Additive Combinatorics in Bordeaux

Monday 11 April 2016 - Friday 15 April 2016
Institut de Mathématiques de Bordeaux

Scientific Programme
Confirmed talks.
Jorg Bruedern. Differencing and expander estimates for cubes
Harald Helfgott. Soficity, short cycles and the Higman group
Oriol Serra. Doubling and Volume: A conjecture of Freiman [slides]
Mokshay Madiman. Entropy and the additive combinatorics of probability densities on locally compact abelian groups [slides]
Van Vu. Inverse Theorems in Probability [slides]
Andrzej Zuk. Marches aléatoires sur les groupes symétriques

Eric Balandraud. Applications of the combinatorial nullstellensatz to additive combinatorics [slides]
Mohammad Bardestani. Borel chromatic number of quadratic graphs
Anne de Roton. Small sumsets in \mathbb{R}
Georges Grekos. Weighted exponential densities
Gautier Hanna On the method of Mauduit and Rivat
Norbert Hegyvari. Combinatorial approach of some ergodic and topological proofs [slides]
François Hennecart. Davenport and Gao constants for a weighted zero-sum problem with quadratic residues [slides]
Sándor Kiss. Partitions of the set of nonnegative integers with the same representation functions [slides]
Jakub Konieczny. Combinatorial properties of Nil-Bohr sets [slides]
Patrizia Longobardi. Dilates and Baumslag-Solitar groups [slides]
Mercede Maj. A Freiman theorem in torsion-free groups [slides]
Mate Matolcsi. Improved bounds for planar sets avoiding unit distances [slides]
Rudi Mrazović. Additive triples of bijections
Péter Pál Pach. On Multiplicative Bases and some Related Problems [slides]
Sean Prendiville. A Roth-type theorem in the squares
Olivier Ramaré. On the Brun-Titchmarsh inequality
Misha Rudnev. On discrete values of bilinear forms
Wolfgang Schmid. Weighted zero-sums and codes [slides]
Ilya Shkredov. A new bound for the size of weak Sidon sets
Matthew Tointon. Nilpotent approximate groups
Salvatore Tringali. Cauchy-Davenport type inequalities
Lluis Vena. Applications of the arithmetic removal lemma [slides]
Aled Walker. Generating $\mathbb{Z}/q\mathbb{Z}$ using primes