathscr{T}_{X X}=\mathscr{T}_{X}$)
$\mathscr{T}_{X Y}=$ norm closure of the set of operators $T_{X Y}(\varphi)$ with $\varphi \in \mathcal{C}_{\mathrm{c}}(X+Y)$.
Fix a sub-semilattice $\mathcal{S} \subset \mathbb{G}$. For each $X \in \mathcal{S}$ the Hilbert space \mathcal{H}_{X} is thought as the state space of an N-body system with X as configuration space. The state space of the many-body system is

$$
\mathcal{H} \equiv \mathcal{H}_{\mathcal{S}}=\oplus_{X \in \mathcal{S}} \mathcal{H}_{X} .
$$

We have a natural embedding $\mathscr{L}_{X Y} \subset L(\mathcal{H})$ and define

$$
\mathscr{L} \equiv \mathscr{L}_{\mathcal{S}}=\text { closed linear span of the subspaces } \mathscr{L}_{X Y} .
$$

This is a C^{*}-subalgebra of $L(\mathcal{H})$ equal to $L(\mathcal{H})$ if and only if \mathcal{S} is finite.

We will be interested in subspaces \mathscr{R} of \mathscr{L} constructed as follows: for each couple X, Y we are given a closed subspace $\mathscr{R}_{X Y} \subset \mathscr{L}_{X Y}$ and $\mathscr{R} \equiv$ $\left(\mathscr{R}_{X Y}\right)_{X, Y \in \mathcal{S}}=\sum_{X, Y \in \mathcal{S}}^{c} \mathscr{R}_{X Y}$.
Note that $\mathscr{K} \equiv \mathscr{K}_{\mathcal{S}}=\left(\mathscr{K}_{X Y}\right)_{X, Y \in \mathcal{S}}=K(\mathcal{H})$.
Theorem. $\mathscr{T} \equiv \mathscr{T}_{\mathcal{S}}=\left(\mathscr{T}_{X Y}\right)_{X, Y \in \mathcal{S}}$ is a closed self-adjoint subspace of \mathscr{L} and $\mathscr{C} \equiv \mathscr{C}_{\mathcal{S}}=\mathscr{T}^{2}$ is a non-degenerate C^{*}-algebra of operators on \mathcal{H}. We say that \mathscr{C} is the Hamiltonian algebra of the many-body system \mathcal{S}. We equip \mathscr{C} with an \mathcal{S}-graded C^{*}-algebras structure. Let

$$
\mathcal{C}_{X}(Y) \cong \mathcal{C}_{0}(X / Y) \text { if } Y \subset X \quad \text { and } \quad \mathcal{C}_{X}(Y)=\{0\} \text { if } Y \not \subset X
$$

Then $\mathcal{C}_{X} \equiv \mathcal{C}_{X}(\mathcal{S}):=\sum_{Y \in \mathcal{S}}^{c} \mathcal{C}_{X}(Y) \subset \mathscr{L}_{X}$ by $\varphi=\varphi\left(q_{X}\right)$. Then

$$
\mathcal{C} \equiv \mathcal{C}_{\mathcal{S}}=\oplus_{X \in \mathcal{S}} \mathcal{C}_{X}
$$

is a C^{*}-algebra of operators on \mathcal{H} included in \mathscr{L}. If $Z \in \mathcal{S}$ let

$$
\mathcal{C}(Z) \equiv \mathcal{C}_{\mathcal{S}}(Z)=\oplus_{X} \mathcal{C}_{X}(Z)=\oplus_{X \supset Z} \mathcal{C}_{X}(Z)=C^{*} \text {-subalgebra of } \mathcal{C} .
$$

Theorem. We have $\mathscr{C}=\mathscr{T} \cdot \mathcal{C}=\mathcal{C} \cdot \mathscr{T}$. For each $Z \in \mathcal{S}$ the space $\mathscr{C}(Z)=\mathscr{T} \cdot \mathcal{C}(Z)=\mathcal{C}(Z) \cdot \mathscr{T}$ is a C^{*}-subalgebra of \mathscr{C} and the family $\{\mathscr{C}(Z)\}_{Z \in \mathcal{S}}$ defines a graded C^{*}-algebra structure on \mathscr{C}.

8. ELLIPTIC C*-ALGEBRA

$X=$ finite dimensional real vector space.

Elliptic algebra $\mathscr{E}(X)$: defined by the following equivalent conditions:
(i) $\mathscr{E}=C_{\mathrm{b}}^{\mathrm{u}}(X) \rtimes X$;
(ii) $\mathscr{E}=\left\{T \in \mathscr{B} \mid \lim _{a \rightarrow 0}\left\|\left(\mathrm{e}^{\mathrm{i} a p}-1\right) T^{(*)}\right\|=0, \lim _{a \rightarrow 0}\left\|\left[T, \mathrm{e}^{\mathrm{i} a q}\right]\right\|=0\right\}$;
(iii) $\mathscr{E}=C_{\mathrm{b}}^{\mathrm{u}}(X) \cdot C_{0}\left(X^{*}\right)$;
(iv) $\mathscr{E}=C^{*}$-algebra generated by the operators $h(p)+S$, where h is a fixed real elliptic polynomial of order m on X and S runs over the set of symmetric differential operators of order $<m$ with coefficients in $C_{\mathrm{b}}^{\infty}(X)$.

Let $X^{\dagger}=$ set of all ultrafilters finer than the Fréchet filter on X.
Theorem. If $T \widetilde{\in} \mathscr{E}$ then $\mathrm{s}-\lim _{x \rightarrow \varkappa} \mathrm{e}^{\mathrm{i} x p} A \mathrm{e}^{-\mathrm{i} x p} \doteq A_{\varkappa}$ exists $\forall \varkappa \in X^{\dagger}$ and

$$
\operatorname{Sp}_{\text {ess }}(A)=\cup_{\varkappa \in X^{\dagger}} \operatorname{Sp}\left(A_{\varkappa}\right) .
$$

Generalization

Let $C_{\infty}(X) \subset \mathcal{A} \subset C_{\mathrm{b}}^{\mathrm{u}}(X)$ a translation invariant C^{*}-subalgebra.
Crossed product: $\mathscr{A}=\mathcal{A} \rtimes X=\mathcal{A} \cdot C_{0}\left(X^{*}\right)$.
Let $h(p)$ be a real elliptic polynomial of order m on X. Then \mathscr{A} is the C^{*}-algebra generated by the self-adjoint operators of the form $h(p)+S$, where S runs over the set of symmetric differential operators of order $<m$ with coefficients in $\mathcal{A}^{\infty}=\left\{\varphi \in C^{\infty}(X) \mid \varphi^{(\alpha)} \in \mathcal{A} \forall \alpha\right\}$.
The character space, or spectrum, of \mathcal{A} is the compact space $\sigma(\mathcal{A})$ consisting of nonzero morphisms $\mathcal{A} \rightarrow \mathbb{C}$ equipped with the weak* topology inherited from the embedding $\sigma(\mathcal{A}) \subset$ dual of \mathcal{A}.

Each $x \in X$ defines a character $\chi_{x}: \varphi \mapsto \varphi(x)$ and the map $x \mapsto \chi_{x}$ is a homeomorphism of X onto an open dense subset of $\sigma(\mathcal{A})$ that we identify with X. The boundary of X in $\sigma(\mathcal{A})$ is the compact set

$$
\mathcal{A}^{\dagger}=\sigma(\mathcal{A}) \backslash X=\left\{\varkappa \in \sigma(\mathcal{A}) \mid \varkappa(\varphi)=0 \forall \varphi \in C_{0}(X)\right\} .
$$

Theorem. For any $A \in \mathscr{A}$ the map $x \mapsto A_{x} \doteq \mathrm{e}^{\mathrm{i} x p} A \mathrm{e}^{-\mathrm{i} x p}$ is norm continuous and extends to a continuous map $\sigma(\mathcal{A}) \ni \chi \mapsto A_{\chi} \in \mathscr{E}_{\mathrm{Ioc}}$ and

$$
\tau_{\varkappa}(A)=0 \forall \varkappa \in \mathcal{A}^{\dagger} \Longleftrightarrow A \in \mathscr{K}(X) .
$$

Thus the map $\Phi(A)=\left(A_{\varkappa}\right)_{\varkappa \in \mathcal{A}^{+}}$defines a morphism

$$
\Phi: \mathscr{A} \rightarrow \bigoplus_{\varkappa \in \mathcal{A}^{+}} \mathscr{E}
$$

whose kernel is $K(\mathcal{H})$ hence it induces an embedding

$$
\widehat{\Phi}: \mathscr{A} / \mathscr{K} \hookrightarrow \bigoplus_{\varkappa \in \mathcal{A}^{\dagger}} \mathscr{E} .
$$

Theorem. For any $A \widetilde{\in} \mathscr{A}$ we have

$$
\operatorname{Sp}_{\text {ess }}(A)=\cup_{\varkappa \in \mathcal{A}^{\dagger}} \operatorname{Sp}\left(A_{\varkappa}\right) .
$$

$X=$ locally compact non-compact abelian group.

Let U_{x} be the operator of translation by $x \in X$ and V_{k} the operator of multiplication by the character $k \in X^{*}$. Then

$$
\mathscr{C}(X)=\left\{T \in \mathscr{B}(X) \mid \lim _{k \rightarrow 0}\left\|\left[T, V_{k}\right]\right\|=0 \text { and } \lim _{x \rightarrow 0}\left\|\left(U_{x}-1\right) T^{(*)}\right\|=0\right\}
$$

is a C^{*}-algebra. $\mathscr{C}_{s}(X)$ is $\mathscr{C}(X)$ equipped with the topology defined by the seminorms $\|S\|_{\theta}=\|S \theta(q)\|+\|\theta(q) S\|$ with $\theta \in C_{0}(X)$.
Theorem Let H be an observable affiliated to $\mathscr{C}(X)$. For each $\varkappa \in X^{\dagger}$ the limit $\varkappa . H:=\lim _{x \rightarrow \varkappa} x . H$ exists in the following sense: there is an observable $\varkappa . H$ affiliated to $\mathscr{C}(X)$ such that $\lim _{x \rightarrow \varkappa} U_{x} \varphi(H) U_{x}^{*}=\varphi(\varkappa . H)$ in $\mathscr{C}_{s}(X)$ for all $\varphi \in C_{0}(\mathbb{R})$. We have

$$
\operatorname{Sp}_{\mathrm{ess}}(H)=\bar{\bigcup}_{x} \operatorname{Sp}(\varkappa \cdot H) .
$$

General metric spaces

V.G. On the structure of the essential spectrum of elliptic operators on metric spaces; J. Func. Analysis 260:1734-1765 (2011).

Description of the essential spectrum of a large class of operators on metric measure spaces, analogues of the elliptic operators on Euclidean spaces, in terms of their localizations at infinity. The main result concerns the ideal structure of the C^{*}-algebra generated by them.

9. Mourre estimate

$A, H=$ self-adjoint operators on a Hilbert space \mathcal{H}.
H is of class $C^{1}(A)$ or $C_{\mathbf{u}}^{1}(A)$ if $\tau \mapsto e^{-\mathrm{i} \tau A}(H+\mathrm{i})^{-1} e^{\mathrm{i} \tau A}$ is strongly C^{1} or norm C_{u}^{1} respectively. Then $D(A) \cap D(H)$ is a core for H and $[H, \mathrm{i} A]$ extends to a continuous sesquilinear form on $D(H)$.
H satisfies Mourre estimate at $\lambda \in \mathbb{R}$ if there are: a number $c>0$, a real function $\varphi \in C_{\mathrm{c}}(\mathbb{R})$ with $\varphi(\lambda) \neq 0$, and a compact operator K , such that

$$
\varphi(H)[H, \mathrm{i} A] \varphi(H) \geq c \varphi(H)^{2}+K
$$

If this holds with $K=0$ say that H satisfies a strict Mourre estimate at λ
Remark. We have $\varphi(H)[H, \mathrm{i} A] \varphi(H)=\varphi(H)[\psi(H), \mathrm{i} A] \varphi(H)$ if $\psi \in C_{\mathrm{c}}^{\infty}(\mathbb{R})$ and $\psi(x)=$ x on $\operatorname{supp} \varphi$, hence the Mourre estimate can be expressed in terms of the observable H.

The set of A-thresholds of H is the closed set

$$
\tau_{A}(H)=\{\lambda \in \mathbb{R} \mid H \text { does not satisfy a Mourre estimate at } \lambda\}
$$

and set of A-critical points of H is the closed set

$$
\kappa_{A}(H)=\{\lambda \in \mathbb{R} \mid H \text { does not satisfy a strict Mourre estimate at } \lambda\} .
$$

Define $\tilde{\rho}_{H}$ and ρ_{H} as the functions $\mathbb{R} \rightarrow(-\infty,+\infty]$ defined as follows: $\widetilde{\rho}_{H}(\lambda)=$ upper bound of the numbers c s.t. the Mourre estimate holds for some φ, K;
$\rho_{H}(\lambda)=$ upper bound of the numbers c s.t. the strict Mourre estimate holds for some φ.
Then $\tau_{A}(H)=\left\{\lambda \in \mathbb{R} \mid \tilde{\rho}_{H}(\lambda) \leq 0\right\}$ and $\kappa_{A}(H)=\left\{\lambda \in \mathbb{R} \mid \rho_{H}(\lambda) \leq 0\right\}$.
Proposition. $\rho_{H}(\lambda)=\widetilde{\rho}_{H}(\lambda)$ with the exception of the points λ which are eigenvalues of H and $\tilde{\rho}_{H}(\lambda)>0$; at these points $\rho_{H}(\lambda)=0$.

In particular, $\rho_{H}(\lambda)>0$ if and only if $\tilde{\rho}_{H}(\lambda)>0$ and $\lambda \notin \sigma_{p}(H)$. In other terms

$$
\kappa_{A}(H)=\tau_{A}(H) \cup \sigma_{p}(H)
$$

Theorem. Let \mathcal{S} a \wedge-semilattice with a least element o and atomic and $\mathscr{C} \subset B(\mathcal{H})$ an \mathcal{S}-graded C^{*}-algebra such that:
(i) each $\mathscr{C}(a)$ is nondegenerate on \mathcal{H};
(ii) $\mathscr{C}(o)=K(\mathcal{H})$;
(iii) $\forall S \in \mathscr{C}$ the set $\left\{\mathcal{P}_{a}(S) \mid a \in \mathcal{S}_{\text {min }}\right\}$ is compact in \mathscr{C};
(iv) $\forall a \in \mathcal{S}$ and $\tau \in \mathbb{R}$ we have $e^{-\mathrm{i} \tau A} \mathscr{C}(a) e^{\mathrm{i} \tau A} \subset \mathscr{C}(a)$.

Let H be a self-adjoint operator strictly affiliated to \mathscr{C} and of class $C_{\mathrm{u}}^{1}(A)$ and let $H_{a}=\mathcal{P}_{a}(H)$. Then H_{a} is a self-adjoint operator strictly affiliated to \mathscr{C}_{a}, of class $C_{\mathrm{u}}^{1}(A)$ and

$$
\tilde{\rho}_{H}(\lambda)=\min _{a \in \mathcal{S}_{\min }} \rho_{H_{a}}(\lambda) \forall \lambda \quad \text { and } \quad \tau_{A}(H)=\cup_{a \in \mathcal{S}_{\min }} \kappa_{A}\left(H_{a}\right)
$$

Idea. Need to think in terms of observables. Let $\tilde{H}=\mathcal{P}(H)$ where $\mathcal{P}: \mathscr{C} \rightarrow \mathscr{C} / K(\mathcal{H})$. The $\mathrm{e}^{\mathrm{i} \tau A}$ induce a group automorphisms of $\mathscr{C} / K(\mathcal{H})$, the observable \tilde{H} is of class C_{u}^{1} with respect to this group, and the $\tilde{\rho}$ of H is the ρ of \tilde{H}. Finally, the ρ for a direct sum of H_{a} is $\inf _{a} \rho_{a}$ (due to (iii)).

References

[1] V. Georgescu and A. Iftimovici. On the structure of the C^{*}-algebra generated by the field operators. J. Func. Anal., 284(8), art. 109867, 15 April 2023, 73 pp; arXiv:1902.10026v2.
[2] V. Georgescu. On the essential spectrum of elliptic differential operators. J. Math. Analysis Appl., 468:839-864, 2018. ArXiv 1705.00379.
[3] V. Georgescu and V. Nistor. On the essential spectrum of N-body Hamiltonians with asymptotically homogeneous interactions. J. Op. Theory, 77(2):333-376, 2017.
[4] E. B. Davies and V. Georgescu. C^{*}-algebras associated with some second order differential operators. J. Op. Theory, 70(2): 437-450 2013. ArXiv 1103.3880.
[5] V. Georgescu. On the structure of the essential spectrum of elliptic operators on metric spaces. J. Func. Analysis, 260:1734-1765, 2011. ArXiv 1003.3454v2.
[6] M. Damak and V. Georgescu. On the spectral analysis of many-body systems. J. Func. Analysis, 259:618-689, 2010. ArXiv 0911.5126.
[7] S. Golénia and V. Georgescu. Compact perturbations and stability of the essential spectrum of singular differential operators. J. Op. Theory, 59(1):115-155, 2008. Math.Phys.Arch. 04-355,
[8] V. Georgescu. Hamiltonians with purely discrete spectrum, 2008. ArXiv 0810.5563.
[9] V. Georgescu. On the spectral analysis of quantum field Hamiltonians. J. Func. Analysis, 245:89-143, 2007. ArXiv /math-ph/0604072.
[10] V. Georgescu and A. Iftimovici. Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory. Rev. Math. Phys., 18(4):417-483, 2006.
[11] S. Golénia and V. Georgescu. Isometries, Fock spaces, and spectral analysis of Schrödinger operators on trees. J. Func. Analysis, 227:389-429, 2005.
[12] M. Damak and V. Georgescu. Self-adjoint operators affiliated to C^{*}-algebras. Rev. Math. Phys., 16(2):257-280, 2004.
[13] V. Georgescu and A. Iftimovici. C^{*}-algebras of quantum Hamiltonians. Operator Algebras and Mathematical Physics, pp. 123-167; eds. J. M. Combes, J. Cuntz, G. A. Elliot, G. Nenciu, H. Siedentop and S. Stratila. Theta Foundation, Bucharest, 2003; Math.Phys.Arch. 02410, 2002.
[14] V. Georgescu and A. Iftimovici. Crossed products of C^{*}-algebras and spectral analysis of quantum Hamiltonians. Comm. Math. Phys., 228(3):519-560, 2002.
[15] V. Georgescu and A. Iftimovici. C^{*}-algebras of energy observables. II. Graded Symplectic Algebras and Magnetic Hamiltonians. Math.Phys.Arch. 01-99, 2001.
[16] M. Damak and V. Georgescu. C^{*}-algebras related to the N-body problem and the self-adjoint operators affiliated to them. Math.Phys.Arch. 99-482, 1999.
[17] M. Damak and V. Georgescu. C^{*} - Crossed Products and a Generalized Quantum Mechanical N-Body Problem. Math.Phys.Arch. 99-481, 1999.
[18] W. O. Amrein, A. Boutet de Monvel and V. Georgescu. C_{0}-Groups, Commutator Methods, and Spectral Theory of N-Body Hamiltonians. Birkhäuser, 1996.
[19] A. Boutet de Monvel-Berthier and V. Georgescu. Graded C^{*}-algebras associated to symplectic spaces and spectral analysis of many channel Hamiltonians. Dynamics of complex and irregular systems (Bielefeld, 1991), pp. 22-66. Bielefeld Encount. Math. Phys., VIII, World Sci. Publishing, 1993.
[20] A. Boutet de Monvel-Berthier and V. Georgescu. Graded C^{*}-algebras in the N-body problem. J. Math. Phys., 32(11):3101-3110, 1991.
[21] V. Georgescu. Sur l'existence des opérateurs d'onde dans la théorie algébrique de la diffusion. Ann. Inst. Henri Poincaré, 27(1):9-29, 1977.

