Weyl Calculus on graded groups
Serena Federico
University of Bologna
joint work with D. Rottensteiner and M. Ruzhansky

High frequency analysis: from operator algebras to PDES Laboratoire angevin e de recherche mathématique Angers, France.

PLAN OF THE TALK

- Quick overview of the Exch dean Weyl calculus, my motivations, and known results in the gradet $L G$ setting
- Preliminaries en Lie groups and the Kohm-Nirenbyg quantization by F-R and F.-FK
- τ-quantizations and τ-calculus on graded Lie groups:

Admissible quantizing functions \& symmetry functions.
Quantizak onus
change of quantization
Asymptotic formulas

- Candidate Weyl quantization and comparison with the Euclidean case
: The Weyl quantization in Hm

Quantization on \mathbb{R}^{m}
Given $\sigma \in \mathcal{J}^{\prime}\left(T^{\prime} \mathbb{R}^{n}\right)=f^{\prime}\left(\mathbb{R}^{\mu \mu}\right)$ ane wants t find a formula, usually called quantizatien, to associate $t \quad \sigma$ an operator from $\mathcal{I}\left(\mathbb{R}^{\mu}\right)$ $t \mathcal{J}^{\prime}\left(\mathbb{R}^{\mu}\right)$. Examples of quantizations on \mathbb{R}^{M}
r - quantizatians

$$
0_{p}^{r}(\sigma) f^{\prime}(x):=\int_{12^{2 n}} e^{i(x-y) \cdot \xi} \sigma\left((1-\varepsilon) x+r_{y}, \xi\right) f(y) d y d \xi \quad \tau \in[0,1]
$$

- $r=0$ Kohn-Nivenberg quantization
- $\tau=\frac{1}{2}$ Weyl quantizatem

Feynman quartization on 1^{4}

$$
O_{p}^{F}(\sigma) f(x)=\int_{12^{2 u}} e^{i(x-4) \xi} \frac{\sigma(x, \xi)+\sigma(y, \xi)}{2} f(y) d y d \xi
$$

Why is the Weyl quantization so important?

$$
\sigma=\text { Hamiltomian }
$$

1. Weye quantizations of real Hami ltomians are seffatjoint operators

$$
O_{p}^{W}(\sigma)^{*}=O_{p}^{W}\left(\sigma^{*}\right)
$$

2. The weye quantization is symplectic invariant, that is

$$
\begin{gathered}
\forall s \in S_{p}\left(2 u, \mathbb{R}^{u}\right) \quad \exists!U_{s} \in u\left(L^{2}\left(\mathbb{R}^{u}\right)\right) \text { s.t- } \\
O_{p}^{W}(\sigma \cdot s)=U_{s}^{-1} O_{p}^{w}(\sigma) U_{s}
\end{gathered}
$$

Remark 1 2. Is the moist important property of the Weyl quantization. Inset, property 1 . is enjoyed by the Fegnman quantization

Remark 2 1.42 . on $\mathbb{R}^{\prime \prime}$ are setisflet only by the Weyl quantization.

Definitions. Ghabal Hermander symbol desses on 12^{n}
let $m \in \mathbb{R}, 0 \leq \delta \leq j \leqslant 1$. The Hormanter aymbed cless of symulaes of orter m anl type $(\rho, \delta)), S_{\rho, \delta}^{m \mu}\left(\mathbb{R}^{n}\right)$, is the set of all $\sigma \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)^{\text {a.t }} \forall \alpha \beta \in \mathbb{N}_{0}^{n} \forall C_{\alpha, \beta}$ s.t $\left.\left|\partial_{\xi}^{\alpha} D_{\alpha}^{\beta} \gamma\left(x_{\xi} \xi\right)\right| \leq C_{\alpha, \beta}<\xi\right)^{m-j[\alpha]+\delta[\beta]} \quad \forall(\xi \xi) \in \mathbb{k}^{n} \times \mathbb{R}^{n}$. $S_{\int, \delta}^{m}\left(\mathbb{R}^{u}\right)$ is a Frechét spece and $C_{\alpha, \beta}$ depent only on the xaminorms of σ.
Weyl quantization of $\sigma \in S_{J_{1} s}^{m}\left(\mathbb{R}^{n}\right)$

$$
O_{p}^{W}(\gamma) f(x):=O_{p}^{\frac{1}{2}}(\sigma) f(x) \geq \frac{1}{(2 \pi)^{m}} \iint_{k^{u} \times 12^{u}}^{i(x-y) \cdot \xi} \sigma\left(\frac{x+y}{2}, \xi\right) f(y) d y d \xi
$$

enjoys properties 1. ant 2.

The Weyle calculus on \mathbb{R}^{M}. Asymptotic formulas
The symbol of the adjoint
let $\sigma \in S_{\int_{1, s}^{m}}^{m}\left(\mathbb{R}^{n}\right)$ and let $\sigma^{(* *)}$ he the yymblal of $O_{p}(\sigma)^{*}$. Then,

$$
\sigma^{(x)}(x, \xi)=\sigma^{*}\left(x^{\xi}\right) .
$$

The symbol of the composition
Let $\sigma_{1} \in \int_{J_{1}, \delta}^{m_{1}}\left(\mathbb{R}^{n}\right)$ and $\sigma_{2} \in \int_{\delta_{1} \delta}^{m_{2}}\left(\mathbb{R}^{4}\right)$. Let also. $\sigma \in \int_{s_{1} \delta}^{m_{1}+m_{2}}\left(\mathbb{R}^{2}\right)$ be the symbol of $O_{p}^{W}(r)=O_{p}^{w}\left(r_{1}\right) \cdot O_{p}^{W}\left(\sigma_{2}\right)$. Them, $\forall M \in \mathbb{N}_{0}$

Motivations
Poisson bracket in $\mathbb{R}^{n}\left\{\sigma_{1}, \sigma_{2}\right\}(x, \xi):=\sum_{j=1}^{n}\left[\left(D_{j} \sigma_{1}\right)\left(\partial_{\xi_{j}} \sigma_{2}\right)-\left(\partial_{j}^{\prime} \sigma_{1}\right)\left(D_{j}^{\prime} \sigma_{2}\right)\right]\left(x_{1} \xi\right)=H_{\sigma_{1}} \sigma_{2}\left(x_{i}\right)$ Hence, for $M=2$,

$$
\sigma_{1} \cdot \sigma_{2}=\sigma=\sigma_{1}(x, \xi) \sigma_{2}(x, \xi)+\frac{1}{2}\left\{\sigma_{1}, \sigma_{2}\right\}(x, \xi)+r_{m_{1}+m_{2}-2}(x, \xi)
$$

Feature $1=$ easy to use.
$O_{n} \mathbb{R}^{n}$ the Weyl celalus is extremely powerful to attack problems in ODEs, given $\sigma \in \delta^{4 \prime} \rho, \delta\left(\mathbb{R}^{4}\right)$ poly homogeneous, lie. $\sigma(x, \xi) \sim \sigma_{m}(x ;)+\sigma_{m-c}(x \xi)+\ldots$

$$
\sigma_{\sim}^{\text {ven }} \sum_{j=0}^{\alpha} \sum_{|\alpha|=j} D_{x}^{\alpha} \partial_{\xi}^{\alpha} \sigma(x, \xi)=\sigma_{m}(x, \xi)+\underbrace{\sigma_{m-1}^{s}(x, \xi)}_{\text {subprincipu }}+\ldots \ldots
$$

σ_{m-1}^{s} is invariant on the double characteristic set $4 \sum$, that is $\left\{\left(x_{1}\{) \in \mathbb{R}^{2 n} \left\lvert\, \frac{1}{\xi} \sigma_{m}(3 \xi)=0\right., \sigma_{m}(x, \xi)=0\right\}\right.$: Feature $2=$ gives info on the invariants of the operators.

Featite s: Loncal solvability of
Valudity of a fnor estimetes.

$$
\left\|\rho^{* *} x\right\|_{H} \geqslant\|u\|_{H^{\prime}} \quad \forall x \in C_{0}^{\infty}(s)
$$

$$
\begin{aligned}
& \text { Def } P \in \psi^{m}(\Omega) \Omega \subset \mathbb{R}^{n}, x_{0} \in \mathbb{R}^{n} \text {. } P \text { is } \\
& \text { l.s. at } x \text { o if } \exists V_{x} \text {. s.t. } \\
& \forall f \in C^{\infty}(\Omega), \exists u D^{\prime}(\Omega) \text { with } P_{x=f}^{D^{\prime}} \mathrm{imV}
\end{aligned}
$$

On $\mathbb{L}^{"}$ Garding - type imequalities are (usually) proved via the Weye colcolus.
Rumirk lasi solvability problems on 2-slep. groups for doule-characteristics operators were: considures by Möller-Ricci 96, Ann. of. Math.

What about Weyl quantizations an gradel groups? Ant general τ-qrahtizahous? On Hm
Dynin 76^{\prime} : for $\sigma \in f^{\prime}\left(0_{\pi}\right)$

$$
O_{p}{ }^{W}(r) f(z)=c \iint_{H_{n} / Z\left(r_{r}\right)} \hat{\sigma}(p, q)\left(r^{p r}(p, q) f\right)(z) d q-p \quad \pi \in \widehat{H_{m}}
$$

corresponding to the Exclideen version: $\sigma \in J^{\prime}\left(\mathbb{R}^{2 \mu}\right)$

$$
O_{p}{ }^{w}(\sigma) f(x)=c \iint_{n^{4} \times \mathbb{R}^{m}} \hat{\sigma}(p, 1) e^{i q\left(x+\frac{1}{2}\right)} f(x+p) d p d p .
$$

Good news: Dymi's quantizati on satisties

1. $O_{p}^{W}(\sigma)^{*}=O_{j}^{W}\left(\sigma^{*}\right)$
2. $\forall \delta \in \operatorname{Ant} t_{0}\left(H_{m}\right) \exists U_{s} \in U\left(l^{2}\left(\left.H\right|_{m}\right)\right)$ a.t

$$
O_{p}{ }^{w}(\sigma \cdot s)=U_{s}^{-1} O_{p} w(\sigma) U_{s}
$$

Bad news:
The youbolic calculus has rimitations: σ_{1} is σ_{2} hes problems in the asymutatic exp.
OM 2-step Lic groups
Dynin's rewit were guneralized by F.lloml for gureral 2-step lie groups.

Mantoin - Ruzhanky 2o17: r - quantizations for neagurable $\tau: 6 \rightarrow 6$
$G=$ type I unimoduler locally compect, including symmetric quautizetions.
Limitations: few examples of symmetry finction

- Himes only for tis operatios
- the calcolus was mat teveloped

Our contribution:

- We developed a ε-callus, for a class of functions r, on on y graded group G.
- We focused de symmetric r-quoutizations on any graded 6 to identify the possible Weyl quantization
- We considiret the case of Hm_{m} and established that our candidate is the Weye quantization in this setting.

Prelimiharies
Foun'er trausform
Let $\hat{G}=$ dual of $G=$ set of equivalent classes of strangly contimuous irriducable umitary represutations of G

$$
\hat{f}(\pi) \equiv \mathcal{J}_{6} f(\pi)==\int_{6} f(x) \pi(x)^{+} d x^{\prime} \pi(x)^{+}=\pi\left(x^{-1}\right)
$$

operator-valued

$$
\hat{f}(\pi): H_{\pi} \longrightarrow H_{\pi} \quad H_{\pi}=\text { Representation spece (Hllbar) }
$$

Ploncherel

$$
f(x)=\int_{\hat{6}} \operatorname{Tr}(\pi(x) \hat{f}(\pi)) d \mu(\pi)=\iint_{\widehat{6} \times 6} \operatorname{Tr}\left(\pi\left(y_{x}^{-1}\right) f(y)\right) d y d \mu(\pi)
$$

$d \mu(\pi)$ Plencherel measire.

Ixponential coorfinates

$$
\begin{aligned}
& G=\exp _{G}(9) \exp ; \text { expowentiod map } \exp _{G}: g \simeq T e \mathbb{R}^{M} \longrightarrow G \\
& x, y \in G \cong\left(\mathbb{R}^{n},{ }_{6}\right) \\
& x \cdot y:=x_{0} y=\exp _{\rho_{G}}\left(x_{1} x_{1}+\ldots+x_{n} x_{m}\right) \exp \left(y_{n} x_{1}+\ldots+y_{m} x_{m}\right) \\
& =\ldots++\left(x_{j}+y_{j}+p_{j}\left(x_{1}, y_{n}, \ldots, x_{j-1}, y_{j-1}\right)\right) x_{j, \ldots}, \ldots \\
& \begin{array}{l}
x \cdot y=\left(x+y_{1}, \quad, x j+y_{j}+p_{j}(x, y), \ldots\right) \\
(B C+1)
\end{array}
\end{aligned}
$$

We will work in expementeal coordinetes

Invaraut denivatives
G holvig. L6 $g=\operatorname{Span}\left\{x_{1}-x_{\mu}\right\} \quad\left\{x y_{j=1-\ldots m}\right.$ eigenv. of A
 One con als. Sefine the right-invariaut v.f X_{j}^{\prime} rimileney.
$v_{1}, v_{m}=$ eigurvaloes of $A=\underline{\text { weights }}$
$\alpha \in \mathbb{N}^{n} \cup\left[\cdot G^{\alpha} X^{\alpha}=X_{1}^{\alpha n} \ldots X_{u}^{d u} \quad[\alpha]:=\sum_{j=1}^{m} \alpha j \sigma_{j} \quad\right.$ homogeneas lenght of α
X^{α} is of homogeneous degree $[\alpha]$, i.e. $X_{2}^{\alpha}\left(f \cdot D_{r}\right)(x)=r^{[\alpha]}\left(x^{\alpha} f\right)(\operatorname{Dr}(x))$
In general a hmeer peratsr $T: D(G) \rightarrow D^{\prime}(\sigma)$ is of hom. degree ν iff

$$
T(f \cdot D r)=r^{\nu}(T f) \cdot D r
$$

X^{α} are the left-invariant derivatives, \mathcal{X}^{α} the right invariant ones.

Remark $x^{\alpha} x^{\beta}$ do not commule, lowever $X^{\alpha} x^{\beta}=\sum_{[\gamma]=[\alpha]+[\beta]}^{X^{\gamma}}$
Homogeneors polynohi'als
$f: 6 \rightarrow \mathbb{C}$ is a hom. polynomial of degree v if $f \cdot e x p$ is a a polyhomial on $\mathbb{R}^{a} \cong 9$ and

$$
f \cdot D_{r}=r^{\nu} f \quad \forall r>0 .
$$

Special bisis of $P=$ spece of h. polymomials $\forall \alpha \in \mathbb{N}^{M} \cup\{0\} \exists \rho \alpha$ hom. polynomice of segree $[\alpha]$ s.t. $\quad \forall \beta \in \mathbb{N}_{0}^{n}$

$$
x^{\beta} q_{\alpha}(0)=\delta \alpha \beta(0)= \begin{cases}1 & \beta=\alpha \\ 0 & \text { otherwse }\end{cases}
$$

Difference operators $=$ Denvatious writ representations

$$
\Lambda_{\pi}^{\alpha} \tilde{f}(\pi)=\widetilde{g_{\alpha} f}(\pi)
$$

qa, element of the special lysis.

$$
\tilde{q}_{\alpha}(x)=\gamma_{\alpha}\left(x^{-1}\right)
$$

Taylor expansion Let $1 \cdot 1: G \rightarrow \mathbb{K}$ be a quefi-norm on G. The (eff) Taylor polynomial of order $M \in N$ of $f: G \rightarrow \mathbb{C}$ at $x \in C_{\text {* }}$ is

$$
\begin{aligned}
& p_{x, M}^{f}(y)=\sum_{[\alpha] \leq M} q_{\alpha}(y)\left(x^{\alpha} f\right)(x) \\
& R_{x, M}^{f}(y)=f(x y)-p_{x, M}^{f}(y)
\end{aligned}
$$

Fisher-Rozhansky/Ficher-Fermariann-Kammerer ghbal Hörmander symbol desses
A symboe σ is a famicy of perators

$$
\sigma=\{\sigma(x, \pi) \mid(x, \pi) \in \sigma \times \hat{\sigma}\}
$$

with $\sigma(x, \pi): H_{\pi}^{\infty} \longrightarrow H_{\pi} \quad \forall x \in G$ and a.e. $\pi \in \hat{\sigma}$

$$
\begin{aligned}
& S_{j, r}^{m}(G) \text {-clesses } \sigma \in S_{J, \delta}^{m}(6) \text { if } \forall \alpha, \beta \in \mathbb{N}^{m} v\{0\} \\
& \sup _{(x, \pi) \in G \times \widehat{G}}^{\left\|\Delta_{\pi}^{\alpha} X_{x}^{\beta} \sigma(x, \pi) \cdot \pi(I+R) \frac{(m-j[\alpha]+\delta[F])}{v}\right\|_{\mathcal{L}(H, \tau)}<\infty} .
\end{aligned}
$$

Koln-Nirenbery quartization an G

$$
O_{p}^{k N}(\sigma) f(x)=\int_{\sigma \times \bar{G}} \operatorname{Tr}\left(\pi\left(y^{-1} x\right) \sigma(x, \pi) f(y)\right) d y d \mu(\pi)
$$

τ-quantization on Graded grougs.
Mantoin - Rozherisky an unimodular type I locally compct groups

$$
O_{p}^{\xi}(r) f(x)=\int_{G \times \hat{G}} \operatorname{Tr}\left(\pi\left(y_{x}^{-1}\right) \sigma\left(x r\left(y^{-1} x\right)^{-1} \pi\right) f(\eta)\right) d y d \mu(\pi)
$$

where $r: G \rightarrow G$ is a measreble function, the quantian'y functer. $\sigma=\{\sigma(x, \pi) \mid(x, \pi) \in a x \hat{b}\}$ with $\sigma(x, \pi): H_{\pi}^{-\infty} \longrightarrow$ Ht $_{\pi}^{\infty} \quad \forall x \in G$ and a.e. $\pi \in \hat{\sigma}$. However $O_{p}^{2}(\sigma) \in H^{2}\left(L^{2}(G)\right)$ (thbetrt-Schmidt op on $\left.L^{2}\right)$, and no alccivs was developet. No.k that

- $G=\mathbb{R}^{n} \quad k N(r(x)=x)$ and $\operatorname{Wey} \left\lvert\,\left(r(x)=\frac{z}{2}\right)\right.$
- G unim. ty ρ er I wh $r(x)=e_{6}$ k-N quantization ly $F-R$./F-FK
uf $r: 6 \rightarrow 6$ is a symmetry function iff $r(x)=\varepsilon\left(x^{-1}\right) x$.
If r is a nymmetry function $O_{p}^{2}\left(\sigma^{*}\right)=O_{p}^{r}(\sigma)^{*} \quad$ Martoix-Ruzhansky in an abotrict seling

Our choiche of z-functions on graded groups.
Admissible e functions: (HP) condition
$\tau: G \rightarrow G$ metisfres (HP) if in exponential coordinates $\varepsilon(x)=\left(c_{1}^{2}(x), c_{2}^{2}(x)_{1} \ldots, c_{m}^{2}(x)\right)$, where each $c_{j}^{\}}(x)$ is either $c_{j}^{2}(x)=0 \quad \forall x \in G$

$$
c_{j}^{2}(x)=c_{j}^{2}\left(x_{1},-i_{j}\right)=c_{j}^{2} x_{j}+j_{j}^{Y}\left(x_{1},-x_{j-1}\right), \quad c_{j}^{2} \neq 0 \text { and } d_{j}^{2} \text { a } H P+\operatorname{deg} s_{j}
$$

These r-functions allowed us to develop a ζ-calculus for the global $\int_{\rho,}^{m} \delta(6)$ Hörmandr classes, $\forall m \in \mathbb{R}, \forall s_{1} \delta \in \mathbb{R}$ att

$$
0 \leqslant 5<\frac{J}{v_{m}} \leqslant 1 \text { if } r \neq e_{6} \text { ant } 0 \leqslant \delta<\rho s_{1} \text { if } r=e_{6}
$$

Remark 1
Mantoix-Ruzhansky provide an example of symmetry function t on any V_{1}, i.e.

$$
\varepsilon_{M R}(x)=\int^{1} \exp (s \log (x)) d s
$$

which, on H_{n}, gives $i_{M R}(x)=\left(\frac{x_{1}}{2}, \cdots, \frac{x_{2 n}}{2}, \frac{x_{2 u+4}}{2}+\sum_{j=1}^{m} \frac{x_{j} x_{j+4}}{24}\right)$.
On thu we find a whole family of symmetry functions, i.e

$$
r(x)=\left(\frac{x_{1}}{2}, \frac{x_{2}}{2}, \ldots, \frac{x_{\mu \mu}}{2}, \frac{x_{2 \mu+1}}{2}+\sum_{j, \varepsilon=1}^{2 \mu} c_{j, k} x_{j} x_{k}\right)
$$

for any choiche of $C_{j, k} \in R, j_{k}=l_{j} \ldots, n$. Which one is the Weyl-quantizing function? Note that $r(x y) \neq r(x) r(y)$ in aural, this gives a lot of technical problems.

Remark $2 \quad 0 \leq \delta<\frac{\rho}{v_{\mu}} \leq 1$ Needed for the calculos, not for the quantization

- $G=\mathbb{R}^{n} \rightarrow V_{M}=1$ and we recover the Euclidean r-quantizations.
- Whir $\quad c(x)=e_{G}$ we do not have the resinicton on (j, δ) and we get back the $K-N$ puantirote en by $F-R$ and $F-F K$
Remark 3 , If $G=H_{m}, 0 \leq \delta<j \leq 1$. What about general 6? Open problem.
Remark 4 The (HP) condition is somehow natural and reflects the homogeneous stricture of G. Indeed.
$\tau(x)_{j}=$ HP of degree v_{j}, that is

$$
x_{k} r(x)_{j}= \begin{cases}H P \text { of degree } v_{j}-v_{k} & \text { if } v_{k} \leq s_{j} \\ 0 & \text { if } v_{k}>v_{j}\end{cases}
$$

r-quantization: first properties and the (ρ, δ)-condition
Proposition (continuity property)
$0 \leqslant \delta<J \leqslant 1, \sigma<J \leqslant 1, \delta L \frac{1}{v_{M}}$. Let $\sigma \in S_{\rho_{1} \delta}^{m}(G)$, then $\forall f \in J(G) O_{p}^{k}(\sigma) \in J(G)$ and $O_{p}^{2}(G): J \rightarrow J$ is continues, i.e.

$$
\left\|o_{p}^{2}(\sigma) f\right\|_{J_{1} N_{1}} \leqslant C\|\sigma\|_{\delta_{J_{1}, a, b}^{m}}\|f\|_{J_{1} N_{2}} \text { for some } X_{1}, N_{2}, a, b \in \mathbb{N} \text {. }
$$

Remark In principle one could use $0 \leq \delta<\min \left\{\rho, \frac{1}{\sqrt{m}}\right\}$, imp practice $\delta<\frac{\rho}{V m}$ is meet t prove the remits for general graded groups.

Theorem (F. - Rottensteiner - Ruzhansky) (Change of quantization) $0 \leqslant \delta<\min \left\{J, \frac{1}{V_{m}}\right\}$ i quantizing finction satisfying (HP) n.t $z \neq e_{6}$, $T: I(G) \rightarrow J(G)$ continuous linear operator.
If $\sigma_{1} \sigma_{2}$ are $+w_{0}$ symbols st

$$
T=O_{p}^{\varepsilon}\left(\sigma_{z}\right)=O_{p}^{k N}(\sigma)
$$

Then $\sigma \in \delta_{j_{\delta} \delta(G)}^{m} \Longleftrightarrow \sigma_{2} \in \delta_{j_{1} \delta(G),}^{m} \longmapsto \sigma_{2}$ is a F^{m} rechet sp. is morphism suld

$$
\sigma_{r} \sim \sum_{j=0}^{\infty}\left(\sum_{[\alpha]=j} C_{\alpha, \alpha,}^{r_{1}, k} \Delta^{\alpha^{\prime}} x^{\alpha} \sigma^{2}\right), \quad \sigma^{\sim} \sum_{j=0}^{\omega}\left(\sum_{[\beta]=j} C_{\beta^{\prime}, \beta} \Delta^{\beta} \sigma_{r}\right)
$$

$$
\text { i.e. } \begin{aligned}
\forall M, N \in \mathbb{N} 0 \quad R_{M}^{\varepsilon, k N}: & =\sigma-\sum_{j=0}^{M}\left(\sum_{[\alpha]=j} C_{\alpha, \alpha}^{r, k N} \Delta^{\alpha^{\prime}} x^{\alpha} \sigma\right) \in S_{\rho, \delta}^{m-(j-\beta)(M+1)}(G) \\
K_{N}^{k N, r} & =\sigma_{r}-\sum_{j=0}^{N}\left(\sum_{[\beta]=j} C_{\beta^{\prime}, \beta} \Delta^{\beta} \sigma_{r}\right) \in S_{j, \delta}^{m-(\rho-\delta)(N+1)}(\sigma)
\end{aligned}
$$

Kernels and change of coordinetes

$$
\begin{aligned}
O_{p}^{k N}(r) f(x) & =\int \operatorname{Tr}\left(\pi\left(g^{-1} x\right) \sigma(x, \pi) f(y) d y \downarrow \mu(\pi)=\int \operatorname{kr}\left(x, y^{-1} x\right) f(y) d y=\int \operatorname{ker}_{r} k(x, y) f(y) d y\right. \\
O_{p}^{2}(\sigma) f(x) & =\int_{6 \times \sigma}^{6} \operatorname{Tr}\left(\pi\left(y^{-1} x\right) \sigma\left(x r\left(y^{-1} x\right)^{-1}, \pi\right) f(y)\right) d y d \mu(r) \\
& =\int k_{\sigma}\left(x r\left(y^{-1} x\right)^{-1}, y^{-1} x\right) f(y) d y=\int_{6}^{\int} \underbrace{\operatorname{ker}_{\sigma}^{2}(x, y)}_{\text {dism Litional kermes }} f(y) d y
\end{aligned}
$$

$K r(x, 4)=f_{\pi \rightarrow y}^{\prime}(\delta(x, \pi))$ associatel Kermel
change of wortinates

$$
c v^{2}: 6 \times 6 \longrightarrow 6 \times 6 \quad c v^{2}(x, 4)=\left(x r\left(y^{-1} x\right)^{-1}, y^{-\frac{1}{x}}\right), \quad\left(\operatorname{civ}^{2}\right)^{-1}(x, 4)=\left(x r(y), x r(y) y^{-1}\right)
$$

$C V^{\varepsilon}\left(C V^{2}\right)^{-1}$ associated pullacks $\left(C V^{2} \cdot k_{\sigma}\right)(x, y)=k_{r}\left(c^{2}(x, y)\right)=k_{\sigma}\left(\varepsilon r\left(y^{-1} x\right)^{-1}, y^{-1} x\right)$

$$
\left(\left(c v^{2}\right)^{-1} \cdot k_{r}\right)(x, y)=k_{r}\left(\left(v^{2}\right)^{-1}(x, y)\right)=\ldots
$$

$$
\Rightarrow \begin{aligned}
& \operatorname{ker}_{\sigma}^{r}(x, y)= \\
& \operatorname{ko}_{\sigma}\left(v^{2}(x, y)\right)
\end{aligned}
$$

Relation between aymbols and the distributional kermel in the r-prentization

$$
\sigma(x, \pi)=\left(\left(1 d \otimes f_{6}\right) \cdot k_{T}\right)(x, \pi)=\exists_{y \rightarrow \pi}\left(\left(\left(v^{2}\right)^{-1} \cdot \text { ker }_{r}^{2}\right)(x, y)\right.
$$

r-Calculus. Asymptotic formula for the adjoint.
Theorem. (F.- Rottensteimer - Ruzhansky) $m \in \mathbb{R}, 0 \leq \delta<\min \left(\rho \frac{1}{\delta m}\right), \quad r: 6 \rightarrow 6$ quantizing function satiny $\ln y(H P)$
Let $T: J(G) \rightarrow J(G)^{\prime}$ linear cont op. nit $T=\rho_{p}^{r}(\sigma)$ pr same $\sigma \in S_{S_{1} \delta}^{m}(G)$.
Let T^{*} be the formal adjoint given by $T^{*}=O_{p}\left(\sigma^{(x)}\right)$ for a uniquely determine $\sigma_{2}^{(i)} \in \delta_{1_{i}^{m}}^{m}(G)$. Then $\sigma_{z} \mapsto \sigma_{\tau}^{(\theta)}$ is a Frede't space isomorphism from $\delta_{p_{1}}^{\mathrm{m}} \delta(6)$ int itself and

$$
\sigma^{(K)} \sim \sum_{j=0}^{\infty}\left(\sum_{[\alpha]=j} \sum_{\left[\alpha^{\prime}\right]=[\alpha]} C_{\alpha_{1}^{\prime} \alpha}^{()_{2}^{2}} \quad \Delta_{\pi}^{\alpha^{\prime}} X_{2}^{\alpha} \sigma^{4}\right)
$$

with $C_{\alpha^{\prime}, \alpha}^{2} \in \mathbb{R}$ uniquely determined I the equations

When $r=e_{6} \quad \sigma^{(k)} \sim \sum_{j=0}^{\infty}\left(\sum_{\alpha_{\alpha} J_{j} j} \Delta_{*}^{\alpha} x_{2}^{\alpha} \sigma^{*}\right) \quad$ in the $k N$-calces by Fisher-Ruzhansky
If moreover r is a symmetry function then $0_{p}{ }^{2}(\sigma)=\sigma_{p}^{2}\left(\sigma^{*}\right)$

Asgmptotic formale for the composite symbol
Theorm (F, - Roltensteimer - Ruz hausky)
$m_{1}, m_{2} \in \mathbb{R}, 0 \leq f<\frac{I}{\sigma_{m}} \leq 1,2$ aetisfying $(H i f), \sigma_{1} \in S_{\rho_{1},}^{m_{1}}(G), \sigma_{2} \in S_{\rho_{1}, \delta}^{m_{2}}(G)$.
Then there exists e umiquely determined $\sigma \in \int_{J_{1} \delta_{1} m^{m} m_{2}}$ (G) s.t

$$
O_{p}^{r}(\sigma)=O_{p}^{z}\left(\sigma_{1}\right) \cdot O_{p}^{z}\left(\sigma_{2}\right) \text {. }
$$

The r-composition of symbals

$$
o_{r} \quad S_{p_{1} r}^{m_{1}}(\sigma) \times S_{j, \delta}^{m_{2}}(6) \longrightarrow S_{\rho, \delta}^{m_{1}+m_{2}}(G)
$$

$\left(\sigma_{1}, \sigma_{2}\right) \longmapsto \sigma_{1} o_{z} \sigma_{2}:=\sigma$ is a bilheer, continuous
and

$$
\sigma \sim \sum_{i, j=}^{\infty}\left(\begin{array}{l}
\sum_{\substack{\left.1 \\
c_{\alpha}\right]=i \\
[\beta]=j}} \sum_{\left[\alpha_{1}\right]+\left[\alpha_{2}\right]=\left[\alpha_{1}\right]}^{\left[\beta_{1}\right]+\left[\beta_{2}\right]=[\beta]}
\end{array} c_{\alpha_{1}, \alpha_{2} c_{\beta_{1}, \beta_{2}}}\left(X^{\alpha_{2}} \Delta^{\beta_{1}} X^{\alpha} \sigma_{1}\right)\left(\Delta^{\beta_{2}} \Delta^{\alpha_{1}} X^{\beta} \sigma_{2}\right)\right),
$$

that is, $\forall M, N \in \mathbb{N}_{0}$

$$
\begin{align*}
& \delta-\sum_{\alpha=1 \leq M} \sum_{[11+1} c_{\alpha_{1} \alpha_{2}} c_{\mu_{1}, \beta_{2}}\left(\underline{x}^{\alpha_{2}} \Delta^{\beta_{1}} x^{\alpha} \sigma_{1}\right)\left(\Delta^{\beta_{2}} \Delta^{\alpha_{1}} x^{\beta} \sigma_{2}\right) \in C^{m_{1}+M_{2}-(f-\delta)\left(m_{1 n}\left\{M_{1}, N\right\}+1\right)} \\
& {\left[\alpha_{\alpha}\right] \leq M \quad\left[\alpha_{1}\right]+\left[\alpha_{2}\right]=[\alpha]} \tag{G}\\
& {[\beta] \leq N_{[\beta]+\left[\beta_{2}\right]}=[\beta]}
\end{align*}
$$

ant were $C_{d_{1}, d_{2}} \quad C_{\beta_{1}, \beta_{2}}$ are uniquely determined by the epretions

$$
\begin{aligned}
& q_{\alpha}\left(p_{1}\left(y_{1}, z\right)\right)=\sum_{\left[\alpha_{1} 1+\alpha_{2}\right]=[\alpha]} c_{\alpha_{1}, d z} \tilde{\eta}_{\alpha_{\alpha}}(y) \tilde{\eta}_{d_{2}}\left(z^{-1} y\right) \\
& q_{\beta}\left(p_{2}\left(y_{1} z\right)\right)=\sum_{\left[p_{p}\right]+\left[p_{\beta}\right]=[\beta]} c_{\beta_{1}, \beta_{1}} \tilde{\eta}_{p_{1}}\left(z-z^{-1}\right) \tilde{\eta}_{p_{2}}(z) .
\end{aligned}
$$

Remark The proof is lased on the use of kernels
kernel of the composition let $o_{p}\left(\sigma_{1}\right) o_{p}\left(\sigma_{2}\right)=o_{p}(\sigma)$, then

$$
k_{\sigma}(x, a)=\int_{G} k_{r_{1}}(x \underbrace{x(y) \tau\left(z^{-1} y\right)^{-1}}_{p_{1}(4, z)}, z^{-1} y) k r_{2}(\underbrace{\left.z \tau\left(y^{-1} z\right)^{-1}, y^{-1} z\right) d z . ~ . . ~ . ~}_{p_{2}(y, z)}
$$

Remark For $r=C 6$ we find the compose kernel of the $K-N$ quantization Sketch of the prose of the asymptotic formula for the composite symbol Asfrime $\sigma_{1}, \sigma_{2} \in S_{1, \delta}^{-\infty}=\bigcap_{m \in \mathbb{R}} S_{\rho, r}^{m}$.
Step 1. We expand $k r_{1}$ and $k \sigma_{n}$ using Taybr expansion

$$
\begin{aligned}
& k_{\sigma_{1}}\left(x \rho_{1}(x, y), z^{-1} y\right)=\sum_{[\alpha] \leq M} q_{\alpha}\left(p_{1}(y, z)\right) X_{x_{1}=\Sigma}^{\alpha} k_{\sigma_{1}}\left(x, z^{-1} 4\right)+R_{x_{1} M}^{k_{\sigma_{1}}\left(\cdot, z^{-1} j\right)}\left(p_{1}(y, z)\right) \\
& k_{\sigma_{2}}(x \rho(x, y), z)=\sum_{[\beta] \leq N} q_{\beta}\left(p_{2}(y, z)\right) x_{x_{2}=2}^{\beta} k_{\sigma_{2}}(x, z)+R_{x_{1}, M}^{k_{\sigma}(\cdot, z)}\left(p_{2}(y, z)\right)
\end{aligned}
$$

We use a crucial property of the if's, i.e.
and get

$$
k_{\sigma}(x, y)=k_{T_{0}}(x, y)+k_{T_{1}}\left(x_{4} y^{4}\right)+k_{T_{2}}(x, y)+k_{T_{3}}(x, y)
$$

who is $\sigma(x, \pi)$ then?

$$
\sigma(x, \pi)=T_{0}(x, \pi)+T_{1}(x, \pi)+T_{2}(x, \pi)+T_{3}(x \pi)
$$

$$
\sigma(x, \pi)-T_{0}(x, \pi)=T_{1}(x, \pi)+T_{2}(x, \pi)+T_{3}(x, \pi)=\text { Reminder }
$$

Hence we mas
where
$T_{2}(x, \pi)$ similes t Th (reversing the roles of σ_{n} ant σ_{2})

$$
T_{3}(x, T):=\int_{6 \times 6} R_{x_{1} M}^{k_{r_{1}}\left(\cdots, z^{-1} y\right)}\left(p_{1}(y, z)\right) R_{x, N}^{k c_{2}(\cdot, z)}\left(p_{2}(y, z)\right) d z \pi^{*}(y) d y .
$$

Wa meed that $\forall \alpha_{1} \beta_{0}, \forall \quad 0 \leq \delta<\frac{\rho}{v_{m}}, \exists c>0$ ant $a_{1}, a_{2}, b_{1} b_{2} \in \mathbb{N} \quad n t$.

$$
\sup _{(x, \pi) \in G \times \widehat{\sigma}}\left\|\Delta^{\alpha} x^{\beta_{0}} T_{j}(x, \pi) \pi(I+R)-\frac{m_{1}+m_{2}-(j-\delta) L-\delta\left[\alpha_{0}\right]+\delta\left[\beta_{0}\right]}{v}\right\|_{j\left(H_{T}\right)} \stackrel{\sim C\left\|\sigma_{1}\right\|_{S_{1} \delta_{1} a_{1} b_{1}}\left\|\gamma_{2}\right\|_{S_{1, \delta} \sigma_{1} a_{1}, b_{2}}^{m_{2}}\left(T_{j}\right)}{ }
$$

If this is true we conclude the prat for $\sigma_{1}, \sigma_{2} \in \delta_{p_{1} r}^{-\infty}$.
Lemme 1' If r satisfies (HP) then

$$
\begin{aligned}
& \left|p_{1}(u, z)\right| \lesssim|z|+\sum_{j=1}^{M} \sum_{[\alpha]+[\beta]=v_{j} \geqslant 2}|z|^{\frac{[\alpha]}{\sigma_{j}}}\left|z^{-1} y\right|^{\frac{\left.\tau_{\beta}\right]}{v_{j}}} \\
& \alpha, \beta \in \mathbb{N}^{n} \\
& \left|p_{2}(y, z)\right| \Leftarrow\left|z^{-1} y\right|+\sum_{j=1}^{n} \sum_{[\alpha]+[\beta]=v_{j}^{j} \geqslant 2}|z| \frac{[\alpha]}{v_{j}^{\prime}}\left|z^{-1} y\right| \frac{[\beta]}{v_{j}} \\
& \alpha, \beta \in \mathbb{N}^{m}
\end{aligned}
$$

Combining Lemma 1, Taybr's remainders properties and estimetes, generalization of kernel estimates we proved $\left(T_{j}\right) \forall j=1, \ldots, 3$ out thus the result.
Example 1:G graded and $r=e_{6}=\mathrm{KN}$ quantization

$$
\begin{aligned}
& q_{\alpha}\left(p_{1}(y, z)\right)=\sum_{\left[\alpha, 1+\left[\alpha_{2}\right]=[\alpha]\right.} c_{\alpha_{1}, \alpha z} \tilde{\eta}_{\alpha<}(y) \tilde{\eta}_{d 2}\left(z^{-1} y\right) \quad p_{1}(4, z)=e_{6} \Longrightarrow \quad c_{\alpha_{1}, \alpha_{2}}=\delta_{\alpha_{1}, 0} \delta_{\alpha_{2}, 0} \quad \forall \alpha \in N_{0} \\
& q_{\beta}\left(p_{2}\left(y_{1} z\right)=\sum_{\left[p_{1} \lambda+\left[p_{p}\right]=\left[\beta_{j}\right]\right.} c_{p_{1}, \beta_{2}} \tilde{q}_{\beta_{1}}(z y) \tilde{\eta}_{\beta 2}(z) p_{\alpha}\left(y_{1} z\right)=y_{z}^{-1} \Rightarrow c_{\beta_{1} \beta_{2}}=\delta_{\beta_{2} 0} \quad \forall \beta \in \mathbb{N}_{0}\right. \\
& \Rightarrow \sigma_{1} \cdot{ }_{i=e_{6}}^{\left.\sigma_{2}=\sigma_{1} o_{k N} \sigma_{2} \sim \sum_{j=0}^{\infty} \sum_{[\beta]=j}\left(\Delta^{\beta} \sigma_{n}\right)\left(x^{\beta} \sigma_{2}\right), ~\right) ~}
\end{aligned}
$$

Example $2 \quad G=\mathbb{R}^{n} \quad r(x)=\frac{x}{2}=\left(\frac{x_{\mu}}{2}, \ldots, \frac{x_{M}}{2}\right)=$ Well quantization

The homogeneous Poisson bracket on graded Lie groups
Def G-hamogenedus order
6 graded, σ smooth symbol. We say that σ is G-homogeneous of tigre $k \in \mathbb{N}_{0}$ and wite $\operatorname{Ord}_{G}(\sigma)=k$ if

$$
x^{2} x \quad \sigma(\operatorname{Dr}(x), \pi)=r^{k+[\alpha]} x_{y=\operatorname{Dr}(x)}^{\alpha} \sigma(y, \pi) \quad \forall r>0 \text { and a.e }(x, \pi) \in 6 x \hat{6} \text {. }
$$

Note that $\forall \sigma_{1} \sigma_{2}$

$$
\begin{aligned}
& \theta_{r} t_{6}\left(\left(x^{\alpha} \sigma_{1}\left(x_{1} \pi\right)\right)\left(x^{\beta} \sigma_{2}(x, \pi)\right)=\left(k_{1}+[\alpha]\right)+\left(k_{2}+[\beta]\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Or} \perp_{G}(I)=k_{1}+[\alpha]+k_{2}+[\beta]
\end{aligned}
$$

Det Homogemeous Poissom bracket
Ggraded $\quad \sigma_{j} \in S_{T, \delta}^{m j}(6) \quad j=1,2 \quad 0 \leq \delta \leq \rho \leq 1$
We Ufine the $T_{1} s$ homojeneous poisson brackeet as the symbol

$$
\left\{\sigma_{1}, \sigma_{2}\right\}_{\text {hom }}:=(-i) \sum_{[\alpha]=1}\left(\left(x^{\alpha} \sigma_{1}\right)\left(\Delta^{\alpha} \sigma_{2}\right)-\left(\Delta^{\alpha} \sigma_{1}\right)\left(x^{\alpha} \sigma_{2}\right)\right) \in S_{\rho, \delta}^{m_{1}+m_{2}-(\zeta-S)}(\sigma)
$$

$\xrightarrow{\text { Remark } 1}$ Ord $G\left\{\sigma_{1}, \sigma_{2}\right\}_{\text {hom }}=k_{1}+k_{2}+1 \quad \forall \operatorname{gradel} G \quad O_{G}\left(\sigma_{j}\right)=k_{j}$ Remert $_{2} . G=\mathbb{R}^{n} \quad\left\{\sigma_{1}, \sigma_{2}\right\}_{\text {hadu }}=\left\{\sigma_{n}, \sigma_{2}\right\}$

Propssition (F - Rottensteciner - Rovhansky) $\sigma_{j}^{\prime} \in S_{j_{1} S}^{m j}(6), j=1,2, \quad \varepsilon$ ratisfles $(H P)$ and is a symmetry function, $0 \leq \delta<\frac{\rho}{\sigma_{m}} \leq 1$. then the uniquely determinel summand in the asymptatic expansion of $\sigma_{1} \circ_{2} r_{2}$ of order $m_{1}+m_{2}-(\rho-\delta)$ and Ghomogmeous order $\underline{k_{1}+k_{2}+1}$ is $\frac{1}{2}\left\{\sigma_{1}, \sigma_{e}\right\}$ hom.

The Weye quantization. A candidate for general graded Lie groups.
$=O M$ any G graded $r(x)=\left(\frac{x_{2}}{2}, \frac{x_{2}}{2}, \ldots, \frac{x_{m}}{2}\right)=\exp \left(\frac{1}{2} \log (x)\right)$ canonical is a symmetry prantizing function symmetry function
$=$ On \mathbb{R}^{n} and $H^{M} \tau^{W}$ has mpecial properties
$\operatorname{On} 12^{x}$

$$
\forall \delta \in S_{p}(2 \mu, \mathbb{R}) \quad O_{p}^{W}(\sigma \cdot S)=U_{S}^{-1} O_{p}^{W}(\sigma) U_{S} \quad \forall U_{S}=\mu_{p}\left(2 \mu_{1} \mathbb{R}\right) \subseteq U\left(L^{2}\left(\mathbb{R}^{w}\right)\right)
$$

On general G growled
Theorem (F. - Rottenstlimer - Ruzhansky)
If $r(x)=\exp \left(\frac{1}{2} \log (x)\right)$, then $\quad \forall S \in \operatorname{Aut}(G) \quad \exists$ a unitery $U_{s} \in U\left(L^{2}(G)\right)$ st.

$$
\forall r \in \delta_{\rho_{1} r}^{0}(G) \quad 0 \leq \delta<\frac{\rho}{v_{M}} . \quad O_{p}^{2}(\sigma \cdot S)_{f}=U_{S}^{-1} O_{p}^{2}(\sigma) \cup_{s} f \quad \forall f \in L^{2}(G)
$$

Remark
The proof works for any admissible τ that commutes with $S \in$ Ant (G), this also $r=e 6$.
On n^{4} it works for any $c(x)=ट x$.
To find the function c giving the Wegl quantization we must ask for both invariance property ant the involution property.
$r=\exp \left(\frac{1}{2} \log (x)\right)$ satisfies both on any grated G. got candidate!
The Weyl qleniteations on the Heisenberg group.
On tin we know exactly Art $\left(\mathrm{Him}_{n}\right)$. So we could check that the only symanetry quantiting function commuting with Ant (tHu) is

$$
r(x)=\exp \left(\frac{1}{2} \log (x)\right)
$$

Theorem (F- Rottensteimer-Ruzhansky)
$G=H_{m}, 0 \leq \delta<\frac{\rho}{r_{m}} \leq 1, r: H_{n} \rightarrow H_{n}$. Amoy all the symmetry quantixing fomctiong $z(x)=\exp \left(\frac{1}{2} \log (x)\right)$ is the only one satisfying both the following conditions $\forall \sigma \in \oint_{\rho, \delta}^{0}(6), \quad 0 \leqslant \delta L \frac{\rho}{v_{\mu M}} \leqslant 1, \forall f \in L^{2}(6)$

- $o_{p}^{r}(\sigma)^{*}=0_{p}^{r}\left(\sigma^{x}\right) \quad$ preservation of involution
- \# $A \in A u t(G) \ni u_{s} \in L^{2}(G)$ set

Ant omorphic imvanónce

$$
O_{p}^{2}\left(\sigma \cdot U_{s}\right)_{f}=U_{s}^{-1} O_{p}^{2}(\sigma) U_{s f}
$$

Conclusion $\quad 2(x)=\left(\frac{x_{0}}{2}, \ldots, \frac{x_{2 \mu}}{2}, \frac{x_{2 n+1}}{2}\right)$ gives the Weyl quantization on H_{m} ant is the condidate symmetry ${ }^{2}$ function giving the weyl quantization on any graded lie group.

THANK YOU FOR YOUR ATENTION!

