Improved bounds for planar sets avoiding the unit distance

Máté Matolcsi

Rényi Institute of Mathematics Budapest, Hungary

(joint work with T. Keleti, F. M. Oliveira Filho, I.Z. Ruzsa)

Sets avoiding the unit distance

Let $A \subset \mathbb{R}^{n}$ be measurable, such that $\left\|a-a^{\prime}\right\| \neq 1$ for all $a, a^{\prime} \in A$ (Euclidean norm). A is said to be " 1 -avoiding".

What is the maximal possible (upper) density of A ?

Erdős conjectured

$m_{1}\left(\mathbb{R}^{2}\right)<1 / 4$.
Upper density: $\bar{\delta}(A)=\lim \sup _{r \rightarrow \infty} \frac{\lambda(A \cap B(0, r))}{\lambda(B(0, r))}(\lambda(\cdot)$ denotes Lebesgue measure)
$m_{1}\left(\mathbb{R}^{n}\right)=\sup \left\{\bar{\delta}(A): A \subseteq \mathbb{R}^{n}\right.$ is 1-avoiding and measurable $\}$.

Lower bounds by construction

- Hexagonal lattice arrangement of open disks of radius 1/2. $\bar{\delta}(A)=\pi /(8 \sqrt{3})=0.2267 \ldots$.
- Slight improvement by Croft (1967): shrink the lattice a bit, and replace disks by tortoises. $\bar{\delta}(A)=0.22936 \ldots$

Upper bound for sets with block structure I.

Definition

$A \subset \mathbb{R}^{n}$ has block structure if $A=\bigcup_{i=0}^{\infty} A_{i}$, where $\|x-y\|<1$ if x and y belong to the same block, and $\|x-y\|>1$ if x and y belong to different blocks.

All known examples of "high" density in any dimension are sets with block structure (e.g. Croft's example).

Theorem (Keleti, M., Oliveira Filho, Ruzsa (2015))

If $A \subset \mathbb{R}^{n}$ has block structure then $\bar{\delta}(A) \leq \frac{1}{2^{n}}-\varepsilon_{n}$.

Remark: ε_{n} can be made effective (but very small even for $n=2$).

Upper bound for sets with block structure II.

Theorem (Keleti, M., Oliveira Filho, Ruzsa (2015))

If $A \subset \mathbb{R}^{n}$ has block structure then $\bar{\delta}(A) \leq \frac{1}{2^{n}}-\varepsilon_{n}$.
Proof. Let $C_{i}=A_{i}+B_{1 / 2}=\left\{a+b: a \in A_{i}, b \in B_{1 / 2}\right\}$.
Then $C_{i} \cap C_{j}=\emptyset$, for all $i \neq j$ (because A has block structure).

- Brunn-Minkowski: $\lambda\left(C_{i}\right)^{1 / n} \geq \lambda\left(A_{i}\right)^{1 / n}+\lambda\left(B_{1 / 2}\right)^{1 / n}$.
- Isodiametric inequality: $\lambda\left(A_{i}\right) \leq \lambda\left(B_{1 / 2}\right)$.

Therefore, $\frac{\lambda\left(A_{i}\right)^{1 / n}}{\lambda\left(C_{i}\right)^{1 / n}} \leq \frac{\lambda\left(A_{i}\right)^{1 / n}}{\lambda\left(A_{i}\right)^{1 / n}+\lambda\left(B_{1 / 2}\right)^{1 / n}} \leq \frac{1}{2}$, and
$\bar{\delta}(A) \leq \frac{1}{2^{n}}$.

Upper bound for sets with block structure III.

Theorem (Keleti, M., Oliveira Filho, Ruzsa (2015))

If $A \subset \mathbb{R}^{n}$ has block structure then $\bar{\delta}(A) \leq \frac{1}{2^{n}}-\varepsilon_{n}$.
Gaining the ε_{n} is more technical, but the idea is clear:

- if the isodiametric inequality is sharp then A_{i} must be close to being balls of radius $1 / 2$ (stability lemma!)
- then all C_{i} are close to being unit balls
- but unit balls cannot pack the space very densely

Stability lemma (Maggi, Ponsiglione, Pratelli, 2014)

$E \subset \mathbb{R}^{n}, \lambda(E)>0, \operatorname{diam} E=2$. Then there exist $x, y \in \mathbb{R}^{n}$ such that
$E \subset B(x, 1+r)$ and $B(y, 1) \subset E+B_{r}$, where $r=K_{n}\left(\frac{\lambda\left(B_{1}\right)}{\lambda(E)}-1\right)^{1 / n}$ for some constant K_{n} that depends only on n.

General upper bounds in the plane

Moser-spindle (1961): $m_{1}\left(\mathbb{R}^{2}\right) \leq 2 / 7=0.285 \ldots$

Székely (1984): $m_{1}\left(\mathbb{R}^{2}\right) \leq 12 / 43=0.279 \ldots$
Vallentin, Oliveira Filho (2010): $m_{1}\left(\mathbb{R}^{2}\right) \leq 0.268 \ldots$
Theorem (Keleti, M., Oliveira Filho, Ruzsa (2015))
$m_{1}\left(\mathbb{R}^{2}\right) \leq 0.258 \ldots$
For \mathbb{R}^{n} : Bachoc, Passuello, Thiery (2015): $m_{1}\left(\mathbb{R}^{n}\right) \leq(1+o(1)) 1.268^{-n}$

Ingredients of the proof I.

Delsarte's method (Fourier formulation)

\mathcal{G} finite Abelian group, $0 \in S=-S \subset \mathcal{G}$ symmetric set.
$\Delta(S)=\max \{|A|:(A-A) \cap S=\{0\}\}=$?
(Independence number of the Cayley graph corresponding to $S \subset \mathcal{G}$.)
Intuition for 1-avoiding sets: $\mathcal{G}=\mathbb{R}^{2}, S=$ unit circle $\cup\{0\}$
Observation: $f(x)=|A \cap(A-x)|=$ (number of solutions to $\left.x=a-a^{\prime}\right)$ is a positive definite function. $\hat{f}(1)=\sum f(x)=|A|^{2}, f(0)=|A|$.

Delsarte LP-bound

$\Delta(S) \leq$
$\sup \left\{\frac{\hat{f}(\mathbf{1})}{f(0)}: f(x) \geq 0 \forall x \in \mathcal{G}, f(x)=0 \forall x \in S \backslash\{0\}, \hat{f}(\gamma) \geq 0 \forall \gamma \in \hat{\mathcal{G}}\right\}=$
$\inf \left\{\frac{h(0)}{\hat{h}(\mathbf{1})}: h(x) \leq 0 \forall x \in S^{c}, \hat{h}(\gamma) \geq 0 \forall \gamma \in \hat{\mathcal{G}}\right\}$

Ingredients of the proof II.

Delsarte LP-bound:
$\Delta(S)=\max \{|A|:(A-A) \cap S=\{0\}\} \leq$
$\sup \left\{\frac{\hat{f}(\mathbf{1})}{f(0)}: f(x) \geq 0 \forall x \in \mathcal{G}, f(x)=0 \forall x \in S \backslash\{0\}, \hat{f}(\gamma) \geq 0 \forall \gamma \in \hat{\mathcal{G}}\right\}$
Improvement by Oliveira Filho, Vallentin: extra linear conditions on f.

Lemma (Oliveira Filho, Vallentin, 2010)

Let $A \subset \mathcal{G}$ be S-avoiding and let $V \subset \mathcal{G}$. For $f(x)=|A \cap(A-x)|$ we have $\sum_{y \in V} f(y) \leq \alpha(V)|A|$, where $\alpha(V)$ is the independence number of the subgraph on V.

Proof. $|A| \geq\left|\cup_{y \in V}(A \cap(A-y))\right| \geq \frac{1}{\alpha(V)} \sum_{y \in V}|A \cap(A-y)|$ because each $a \in A$ can be covered at most $\alpha(V)$ times.

Consequence: improved bound on $\Delta(S)$.

Ingredients of the proof III.

Delsarte LP-bound:
$\Delta(S)=\max \{|A|:(A-A) \cap S=\{0\}\} \leq$
$\sup \left\{\frac{\hat{f}(\mathbf{1})}{f(0)}: f(x) \geq 0 \forall x \in \mathcal{G}, f(x)=0 \forall x \in S \backslash\{0\}, \hat{f}(\gamma) \geq 0 \forall \gamma \in \hat{\mathcal{G}}\right\}$
Improvement by Székely: extra linear conditions on f.

Lemma (Székely, 1984)

Let $A \subset \mathcal{G}$ be S-avoiding, and let $C \subset \mathcal{G}$. For $f(x)=|A \cap(A-x)|$ we have $\sum_{x \neq y, x, y \in C} f(x-y) \geq|C||A|-|\mathcal{G}|$.

Proof. Inclusion-exclusion principle: $|G| \geq\left|\cup_{x \in C}(A-x)\right| \geq$ $\sum_{x \in C}|A-x|-\sum_{x \neq y}|(A-x) \cap(A-y)|=|C||A|-\sum_{x \neq y, x, y \in C} f(x-y)$.
Consequence: improved bound on $\Delta(S)$.

Application to \mathbb{R}^{2}

Let $A \subset \mathbb{R}^{2}$ be measurable, periodic 1-avoiding. Autocorrelation function: $f(x)=\delta(A \cap(A-x))$ (density).

- Linear conditions on f : Delsarte, Oliveira Filho, Vallentin, Székely.
- Radialize f by averaging over rotations. $\tilde{f}(x)=\frac{1}{\omega\left(S^{n-1}\right)} \int_{S^{n-1}} f(\xi\|x\|) d \omega(\xi)$, where ω is the surface measure of the unit sphere. The linear conditions remain true for \tilde{f}.
- Write $f(x)=\sum_{u \in 2 \pi L^{*}}\left|\widehat{\mathbf{1}}_{A}(u)\right|^{2} e^{i u \cdot x}$, and
- $\tilde{f}(x)=\sum_{u \in 2 \pi L^{*}}\left|\widehat{\mathbf{1}}_{A}(u)\right|^{2} \Omega_{n}(\|u\|\|x\|)=\sum_{t \geq 0} \kappa(t) \Omega_{n}(t\|x\|)$
where $\Omega_{n}(\|x\|)=\frac{1}{\omega\left(S^{n-1}\right)} \int_{S^{n-1}} e^{i x \cdot \xi} d \omega(\xi)$, and $\kappa(t)$ is the sum of $\left|\widehat{\mathbf{1}}_{A}(u)\right|^{2}$ over all u such that $\|u\|=t$.

Linear duality

So, $\tilde{f}(x)=\sum_{t \geq 0} \kappa(t) \Omega_{n}(t\|x\|)$.
Let $\delta:=\delta(A)$, and $\tilde{\kappa}(t)=\kappa(t) / \delta$ (normalization).
Then $\tilde{\kappa}(0)=\delta$, and we get an LP problem for $\tilde{\kappa}(t)$:

- $\max \tilde{\kappa}(0)$ subject to
- $\sum_{t \geq 0} \tilde{k}(t)=1$
- $\sum_{t \geq 0} \tilde{\kappa}(t) \Omega_{2}(t)=0$
- $\sum_{t \geq 0} \tilde{\kappa}(t) \sum_{x \in V} \Omega_{2}(t\|x\|) \leq \alpha(V)$ for V
- $\sum_{t \geq 0} \tilde{\kappa}(t) \sum_{\{x, y\} \in C} \Omega_{2}(t\|x-y\|) \geq|C|-\delta^{-1}$ for C.
- $\tilde{\kappa}(t) \geq 0$ for all $t \geq 0$.

Choose your sets V and C cleverly, apply weak duality, and known estimates for $\Omega_{2}(t)$ to produce a witness function testifying the upper bound $m_{1}\left(\mathbb{R}^{2}\right) \leq 0.258 \ldots$

