Freiman's theorem in torsion-free groups

Mercede MAJ

UNIVERSITÀ DEGLI STUDI DI SALERNO

ADDITIVE COMBINATORICS IN BORDEAUX

Institut de Mathématiques de Bordeaux
April, 11-15, 2016

- Gregory Freiman, Tel Aviv University
- Marcel Herzog, Tel Aviv University
- Patrizia Longobardi, Università di Salerno
- Mercede Maj, Università di Salerno
- Yonutz Stanchescu, Afeka Academic College Israel and The Open University of Israel
- Alain Plagne, Centre de mathématiques Laurent Schwartz, École polytechnique, France
- Derek Robinson, University of Illinois, U.S.A.
- Gregory Freiman, Tel Aviv University
- Marcel Herzog, Tel Aviv University
- Patrizia Longobardi, Università di Salerno
- Mercede Maj, Università di Salerno
- Yonutz Stanchescu, Afeka Academic College Israel and The Open University of Israel
- Alain Plagne, Centre de mathématiques Laurent Schwartz, École polytechnique, France
- Derek Robinson, University of Illinois, U.S.A.
- Gregory Freiman, Tel Aviv University
- Marcel Herzog, Tel Aviv University
- Patrizia Longobardi, Università di Salerno
- Mercede Maj, Università di Salerno
- Yonutz Stanchescu, Afeka Academic College Israel and The Open University of Israel
- Alain Plagne, Centre de mathématiques Laurent Schwartz, École polytechnique, France
- Derek Robinson, University of Illinois, U.S.A.
- Gregory Freiman, Tel Aviv University
- Marcel Herzog, Tel Aviv University
- Patrizia Longobardi, Università di Salerno
- Mercede Maj, Università di Salerno
- Yonutz Stanchescu, Afeka Academic College Israel and The Open University of Israel
- Alain Plagne, Centre de mathématiques Laurent Schwartz, Ecole polytechnique, France
- Derek Robinson, University of Illinois, U.S.A.
- Gregory Freiman, Tel Aviv University
- Marcel Herzog, Tel Aviv University
- Patrizia Longobardi, Università di Salerno
- Mercede Maj, Università di Salerno
- Yonutz Stanchescu, Afeka Academic College Israel and The Open University of Israel
- Alain Plagne, Centre de mathématiques Laurent Schwartz, École polytechnique, France
- Derek Robinson, University of Illinois, U.S.A.
- Gregory Freiman, Tel Aviv University
- Marcel Herzog, Tel Aviv University
- Patrizia Longobardi, Università di Salerno
- Mercede Maj, Università di Salerno
- Yonutz Stanchescu, Afeka Academic College Israel and The Open University of Israel
- Alain Plagne, Centre de mathématiques Laurent Schwartz, École polytechnique, France
- Derek Robinson, University of Illinois, U.S.A.
- Gregory Freiman, Tel Aviv University
- Marcel Herzog, Tel Aviv University
- Patrizia Longobardi, Università di Salerno
- Mercede Maj, Università di Salerno
- Yonutz Stanchescu, Afeka Academic College Israel and The Open University of Israel
- Alain Plagne, Centre de mathématiques Laurent Schwartz, École polytechnique, France
- Derek Robinson, University of Illinois, U.S.A.

Basic definition

Definitions

If S is a subset of a group $G(+)$, then we denote

$$
2 S=S+S:=\{x+y \mid x \in S, y \in S\}
$$

$2 S$ the double of S
If G is a multiplicative group, then we denote

$$
S^{2}=S S:=\{x y \mid x \in S, y \in S\}
$$

S^{2} is also called the square of S

Background

Let S be a finite subset of a group G.

Remark

$$
|S| \leq\left|S^{2}\right| \leq|S|^{2}
$$

The bounds are sharp.

Background

Let S be a finite subset of a group G.

Remark

$$
|S| \leq\left|S^{2}\right| \leq|S|^{2} .
$$

The bounds are sharp.

Background

Example

If S is a subgroup of G, then $S^{2}=S$.
More generally, if $S=x H$, where H is a subgroup of G and $x H=H x$, then $S^{2}=x H x H=x^{2} H$ and $\left|S^{2}\right|=|S|$.

Background: some inverse results

Proposition
Let S be a non-empty finite subset of a group G.

$$
\left|S^{2}\right|=|S| \text { if and only if } S=x H \text {, where } H \leq G \text { and } x H=H x .
$$

Background: some inverse results

Proposition

Let S be a non-empty finite subset of a group G.
If

$$
\left|S^{2}\right|<\frac{3}{2}|S|
$$

then $H=S S^{-1}$ is a finite subgroup of G of order $\left|S^{2}\right|$, and
$S \subset H x=x H$ for some $x \in N_{G}(S)$.

Background: some inverse results

More generally

Proposition (Freiman-Hamidoune-Kneser)

Let S be a non-empty finite subset of a group G. Suppose that

$$
\left|S^{2}\right| \leq(2-\epsilon)|S|, \quad 0 \leq \epsilon<1
$$

Then there exists a finite subgroup H of cardinality $\geq c(\epsilon)|S|$, such that S is covered by at most $C(\epsilon)$ right-cosets of H, where $c(\epsilon)$ and $C(\epsilon)$ depend only on ϵ.

Problem
What lower bound one can get on $\left|S^{2}\right|$ if we assume G torsion-free?

Background - direct results

Proposition

If S is a non-empty finite subset of the group of the integers, then we have

$$
|2 S| \geq 2|S|-1
$$

Proof. We use the fact that the integers are totally ordered. Write $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$, and assume
$x_{1}<x_{2}<\cdots<x_{k}$. Clearly

$$
x_{1}+x_{1}<\ldots<x_{1}+x_{k}<x_{2}+x_{k}<\ldots<x_{k}+x_{k}
$$

Hence $|2 S| \geq 2 k-1$, as required. //

Background - direct results

More generally:
Theorem (J.H.B. Kemperman, Indag. Mat., 1956)
If S is a non-empty finite subset of a torsion-free group, then we have

$$
\left|S^{2}\right| \geq 2|S|-1
$$

Problem

Is this bound sharp?

An example

Definition

If $a, r \neq 1$ are elements of a multiplicative group G, a geometric left (rigth) progression with ratio r and length n is the subset of G

$$
\left\{a, a r, a r^{2}, \cdots, a r^{n-1}\right\}\left(\left\{a, r a, r^{2} a, \cdots, r^{n-1} a\right\}\right)
$$

If G is an additive group

$$
\{a, a+r, a+2 r, \cdots, a+(n-1) r\}
$$

is called an arithmetic progression with difference r and length n.

An example

Example

If $S=\left\{a, a r, a r^{2}, \cdots, a r^{n-1}\right\}$ is a geometric progression in a torsion-free group and ar $=r a$, then $S^{2}=\left\{a^{2}, a^{2} r, a^{2} r^{2}, \cdots, a^{2} r^{2 n-2}\right\}$ has order

$$
2|S|-1
$$

Theorem (Freiman, Schein, Proc. Amer. Math. Soc. 1991)

If S is a finite subset of a torsion-free group, $|S|=k \geq 2$,

$$
\left|S^{2}\right|=2|S|-1
$$

if and only if

$$
S=\left\{a, a q, \cdots, a q^{k-1}\right\} \text {, and either } a q=q \text { or } a q a^{-1}=q^{-1} .
$$

In particular, if $\left|S^{2}\right|=2|S|-1$, then S is contained in a left coset of a cyclic subgroup of G.

Background - inverse results

Theorem (Y.O. Hamidoune, A.S. Lladó, O. Serra, Combinatorica, 1998)
If S is a finite subset of a torsion-free group, $|S|=k \geq 4$, if

$$
\left|S^{2}\right| \leq 2|S|
$$

then there exist $a, q \in G$ such that

$$
S=\left\{a, a q, \cdots, a q^{k}\right\} \backslash\{c\}, \text { with } c \in\{a, a q\} .
$$

Doubling problems

Let G be a group and S a finite subset of G.
Let α, β real numbers

Problem

What is the structure of S if $\left|S^{2}\right|$ satisfies

$$
\left|S^{2}\right| \leq \alpha|S|+\beta ?
$$

Problems of this kind are called inverse problems of doubling type in additive number theory. The coefficient α, or more precisely the ratio $\frac{\left|S^{2}\right|}{|S|}$ is called the doubling coefficient of S.

Doubling problems

Inverse problems of doubling type have been first investigated by G.A. Freiman.
E. Breuillard, Y. O. Hamidoune, B. Green, M. Kneser, A.S. Lladó, A. Plagne, P.P. Palfy. Z. Ruzsa, O. Serra, Y.V. Stanchescu, T. Tao....

There are two main types of questions one may ask.

Doubling property

Problem

What is the general type of structure that S can have if

$$
\left|S^{2}\right| \leq \alpha|S|+\beta ?
$$

How behaves this type of structure when α increases?
Studied recently by many authors

E.Breuillard, B.Green, I.Ruzsa, T.Tao...

Very powerful general results have been obtained (leading to a qualitatively complete structure theorem thanks to the concepts of nilprogressions and approximate groups).

Small doubling problems

But these results are not very precise quantitatively.

Problem

For a given (in general quite small) range of values for α find the precise (and possibly complete) description of those finite sets S which satisfy

$$
\left|S^{2}\right| \leq \alpha|S|+\beta
$$

with α and $|\beta|$ small.
Problems of this kind are called inverse problems of small doubling type.

Small doubling problems

Theorem (G. Freiman)
Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$
|2 S| \leq 3 k-4
$$

Then S is contained in an arithmetic progression of size $2 k-3$:

$$
\{a, a+q, a+2 q, \cdots, a+(2 k-4) q\} .
$$

Small doubling problems

Conjecture (G. Freiman)
If G is any torsion-free group, S a finite subset of $G,|S| \geq 4$, and

$$
\left|S^{2}\right| \leq 3|S|-4,
$$

then S is contained in a geometric progression of length at most $2|S|-3$.

Small doubling problems

Theorem (G. Freiman)

Let S be a finite set of integers with $k \geq 2$ elements and suppose that

$$
|2 S| \leq 3 k-3
$$

Then one of the following holds:
(i) S is contained in an arithmetic progression of size at most $2 k-1$
(ii) S is a bi-arithmetic progression
$S=\{a, a+q, a+2 q, \cdots, a+(i-1) q\} \cup\{b, b+q, a+2 q, \cdots, b+(j-1) q\}$.
(iii) $k=6$ and S has a determined structure.

Small doubling problems

Problem

Let G be any torsion-free group, S a finite subset of $G,|S| \geq 3$.
What is the structure of S if

$$
\left|S^{2}\right| \leq 3|S|-3 ?
$$

Small doubling problems

Freiman studied also the case $|2 S|=3|S|-2, S$ a subset of the integers. He proved that, with the exception of some cases with $|S|$ small, then either S is contained in an arithmetic progression or it is the union of two arithmetic progressions with same difference.

Conjecture (G. Freiman)

If G is any torsion-free group, S a finite subset of $G,|S| \geq 11$, and

$$
\left|S^{2}\right| \leq 3|S|-2
$$

then S is contained in a geometric progression of length at most
$2|S|+1$ or it is the union of two geometric progressions with same ratio.

Small doubling problems

Small doubling problems have been studied in abelian groups by many authors.
Y. O. Hamidoune, B. Green, M. Kneser, A.S. Lladò, A. Plagne, P.P. Palfy. Z. Ruzsa, O. Serra, Y.V. Stanchescu...

In a series of papers with
Gregory Freiman, Marcel Herzog, Patrizia Longobardi, Yonutz Stanchescu, Alan Plagne, Derek Robinson
we study Freiman's Conjectures and more generally small doubling problems with doubling coefficient 3 , in the class of orderable groups

Small doubling problems

Small doubling problems have been studied in abelian groups by many authors.
Y. O. Hamidoune, B. Green, M. Kneser, A.S. Lladò, A. Plagne, P.P. Palfy. Z. Ruzsa, O. Serra, Y.V. Stanchescu...

In a series of papers with
Gregory Freiman, Marcel Herzog, Patrizia Longobardi, Yonutz Stanchescu, Alan Plagne, Derek Robinson
we study Freiman's Conjectures and more generally small doubling problems with doubling coefficient 3 , in the class of orderable groups

Orderable groups

Definition

Let G be a group and suppose that a total order relation \leq is defined on the set G.
We say that (G, \leq) is an ordered group if for all $a, b, x, y \in G$, the inequality $a \leq b$ implies that xay $\leq x b y$.

Definition

A group G is orderable if there exists a total order relation \leq on the set G, such that (G, \leq) is an ordered group.

Orderable groups

Remark

Any ordered group is torsion-free.

Theorem (F.W. Levi)

An abelian group G is orderable if and only if it is torsion-free.

Theorem (K. Iwasawa - A.I. Mal'cev - B.H. Neumann)
The class of orderable groups contains the class of torsion-free nilpotent groups.

Orderable groups

Remark

Any ordered group is torsion-free.

> Theorem (F.W. Levi)
> An abelian group G is orderable if and only if it is torsion-free.

Theorem (K. Iwasawa - A.I. Mal'cev - B.H. Neumann)
The class of orderable groups contains the class of torsion-free nilpotent groups

Orderable groups

Remark

Any ordered group is torsion-free.

Theorem (F.W. Levi)

An abelian group G is orderable if and only if it is torsion-free.

Theorem (K. Iwasawa - A.I. Mal'cev - B.H. Neumann)
The class of orderable groups contains the class of torsion-free nilpotent groups.

Definition

A group G is nilpotent if it has a central series, that is, there exists a series

$$
1=G_{0} \leq G_{1} \leq \cdots \leq G_{n}=G
$$

of normal subgroups of G such that G_{i+1} / G_{i} is contained in the center of G / G_{i} for all i.

The center $Z(G)$ of a group G is the set of elements that commute with every element of G :

$$
Z(G)=\{x \in G \mid g x=x g, \text { for all } g \in G\} .
$$

The length of a shorter central series of G is the nilpotent class of G. Abelian groups are nilpotent of class 1 .

Definition

A group G is nilpotent if it has a central series, that is, there exists a series

$$
1=G_{0} \leq G_{1} \leq \cdots \leq G_{n}=G
$$

of normal subgroups of G such that G_{i+1} / G_{i} is contained in the center of G / G_{i} for all i.

The center $Z(G)$ of a group G is the set of elements that commute with every element of G :

$$
Z(G)=\{x \in G \mid g x=x g, \text { for all } g \in G\} .
$$

The length of a shorter central series of G is the nilpotent class of G. Abelian groups are nilpotent of class 1 .

Orderable groups

Free groups are orderable. Pure braid groups are orderable.
The group

$$
\left\langle x, c \mid x^{-1} c x=c^{-1}\right\rangle
$$

is not an orderable group.
More information concerning orderable groups may be found, for example, in
R. Botto Mura and A. Rhemtulla, Orderable groups, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York and Basel, 1977.
A.M.W. Glass, Partially ordered groups,

World Scientific Publishing Co., Series in Algebra, v. 7, 1999.

Small doubling in orderable groups

Theorem (Freiman, Herzog, Longobardi, - , J. Austral. Math. Soc., 2014)
Let (G, \leq) be an ordered group and let S be a finite subset of G of size $k \geq 3$.
Assume that

$$
t=\left|S^{2}\right| \leq 3|S|-4
$$

Then $\langle S\rangle$ is abelian. Moreover, there exists $a, q \in G$, such that $q a=a q$ and S is a subset of

$$
\left\{a, a q, a q^{2}, \cdots, a q^{t-k}\right\}
$$

Small doubling in orderable groups

Theorem (Freiman, Herzog, Longobardi, - , J. Austral. Math. Soc., 2014)
Let (G, \leq) be an ordered group and let S be a finite subset of G, $|S| \geq 3$. Assume that

$$
\left|S^{2}\right| \leq 3|S|-3
$$

Then $\langle S\rangle$ is abelian.

Small doubling in orderable groups

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)

Let G be an ordered group and let S be a finite subset of $G,|S| \geq 3$. If

$$
\left|S^{2}\right| \leq 3|S|-3,
$$

then $\langle S\rangle$ is abelian, at most 3-generated and one of the following holds:

- (1) $|S|=6$;
- (2) S is a subset of a geometric progression of length at most 2|S|-1;
-(3) $S=\left\{a c^{t} \mid 0 \leq t \leq t_{1}-1\right\} \cup\left\{b c^{t} \mid 0 \leq t \leq t_{2}-1\right\}$

Small doubling in orderable groups

What about $\langle S\rangle$ if S is a subset of an orderable group and

$$
\left|S^{2}\right| \leq 3|S|-2 ?
$$

Is it abelian? Is it abelian if $|S|$ is big enough?

Small doubling in orderable groups

What about $\langle S\rangle$ if S is a subset of an orderable group and

$$
\left|S^{2}\right| \leq 3|S|-2 ?
$$

Is it abelian? Is it abelian if $|S|$ is big enough?

Small doubling in orderable groups

Remark

There exists an ordered group G with a subset S of order k (for any k) such that $\langle S\rangle$ is not abelian and $\left|S^{2}\right|=3 k-2$.

Example

Let

$$
G=\left\langle a, b \mid b^{-1} a b=a^{2}\right\rangle
$$

the Baumslag-Solitar group $B(1,2)$ and

$$
S=\left\{b, b a, b a^{2}, \cdots, b a^{k-1}\right\}
$$

Then

Thus $\langle S\rangle$ is non-abelian and $\left|S^{2}\right|=3 k-2$.

Small doubling in orderable groups

Remark

There exists an ordered group G with a subset S of order k (for any k) such that $\langle S\rangle$ is not abelian and $\left|S^{2}\right|=3 k-2$.

Example

Let

$$
G=\left\langle a, b \mid b^{-1} a b=a^{2}\right\rangle
$$

the Baumslag-Solitar group $B(1,2)$ and

$$
S=\left\{b, b a, b a^{2}, \cdots, b a^{k-1}\right\}
$$

Then

$$
S^{2}=\left\{b^{2}, b^{2} a, b^{2} a^{2}, b^{2} a^{3}, \cdots, b^{2} a^{3 k-3}\right\} .
$$

Thus $\langle S\rangle$ is non-abelian and $\left|S^{2}\right|=3 k-2$.

Small doubling problems

Problem

Let G be an order able group, S a finite subset of $G,|S| \geq 3$.
What is the structure of S if

$$
\left|S^{2}\right| \leq 3|S|-2 ?
$$

Problem

Let G be an orderable group, S a finite subset of $G,|S| \geq 3$.
What is the structure of $\langle S\rangle$ if

$$
\left|S^{2}\right| \leq 3|S|-2 ?
$$

The structure of $\langle S\rangle$ if $\left|S^{2}\right|=3|S|-2$

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)
Let G be an ordered group and let S be a finite subset of $G,|S| \geq 4$. If

$$
\left|S^{2}\right|=3|S|-2
$$

then one of the following holds:

- (1) $\langle S\rangle$ is an abelian group, at most 4-generated;
- (2) $\langle S\rangle=\langle a, b \mid b a=c a b, a c=c a, c b=b c\rangle$. In particular $\langle S\rangle$ is a nilpotent group of class 2;
- (3) $\langle S\rangle=\left\langle a, b \mid a^{b}=a^{2}\right\rangle$. Therefore $\langle S\rangle$ is the Baumslag-Solitar group $B(1,2)$;
- (5)

The structure of $\langle S\rangle$ if $\left|S^{2}\right|=3|S|-2$

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)
Let G be an ordered group and let S be a finite subset of $G,|S| \geq 4$. If

$$
\left|S^{2}\right|=3|S|-2
$$

then one of the following holds:

- (1) $\langle S\rangle$ is an abelian group, at most 4-generated;
- (2) $\langle S\rangle=\langle a, b \mid b a=c a b, a c=c a, c b=b c\rangle$. In particular $\langle S\rangle$ is a nilpotent group of class 2;
-(3) $\langle S\rangle=\left\langle a, b \mid a^{b}=a^{2}\right\rangle$. Therefore $\langle S\rangle$ is the Baumslag-Solitar group $B(1,2)$;

The structure of $\langle S\rangle$ if $\left|S^{2}\right|=3|S|-2$

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)

Let G be an ordered group and let S be a finite subset of $G,|S| \geq 4$. If

$$
\left|S^{2}\right|=3|S|-2
$$

then one of the following holds:

- (1) $\langle S\rangle$ is an abelian group, at most 4-generated;
- (2) $\langle S\rangle=\langle a, b \mid b a=c a b, a c=c a, c b=b c\rangle$. In particular $\langle S\rangle$ is a nilpotent group of class 2;
- (3) $\langle S\rangle=\left\langle a, b \mid a^{b}=a^{2}\right\rangle$. Therefore $\langle S\rangle$ is the Baumslag-Solitar group $B(1,2)$;

The structure of $\langle S\rangle$ if $\left|S^{2}\right|=3|S|-2$

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)

Let G be an ordered group and let S be a finite subset of $G,|S| \geq 4$. If

$$
\left|S^{2}\right|=3|S|-2
$$

then one of the following holds:

- (1) $\langle S\rangle$ is an abelian group, at most 4-generated;
- (2) $\langle S\rangle=\langle a, b \mid b a=c a b, a c=c a, c b=b c\rangle$. In particular $\langle S\rangle$ is a nilpotent group of class 2;
- (3) $\langle S\rangle=\left\langle a, b \mid a^{b}=a^{2}\right\rangle$. Therefore $\langle S\rangle$ is the Baumslag-Solitar group $B(1,2)$;
- (4) $\langle S\rangle=\langle a\rangle \times\left\langle b, c \mid c^{b}=c^{2}\right\rangle$;

The structure of $\langle S\rangle$ if $\left|S^{2}\right|=3|S|-2$

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)

Let G be an ordered group and let S be a finite subset of $G,|S| \geq 4$. If

$$
\left|S^{2}\right|=3|S|-2
$$

then one of the following holds:

- (1) $\langle S\rangle$ is an abelian group, at most 4-generated;
- (2) $\langle S\rangle=\langle a, b \mid b a=c a b, a c=c a, c b=b c\rangle$. In particular $\langle S\rangle$ is a nilpotent group of class 2;
- (3) $\langle S\rangle=\left\langle a, b \mid a^{b}=a^{2}\right\rangle$. Therefore $\langle S\rangle$ is the Baumslag-Solitar group $B(1,2)$;
- (4) $\langle S\rangle=\langle a\rangle \times\left\langle b, c \mid c^{b}=c^{2}\right\rangle$;
- (5) $\langle S\rangle=\left\langle a, b \mid a^{b^{2}}=a a^{b}, a a^{b}=a^{b} a\right\rangle$.

The structure of S if $\left|S^{2}\right|=3|S|-2$

If $\langle S\rangle$ is abelian, then the structure of $\left|S^{2}\right|=3|S|-2$ can be obtained using some previous results by Freiman and Stanchescu.

Theorem

Let G be an ordered group and let S be a subset of G of finite size $k>2$. If

$$
\left|S^{2}\right|=3 k-2
$$

and $\langle S\rangle$ is abelian, then one of the following possibilities occurs:

- (1) $|S| \leq 11$;
- (2) S is a subset of a geometric progression of length at most 2|S| +1 ;
- (3) S is contained in the union of two geometric progressions with the same ratio.

The structure of S if $\left|S^{2}\right|=3|S|-2$

If $\langle S\rangle$ is nilpotent of class 2, we have the following

Theorem (Freiman, Herzog, Longobardi, - , 2016)

Let G be a torsion-free nilpotent group of class 2 and let S be a subset of G of finite size $k \geq 4$. Then

$$
\left|S^{2}\right|=3 k-2,
$$

if and only if

$$
\begin{array}{r}
S=\left\{a, a c, a c^{2}, \cdots, a c^{i}, b, b c, b c^{2}, \cdots, b c^{j}\right\}, \\
\text { with } 1+i+1+j=k \text { and } a b=b a c \text { or } b a=a b c, c>1 .
\end{array}
$$

Proof

Proof. Write $S=\left\{a, a c, a c^{2}, \cdots, a c^{i}, b, b c, b c^{2}, \cdots, b c^{j}\right\}$, and suppose for example $a b=b a c$.

```
G is nilpotent of class 2, thus G/Z(G) is abelian. Then
abZ(G)=baZ(G), thus c\inZ(G).
```

Then we have
$S^{2}=\left\{a, a c, \cdots, a c^{i}\right\}^{2} \cup\left\{b, b c, \cdots, b c^{j}\right\}^{2} \cup\left\{b a, b a c, \cdots, b a c^{i+j}, a b c^{i+j}\right\}=$ $=\left\{a, a c, \cdots, a c^{i}\right\}^{2} \cup\left\{b, b c, \cdots, b c^{j}\right\}^{2} \cup\left\{b a, b a c, \cdots, b a c^{i+j}, b a c^{i+j+1}\right\}$
Thus $\left|S^{2}\right|=2(i+1)-1+2(j+1)-1+i+j+2=3 i+3 j+4=$ $3(i+j+2)-2=3|S|-2$, as required. //

Proof

Proof. Write $S=\left\{a, a c, a c^{2}, \cdots, a c^{i}, b, b c, b c^{2}, \cdots, b c^{j}\right\}$, and suppose for example $a b=b a c$.
G is nilpotent of class 2 , thus $G / Z(G)$ is abelian. Then $a b Z(G)=b a Z(G)$, thus $c \in Z(G)$.
Then we have
$S^{2}=\left\{a, a c, \cdots, a c^{i}\right\}^{2} \cup\left\{b, b c, \cdots, b c^{j}\right\}^{2} \cup\left\{b a, b a c, \cdots, b a c^{i+j}, a b c^{i+j}\right\}=$ $=\left\{a, a c, \cdots, a c^{i}\right\}^{2} \cup\left\{b, b c, \cdots, b c^{j}\right\}^{2} \cup\left\{b a, b a c, \cdots\right.$ bac ${ }^{i+j}$, bac $\left.c^{i+j+1}\right\}$
Thus $\left|S^{2}\right|=2(i+1)-1+2(j+1)-1+i+j+2=3 i+3 j+4=$ $3(i+j+2)-2=3|S|-2$, as required. //

Proof

Proof. Write $S=\left\{a, a c, a c^{2}, \cdots, a c^{i}, b, b c, b c^{2}, \cdots, b c^{j}\right\}$, and suppose for example $a b=b a c$.
G is nilpotent of class 2 , thus $G / Z(G)$ is abelian. Then $a b Z(G)=b a Z(G)$, thus $c \in Z(G)$.
Then we have
$S^{2}=\left\{a, a c, \cdots, a c^{i}\right\}^{2} \cup\left\{b, b c, \cdots, b c^{j}\right\}^{2} \cup\left\{b a, b a c, \cdots, b a c^{i+j}, a b c^{i+j}\right\}=$ $=\left\{a, a c, \cdots, a c^{i}\right\}^{2} \cup\left\{b, b c, \cdots, b c^{j}\right\}^{2} \cup\left\{b a, b a c, \cdots, b a c^{i+j}, b a c^{i+j+1}\right\}$.

Thus $\left|S^{2}\right|=2(i+1)-1+2(j+1)-1+i+j+2=3 i+3 j+4=$ $3(i+j+2)-2=3|S|-2$, as required. //

Proof

Proof. Write $S=\left\{a, a c, a c^{2}, \cdots, a c^{i}, b, b c, b c^{2}, \cdots, b c^{j}\right\}$, and suppose for example $a b=b a c$.
G is nilpotent of class 2 , thus $G / Z(G)$ is abelian. Then $a b Z(G)=b a Z(G)$, thus $c \in Z(G)$.
Then we have
$S^{2}=\left\{a, a c, \cdots, a c^{i}\right\}^{2} \cup\left\{b, b c, \cdots, b c^{j}\right\}^{2} \cup\left\{b a, b a c, \cdots, b a c^{i+j}, a b c^{i+j}\right\}=$ $=\left\{a, a c, \cdots, a c^{i}\right\}^{2} \cup\left\{b, b c, \cdots, b c^{j}\right\}^{2} \cup\left\{b a, b a c, \cdots, b a c^{i+j}, b a c^{i+j+1}\right\}$.
Thus $\left|S^{2}\right|=2(i+1)-1+2(j+1)-1+i+j+2=3 i+3 j+4=$ $3(i+j+2)-2=3|S|-2$, as required. //

The structure of S if $\left|S^{2}\right|=3|S|-2$

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Robinson, Stanchescu, J. Algebra, 2016)

Let G be an ordered group and let S be a subset of G of finite size $k>2$. If

$$
\left|S^{2}\right|=3 k-2,
$$

and $\langle S\rangle$ is non-abelian, then one of the following statements holds:

- (1) $|S| \leq 4$;
- (2) $S=\left\{x, x c, x c^{2}, \cdots, x c^{k-1}\right\}$, where $c^{x}=c^{2}$ or $\left(c^{2}\right)^{x}=c$;
- (3) $S=\left\{a, a c, a c^{2}, \cdots, a c^{i}, b, b c, b c^{2}, \cdots, b c^{j}\right\}$, with $1+i+1+j=k$ and $a b=b a c$ or $b a=a b c, a c=c a, b c=c b, c>1$.

Conversely if S has the structure in (2) and (3), then $\left|S^{2}\right|=3|S|-2$.

Some methods

Remark

Any orderable group is an R-group.

A group G is an \mathbf{R}-group if, with $a, b \in G$,

$$
a^{n}=b^{n}, n \neq 0, \text { implies } a=b .
$$

Remark

If G is an orderable group, $a, b \in G$ and if $a^{n} b=b a^{n}$ for some positive integer n, then $a b=b a$.

Proofs of Theorems concerning the structure of $\langle S\rangle$

Let (G, \leq) be an ordered group, $S=\left\{x_{1}, x_{2}, \cdots, x_{k-1}, x_{k}\right\}$ a subset of $G,|S|=k,\left|S^{2}\right| \leq 3 k-v, v \in\{1,2,3,4\}$.
Suppose $x_{1}<x_{2}<\cdots<x_{k-1}<x_{k}$.
Write

We show that either

$$
\left|T^{2}\right| \leq 3(k-1)-v, \text { or }\langle T\rangle \text { is abelian. }
$$

Proofs of Theorems concerning the structure of $\langle S\rangle$

Let (G, \leq) be an ordered group, $S=\left\{x_{1}, x_{2}, \cdots, x_{k-1}, x_{k}\right\}$ a subset of $G,|S|=k,\left|S^{2}\right| \leq 3 k-v, v \in\{1,2,3,4\}$.
Suppose $x_{1}<x_{2}<\cdots<x_{k-1}<x_{k}$.
Write

$$
T=\left\{x_{1}, \cdots, x_{k-1}\right\} .
$$

We show that either

$$
\left|T^{2}\right| \leq 3(k-1)-v \text {, or }\langle T\rangle \text { is abelian. }
$$

Proofs of Theorems concerning the structure of $\langle S\rangle$

Let (G, \leq) be an ordered group, $S=\left\{x_{1}, x_{2}, \cdots, x_{k-1}, x_{k}\right\}$ a subset of $G,|S|=k,\left|S^{2}\right| \leq 3 k-v, v \in\{1,2,3,4\}$.
Suppose $x_{1}<x_{2}<\cdots<x_{k-1}<x_{k}$.
Write

$$
T=\left\{x_{1}, \cdots, x_{k-1}\right\} .
$$

We show that either

$$
\left|T^{2}\right| \leq 3(k-1)-v, \text { or }\langle T\rangle \text { is abelian. }
$$

Proof

Theorem

Let (G, \leq) be an ordered group and let $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be a finite subset of G of size $k \geq 2$, with $x_{1}<x_{2} \cdots<x_{k}$.
Assume that

$$
\left|S^{2}\right| \leq 3 k-3 .
$$

Then $\langle S\rangle$ is abelian.

Proof

Suppose that $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a subset of an ordered group, $x_{1}<x_{2}<\cdots<x_{k}$.
Assume $\left|S^{2}\right| \leq 3|S|-3$.
We want to show that $\langle S\rangle$ is abelian.
If $k=2$ or $k=3$, we prove directly the result.
Suppose $k>3$ and argue by induction on k. Write $T=\left\{x_{1}, \cdots, x_{k-1}\right\}$
Then either $\langle T\rangle$ is abelian or $\left|T^{2}\right| \leq 3|T|-3$, by the previous remarks.
By induction we can assume that $\langle T\rangle$ is abelian.
If $x_{i} x_{k} \in T^{2}$, for some $i<k$, then $x_{k} \in\langle T\rangle$ and $\langle S\rangle \subseteq\langle T\rangle$ is abelian, as required. Hence we can assume that $x_{1} x_{k}, \cdots, x_{k-1} x_{k}, x_{k}^{2} \notin T^{2}$, then $\left|T^{2}\right| \leq\left|S^{2}\right|-k=3 k-3-k=2(k-1)-1$. Then

$$
T=\left\{a, a c, \cdots, a c^{k-2}\right\}
$$

is a geometric progression with $a c=c a$.

Proof

Suppose that $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a subset of an ordered group, $x_{1}<x_{2}<\cdots<x_{k}$.
Assume $\left|S^{2}\right| \leq 3|S|-3$.
We want to show that $\langle S\rangle$ is abelian.
If $k=2$ or $k=3$, we prove directly the result.
Suppose $k>3$ and argue by induction on k. Write $T=\left\{x_{1}, \cdots, x_{k-1}\right\}$
Then either $\langle T\rangle$ is abelian or $\left|T^{2}\right| \leq 3|T|-3$, by the previous remarks.
By induction we can assume that $\langle T\rangle$ is abelian.
If $x_{i} x_{k} \in T^{2}$, for some $i<k$, then $x_{k} \in\langle T\rangle$ and $\langle S\rangle \subseteq\langle T\rangle$ is abelian, as required. Hence we can assume that $x_{1} x_{k}, \cdots, x_{k-1} x_{k}, x_{k}^{2} \notin T^{2}$, then $\left|T^{2}\right| \leq\left|S^{2}\right|-k=3 k-3-k=2(k-1)-1$. Then

$$
T=\left\{a, a c, \cdots, a c^{k-2}\right\}
$$

is a geometric progression with $a c=c a$.

Proof

Suppose that $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a subset of an ordered group, $x_{1}<x_{2}<\cdots<x_{k}$.
Assume $\left|S^{2}\right| \leq 3|S|-3$.
We want to show that $\langle S\rangle$ is abelian.
If $k=2$ or $k=3$, we prove directly the result.
Suppose $k>3$ and argue by induction on k. Write $T=\left\{x_{1}, \cdots, x_{k-1}\right\}$ Then either $\langle T\rangle$ is abelian or $\left|T^{2}\right| \leq 3|T|-3$, by the previous remarks. By induction we can assume that $\langle T\rangle$ is abelian. If $x_{i} x_{k} \in T^{2}$, for some $i<k$, then $x_{k} \in\langle T\rangle$ and $\langle S\rangle \subseteq\langle T\rangle$ is abelian , as required. Hence we can assume that $x_{1} x_{k}, \cdots, x_{k-1} x_{k}, x_{k}^{2} \notin T^{2}$, then $\left|T^{2}\right| \leq\left|S^{2}\right|-k=3 k-3-k=2(k-1)-1$. Then

$$
T=\left\{a, a c, \cdots, a c^{k-2}\right\}
$$

is a geometric progression with $a c=c a$.

Proof

Suppose that $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a subset of an ordered group, $x_{1}<x_{2}<\cdots<x_{k}$.
Assume $\left|S^{2}\right| \leq 3|S|-3$.
We want to show that $\langle S\rangle$ is abelian.
If $k=2$ or $k=3$, we prove directly the result.
\square
is a geometric progression with $a c=c a$.

Proof

Suppose that $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a subset of an ordered group, $x_{1}<x_{2}<\cdots<x_{k}$.
Assume $\left|S^{2}\right| \leq 3|S|-3$.
We want to show that $\langle S\rangle$ is abelian.
If $k=2$ or $k=3$, we prove directly the result.
Suppose $k>3$ and argue by induction on k.

By induction we can assume that $\langle T\rangle$ is abelian.
If $x_{i} x_{k} \in T^{2}$, for some $i<k$, then $x_{k} \in\langle T\rangle$ and $\left.\langle S\rangle \subseteq T\right\rangle$ is abelian,
as required. Hence we can assume that $x_{1} x_{k}, \cdots, x_{k-1} x_{k}, x_{k}^{2} \notin T^{2}$, then $\left|T^{2}\right| \leq\left|S^{2}\right|-k=3 k-3-k=2(k-1)-1$. Then

is a geometric progression with $a c=c a$.

Proof

Suppose that $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a subset of an ordered group, $x_{1}<x_{2}<\cdots<x_{k}$.
Assume $\left|S^{2}\right| \leq 3|S|-3$.
We want to show that $\langle S\rangle$ is abelian.
If $k=2$ or $k=3$, we prove directly the result.
Suppose $k>3$ and argue by induction on k. Write $T=\left\{x_{1}, \cdots, x_{k-1}\right\}$.
Then either $\langle T\rangle$ is abelian or $\left|T^{2}\right| \leq 3|T|-3$, by the previous remarks.
By induction we can assume that $\langle T\rangle$ is abelian.
If $x_{i} x_{k} \in T^{2}$, for some $i<k$, then $x_{k} \in\langle T\rangle$ and $\langle S \subseteq\langle T\rangle$ is abelian,
as required. Hence we can assume that $x_{1} x_{k}, \cdots, x_{k-1} x_{k}, x_{k}^{2} \notin T^{2}$, then $\left|T^{2}\right| \leq\left|S^{2}\right|-k=3 k-3-k=2(k-1)-1$. Then

is a geometric progression with $a c=c a$.

Proof

Suppose that $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a subset of an ordered group, $x_{1}<x_{2}<\cdots<x_{k}$.
Assume $\left|S^{2}\right| \leq 3|S|-3$.
We want to show that $\langle S\rangle$ is abelian.
If $k=2$ or $k=3$, we prove directly the result.
Suppose $k>3$ and argue by induction on k. Write $T=\left\{x_{1}, \cdots, x_{k-1}\right\}$. Then either $\langle T\rangle$ is abelian or $\left|T^{2}\right| \leq 3|T|-3$, by the previous remarks.
By induction we can assume that $\langle T\rangle$ is abelian.
If $x_{i} x_{k} \in T^{2}$, for some $i<k$, then $x_{k} \in\langle T\rangle$ and $\langle S\rangle \subseteq\langle T\rangle$ is abelian, as required. Hence we can assume that $x_{1} x_{k}, \cdots, x_{k-1} x_{k}, x_{k}^{2} \notin T^{2}$, then $\left|T^{2}\right| \leq\left|S^{2}\right|-k=3 k-3-k=2(k-1)-1$. Then

is a geometric progression with $a c=c a$.

Proof

Suppose that $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a subset of an ordered group, $x_{1}<x_{2}<\cdots<x_{k}$.
Assume $\left|S^{2}\right| \leq 3|S|-3$.
We want to show that $\langle S\rangle$ is abelian.
If $k=2$ or $k=3$, we prove directly the result.
Suppose $k>3$ and argue by induction on k. Write $T=\left\{x_{1}, \cdots, x_{k-1}\right\}$. Then either $\langle T\rangle$ is abelian or $\left|T^{2}\right| \leq 3|T|-3$, by the previous remarks. By induction we can assume that $\langle T\rangle$ is abelian.

is a geometric progression with $a c=c a$.

Proof

Suppose that $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a subset of an ordered group, $x_{1}<x_{2}<\cdots<x_{k}$.
Assume $\left|S^{2}\right| \leq 3|S|-3$.
We want to show that $\langle S\rangle$ is abelian.
If $k=2$ or $k=3$, we prove directly the result.
Suppose $k>3$ and argue by induction on k. Write $T=\left\{x_{1}, \cdots, x_{k-1}\right\}$. Then either $\langle T\rangle$ is abelian or $\left|T^{2}\right| \leq 3|T|-3$, by the previous remarks. By induction we can assume that $\langle T\rangle$ is abelian. If $x_{i} x_{k} \in T^{2}$, for some $i<k$, then $x_{k} \in\langle T\rangle$ and $\langle S\rangle \subseteq\langle T\rangle$ is abelian , as required.

is a geometric progression with $a c=c a$.

Proof

Suppose that $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ is a subset of an ordered group, $x_{1}<x_{2}<\cdots<x_{k}$.
Assume $\left|S^{2}\right| \leq 3|S|-3$.
We want to show that $\langle S\rangle$ is abelian.
If $k=2$ or $k=3$, we prove directly the result.
Suppose $k>3$ and argue by induction on k. Write $T=\left\{x_{1}, \cdots, x_{k-1}\right\}$. Then either $\langle T\rangle$ is abelian or $\left|T^{2}\right| \leq 3|T|-3$, by the previous remarks. By induction we can assume that $\langle T\rangle$ is abelian. If $x_{i} x_{k} \in T^{2}$, for some $i<k$, then $x_{k} \in\langle T\rangle$ and $\langle S\rangle \subseteq\langle T\rangle$ is abelian, as required. Hence we can assume that $x_{1} x_{k}, \cdots, x_{k-1} x_{k}, x_{k}^{2} \notin T^{2}$, then $\left|T^{2}\right| \leq\left|S^{2}\right|-k=3 k-3-k=2(k-1)-1$. Then

$$
T=\left\{a, a c, \cdots, a c^{k-2}\right\}
$$

is a geometric progression with $a c=c a$.

Proof

Write

$$
V=\left\{x_{2}, \cdots, x_{k}\right\} .
$$

Considering the order opposite to $<$ and arguing on V as we did on T we get that V is abelian.
Moreover $|V| \leq 3$, since $k>3$. Then there exist $i \neq j$ such that $x_{k}\left(a c^{i}\right)=\left(a c^{i}\right) x_{k}$ and $x_{k}\left(a c^{j}\right)=\left(a c^{j}\right) x_{k}$. Then $x_{k}\left(c^{i-j}\right)=\left(c^{i-j}\right) x_{k}$ and $x_{k} c=c x_{k}$, since we are in an ordered group.
From $x_{k}\left(a c^{j}\right)=\left(a c^{j}\right) x_{k}$, we get that also $x_{k} a=a x_{k}$.
Thus $x_{k} \in C_{G}(T)$ and $\langle S\rangle$ is abelian, as required. //

The structure of $\langle S\rangle$ if $\left|S^{2}\right|=3|S|-2$

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)

Let G be an ordered group and let S be a finite subset of $G,|S| \geq 4$. If

$$
\left|S^{2}\right|=3|S|-2
$$

then one of the following holds:

- (1) $\langle S\rangle$ is an abelian group, at most 4-generated;
- (2) $\langle S\rangle=\langle a, b \mid b a=a b c, a c=c a, c b=b c\rangle$. In particular $\langle S\rangle$ is a nilpotent group of class 2;
- (3) $\langle S\rangle=\left\langle a, b \mid a^{b}=a^{2}\right\rangle$. Therefore $\langle S\rangle$ is the Baumslag-Solitar group $B(1,2)$;
- (4) $\langle S\rangle=\langle a\rangle \times\left\langle b, c \mid c^{b}=c^{2}\right\rangle$;
- (5) $\langle S\rangle=\left\langle a, b \mid a^{b^{2}}=a a^{b}, a a^{b}=a^{b} a\right\rangle$.

Definition

A group G is soluble if it has an abelian series, that is, there exists a series

$$
1=G_{0} \leq G_{1} \leq \cdots \leq G_{n}=G
$$

of subgroups of G such that G_{i} is normal in G_{i+1} and G_{i+1} / G_{i} is abelian, for all i.

The length of a shorter abelian series of G is the solubility length of G. Abelian groups are soluble of length 1 . Soluble group of length at most 2 are called metabelian.

Definition

A group G is soluble if it has an abelian series, that is, there exists a series

$$
1=G_{0} \leq G_{1} \leq \cdots \leq G_{n}=G
$$

of subgroups of G such that G_{i} is normal in G_{i+1} and G_{i+1} / G_{i} is abelian, for all i.

The length of a shorter abelian series of G is the solubility length of G. Abelian groups are soluble of length 1 . Soluble group of length at most 2 are called metabelian.

The structure of $\langle S\rangle$ if $\left|S^{2}\right|=3|S|-2$

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)

Let G be an ordered group and let S be a finite subset of $G,|S| \geq 4$. If

$$
\left|S^{2}\right|=3|S|-2
$$

then one of the following holds:

- (1) $\langle S\rangle$ is an abelian group, at most 4-generated;
- (2) $\langle S\rangle=\langle a, b \mid b a=a b c, a c=c a, b c=c b\rangle$. In particular $\langle S\rangle$ is a nilpotent group of class 2;
- (3) $\langle S\rangle=\left\langle a, b \mid a^{b}=a^{2}\right\rangle$. Therefore $\langle S\rangle$ is the Baumslag-Solitar group $B(1,2)$;
- (4) $\langle S\rangle=\langle a\rangle \times\left\langle b, c \mid c^{b}=c^{2}\right\rangle$;
- (5) $\langle S\rangle=\left\langle a, b \mid a^{b^{2}}=a a^{b}, a a^{b}=a^{b} a\right\rangle$.

The structure of $\langle S\rangle$ if $\left|S^{2}\right|=3|S|-2$

Corollary

Let G be an ordered group and let S be a finite subset of $G,|S| \geq 4$. If

$$
\left|S^{2}\right| \leq 3|S|-2
$$

then $\langle S\rangle$ is metabelian.

Corollary

Let G be an ordered group and let S be a finite subset of $G,|S| \geq 4$. If

$$
\left|S^{2}\right| \leq 3|S|-2
$$

and $\langle S\rangle$ is nilpotent, then it is nilpotent of class at most 2.

Problem

Is there an orderable group with a finite subset S of order k (for any $k \geq 4$) such that

$$
\left|S^{2}\right|=3|S|-1
$$

and $\langle S\rangle$ is non-metabelian (non-soluble)?

NO
 In fact we have:

Theorem (Freiman, Herzog, Longobardi,- , Plagne, Stanchescu, 2015)
Let G be an ordered group, $\beta \geq-2$ any integer and let k be an integer
such that $k \geq 2^{\beta+4}$. If S is a subset of G of finite size k and if
then $\langle S\rangle$ is metabelian, and it is nilpotent of class at most 2 if G is nilpotent.

Problem

Is there an orderable group with a finite subset S of order k (for any $k \geq 4$) such that

$$
\left|S^{2}\right|=3|S|-1
$$

and $\langle S\rangle$ is non-metabelian (non-soluble)?
NO
In fact we have:

Theorem (Freiman, Herzog, Longobardi,- , Plagne, Stanchescu, 2015)

Let G be an ordered group, $\beta>-2$ any integer and let k be an integer
such that $k \geq 2^{\beta+4}$. If S is a subset of G of finite size k and if
then $\langle S\rangle$ is metabelian, and it is nilpotent of class at most 2 if G is nilnotent

Problem

Is there an orderable group with a finite subset S of order k (for any $k \geq 4$) such that

$$
\left|S^{2}\right|=3|S|-1
$$

and $\langle S\rangle$ is non-metabelian (non-soluble)?
NO
In fact we have:

Theorem (Freiman, Herzog, Longobardi,- , Plagne, Stanchescu, 2015)

Let G be an ordered group, $\beta \geq-2$ any integer and let k be an integer such that $k \geq 2^{\beta+4}$. If S is a subset of G of finite size k and if

$$
\left|S^{2}\right| \leq 3 k+\beta,
$$

then $\langle S\rangle$ is metabelian, and it is nilpotent of class at most 2 if G is nilpotent.

An example

Example

For any $k \geq 3$, there exists an ordered group, with a subset S of finite size k, such that $\langle S\rangle$ is not soluble and

$$
\left|S^{2}\right|=4 k-5 .
$$

Let

$$
G=\langle a\rangle \times\langle b, c\rangle,
$$

where $\langle a\rangle$ is infinite cyclic and $\langle b, c\rangle$ is free of rank 2.
For any $k \geq 3$, define

$$
S=\left\{a, a c, \cdots, a c^{k-2}, b\right\} .
$$

Then

$$
\left|S^{2}\right|=4 k-5 .
$$

Problems

Conjecture (G. Freiman)
If G is any torsion-free group, S a finite subset of $G,|S| \geq 4$, and

$$
\left|S^{2}\right| \leq 3|S|-4,
$$

then S is contained in a geometric progression of length at most $2|S|-3$

Theorem (K.J. Böröczky, P.P. Palfy, O. Serra, Bull. London Math. Soc., 2012)

The conjecture of Freiman holds if

$$
\left|S^{2}\right| \leq 2|S|+\frac{1}{2}|S|^{\frac{1}{6}}-3
$$

Conjecture

If G is any torsion-free group, S a finite subset of $G,|S| \geq 4$, and

$$
\left|S^{2}\right| \leq 3|S|-2
$$

then $\langle S\rangle$ is metabelian and, if it is nilpotent, it is nilpotent of class 2
It follows from results of E. Breuillard, B. Green and T. Tao that
Remark
If $\left|S^{2}\right| \leq 3|S|-4$, then there exists a nilpotent subgroup H of nilpotency class c(3) and generated by at most $d(3)$ elements such that $S \subseteq Z H$ for some subset Z of the group such that $|Z| \leq s(3)$.

Conjecture

If G is any torsion-free group, S a finite subset of $G,|S| \geq 4$, and

$$
\left|S^{2}\right| \leq 3|S|-2
$$

then $\langle S\rangle$ is metabelian and, if it is nilpotent, it is nilpotent of class 2
It follows from results of E. Breuillard, B. Green and T. Tao that

Remark

If $\left|S^{2}\right| \leq 3|S|-4$, then there exists a nilpotent subgroup H of nilpotency class $c(3)$ and generated by at most $d(3)$ elements such that $S \subseteq Z H$, for some subset Z of the group such that $|Z| \leq s(3)$.

Thank you for the attention!

M. Maj
Dipartimento di Matematica
Università di Salerno
via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
E-mail address : mmaj@unisa.it

Bibliography

（ A．Balog，G．Shakan，On the sum of dilatations of a set， arXiv：1311．0422，preprint，1－10．
囯 O．Bogopolski，Abstract commensurators of solvable Baumslag－Solitar groups，Communications of Algebra，40（7）（2012）， 2494－2502．
：E．Breuillard，B．Green，T．Tao，The structure of approximate groups，arXiv：1110．5008（2011），preprint，1－91．
图 B．Bukh，Sums of dilates，Combin．Probab．Comput． 17 （2008）， no．5，627－639．
目 J．Cilleruelo，Y．O．Hamidoune，O．Serra，On sums of dilates， Combin．Probab．Comput． 18 （2009），no．6，871－880．

Bibliography

國 J．Cilleruelo，M．Silva，C．Vinuesa，A sumset problem，J． Comb．Number Theory 2 （2010），no．1，79－89．
目 G．A．Freiman，Foundations of a structural theory of set addition， Translations of mathematical monographs，v．37．American Mathematical Society，Providence，Rhode Island， 1973.
（ G．A．Freiman，Structure Theory of Set Addition，Astérisque， 258 （1999），1－33．
嗇 G．A．Freiman，M．Herzog，P．Longobardi，M．Maj，Small doubling in ordered groups，J．Austral．Math．Soc．， 96 （2014），no．3， 316－325．

Bibliography

围 G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, Direct and inverse problems in Additive Number Theory and in non-abelian group theory, European J. Combin., 40 (2014), 42-54.

- G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, A small doubling structure theorem in a BaumslagSolitar group, European J. Combin., 44 (2015), 106-124.
围 G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, Inverse problems in Additive Number Theory and in Non-Abelian Group Theory, arXiv:1303.3053 (2013), preprint, 1-31.

Bibliography

國 G．A．Freiman，M．Herzog，P．Longobardi，M．Maj，Y．V． Stanchescu，Some inverse problems in group theory，Note di Matematica， 34 （2014），89－104
國 G．A．Freiman，M．Herzog，P．Longobardi，M．Maj，A． Plagne，D．J．S．Robinson，Y．V．Stanchescu，On the structure of subsets of an orderable group，with some small doubling properties，J．Algebra， 445 （2016），307－326．
囯 G．A．Freiman，M．Herzog，P．Longobardi，M．Maj，A． Plagne，Y．V．Stanchescu，Small doubling in ordered groups： generators and structures，submitted
囲 G．A．Freiman，M．Herzog，P．Longobardi，M．Maj，Y．V． Stanchescu，Small doubling in ordered nilpotent group of class 2， submitted
R A．Geroldinger，I．Z．Ruzsa，Combinatorial Number Theory and Additive Group Theory，Birkäuser Verlag，Basel－Boston－Berlin， 2009.

Bibliography

（ B．Green，What is ．．．an approximate group ？，Notices Amer． Math．Soc． 59 （2012），no．5，655－656．
击 Y．O．Hamidoune，A．Plagne，A generalization of Freiman＇s 3k－3 theorem，Acta Arith． 103 （2002），no．2，147－156．
圊 Y．O．Hamidoune，J．Rué，A lower bound for the size of a Minkowski sum of dilates，Combin．Probab．Comput． 20 （2011），no． 2，249－256．
囯 M．I．Kargapolov，Completely orderable groups，Algebra i Logica（2） 1 （1962），16－21．
固 V．F．Lev，P．Y．Smeliansky，On addition of two distinct sets of integers，Acta Arith． 70 （1995），no．1，85－91．

Bibliography

囯 M．B．Nathanson，Additive number theory－Inverse problems and geometry of sumsets，Springer，New York， 1996.
國 M．B．Nathanson，Inverse problems for linear forms over finite sets of integers，J．Ramanujan Math．Soc． 23 （2008），no．2，151－165．
國 A．Plagne，S．Tringali，Sums of dilates in ordered groups， arXiv：1403．0934v2（2014），preprint，1－14．
图 Z．Ruzsa，Generalized arithmetic progressions and sumsets，Acta Math．Hungar．65（4）（1994），379－388．
䍰 T．Sanders，The structure theory of set addition revisited，Bull． Amer．Math．Soc．50（1）（2013），93－127．

Bibliography

目 D．Shan－Shan，C．Hui－Qin，S．Zhi－Wei，On a sumset problem for integers，arXiv：1011．5438（2010）．
F．V．Stanchescu，On addition of two distinct sets of integers， Acta Arith． 75 （1996），no．2，191－194．
國 Y．V．Stanchescu，On the structure of sets with small doubling property on the plane．I．，Acta Arith． 83 （1998），no．2，127－141．
圊 Y．V．Stanchescu，The structure of d－dimensional sets with small sumset，J．Number Theory 130 （2010），no．2，289－303．
T．T．Tao，Product set estimates for non－commutative groups，Combinatorica 28（5）（2008），547－594．

