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1. Introduction. Sub-Laplacians

Let d ∈ N∗ and letM be a smooth compact manifold of dimension d . We con-
sider m ≥ 1 smooth vector fields X1, . . . ,Xm onM (not necessarily independent)
which satisfy the following:

Hörmander condition

The vector fields X1, . . . ,Xm and their iterated brackets

[Xi ,Xj ], [Xi , [Xj ,Xk ]], . . .

span the tangent space TxM at every point x ∈M.

Let µ be a smooth volume on M, we define the sub-Laplacian:

∆µ := −
m∑
i=1

X ∗i Xi ,

where the star denotes the transpose in L2(M, µ).

Theorem (Hörmander, 1967)

The operator ∆µ is hypoelliptic.
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1.1. Our models

Baouendi-Grushin operator on M = T1
x × T1

y . Given v ∈ C∞(T1
x ;R) s.t.

v(x) ∼ x near x = 0, v(x) 6= 0 away from x = 0,

we define X1 = ∂x , X2 = v(x)∂y , and, for µ = dx ⊗ dy :

∆G := −X ∗1 X1 − X ∗2 X2 = −∂2
x − (v(x)∂y )2.

Sub-Riemannian contact Laplacians in 3D (particular case). Let (M, g)
be a smooth, compact, oriented and boundaryless Riemannian surface, set

M := SM = {q = (m, θ) ∈ TM : ‖θ‖g(m) = 1}.

On M we consider the vector fields X (geodesic) and V (rotation on the
fiber) and set X⊥ := [X ,V ]. Let µ = µL be the Liouville measure on M,
we define:

∆sR := −X ∗⊥X⊥ − V ∗V .

Perturbations of ∆sR. Let Q,W ∈ C∞(M;R). We consider semiclassical
perturbations of the form:

P̂h := h2∆sR − ih2QX − ih2X (Q)

2
+ W , h > 0.
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Spectral properties

Proposition

SpL2(T2)(∆G ) = {0 < λ2
1 ≤ λ2

2 ≤ · · · → +∞}.

Set hj := λ−1
j . Let (ψh) ⊂ L2(M) normalized s.t. (h2∆G − 1)ψh = 0. Let

∇G := (∂x , v(x)∂y ). Then:

‖h∇Gψh‖2
L2 + ‖h2Dyψh‖2

L2 . 1.

By Hörmander and Rothschild-Stein theorems, one also has:

Proposition

Assume that ‖Q‖C0 < 1. Then ∃h0 > 0 s.t. SpL2(M,µ)(P̂h) = {λh(j) : j ≥ 0}
for 0 < h ≤ h0, with

minW +OQ(h) ≤ λh(0) ≤ λh(1) ≤ · · · → +∞.

Let (ψj
h) ⊂ L2(M, µ) normalized s.t. (P̂h − λh(j))ψj

h = 0. Then:

‖hX⊥ψj
h‖

2
L2 + ‖hVψj

h‖
2
L2 + ‖h2Xψj

h‖
2
L2 ≤ CQ,W (1 + |λh(j)|)2.
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1.2. Other related models

Baouendi-Grushin type operators. Let ∆γ := −∂2
x + |x |2γ∂2

y on M =
(−1, 1)x ×Ty . Observability and controllability of the Schrödinger equation
Letrouit, Sun (2020) (γ ≥ 1) and Burq, Sun (2019) (γ = 1).

Sub-Riemannian contact sub-Laplacians (general case). Let N be a
smooth compact 3-dimensional manifold so that there exists

TN ⊃ D = Span(X2,X3) = kerα, α ∧ dα 6= 0,

The study of quantum limits for ∆sR was undertaken by Colin-de-Verdière,
Hillairet, Trélat (2015 ...).

Heisenberg sub-Laplacians. The spectral asymptotics and quantum evolu-
tion of sub-Laplacians in groups of Heisenberg type have been studied by Ba-
houri, Fermanian-Kammerer, Gallagher (2012), Letrouit (2020), Fermanian-
Kammerer, Fischer (2021), Fermanian-Kammerer, Letrouit (2021) ...

Magnetic Laplacians. The fine structure of eigenvalues and eigenfunctions
of semiclassical magnetic operators has been widely studied. Some recents
works include those of Helffer, Hérau, Raymond, Vu Ngoc, Morin, Krejcirik,
Abou Alfa ...
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2. Quantum limits and semiclassical measures (∆G )

Definition

A probability measure ν ∈ P(T2) is a quantum limit of ∆G if there exists a
normalized sequence (ψh) ⊂ L2(T2) satisfying (h2∆G − 1)ψh = 0 such that, for
every a ∈ C(T2),

lim
h→0+

∫
T2

a |ψh|2dxdy =

∫
T2

a dν.

On the other hand, there exists a subsequence and a positive Radon measure
w ∈M+(T ∗M) (semiclassical measure) such that, for every a ∈ C∞c (T ∗T2),

lim
h→0+

〈
Oph(a)ψh, ψh

〉
L2(T2)

=

∫
T∗T2

a dw .

Moreover, let HG (x , y , ξ, η) := ξ2 + v(x)2η2 be the principal symbol of ∆G

defined on (x , y , ξ, η) ∈ T ∗T2. Then:

suppw ⊂ H−1
G (1),

{HG ,w} = 0.
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2. Quantum limits and semiclassical measures (P̂h)

Definition

A probability measure ν ∈ P(M) is a quantum limit of P̂h if there exists a
normalized sequence (ψh) ⊂ L2(M, µ) satisfying

(P̂h − λh)ψh = 0, λh → λ0 ≥ minW ,

such that, for every a ∈ C(M),

lim
h→0+

∫
M

a |ψh|2dµ =

∫
M

a dν.

There exists a subsequence and a positive Radon measure w ∈ M+(T ∗M)
(semiclassical measure) such that, for every a ∈ C∞c (T ∗M),

lim
h→0+

〈
Oph(a)ψh, ψh

〉
L2(M,µ)

=

∫
T∗M

a dw .

Moreover:

suppw ⊂ E−1(λ0) := {(q, p) ∈ T ∗M : σ(X⊥)2 + σ(V )2 + W (q) = λ0},
{σ(X⊥)2 + σ(V )2 + W ,w} = 0.
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The non-compact part of the measure

Let π : T ∗M→M be the canonical projection, the measure

ν∞ := ν − π∗w

does not vanish in general due to escape of mass at infinity. Notice that H−1
G (1)

and E−1(λ0) are not compact.

Goal: To describe the measure ν∞.

Theorem (Colin de Verdière, Hillairet, Trélat, 2015)

Let P̂h = h2∆sR (Q,W = 0), then the measure ν∞ satisfies X (ν∞) = 0. In the

more general 3D contact case, X is replaced by the Reeb vector field on TM.

Question: How stable is this property under hypoelliptic perturbations of ∆sR?
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Classical dynamics on H−1
G (1)

Let HG (x , y , ξ, η) = ξ2 + v(x)2η2. The level-set H−1
G (1) is not compact in the

regime |ηx | ∼ 1 as x → 0. Classical dynamics in this regime is characteristic
of the motion of charged particles subjected to a magnetic field (fast rotation
coupled to a drift).

ẋ(t) = 2ξ,

ẏ(t) = 2ηv(x)2 ∼ 2ηx2,

ξ̇(t) = −2v ′(x)v(x)η2 ∼ −2xη2,

η̇(t) = 0.

Proposition

supp ν∞ ⊂ {0}x × Ty .
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Main result (∆G )

Let χ : R→ R be a cut-off function near zero, define for λ > 0, χλ := χ(·/λ).

Theorem (A., Sun, 2022; A., Rivière, 2023)

There exists a non-negative Radon measure µ∞ ∈M+(Ty × Rη) such that, for
every a ∈ C∞c (Ty × Rη):

lim
R→∞

lim
h→0+

〈
Oph

(
(1− χR(η)a(y , hη)

)
ψh, ψh

〉
L2(T2)

=

∫
Ty×Rη

a dµ∞.

Moreover,

µ∞ = µ∞ +
∞∑
k=0

µ+
k,∞ + µ−k,∞,

where:

suppµ∞ ⊂ Ty ×{0}, suppµ±k,∞ ⊂
{

(y , η) ∈ Ty × Rη : η = ± 1

2k + 1

}
.

∂yµ∞ = 0, ∂yµ
±
k,∞ = 0.

ν∞(x , y) = δ0(x)⊗
∫
R
µ∞(y , dη).
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Remarks

The measure µ∞ captures the sub-critical sub-elliptic regime:

h−1 � |Dy | � h−2.

The measures µ±k,∞ capture the critical sub-elliptic regime:

|Dy | ∼ h−2.

Notice, in particular, that by projection the measure ν∞ inherit the invariance
property

∂yν∞ = 0,

which is analogous to the invariance X (ν∞) = 0 in the 3D contact case.

The “quantized” support property of the measures µ±k,∞ reflects a two-microlocal
phenomenon.
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Main result (P̂h)

We associate to each smooth function f ∈ C∞(M) the vector field in the contact
plane D = span(X⊥,V ):

Ωf := V (f )X⊥ − X⊥(f )V .

Theorem (A., Rivière, 2023)

Let Q,W ∈ C∞(M,R) such that ‖Q‖C0 < 1, let λ0 > maxq∈MW (q). Then
the measure ν∞ decomposes as

ν∞ = ν∞ +
∞∑
k=0

(ν+
k,∞ + ν−k,∞),

where ν∞, ν
±
k,∞ are non-negative Radon measures on M verifying:

YW (ν∞) = 0, Y±W ,Q,k(ν±k,∞) = 0,

with

YW = X + Ωlog(λ0−W ),

Y±W ,Q,k =
(
± (2k + 1) + Q

)
YW − ΩQ .
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Remarks

Let H1 := σ(X ).

The measure ν∞ captures the sub-critical sub-elliptic regime:

h−1 � |H1| � h−2.

The measures ν±k,∞ capture the critical sub-elliptic regime:

|H1| ∼ h−2.

The proof relies in the study of a suitable lift µ∞ of ν∞ to the phase space via
introducing a new variable E ∈ R which parameterizes the escape of mass along
the degenerated direction X as h→ 0+, so that:

ν∞(q) =

∫
R
µ∞(q, dE).
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Sketch of proof (∆G )

Let us consider test functions a ∈ C∞c (Rρ × Ty × Rξ × Rη). Let χ : R→ R be
a cut-off function near zero, define for λ > 0, χλ := χ(·/λ). Set, for R > 0
sufficiently large and ε > 0:

a1
R,ε,h(x , y , ξ, η) := (1− χR(η))χε(hη)a(x |η|, y , ξ, hη),

a2
R,ε,h(x , y , ξ, η) := (1− χR(η))(1− χε(hη))χε(hη)a(x |η|, y , ξ, hη)

Let (ψh) satisfy (h2∆G − 1)ψh = 0, define:

I jR,ε,h(a) :=
〈

Oph(ajR,ε,h)ψh, ψh

〉
L2(T2)

, j = 1, 2.

Proposition (Existence of two-microlocal semiclassical measures)

There exist µ∞ ∈M+(Rρ × Ty × Rξ), M∞ ∈M+(Ty × R∗η;L1(L2(Rx))) such
that:

lim
R→+∞

lim
ε→0

lim
h→0+

I 1
R,ε,h(a) =

∫
Rρ×Ty×Rξ

a(ρ, y , ξ, 0)dµ∞,

lim
R→+∞

lim
ε→0

lim
h→0+

I 2
R,ε,h(a) = Tr

∫
Ty×R∗

η

OpRx
1 (a (x |η|, y , ξ, η)) dM∞.
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Properties of the two-microlocal semiclassical measures adapted to ∆G

The measure µ∞ satisfies:

suppµ∞ ∈ {(ρ, y , ξ) : ρ2 + ξ2 = 1},

{ρ2 + ξ2, µ∞} = 0,

∂yµ∞ = 0.

The measure M∞ satisfies:

suppM∞ ⊂
∞⋃
k=0

{
(y , η) : |η| =

1

2k + 1

}
,

[D2
x + η2x2,M∞] = 0,

∂yM∞ = 0.
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2.1. Proof of the quantized support property (∆G )

We start from the equation〈
χ(h2∆G − 1)(1− χR(hDy )(1− χε(h2Dy )ψh, ψh

〉
L2(T2)

= 0.

Taking limits h→ 0+, ε→ 0, and R → +∞, we arrive to:

Tr

∫
Ty×R∗

η

χ(h2D2
x + x2η2 − 1)dM∞ = 0.

Considering an orthonormal basis {ϕk(η)}∞k=0 in L2(Rx) given by eigenfunctions
of D2

x + η2x2, and defining

µk,∞(y , η) := 〈M∞(y , η)ϕk(η), ϕk(η)〉L2(Rx ),

we get:
∞∑
k=0

∫
Ty×R∗

η

χ(|η|(2k + 1)− 1)dµk,∞(y , η) = 0.
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Sketch of Proof (P̂h)

The main difficulty regarding the 3D contact (M = SM) case is the following:

The operator ∆sR is not in normal form, due to the commutation relations:

[X ,X⊥] = −KV , [X ,V ] = X⊥, [X⊥,V ] = −X ,

where K is the sectional curvature of M (seen on M = SM via pullback).

Notice that in the case of the Baouendi-Grushin operator,

[∂x , v(x)∂y ]
∣∣
x=0

= ∂y , [∂y , ∂x ] = 0, [∂y , v(x)∂y ] = 0.

Similarly, in the case of the 3-dimensional Heisenberg group,

ZH = −[XH ,YH ] = ∂z , [ZH ,XH ] = 0, [ZH ,YH ] = 0,

where XH = ∂x and YH = ∂y − x∂z .
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Phase-space distribution in the sub-elliptic regime

Let H1 = σ(X ), H2 = σ(X⊥), and H3 = σ(V ). We consider the cut-offs:

χB
R := χ

(
H1 + H2 + H3

R

)
, χ̃B

R := 1− χB
R , R > 0,

χC
ε := χ

(
εH1√

H2
2 + H2

3 + 1

)
, χ̃C

ε := 1− χC
ε , ε > 0,

and, let (x , y , z) ∈ U0 ⊂M be a local chart, define the distributions:

µR,ε
h : a ∈ C∞c (U0 × R) 7→

〈
Oph(a(x , y , z , hH1)χ̃B

R χ̃
C
ε )ψh, ψh

〉
L2(U0,µ)

.

By estimates of pseudo-differential calculus, we can take limits

lim
ε→0

lim
R→+∞

lim
h→0+

〈µR,ε
h , a〉 =

∫
U0×R

a(x , y , z ,E)dµ∞(x , y , z ,E),

where the measure µ∞ satisfies

ν∞ =

∫
R
µ∞(·, dE).
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Properties of µ∞

Let us define:

H(q,E) :=
λ0 −W (q)

E
− Q(q), (q,E) ∈M× R∗,

XW ,Q :=
λ0 −W

E
X + ΩH + EX (H)∂E ,

and notice that XW ,Q(H) = 0.

Theorem (A., Rivière, 2023)

The measure µ∞ decomposes as

µ∞ = µ∞ +
∞∑
k=0

(
µ+
k,∞ + µ−k,∞

)
,

where

suppµ∞ ⊂M× {0}, suppµ±k,∞ ⊂ (±H)−1(2k + 1) ∩ R∗±,

YW (µ∞) = 0, XW ,Q(µ±k,∞) = 0.
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2.2. Normal form procedure

We start from the algrebaic relations:

{H1,H2} = −KH3, {H1,H3} = H2, {H2,H3} = −H1.

The pair (H2,H3) behaves in some sense like a system of coordinates in T ∗R for
the classical harmonic oscillator (notice that σ(h2∆sR) = H2

2 + H2
3 ). Defining it

in terms of complex coordinates:

Z = H2 + iH3, Z = H2 − iH3,

we can rewrite write H2
2 + H2

3 = |Z |2 and, using that {Z ,Z} = 2iH1, we obtain
the algebraic identity

(A)

{
|Z |2, Z kZ

l

2i(l − k)

}
= H1Z

kZ
l
, k 6= l ,

which will allow us to cancel the bad terms in the normal form procedure.
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Wigner equation

The idea consists in considering the Wigner equation〈
[P̂h,Oph(aχ̃B

R χ̃
C
ε )]ψh, ψh

〉
L2(U0,µ)

= 0,

and trying to obtain an ODE for µ∞ in the limit ε→ 0, R → +∞, h→ 0+.

Let us first consider the term [h2∆sR,Oph(aχ̃B
R χ̃

C
ε )]. If we forget “naifly” the

cut-offs and use formally the symbolic calculus

[Oph(·),Oph(·)] =
h

i
Oph({·, ·}) + O(h3)

we find the first term

{|Z |2, a(·, hH1)} = {|Z |2, a(·,E)}|E=hH1 + {|Z |2, hH1}∂Ea

= Z{Z , a(·,E)}|E=hH1 + Z{Z , a(·,E)}|E=hH1

+
ih(1− K)

2
(Z 2 − Z

2
)∂Ea
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A small deformation of a

To improve the commutation relation {|Z |2, a(·,E)}|E=hH1 in the sub-elliptic
regime |H2|, |H3| � |H1|, we set:

ã := a + a1 + a2,

with

a1 :=
Z

2iH1
{Z , a} − Z

2iH1
{Z , a}, a2 := −

(Z 2X 2
Z

+ Z
2
X 2

Z )(a)

8H2
1

.

This gives:

{|Z |2, ã} =
|Z |2

H1
X (a) +

1

H1
Ra,

with

Ra =
∑
|α|≥2

Ra,α(x , y , z ,E)

(
H2

H1

)α2
(
H3

H1

)α3

, α = (α2, α3).
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A small deformation of H1

To improve the commutation relation {|Z |2,H1} also in the sub-elliptic regime
|H2|, |H3| � |H1|, we set:

H̃1 := H1(1 + P2 + P3)

with

Pj =
∑
|α|=j

Pj,α(x , y , z)

(
H2

H1

)α2
(
H3

H1

)α3

, j = 2, 3,

we get:
{|Z |2, H̃1} = H2

2R1 + H2
3R2 + H2H3R3

with

Rj =
∑
|α|≥2

Rj,α(x , y , z)

(
H2

H1

)α2
(
H3

H1

)α3

, j = 1, 2, 3.
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Conclusion

Defining the distribution

µ̃R,ε
h : a ∈ C∞c (U0 × R) 7→

〈
Oph(ã(x , y , z , hH̃1)χ̃B

R χ̃
C
ε )ψh, ψh

〉
L2(U0,µ)

,

(further technical work is required regarding the cut-offs) we prove that the weak
limit of µ̃R,ε

h is still µ∞.

From the modified Wigner equation〈
[P̂h,Oph(H̃1ã(x , y , z , hH̃1)χ̃B

R χ̃
C
ε )]ψh, ψh

〉
L2(U0,µ)

= 0,

we arrive to the ODE:∫
U0×R

XW ,Q(Ea)dµ∞(x , y , z ,E) = 0, ∀a ∈ C∞c (U0 × R).

Restricting this equation to the different components of the support of µ∞, we
get:

YW (µ∞) = 0, XW ,Q(µ±k,∞) = 0.

Finally, by projection on M of these identities, we obtain that

YW (ν∞) = 0, Y±W ,Q,k(ν±k,∞) = 0.
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