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Sets avoiding the unit distance

Let A C R" be measurable, such that ||a— &|| # 1foralla,&@ € A
(Euclidean norm). A is said to be "1-avoiding".

What is the maximal possible (upper) density of A?

Erdds conjectured
my(R?) < 1/4.

Upper density: §(A) = lim sup AMANB(0.1)) (A(+) denotes Lebesgue
r—oo X(B(0,r))

measure)

m;(R™) = sup{ §(A) : AC R"is 1-avoiding and measurable}.
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Lower bounds by construction

@ Hexagonal lattice arrangement of open disks of radius 1/2.
0(A) = 7/(8V3) = 0.2267....

@ Slight improvement by Croft (1967): shrink the lattice a bit, and
replace disks by tortoises. J(A) = 0.22936... ..
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Upper bound for sets with block structure |.

Definition
A C R" has block structure if A= J;72, Ai, where || x — y|| < 1if x

and y belong to the same block, and || x — y|| > 1 if x and y belong to
different blocks.

All known examples of "high" density in any dimension are sets with
block structure (e.g. Croft’s example).

Theorem (Keleti, M., Oliveira Filho, Ruzsa (2015))

If A C R” has block structure then §(A) < 27 — ep.

Remark: ¢, can be made effective (but very small even for n = 2).

Maté Matolcsi (Rényi Institute) Bounds on sets avoiding the unit distance 12 April, 2016 4/12



Upper bound for sets with block structure II.

Theorem (Keleti, M., Oliveira Filho, Ruzsa (2015))
If A C R" has block structure then 5(A) < J; — ep.

Proof. Let Ci = Ai+ Byp ={a+b:acAj, be By}

Then C;n C; =0, for all i # j (because A has block structure).
@ Brunn-Minkowski: A(C;)"/" > M(A)"/™ + A(Bj 2)'/™.
@ Isodiametric inequality: A(A;) < A(By 2)-

A" A7 1
* (@) S XA A 7 < 20 and

5(A) < 4.

Therefore
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Upper bound for sets with block structure Ill.

Theorem (Keleti, M., Oliveira Filho, Ruzsa (2015))
If A C R" has block structure then 5(A) < J; — ep.

Gaining the ¢, is more technical, but the idea is clear:

@ if the isodiametric inequality is sharp then A; must be close to
being balls of radius 1/2 (stability lemmal)

@ then all C; are close to being unit balls

@ but unit balls cannot pack the space very densely

Stability lemma (Maggi, Ponsiglione, Pratelli, 2014)

E c R", \(E) > 0, diamE = 2. Then there exist x, y € R" such that

)\(B ) 1/n
ECB(X,1+r)andB(y,1)cE+B,,wherer=Kn<TE1)_1) for
some constant K, that depends only on n.
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General upper bounds in the plane

Moser-spindle (1961): m;(R?) < 2/7 = 0.285.. ..

Székely (1984): m;(R?) < 12/43 = 0.279.. ..
Vallentin, Oliveira Filho (2010): m;(R?) < 0.268.... ..

Theorem (Keleti, M., Oliveira Filho, Ruzsa (2015))

m;(R2) < 0.258.. ..

For R™: Bachoc, Passuello, Thiery (2015): m{(R") < (1+ 0(1))1.268~"
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Ingredients of the proof .

Delsarte’s method (Fourier formulation)
G finite Abelian group, 0 € S = —S C G symmetric set.

A(S) = max{|A| : (A— A)n S = {0}} =2

(Independence number of the Cayley graph corresponding to S C G.)

Intuition for 1-avoiding sets: G = R?, S = unit circle U{0}
Observation: f(x) = |AN (A — x)| =(number of solutions to x = a — &)
is a positive definite function. f(1) = 3= f(x) = |A2, f(0) = |A|.

Delsarte LP-bound
A(S) <

s,up{f(1  f(x)>0Vx € G, f(x)=0Vx e S\ {0}, f(y) >0y e G} =

inf{ ZE?) © h(x) <0Vx e S° h(y)>0Vye G}
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Ingredients of the proof Il.

Delsarte LP-bound:
A(S)=max{|A|: (A-—A)NS={0}} <
sup{ 1 : f(x) > 0vx € G, f(x) = 0 vx € S\ {0}, 7(7) = 0¥y € §}

Improvement by Oliveira Filho, Vallentin: extra linear conditions on f.

Lemma (Oliveira Filho, Vallentin, 2010)

Let A C G be S-avoiding and let V C G. For f(x) = |AN (A — x)| we
have >_ .\ f(y) < a(V)|A|, where (V) is the independence number
of the subgraph on V.

Proof. |A| > |Uyev (AN (A= Y))| = = Zer |AN (A —y)| because
each a € A can be covered at most a(V) times.

Consequence: improved bound on A(S).
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Ingredients of the proof Ill.

Delsarte LP-bound:
A(S)=max{|A|: (A-A)NS={0}} <
sup{ 1 : f(x) > 0vx € G, f(x) = 0 vx € S\ {0}, 7(7) = 0¥y € §}

Improvement by Székely: extra linear conditions on f.

Lemma (Székely, 1984)

Let A C G be S-avoiding, and let C C G. For f(x) = |[AN (A — x)| we
have >,y xyec (X —y) = |C[|A] - |G].

Proof. Inclusion-exclusion principle: |G| > | Uxec (A — X)| >
2xec A= X =2 sy [(A=X)N (A=) = |ClIAl = Xxzy xyec (X = Y)-
Consequence: improved bound on A(S).
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Application to R?

Let A C R? be measurable, periodic 1-avoiding. Autocorrelation
function: f(x) = (AN (A — x)) (density).

@ Linear conditions on f: Delsarte, Oliveira Filho, Vallentin, Székely.

@ Radialize f by averaging over rotations.
f(x) = ﬁ Jgn-1 F(&l|x))dw(E), where w is the surface measure

of the unit sphere. The linear conditions remain true for f.
o Write f(x) = Y co.s- [1a(u)2e™, and
® F(x) = Cueant- Ma(U)PQ(lulllIX]) = s w(n(tIx]])

where Qn(||x|)) = ﬁ Jon1 €% dw(€), and k(1) is the sum
of [14(u)|? over all u such that ||u|| = t.
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Linear duality

8o, (x) = Y120 (H)Qn(tl|x])-
Let 6 := 6(A), and &(t) = x(t)/é (normalization).
Then %(0) = §, and we get an LP problem for &(t):

@ maxi(0) subject to
® > o fi(l) =

® > ok (f)Qz(t)

® > im0 f(t) Xxev Qz(tHXH) < aV)for vV

© im0 F(1) Y ypec Q2(tlx — yl) > |C — 5" for C.
@ R(t)>0forall t > 0.

Choose your sets V and C cleverly, apply weak duality, and known

estimates for Q5(t) to produce a witness function testifying the upper
bound my(R?) < 0.258.. ..
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