Fredholm operators on graded Lie groups

Eske Ewert
(Leibniz University Hannover)

joint work in progress with Ryszard Nest and Philipp Schmitt

Workshop 'High frequency analysis: from operator algebras to PDEs', Université d'Angers

Motivation

- Observation: There are operators that are hypoelliptic but not elliptic, (sub-Laplacians, other Hörmander's sums of squares operators, ...),
- this lead to the study of operators on graded Lie groups in the 70s by Folland, Stein, Rothschild, ...
- development of pseudodifferential calculi for graded Lie groups (Christ-Geller-Głowacki-Polin, Fischer-Ruzhansky-Fermaninan-Kammerer, van Erp-Yuncken, ...)
- instead of ellipticity: P satisfies the Rockland condition $\Rightarrow P$ is hypoelliptic,
- however, P is not Fredholm. On \mathbb{R}^{n} : globally elliptic operators defined by Shubin and Helffer \rightsquigarrow Fredholm operators, index formula, Weyl law, ...
- Analogue for graded Lie groups?

Graded Lie groups

Definition

A graded Lie group of step r is a simply connected Lie group G whose Lie algebra \mathfrak{g} is graded, i.e.

$$
\mathfrak{g}=\bigoplus_{j=1}^{r} \mathfrak{g}_{j} \quad \text { such that }\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subseteq \mathfrak{g}_{i+j}
$$

Here, we set $\mathfrak{g}_{i}=\{0\}$ for $i>r$.

- in particular, G is nilpotent, so that $\exp : \mathfrak{g} \rightarrow G$ is a diffeomorphism,

Graded Lie groups

Definition

A graded Lie group of step r is a simply connected Lie group G whose Lie algebra \mathfrak{g} is graded，i．e．

$$
\mathfrak{g}=\bigoplus_{j=1}^{r} \mathfrak{g}_{j} \quad \text { such that }\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subseteq \mathfrak{g}_{i+j}
$$

Here，we set $\mathfrak{g}_{i}=\{0\}$ for $i>r$ ．
－in particular，G is nilpotent，so that $\exp : \mathfrak{g} \rightarrow G$ is a diffeomorphism，
－$X \in \mathfrak{g}$ gives rise to a left－invariant differential operator

$$
X f(x)=\left.\frac{d}{d t} f(x \cdot \exp (t X))\right|_{t=0} \quad \text { for } f \in C^{\infty}(G)
$$

New notion of order for left－invariant differential operators：
Declare order of $X \in \mathfrak{g}_{i}$ to be i ．

Dilations

Dilations

Associated with the grading there is a dilation action of $\mathbb{R}_{>0}$ on \mathfrak{g} and G :

$$
\delta_{\lambda}(X)=\lambda^{i} X \quad \text { for } \lambda>0 \text { and } X \in \mathfrak{g}_{i} .
$$

- a left-invariant differential operator P is m-homogeneous if $P\left(f \circ \delta_{\lambda}\right)=\lambda^{m} P(f) \circ \delta_{\lambda}$ for all $\lambda>0$ and $f \in C^{\infty}(G)$,
- in particular, $X \in \mathfrak{g}_{i}$ defines an i-homogeneous operator.

Dilations

Dilations

Associated with the grading there is a dilation action of $\mathbb{R}_{>0}$ on \mathfrak{g} and G :

$$
\delta_{\lambda}(X)=\lambda^{i} X \quad \text { for } \lambda>0 \text { and } X \in \mathfrak{g}_{i} .
$$

- a left-invariant differential operator P is m-homogeneous if

$$
P\left(f \circ \delta_{\lambda}\right)=\lambda^{m} P(f) \circ \delta_{\lambda} \text { for all } \lambda>0 \text { and } f \in C^{\infty}(G) \text {, }
$$

- in particular, $X \in \mathfrak{g}_{i}$ defines an i-homogeneous operator.

Examples of graded Lie groups

- \mathbb{R}^{n} with arbitrary grading,
- Heisenberg group H with Lie algebra \mathfrak{h} generated by X, Y, Z with $[X, Y]=Z$ and $[X, Z]=[Y, Z]=0$.
Standard grading: $\mathfrak{h}_{1}=\mathbb{R} X \oplus \mathbb{R} Y$ and $\mathfrak{h}_{2}=\mathbb{R} Z$,
- upper triangular matrices.

Rockland operators

Let P be a homogeneous left-invariant differential operator on G.

- on $G=\mathbb{R}^{n}: P$ is hypoelliptic $\Leftrightarrow p(\xi)=\widehat{P}(\xi) \neq 0$ for $\xi \neq 0$,

Rockland operators

Let P be a homogeneous left-invariant differential operator on G.

- on $G=\mathbb{R}^{n}: P$ is hypoelliptic $\Leftrightarrow p(\xi)=\widehat{P}(\xi) \neq 0$ for $\xi \neq 0$,
- \widehat{G} : equivalence classes of irreducible representations $\pi: G \rightarrow \mathcal{U}\left(\mathcal{H}_{\pi}\right)$,
- π induces a representation $\mathrm{d} \pi$ of \mathfrak{g} as (possibly unbounded) operators on \mathcal{H}_{π}.

Definition

The operator P is a Rockland operator if for every $\pi \in \widehat{G} \backslash\left\{\pi_{\text {triv }}\right\}$ the operator $\mathrm{d} \pi(P)$ is injective on $\mathcal{H}_{\pi}^{\infty}$.

Rockland operators

Let P be a homogeneous left-invariant differential operator on G.

- on $G=\mathbb{R}^{n}: P$ is hypoelliptic $\Leftrightarrow p(\xi)=\widehat{P}(\xi) \neq 0$ for $\xi \neq 0$,
- \widehat{G} : equivalence classes of irreducible representations π : $G \rightarrow \mathcal{U}\left(\mathcal{H}_{\pi}\right)$,
- π induces a representation $\mathrm{d} \pi$ of \mathfrak{g} as (possibly unbounded) operators on \mathcal{H}_{π}.

Definition

The operator P is a Rockland operator if for every $\pi \in \widehat{G} \backslash\left\{\pi_{\text {triv }}\right\}$ the operator $\mathrm{d} \pi(P)$ is injective on $\mathcal{H}_{\pi}^{\infty}$.

Theorem (Helffer-Nourrigat)

P is hypoelliptic $\Leftrightarrow P$ is a Rockland operator.
Example (Heisenberg group)
$P=X^{2}+Y^{2}+i \alpha Z$ is Rockland $\Leftrightarrow \alpha \notin 2 \mathbb{Z}+1$.

Hörmander calculus on graded Lie groups

Question

Is there an analogue of the Hörmander pseudodifferential calculus incorporating the new notion of order?

Hörmander calculus on graded Lie groups

Question

Is there an analogue of the Hörmander pseudodifferential calculus incorporating the new notion of order?

Yes, different approaches:

- Christ-Geller-Głowacki-Polin: using distributional kernels having homogeneous expansions,
- Fischer-Ruzhansky and Fischer-Fermanian-Kammerer: using symbols $a(x, \pi)$ acting on \mathcal{H}_{π} for $(x, \pi) \in G \times \widehat{G}$,
- van Erp-Yuncken: using a tangent groupoid and zoom action
> building on work by Debord-Skandalis,
> approach also works for filtered manifolds and even non-regular filtrations (Androulidakis-Mohsen-Yuncken).

Analogue of ellipticity on G

In these calculi, one has a notion of a principal symbol = family $\left(\sigma(P)_{x}\right)_{x \in G}$ of left-invariant homogeneous operators on G.

Theorem (Christ-Geller-Głowacki-Polin)
If $\sigma(P)_{x}$ and $\sigma\left(P^{t}\right)_{x}$ are Rockland operators for all $x \in G$, then P has a parametrix Q.

Analogue of ellipticity on G

In these calculi, one has a notion of a principal symbol = family $\left(\sigma(P)_{x}\right)_{x \in G}$ of left-invariant homogeneous operators on G.

Theorem (Christ-Geller-Głowacki-Polin)
If $\sigma(P)_{\times}$and $\sigma\left(P^{t}\right)_{\times}$are Rockland operators for all $x \in G$, then P has a parametrix Q.

- However $P Q-I, Q P-I \in C^{\infty}(G \times G)$, not necessarily compact as operators on $L^{2}(G)$.
- Solution on $G=\mathbb{R}^{n}$: introduce a pseudodifferential calculus in which one has better control of the growth of the symbols as $|x| \rightarrow \infty$.

Operators on \mathbb{R}^{n}

Definition (Shubin, Helffer)

A function $p \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$ belongs to the symbol class $\Gamma^{m}\left(\mathbb{R}^{2 n}\right)$ if for all $\alpha, \beta \in \mathbb{N}_{0}^{n}$ there is $C_{\alpha \beta}>0$ such that for all $(x, \xi) \in \mathbb{R}^{2 n}$:

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} p(x, \xi)\right| \leq C_{\alpha \beta}(1+|x|+|\xi|)^{m-|\alpha|-|\beta|} .
$$

Obtain operators $\operatorname{Op}(p): \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ using the standard quantization.

Example (Differential operators with polynomial coefficients)

$$
p(x, \xi)=\sum_{|\alpha|+|\beta| \leq m} c_{\alpha \beta} x^{\alpha}(i \xi)^{\beta} \rightsquigarrow \operatorname{Op}(p)=\sum_{|\alpha|+|\beta| \leq m} c_{\alpha \beta} x^{\alpha} \partial_{x}^{\beta}
$$

Operators on \mathbb{R}^{n}

Definition (Shubin, Helffer)

A function $p \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$ belongs to the symbol class $\Gamma^{m}\left(\mathbb{R}^{2 n}\right)$ if for all $\alpha, \beta \in \mathbb{N}_{0}^{n}$ there is $C_{\alpha \beta}>0$ such that for all $(x, \xi) \in \mathbb{R}^{2 n}$:

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} p(x, \xi)\right| \leq C_{\alpha \beta}(1+|x|+|\xi|)^{m-|\alpha|-|\beta|} .
$$

Obtain operators $\operatorname{Op}(p): \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ using the standard quantization.

Example (Differential operators with polynomial coefficients)

$$
p(x, \xi)=\sum_{|\alpha|+|\beta| \leq m} c_{\alpha \beta} x^{\alpha}(i \xi)^{\beta} \rightsquigarrow \operatorname{Op}(p)=\sum_{|\alpha|+|\beta| \leq m} c_{\alpha \beta} x^{\alpha} \partial_{x}^{\beta}
$$

- consider classical symbols: homogeneous expansion with respect to $\lambda \cdot(x, \xi)=(\lambda x, \lambda \xi)$ for $\lambda>0$,
- principal symbol is a m-homogeneous function on $\mathbb{R}^{2 n} \backslash\{0\}$,
- denote $\Psi_{\Gamma}^{m}=\left\{O p(p): p \in \Gamma^{m}\left(\mathbb{R}^{2 n}\right)\right.$ classical $\}$,
- the principal symbol map induces short exact sequences

$$
0 \rightarrow \Psi_{\Gamma}^{m-1} \rightarrow \Psi_{\Gamma}^{m} \xrightarrow{\sigma_{n}} C^{\infty}\left(S^{2 n-1}\right) \rightarrow 0 .
$$

Ellipticity

- Algebra structure: $\Psi_{\Gamma}^{k} \circ \Psi_{\Gamma}^{\prime} \subseteq \Psi_{\Gamma}^{k+1}$ and $\sigma_{k+1}(P Q)=\sigma_{k}(P) \sigma_{l}(Q)$.

Ellipticity

- Algebra structure: $\Psi_{\Gamma}^{k} \circ \Psi_{\Gamma}^{\prime} \subseteq \Psi_{\Gamma}^{k+\prime}$ and $\sigma_{k+\prime}(P Q)=\sigma_{k}(P) \sigma_{l}(Q)$.

Definition

An operator $P \in \Psi_{\Gamma}^{m}$ is elliptic if its principal symbol $\sigma_{m}(P) \in C^{\infty}\left(S^{2 n-1}\right)$ is invertible.

Examples

- on \mathbb{R}^{n} : harmonic oscillator $-\Delta+|x|^{2} \in \Psi_{\Gamma}^{2}$ (principal symbol $|\xi|^{2}+|x|^{2}$),
- on \mathbb{R} : creation/annihilation operator $x \pm \partial_{x} \in \Psi_{\Gamma}^{1}$ (principal symbol $x \pm i \xi$).

Ellipticity

- Algebra structure: $\Psi_{\Gamma}^{k} \circ \Psi_{\Gamma}^{\prime} \subseteq \Psi_{\Gamma}^{k+\prime}$ and $\sigma_{k+\prime}(P Q)=\sigma_{k}(P) \sigma_{l}(Q)$.

Definition

An operator $P \in \Psi_{\Gamma}^{m}$ is elliptic if its principal symbol $\sigma_{m}(P) \in C^{\infty}\left(S^{2 n-1}\right)$ is invertible.

Examples

- on \mathbb{R}^{n} : harmonic oscillator $-\Delta+|x|^{2} \in \Psi_{\Gamma}^{2}$ (principal symbol $\left.|\xi|^{2}+|x|^{2}\right)$,
- on \mathbb{R} : creation/annihilation operator $x \pm \partial_{x} \in \Psi_{\Gamma}^{1}$ (principal symbol $x \pm i \xi$).
- denote by \mathcal{K}^{∞} integral operators with kernel in $\mathcal{S}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$,
- $P \in \Psi_{\Gamma}^{m}$ elliptic \Rightarrow there is a parametrix $Q \in \Psi_{\Gamma}^{-m}$ such that $P Q-1, Q P-1 \in \mathcal{K}^{\infty}$.
- operators act on an adapted scale of Sobolev spaces,
- elliptic operators are Fredholm.

Some notation for graded Lie groups

- In the following: fix a basis X_{1}, \ldots, X_{n} of \mathfrak{g} such that
$>X_{1}, \ldots, X_{n_{1}}$ basis of \mathfrak{g}_{1}
$>X_{n_{1}+1}, \ldots X_{n_{2}}$ basis of \mathfrak{g}_{2}, $>\ldots$
- identify $\mathbb{R}^{n} \rightarrow G$ via $\left(x_{1}, \ldots, x_{n}\right) \mapsto \exp \left(x_{1} X_{1}+\ldots+x_{n} X_{n}\right)$,
- can talk of polynomials, Schwartz functions, etc. on G,

Some notation for graded Lie groups

- In the following: fix a basis X_{1}, \ldots, X_{n} of \mathfrak{g} such that
$>X_{1}, \ldots, X_{n_{1}}$ basis of \mathfrak{g}_{1}
$>X_{n_{1}+1}, \ldots X_{n_{2}}$ basis of \mathfrak{g}_{2},
- identify $\mathbb{R}^{n} \rightarrow G$ via $\left(x_{1}, \ldots, x_{n}\right) \mapsto \exp \left(x_{1} X_{1}+\ldots+x_{n} X_{n}\right)$,
- can talk of polynomials, Schwartz functions, etc. on G,
- the weights $q_{1}, \ldots, q_{n} \in \mathbb{N}$ of G are defined by $\delta_{\lambda}\left(X_{i}\right)=\lambda^{q_{i}} X_{i}$,
- homogeneous length of a multi-index $\alpha \in \mathbb{N}_{0}^{n}:[\alpha]=\alpha_{1} q_{1}+\ldots \alpha_{n} q_{n}$.

Example

- $X^{\alpha}=X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}$ is a $[\alpha]$-homogeneous differential operator,
- $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is a $[\alpha]$-homogeneous function.

Shubin/Helffer type filtration

Definition

Filtration on the algebra of differential operators with polynomial coefficients on G : For $m \in \mathbb{N}_{0}$ set

$$
\mathcal{A}_{m}=\left\{\sum_{[\alpha]+[\beta] \leq m} c_{\alpha \beta} x^{\alpha} X^{\beta} \mid c_{\alpha \beta} \in \mathbb{C}\right\} \subseteq \mathcal{A}_{m+1} \subseteq \ldots
$$

- note $X^{\beta} x^{\alpha}-x^{\alpha} X^{\beta} \in \mathcal{A}_{[\alpha]+[\beta]-1}$ by homogeneity considerations,

Shubin/Helffer type filtration

Definition

Filtration on the algebra of differential operators with polynomial coefficients on G : For $m \in \mathbb{N}_{0}$ set

$$
\mathcal{A}_{m}=\left\{\sum_{[\alpha]+[\beta] \leq m} c_{\alpha \beta} \chi^{\alpha} X^{\beta} \mid c_{\alpha \beta} \in \mathbb{C}\right\} \subseteq \mathcal{A}_{m+1} \subseteq \ldots
$$

- note $X^{\beta} x^{\alpha}-x^{\alpha} X^{\beta} \in \mathcal{A}_{[\alpha]+[\beta]-1}$ by homogeneity considerations,
- principal symbol map $\sigma_{m}: \mathcal{A}_{m} \rightarrow \mathcal{A}_{m} / \mathcal{A}_{m-1}$.

Lemma

Let \mathfrak{g}^{*} denote the commutative Lie algebra. Then there is an isomorphism

$$
\bigoplus_{m=0}^{\infty} \mathcal{A}_{m} / \mathcal{A}_{m-1} \rightarrow \mathcal{U}\left(\mathfrak{g}^{*}\right) \otimes \mathcal{U}(\mathfrak{g})=\mathcal{U}\left(\mathfrak{g}^{*} \oplus \mathfrak{g}\right)
$$

induced by $\sum_{[\alpha]+[\beta] \leq m} c_{\alpha \beta} X^{\alpha} X^{\beta} \mapsto \sum_{[\alpha]+[\beta]=m} c_{\alpha \beta}\left(-i \partial_{x}\right)^{\alpha} X^{\beta}$.

$$
\rightsquigarrow \text { Rockland condition on } \mathbb{R}^{n} \times G
$$

Examples of operators I

Fix a common multiple q of the weights $q_{1}, \ldots, q_{n} \in \mathbb{N}$. Then

$$
\|x\|=\left(\sum_{j=1}^{n} x_{j}^{\frac{2 q}{q_{j}}}\right)^{\frac{1}{2 q}}
$$

defines a homogeneous quasi-norm.
Example (Analogue of the harmonic oscillator)
The following operator satisfies the Rockland condition on $\mathbb{R}^{n} \times G$

$$
P=\sum_{j=1}^{n}(-1)^{\frac{q}{q_{j}}} X_{j}^{\frac{2 q}{q_{j}}}+\|x\|^{2 q} \in \psi_{\Gamma}^{2 q}(G) .
$$

Examples of operators II

Representations of H

\widehat{H} consists of

- characters $\chi_{a, b}$ on $\mathcal{H}=\mathbb{C}$ for

$$
\begin{aligned}
& (a, b) \in \mathbb{R}^{2}: \\
& X \mapsto i a, Y \mapsto i b, Z \mapsto 0,
\end{aligned}
$$

- Schrödinger representations π_{λ} on $\mathcal{H}=L^{2}(\mathbb{R})$ for $\lambda \in \mathbb{R}^{*}$: $X \mapsto \sqrt{|\lambda|} \partial_{u}, Y \mapsto \pm i \sqrt{|\lambda|} u$, $Z \mapsto i \lambda 1$.
\rightsquigarrow can check which operators of the form $-X^{2}-Y^{2}+\alpha Z+p(x, y, z)$ for $\alpha \in \mathbb{C}$ and a polynomial potential p satisfy the Rockland condition.

Groupoids to define a calculus

Lie Groupoid with arrow space \mathcal{G}, unit space $\mathcal{G}^{(0)}$

- range and source maps $r, s: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$,
- multiplication $m:\{(\alpha, \beta): s(\alpha)=r(\beta)\} \rightarrow \mathcal{G}$,
- convolution " $f * g(\gamma)=\int_{\alpha \beta=\gamma} f(\alpha) g(\beta)$ " for $f, g \in C_{c}^{\infty}(\mathcal{G})$.

Groupoids to define a calculus

Lie Groupoid with arrow space \mathcal{G}, unit space $\mathcal{G}^{(0)}$

- range and source maps $r, s: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$,
- multiplication $m:\{(\alpha, \beta): s(\alpha)=r(\beta)\} \rightarrow \mathcal{G}$,
- convolution " $f * g(\gamma)=\int_{\alpha \beta=\gamma} f(\alpha) g(\beta)$ " for $f, g \in C_{c}^{\infty}(\mathcal{G})$.

Two groupoids with arrow space $G \times G$ and unit space $\mathcal{G}^{(0)}=G$:
Example (Pair groupoid of G)

- $r(x, y)=x, s(x, y)=y$ and $(x, y)(y, z)=(x, z)$,
- $f * g(x, z)=\int_{G} f(x, y) g(y, z) d y \rightsquigarrow$ composition of kernels.

Groupoids to define a calculus

Lie Groupoid with arrow space \mathcal{G}, unit space $\mathcal{G}^{(0)}$

- range and source maps $r, s: \mathcal{G} \rightarrow \mathcal{G}^{(0)}$,
- multiplication $m:\{(\alpha, \beta): s(\alpha)=r(\beta)\} \rightarrow \mathcal{G}$,
- convolution " $f * g(\gamma)=\int_{\alpha \beta=\gamma} f(\alpha) g(\beta)$ " for $f, g \in C_{c}^{\infty}(\mathcal{G})$.

Two groupoids with arrow space $G \times G$ and unit space $\mathcal{G}^{(0)}=G$:
Example (Noncommutative tangent space $T_{H} G$)

- $r(x, v)=s(x, v)=x$ and $(x, v)(x, w)=(x, v \cdot w)$,
- $(f * g)(x, v)=\int_{G} f(x, w) g\left(x, w^{-1} v\right) d w$
$\rightsquigarrow G=\mathbb{R}^{n}$: under Fourier transform product of principal symbols

Tangent groupoid for Hörmander classes on \mathbb{R}^{n}

$$
\mathbb{T} \mathbb{R}^{n}=T \mathbb{R}^{n} \times 0 \cup\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right) \times \mathbb{R}^{*}
$$ with smooth structure

$$
\begin{aligned}
& \Phi: \mathbb{T}^{n} \xrightarrow{\sim} \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}, \\
& (x, y, t) \mapsto\left(x, \frac{y-x}{t}, t\right) \quad t \neq 0, \\
& (x, v, 0) \mapsto(x, v, 0)
\end{aligned}
$$

Homogeneity and zoom action

- want homogeneity of the symbols wrt. $\lambda \cdot(x, \xi)=(x, \lambda \xi)$ for $\lambda>0$,
- zoom action of $\mathbb{R}_{>0}$

$$
\begin{array}{lr}
\alpha_{\lambda}(x, y, t)=\left(x, y, \frac{t}{\lambda}\right) & t \neq 0, \\
\alpha_{\lambda}(x, v, 0)=(x, \lambda v, 0) . &
\end{array}
$$

Tangent groupoid for Γ-classes on \mathbb{R}^{n}

$$
\mathbb{T}_{\Gamma} \mathbb{R}^{n}=T \mathbb{R}^{n} \times 0 \cup\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right) \times \mathbb{R}^{*}
$$

Homogeneity and zoom action

- want homogeneity of the symbols wrt. $\lambda \cdot(x, \xi)=(\lambda x, \lambda \xi)$ for $\lambda>0$,
- Γ-zoom action of $\mathbb{R}_{>0}$

$$
\alpha_{\lambda}(x, v, 0)=\left(\frac{x}{\lambda}, \lambda v, 0\right)
$$

Tangent groupoid for Γ-classes on \mathbb{R}^{n}

$$
\mathbb{T}_{\Gamma} \mathbb{R}^{n}=T \mathbb{R}^{n} \times 0 \cup\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right) \times \mathbb{R}^{*}
$$

with smooth structure

$$
\begin{aligned}
\Phi: \mathbb{T}_{\Gamma} \mathbb{R}^{n} & \xrightarrow{\sim} \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}, \\
(x, y, t) & \mapsto\left(x, \frac{y-x}{t^{2}}, t\right) \quad t \neq 0, \\
(x, v, 0) & \mapsto(x, v, 0)
\end{aligned}
$$

Homogeneity and zoom action

- want homogeneity of the symbols wrt. $\lambda \cdot(x, \xi)=(\lambda x, \lambda \xi)$ for $\lambda>0$,
- Γ-zoom action of $\mathbb{R}_{>0}$

$$
\begin{array}{ll}
\alpha_{\lambda}(x, y, t)=\left(\frac{x}{\lambda}, \frac{y}{\lambda}, \frac{t}{\lambda}\right) & t \neq 0, \\
\alpha_{\lambda}(x, v, 0)=\left(\frac{x}{\lambda}, \lambda v, 0\right) . &
\end{array}
$$

「-tangent groupoid for G

Similarly, we define for a graded Lie group G using the dilations $\left(\delta_{\lambda}\right)_{\lambda \in \mathbb{R}}$:

$$
\mathbb{T}_{\Gamma} G=T_{H} G \times 0 \cup(G \times G) \times \mathbb{R}^{*}
$$

with smooth structure

$$
\begin{aligned}
& \Phi: \mathbb{T}_{\Gamma} G \xrightarrow{\sim} G \times G \times \mathbb{R}, \\
& (x, y, t) \mapsto\left(x, \delta_{t^{-2}}\left(x^{-1} y\right), t\right) \quad t \neq 0, \\
& (x, v, 0) \mapsto(x, v, 0)
\end{aligned}
$$

Γ-zoom action

For $\lambda>0$ set

$$
\begin{array}{ll}
\alpha_{\lambda}(x, y, t)=\left(\delta_{\lambda^{-1}}(x), \delta_{\lambda^{-1}}(y), \frac{t}{\lambda}\right) \\
\alpha_{\lambda}(x, v, 0)=\left(\delta_{\lambda^{-1}}(x), \delta_{\lambda}(v), 0\right) .
\end{array}
$$

Some possible modifications

Remark

More generally, we can consider two commuting dilations, one to define the order of left-invariant differential operators, the other for the order of polynomials.

Example

\mathbb{R}^{n} with different weights \rightsquigarrow anisotropic calculus (Boggiatto-Nicola):

- weights $\left(q_{1}, \ldots, q_{n}\right),\left(w_{1}, \ldots, w_{n}\right)$ and corresponding homogeneous quasi-norms $\|\cdot\|_{q}$ and $\|\cdot\|_{q}$
- order m : symbol estimates of the form

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} p(x, \xi)\right| \leq C_{\alpha \beta}\left(1+\|x\|_{q}+\|\xi\|_{w}\right)^{m-\langle q, \alpha\rangle-\langle w, \beta\rangle} .
$$

Pseudo-differential calculus

Follow the approach of van Erp-Yuncken to define a corresponding pseudodifferential calculus:

Definition

An operator $P: \mathcal{S}(G) \rightarrow \mathcal{S}(G)$ belongs to $\Psi_{\Gamma}^{m}(G)$ if there is an essentially m-homogeneous extension $\mathbb{P} \in \mathcal{K}\left(\mathbb{T}_{\Gamma} G\right)$, i.e. $\mathbb{P}_{1}=k_{P}$ and

$$
\alpha_{\lambda *}(\mathbb{P})-\lambda^{m} \mathbb{P} \in \mathcal{S}\left(\mathbb{T}_{\Gamma} G\right) \quad \text { for all } \lambda>0
$$

Here, $\mathcal{K}\left(\mathbb{T}_{\Gamma} G\right)$ denotes a certain space of fibred distributions.

Pseudo-differential calculus

Follow the approach of van Erp-Yuncken to define a corresponding pseudodifferential calculus:

Definition

An operator $P: \mathcal{S}(G) \rightarrow \mathcal{S}(G)$ belongs to $\Psi_{\Gamma}^{m}(G)$ if there is an essentially m-homogeneous extension $\mathbb{P} \in \mathcal{K}\left(\mathbb{T}_{\Gamma} G\right)$, i.e. $\mathbb{P}_{1}=k_{P}$ and

$$
\alpha_{\lambda *}(\mathbb{P})-\lambda^{m} \mathbb{P} \in \mathcal{S}\left(\mathbb{T}_{\Gamma} G\right) \quad \text { for all } \lambda>0
$$

Here, $\mathcal{K}\left(\mathbb{T}_{\Gamma} G\right)$ denotes a certain space of fibred distributions.

Example (Differential operator with polynomial coefficients)

$P=\sum_{[\alpha]+[\beta] \leq m} c_{\alpha \beta} x^{\alpha} X^{\beta}$ can be extended to

$$
\mathbb{P}_{t}= \begin{cases}t^{m} \sum_{\sum_{[\alpha]+[\beta] \leq m} t^{-[\alpha]+[\beta]} c_{\alpha \beta} X^{\alpha} X^{\beta}} \text { for } t \neq 0 \\ \sum_{[\alpha]+[\beta]=m}^{c_{\alpha \beta} x^{\alpha} X_{v}^{\beta}} & \text { for } t=0\end{cases}
$$

Properties of the calculus

Analogously to the results of van Erp-Yuncken for filtered manifolds one can show

- there is a well-defined principal cosymbol:

$$
\sigma_{m}(P)=\left[\mathbb{P}_{0}\right] \in \mathcal{K}\left(T_{H} G\right) / \mathcal{S}\left(T_{H} G\right)
$$

for any essentially m-homogeneous extension \mathbb{P},

- the principal symbol map induces short exact sequences,

$$
0 \rightarrow \Psi_{\Gamma}^{m-1} \rightarrow \Psi_{\Gamma}^{m} \xrightarrow{\sigma_{⿱}} \Sigma_{\Gamma}^{m} \rightarrow 0 .
$$

Properties of the calculus

Analogously to the results of van Erp-Yuncken for filtered manifolds one can show

- there is a well-defined principal cosymbol:

$$
\sigma_{m}(P)=\left[\mathbb{P}_{0}\right] \in \mathcal{K}\left(T_{H} G\right) / \mathcal{S}\left(T_{H} G\right)
$$

for any essentially m-homogeneous extension \mathbb{P},

- the principal symbol map induces short exact sequences,

$$
0 \rightarrow \Psi_{\Gamma}^{m-1} \rightarrow \Psi_{\Gamma}^{m} \xrightarrow{\sigma_{r}} \Sigma_{\Gamma}^{m} \rightarrow 0 .
$$

- $P \circ Q \in \Psi_{\Gamma}^{k+1}(G)$ for $P \in \Psi_{\Gamma}^{k}(G)$ and $Q \in \Psi_{\Gamma}^{\prime}(G)$ and $\sigma_{k+1}(P Q)=\sigma_{k}(P) * \sigma_{l}(Q)$
- $\bigcap_{m \in \mathbb{Z}} \Psi_{\Gamma}^{m}(G)=\mathcal{K}^{\infty}$ (all operators with kernel in $\mathcal{S}(G \times G)$),
- recovers for $G=\mathbb{R}^{n}$ the calculus of Shubin/ Helffer.

Remark

The C^{*}-completion of the order zero extension can also be obtained using generalized fixed point algebras. In particular, $\Psi_{\Gamma}^{0} \subseteq \mathbb{B}\left(L^{2} G\right)$ and $\Psi_{\Gamma}^{-1} \subseteq \mathbb{K}\left(L^{2} G\right)$.

Rockland condition and Fredholm properties

One can define a corresponding Sobolev scale $H^{s}(G)$ on G.
Proposition
Let $P \in \Psi_{\Gamma}^{m}(G)$. Then $P: H^{s}(G) \rightarrow H^{s-m}(G)$ is bounded for all $s \in \mathbb{R}$.

Rockland condition and Fredholm properties

One can define a corresponding Sobolev scale $H^{s}(G)$ on G.

Proposition

Let $P \in \Psi_{\Gamma}^{m}(G)$. Then $P: H^{s}(G) \rightarrow H^{s-m}(G)$ is bounded for all $s \in \mathbb{R}$.

Definition

An operator $P \in \Psi_{\Gamma}^{m}(G)$ satisfies the two-sided Rockland condition if $\left(\mathrm{ev}_{x}, \pi\right)\left(\sigma_{m}(P)\right)$ and $\left(\mathrm{ev}_{x}, \pi\right)\left(\sigma_{m}\left(P^{t}\right)\right)$ are injective on $\mathcal{H}_{\pi}^{\infty}$ for all $(x, \pi) \in G \times \widehat{G} \backslash\left\{\left(0, \pi_{\text {triv }}\right)\right\}$.

Using the result of Christ-Geller-Głowacki-Polin:

Theorem

Let $P \in \Psi_{\Gamma}^{m}(G)$ satisfy the two-sided Rockland condition, then
(1) there is a parametrix $Q \in \Psi_{\Gamma}^{-m}(G)$ such that $P Q-1, Q P-1 \in \mathcal{K}^{\infty}$,
(2) $P: H^{s}(G) \rightarrow H^{s-m}(G)$ is Fredholm for all $s \in \mathbb{R}$.

How to compute the index?

On \mathbb{R}^{n} :

Theorem (Elliott-Natsume-Nest)

Let $\operatorname{Op}(a) \in \Psi_{\Gamma}^{m}\left(\mathbb{R}^{n}\right)$ be elliptic of positive order. Then

$$
\begin{equation*}
\operatorname{ind}(\operatorname{Op}(a))=\frac{1}{(2 \pi i)^{n} n!} \int_{T^{*} \mathbb{R}^{n}} \operatorname{tr}\left(p_{\mathrm{a}}\left(d p_{\mathrm{a}}\right)^{2 n}\right), \tag{1}
\end{equation*}
$$

where

$$
p_{a}=\left(\begin{array}{cc}
\left(1+a^{*} a\right)^{-1} & \left(1+a^{*} a\right)^{-1} a^{*} \\
a\left(1+a^{*} a\right)^{-1} & a\left(1+a^{*} a\right)^{-1} a^{*}
\end{array}\right)-\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Idea of the proof:

- use the tangent groupoid,
- Fredholm index as a pairing of a cyclic cocycle ω_{1} and a K-theory class associated with $\operatorname{Op}(a)$,
- extend cocycle to $\left(\omega_{t}\right)_{t \in \mathbb{R}}$ on $\mathbb{T}_{\Gamma} \mathbb{R}^{n}$,
- pairing at $t=0$ gives right hand side of (1),
- result of the pairing depends continuously on t.

Index formula on G

Using that $G \cong \mathbb{R} \rtimes \mathbb{R} \ldots \rtimes \mathbb{R}$, we construct a cocyle $\left(\omega_{t}\right)_{t \in \mathbb{R}}$ on $\mathbb{T}_{\Gamma} G$ s.t.:

Theorem (E-Nest-Schmitt)

Let $P \in \Psi_{\Gamma}^{m}(G)$ be of positive order and satisfy the two-sided Rockland condition. Then

$$
\operatorname{ind}(P)=\left(\omega_{0} \# \operatorname{tr}\right)\left(p_{\mathbb{P}_{0}}, \ldots, p_{\mathbb{P}_{0}}\right) .
$$

Example (Heisenberg group)

One computes for $f_{i} \in \mathcal{S}(H \times H)$

$$
\begin{aligned}
\omega_{0}\left(f_{0}, \ldots, f_{6}\right)= & \sum_{\sigma \in S_{6}} \operatorname{sgn}(\sigma) \int_{H} f_{0} * D_{\sigma(1)} f_{1} * \ldots * D_{\sigma(6)} f_{6}(x, 0) \mathrm{d} x \\
& + \text { extra terms (explicitly computable) }
\end{aligned}
$$

where $D_{1}=\partial_{x_{1}}, D_{2}=v_{1}, D_{3}=\partial_{x_{2}}, D_{4}=v_{2}, D_{5}=\partial_{x_{3}}, D_{6}=v_{3}$.

Rewriting the cocycle using Fourier transform

Recall on \mathbb{R}^{n} :

$$
\operatorname{ind}(\operatorname{Op}(a))=\frac{1}{(2 \pi i)^{n} n!} \int_{T^{*} \mathbb{R}^{n}} \operatorname{tr}\left(p_{a}\left(d p_{a}\right)^{2 n}\right)
$$

Plancherel Theorem

For $f \in \mathcal{S}(G)$ and the Plancherel measure μ on \widehat{G}

$$
f(0)=\int_{\widehat{G}} \operatorname{Tr}(\widehat{f}(\pi)) \mathrm{d} \mu(\pi)
$$

- denote by $\Delta_{v_{i}} \widehat{f}(\pi)=\widehat{v_{i} \cdot f}(\pi)$ (difference operators),

Rewriting the cocycle using Fourier transform

Recall on \mathbb{R}^{n} :

$$
\operatorname{ind}(\operatorname{Op}(a))=\frac{1}{(2 \pi i)^{n} n!} \int_{T^{*} \mathbb{R}^{n}} \operatorname{tr}\left(p_{a}\left(d p_{a}\right)^{2 n}\right)
$$

Plancherel Theorem

For $f \in \mathcal{S}(G)$ and the Plancherel measure μ on \widehat{G}

$$
f(0)=\int_{\widehat{G}} \operatorname{Tr}(\widehat{f}(\pi)) \mathrm{d} \mu(\pi)
$$

- denote by $\Delta_{v_{i}} \widehat{f}(\pi)=\widehat{v_{i} \cdot f}(\pi)$ (difference operators),
- the Plancherel measure on \widehat{H} is supported within the Schrödinger representations π_{λ} for $\lambda \in \mathbb{R} \backslash\{0\}$,
- using this, the cocycle can be rewritten, for example,

$$
\begin{aligned}
& \int_{H} f_{0} * \partial_{x_{1}} f_{1} * \ldots * v_{3} f_{6}(x, 0) \mathrm{d} x \\
= & \left.(2 \pi)^{-4} \int_{H \times \mathbb{R} \backslash\{0\}} \operatorname{sgn}(\lambda) \operatorname{Tr} \widehat{\left(f_{0}(x)\right.}\left(\pi_{\lambda}\right) \partial_{x_{1}} \widehat{f_{1}(x)}\left(\pi_{\lambda}\right) \ldots \Delta_{v_{3}} \widehat{f_{6}(x)}\left(\pi_{\lambda}\right)\right) \mathrm{d} x \mathrm{~d} \lambda .
\end{aligned}
$$

Open questions/ future directions

- We can show for several differential operators on the Heisenberg group that their index is zero. Is there a differential operator with non-zero Fredholm index?
- What about higher step groups?
- Is there a Weyl law for operators on G ?

Open questions/ future directions

- We can show for several differential operators on the Heisenberg group that their index is zero. Is there a differential operator with non-zero Fredholm index?
- What about higher step groups?
- Is there a Weyl law for operators on G ?

Merci!

References

[AMY22] Iakovos Androulidakis, Omar Mohsen, and Robert Yuncken, A pseudodifferential calculus for maximally hypoelliptic operators and the Helffer-Nourrigat conjecture, arXiv preprint arXiv:2201.12060 (2022).
[CGGP92] Michael Christ, Daryl Geller, Paweł Głowacki, and Larry Polin, Pseudodifferential operators on groups with dilations, Duke Math. J. 68 (1992), no. 1, 31-65, DOI 10.1215/S0012-7094-92-06802-5. MR1185817
[DS14] Claire Debord and Georges Skandalis, Adiabatic groupoid, crossed product by \mathbb{R}_{+}^{*} and pseudodifferential calculus, Adv. Math. 257 (2014), 66-91, DOI 10.1016/j.aim.2014.02.012. MR3187645
[ENN88] G.A. Elliott, T. Natsume, and R. Nest, Cyclic cohomology for one-parameter smooth crossed products, Acta Mathematica 160 (1988), no. 1, 285-305.
[ENN96] _ , The Atiyah-Singer index theorem as passage to the classical limit in quantum mechanics, Communications in mathematical physics 182 (1996), 505-533.
[vEY19] Erik van Erp and Robert Yuncken, A groupoid approach to pseudodifferential calculi, J. Reine Angew. Math. 756 (2019), 151-182, DOI 10.1515/crelle-2017-0035. MR4026451
[FR16] Véronique Fischer and Michael Ruzhansky, Quantization on nilpotent Lie groups, Progress in Mathematics, vol. 314, Birkhäuser/Springer, 2016.
[FFK20] Véronique Fischer and Clotilde Fermanian-Kammerer, Defect measures on graded Lie groups, Annali della Scuola Normale Superiore di Pisa. Classe di scienze 21 (2020), no. 1, 207-291.
[Hel84] Bernard Helffer, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque 112 (1984).
[HN79] Bernard Helffer and Jean F. Nourrigat, Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations 4 (1979), no. 8, 899-958, DOI 10.1080/03605307908820115 (French). MR537467
[Shu01] Mikhail A. Shubin, Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001. Translated from the 1978 Russian original by Stig I. Andersson. MR1852334

