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Basic definition

Definitions

If S is a subset of a group G (+), then we denote

2S = S + S := {x + y | x ∈ S , y ∈ S}
2S the double of S

If G is a multiplicative group, then we denote

S2 = SS := {xy | x ∈ S , y ∈ S}
S2 is also called the square of S



Background

Let S be a finite subset of a group G .

Remark

|S | ≤ |S2| ≤ |S |2.

The bounds are sharp.
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Remark

|S | ≤ |S2| ≤ |S |2.
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Background

Example

If S is a subgroup of G, then S2 = S .

More generally, if S = xH, where H is a subgroup of G and xH = Hx,
then S2 = xHxH = x2H and |S2| = |S |.



Background: some inverse results

Proposition

Let S be a non-empty finite subset of a group G.

|S2| = |S | if and only if S = xH, where H ≤ G and xH = Hx .



Background: some inverse results

Proposition

Let S be a non-empty finite subset of a group G.

If

|S2| < 3
2
|S |,

then H = SS−1 is a finite subgroup of G of order |S2|, and
S ⊂ Hx = xH for some x ∈ NG (S).



Background: some inverse results

More generally

Proposition (Freiman-Hamidoune-Kneser)

Let S be a non-empty finite subset of a group G. Suppose that

|S2| ≤ (2− ε)|S |, 0 ≤ ε < 1.

Then there exists a finite subgroup H of cardinality ≥ c(ε)|S |, such that
S is covered by at most C (ε) right-cosets of H, where c(ε) and C (ε)

depend only on ε .



Problem

What lower bound one can get on |S2| if we assume G torsion-free?



Background - direct results

Proposition

If S is a non-empty finite subset of the group of the integers, then we

have

|2S | ≥ 2|S | − 1.

Proof. We use the fact that the integers are totally ordered. Write
S = {x1, x2, · · · , xk}, and assume
x1 < x2 < · · · < xk . Clearly

x1 + x1 < ... < x1 + xk < x2 + xk < ... < xk + xk

Hence |2S | ≥ 2k − 1, as required. //



Background - direct results

More generally:

Theorem (J.H.B. Kemperman, Indag. Mat., 1956)

If S is a non-empty finite subset of a torsion-free group, then we have

|S2| ≥ 2|S | − 1.

Problem
Is this bound sharp?



An example

Definition
If a, r 6= 1 are elements of a multiplicative group G , a geometric left
(rigth) progression with ratio r and length n is the subset of G

{a, ar , ar2, · · · , arn−1}({a, ra, r2a, · · · , rn−1a}).

If G is an additive group

{a, a+ r , a+ 2r , · · · , a+ (n − 1)r}

is called an arithmetic progression with difference r and length n.



An example

Example

If S = {a, ar , ar2, · · · , arn−1} is a geometric progression in a torsion-free

group and ar = ra, then S2 = {a2, a2r , a2r2, · · · , a2r2n−2} has order

2|S | − 1.



Theorem (Freiman, Schein, Proc. Amer. Math. Soc. 1991)

If S is a finite subset of a torsion-free group, |S | = k ≥ 2,

|S2| = 2|S | − 1

if and only if

S = {a, aq, · · · , aqk−1}, and either aq = qa or aqa−1 = q−1.

In particular, if |S2| = 2|S | − 1, then S is contained in a left coset of a
cyclic subgroup of G .



Background - inverse results

Theorem (Y.O. Hamidoune, A.S. Lladó, O. Serra, Combinatorica, 1998)

If S is a finite subset of a torsion-free group, |S | = k ≥ 4, if

|S2| ≤ 2|S |,

then there exist a, q ∈ G such that

S = {a, aq, · · · , aqk} \ {c}, with c ∈ {a, aq}.



Doubling problems

Let G be a group and S a finite subset of G .
Let α, β real numbers

Problem

What is the structure of S if |S2| satisfies

|S2| ≤ α|S |+ β?

Problems of this kind are called inverse problems of doubling type in
additive number theory. The coefficient α, or more precisely the ratio
|S2|
|S| is called the doubling coefficient of S .



Doubling problems

Inverse problems of doubling type have been first investigated by G.A.
Freiman.

E. Breuillard, Y. O. Hamidoune, B. Green, M. Kneser, A.S. Lladó,
A. Plagne, P.P. Palfy. Z. Ruzsa, O. Serra, Y.V. Stanchescu, T.
Tao....

There are two main types of questions one may ask.



Doubling property

Problem
What is the general type of structure that S can have if

|S2| ≤ α|S |+ β?

How behaves this type of structure when α increases?

Studied recently by many authors

E.Breuillard,B.Green, I.Ruzsa,T.Tao...

Very powerful general results have been obtained (leading to a
qualitatively complete structure theorem thanks to the concepts of
nilprogressions and approximate groups).



Small doubling problems

But these results are not very precise quantitatively.

Problem

For a given (in general quite small) range of values for α find the precise
(and possibly complete) description of those finite sets S which satisfy

|S2| ≤ α|S |+ β,

with α and |β| small.

Problems of this kind are called inverse problems of small doubling
type.



Small doubling problems

Theorem (G. Freiman)

Let S be a finite set of integers with k ≥ 3 elements and suppose that

|2S | ≤ 3k − 4.

Then S is contained in an arithmetic progression of size
2k − 3:

{a, a+ q, a+ 2q, · · · , a+ (2k − 4)q}.



Small doubling problems

Conjecture (G. Freiman)

If G is any torsion-free group, S a finite subset of G, |S | ≥ 4, and

|S2| ≤ 3|S | − 4,

then S is contained in a geometric progression of length at most 2|S |−3.



Small doubling problems

Theorem (G. Freiman)

Let S be a finite set of integers with k ≥ 2 elements and suppose that

|2S | ≤ 3k − 3.

Then one of the following holds:
(i) S is contained in an arithmetic progression of size at most 2k − 1
(ii) S is a bi-arithmetic progression

S = {a, a+q, a+2q, · · · , a+(i−1)q}∪{b, b+q, a+2q, · · · , b+(j−1)q}.

(iii) k = 6 and S has a determined structure.



Small doubling problems

Problem

Let G be any torsion-free group, S a finite subset of G , |S | ≥ 3.

What is the structure of S if

|S2| ≤ 3|S | − 3?



Small doubling problems

Freiman studied also the case |2S | = 3|S | − 2, S a subset of the integers.
He proved that, with the exception of some cases with |S | small, then
either S is contained in an arithmetic progression or it is the union of two
arithmetic progressions with same difference.

Conjecture (G. Freiman)

If G is any torsion-free group, S a finite subset of G, |S | ≥ 11, and

|S2| ≤ 3|S | − 2,

then S is contained in a geometric progression of length at most
2|S |+ 1 or it is the union of two geometric progressions with same ratio.



Small doubling problems

Small doubling problems have been studied in abelian groups by many
authors.
Y. O. Hamidoune, B. Green, M. Kneser, A.S. Lladò, A. Plagne,
P.P. Palfy. Z. Ruzsa, O. Serra, Y.V. Stanchescu...

In a series of papers with
Gregory Freiman, Marcel Herzog, Patrizia Longobardi , Yonutz
Stanchescu, Alan Plagne, Derek Robinson
we study Freiman’s Conjectures and more generally small doubling
problems with doubling coefficient 3, in the class of orderable groups



Small doubling problems

Small doubling problems have been studied in abelian groups by many
authors.
Y. O. Hamidoune, B. Green, M. Kneser, A.S. Lladò, A. Plagne,
P.P. Palfy. Z. Ruzsa, O. Serra, Y.V. Stanchescu...

In a series of papers with
Gregory Freiman, Marcel Herzog, Patrizia Longobardi , Yonutz
Stanchescu, Alan Plagne, Derek Robinson
we study Freiman’s Conjectures and more generally small doubling
problems with doubling coefficient 3, in the class of orderable groups



Orderable groups

Definition
Let G be a group and suppose that a total order relation ≤ is defined on
the set G .
We say that (G ,≤) is an ordered group if for all a, b, x , y ∈ G ,

the inequality a ≤ b implies that xay ≤ xby .

Definition

A group G is orderable if there exists a total order relation ≤ on the set
G , such that (G ,≤) is an ordered group.



Orderable groups

Remark

Any ordered group is torsion-free.

Theorem (F.W. Levi)

An abelian group G is orderable if and only if it is torsion-free.

Theorem (K. Iwasawa - A.I. Mal’cev - B.H. Neumann)

The class of orderable groups contains the class of torsion-free
nilpotent groups.



Orderable groups

Remark

Any ordered group is torsion-free.

Theorem (F.W. Levi)

An abelian group G is orderable if and only if it is torsion-free.

Theorem (K. Iwasawa - A.I. Mal’cev - B.H. Neumann)

The class of orderable groups contains the class of torsion-free
nilpotent groups.



Orderable groups

Remark

Any ordered group is torsion-free.

Theorem (F.W. Levi)

An abelian group G is orderable if and only if it is torsion-free.

Theorem (K. Iwasawa - A.I. Mal’cev - B.H. Neumann)

The class of orderable groups contains the class of torsion-free
nilpotent groups.



Definition

A group G is nilpotent if it has a central series, that is, there exists a
series

1 = G0 ≤ G1 ≤ · · · ≤ Gn = G

of normal subgroups of G such that Gi+1/Gi is contained in the center of
G/Gi for all i .

The center Z (G ) of a group G is the set of elements that commute with
every element of G :

Z (G ) = {x ∈ G |gx = xg , for all g ∈ G}.

The length of a shorter central series of G is the nilpotent class of G .
Abelian groups are nilpotent of class 1.
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G/Gi for all i .
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Abelian groups are nilpotent of class 1.



Orderable groups

Free groups are orderable. Pure braid groups are orderable.

The group
〈x , c | x−1cx = c−1〉

is not an orderable group.

More information concerning orderable groups may be found, for
example, in
R. Botto Mura and A. Rhemtulla, Orderable groups,
Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc.,
New York and Basel, 1977.
A.M.W. Glass, Partially ordered groups,
World Scientific Publishing Co., Series in Algebra, v. 7, 1999.



Small doubling in orderable groups

Theorem (Freiman, Herzog, Longobardi, - , J. Austral. Math. Soc., 2014)

Let (G ,≤) be an ordered group and let S be a finite subset of G of size
k ≥ 3.

Assume that

t = |S2| ≤ 3|S | − 4.

Then 〈S〉 is abelian. Moreover, there exists a, q ∈ G, such that

qa = aq and S is a subset of

{a, aq, aq2, · · · , aqt−k}.



Small doubling in orderable groups

Theorem (Freiman, Herzog, Longobardi, - , J. Austral. Math. Soc., 2014)

Let (G ,≤) be an ordered group and let S be a finite subset of G ,
|S | ≥ 3. Assume that

|S2| ≤ 3|S | − 3.

Then < S > is abelian.



Small doubling in orderable groups

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)

Let G be an ordered group and let S be a finite subset of G , |S | ≥ 3.
If

|S2| ≤ 3|S | − 3,

then 〈S〉 is abelian, at most 3-generated and one of the following holds:

(1) |S | = 6;

(2) S is a subset of a geometric progression of length at most
2|S | − 1 ;

(3) S = {act | 0 ≤ t ≤ t1 − 1} ∪ {bct | 0 ≤ t ≤ t2 − 1}



Small doubling in orderable groups

What about 〈S〉 if S is a subset of an orderable group and

|S2| ≤ 3|S | − 2?

Is it abelian? Is it abelian if |S | is big enough?
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Small doubling in orderable groups

Remark

There exists an ordered group G with a subset S of order k (for any k)
such that 〈S〉 is not abelian and |S2| = 3k − 2.

Example

Let
G = 〈a, b | b−1ab = a2〉,

the Baumslag-Solitar group B(1, 2) and

S = {b, ba, ba2, · · · , bak−1}.

Then
S2 = {b2, b2a, b2a2, b2a3, · · · , b2a3k−3}.

Thus 〈S〉 is non-abelian and |S2| = 3k − 2.
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Problem

Let G be an orderable group, S a finite subset of G , |S | ≥ 3.

What is the structure of 〈S〉 if

|S2| ≤ 3|S | − 2?



The structure of 〈S〉 if |S2| = 3|S | − 2

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)

Let G be an ordered group and let S be a finite subset of G , |S | ≥ 4. If

|S2| = 3|S | − 2

then one of the following holds:

(1) 〈S〉 is an abelian group, at most 4-generated;

(2) 〈S〉 = 〈a, b |ba = cab, ac = ca, cb = bc〉. In particular 〈S〉 is a
nilpotent group of class 2;

(3) 〈S〉 = 〈a, b | ab = a2〉. Therefore 〈S〉 is the Baumslag-Solitar
group B(1, 2);

(4) 〈S〉 = 〈a〉 × 〈b, c | cb = c2〉;
(5) 〈S〉 = 〈a, b | ab2

= aab, aab = aba〉.
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The structure of S if |S2| = 3|S | − 2

If 〈S〉 is abelian, then the structure of |S2| = 3|S | − 2 can be obtained
using some previous results by Freiman and Stanchescu.

Theorem
Let G be an ordered group and let S be a subset of G of finite size
k > 2. If

|S2| = 3k − 2,

and 〈S〉 is abelian, then one of the following possibilities occurs:

(1) |S | ≤ 11;

(2) S is a subset of a geometric progression of length at most
2|S |+ 1;

(3) S is contained in the union of two geometric progressions with
the same ratio.



The structure of S if |S2| = 3|S | − 2

If 〈S〉 is nilpotent of class 2, we have the following

Theorem (Freiman, Herzog, Longobardi, - , 2016)

Let G be a torsion-free nilpotent group of class 2 and let S be a subset of
G of finite size k ≥ 4. Then

|S2| = 3k − 2,

if and only if

S = {a, ac , ac2, · · · , ac i , b, bc, bc2, · · · , bc j},

with 1+ i + 1+ j = k and ab = bac or ba = abc, c > 1.



Proof

Proof. Write S = {a, ac , ac2, · · · , ac i , b, bc, bc2, · · · , bc j}, and suppose
for example ab = bac .
G is nilpotent of class 2, thus G/Z (G ) is abelian. Then
abZ (G ) = baZ (G ), thus c ∈ Z (G ).
Then we have

S2 = {a, ac , · · · , ac i}2∪{b, bc, · · · , bc j}2∪{ba, bac , · · · , bac i+j , abc i+j} =

= {a, ac , · · · , ac i}2∪{b, bc, · · · , bc j}2∪{ba, bac , · · · , bac i+j , bac i+j+1}.

Thus |S2| = 2(i + 1)− 1+ 2(j + 1)− 1+ i + j + 2 = 3i + 3j + 4 =

3(i + j + 2)− 2 = 3|S | − 2, as required. //
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The structure of S if |S2| = 3|S | − 2

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Robinson,
Stanchescu, J. Algebra, 2016)

Let G be an ordered group and let S be a subset of G of finite size
k > 2. If

|S2| = 3k − 2,

and 〈S〉 is non-abelian, then one of the following statements holds:

(1) |S | ≤ 4;

(2) S = {x , xc , xc2, · · · , xck−1},where cx = c2 or (c2)x = c ;

(3) S = {a, ac , ac2, · · · , ac i , b, bc, bc2, · · · , bc j}, with
1+ i + 1+ j = k and
ab = bac or ba = abc, ac = ca, bc = cb, c > 1.

Conversely if S has the structure in (2) and (3), then |S2| = 3|S | − 2.



Some methods

Remark

Any orderable group is an R-group.

A group G is an R-group if, with a, b ∈ G ,

an = bn, n 6= 0, implies a = b.

Remark
If G is an orderable group, a, b ∈ G and if anb = ban for some positive
integer n, then ab = ba.



Proofs of Theorems concerning the structure of 〈S〉

Let (G ,≤) be an ordered group, S = {x1, x2, · · · , xk−1, xk} a subset of
G , |S | = k , |S2| ≤ 3k − v , v ∈ {1, 2, 3, 4}.
Suppose x1 < x2 < · · · < xk−1 < xk .
Write

T = {x1, · · · , xk−1}.

We show that either

|T 2| ≤ 3(k − 1)− v , or 〈T 〉 is abelian.
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Proof

Theorem

Let (G ,≤) be an ordered group and let S = {x1, x2, · · · , xk} be a finite
subset of G of size k ≥ 2, with x1 < x2 · · · < xk .
Assume that

|S2| ≤ 3k − 3.

Then < S > is abelian.



Proof

Suppose that S = {x1, x2, · · · , xk} is a subset of an ordered group,
x1 < x2 < · · · < xk .

Assume |S2| ≤ 3|S | − 3.
We want to show that 〈S〉 is abelian.
If k = 2 or k = 3, we prove directly the result.
Suppose k > 3 and argue by induction on k . Write T = {x1, · · · , xk−1}.
Then either 〈T 〉 is abelian or |T 2| ≤ 3|T | − 3, by the previous remarks.
By induction we can assume that 〈T 〉 is abelian.
If xixk ∈ T 2, for some i < k , then xk ∈ 〈T 〉 and 〈S〉 ⊆ 〈T 〉 is abelian ,
as required. Hence we can assume that x1xk , · · · , xk−1xk , x2

k /∈ T 2, then
|T 2| ≤ |S2| − k = 3k − 3− k = 2(k − 1)− 1. Then

T = {a, ac , · · · , ack−2}

is a geometric progression with ac = ca.
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Proof

Write
V = {x2, · · · , xk}.

Considering the order opposite to < and arguing on V as we did on T we
get that V is abelian.
Moreover |V | ≤ 3, since k > 3. Then there exist i 6= j such that
xk(ac i ) = (ac i )xk and xk(ac j) = (ac j)xk . Then xk(c i−j) = (c i−j)xk and
xkc = cxk , since we are in an ordered group.
From xk(ac j) = (ac j)xk , we get that also xka = axk .

Thus xk ∈ CG (T ) and 〈S〉 is abelian, as required. //



The structure of 〈S〉 if |S2| = 3|S | − 2

Theorem (Freiman, Herzog, Longobardi, - , Plagne, Stanchescu, 2015)

Let G be an ordered group and let S be a finite subset of G , |S | ≥ 4. If

|S2| = 3|S | − 2

then one of the following holds:

(1) 〈S〉 is an abelian group, at most 4-generated;

(2) 〈S〉 = 〈a, b | ba = abc, ac = ca, cb = bc〉. In particular 〈S〉 is
a nilpotent group of class 2;

(3) 〈S〉 = 〈a, b | ab = a2〉. Therefore 〈S〉 is the Baumslag-Solitar
group B(1, 2);

(4) 〈S〉 = 〈a〉 × 〈b, c | cb = c2〉;
(5) 〈S〉 = 〈a, b | ab2

= aab, aab = aba〉.



Definition

A group G is soluble if it has an abelian series, that is, there exists a
series

1 = G0 ≤ G1 ≤ · · · ≤ Gn = G

of subgroups of G such that Gi is normal in Gi+1 and Gi+1/Gi is abelian,
for all i .

The length of a shorter abelian series of G is the solubility length of G .
Abelian groups are soluble of length 1. Soluble group of length at most 2
are called metabelian.
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The structure of 〈S〉 if |S2| = 3|S | − 2

Corollary

Let G be an ordered group and let S be a finite subset of G , |S | ≥ 4. If

|S2| ≤ 3|S | − 2,

then 〈S〉 is metabelian.

Corollary

Let G be an ordered group and let S be a finite subset of G , |S | ≥ 4. If

|S2| ≤ 3|S | − 2

and 〈S〉 is nilpotent, then it is nilpotent of class at most 2.



Problem

Is there an orderable group with a finite subset S of order k (for any
k ≥ 4) such that

|S2| = 3|S | − 1

and 〈S〉 is non-metabelian (non-soluble)?

NO
In fact we have:

Theorem (Freiman, Herzog, Longobardi,- , Plagne, Stanchescu, 2015)

Let G be an ordered group, β ≥ −2 any integer and let k be an integer
such that k ≥ 2β+4. If S is a subset of G of finite size k and if

|S2| ≤ 3k + β,

then 〈S〉 is metabelian, and it is nilpotent of class at most 2 if G is
nilpotent.
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An example

Example

For any k ≥ 3, there exists an ordered group, with a subset S of finite
size k, such that 〈S〉 is not soluble and

|S2| = 4k − 5.

Let
G = 〈a〉 × 〈b, c〉,

where 〈a〉 is infinite cyclic and 〈b, c〉 is free of rank 2.
For any k ≥ 3, define

S = {a, ac , · · · , ack−2, b}.

Then
|S2| = 4k − 5.



Problems

Conjecture (G. Freiman)

If G is any torsion-free group, S a finite subset of G, |S | ≥ 4, and

|S2| ≤ 3|S | − 4,

then S is contained in a geometric progression of length at most 2|S | − 3

Theorem (K.J. Böröczky, P.P. Palfy, O. Serra, Bull. London Math. Soc.,
2012)

The conjecture of Freiman holds if

|S2| ≤ 2|S |+ 1
2
|S |

1
6 − 3



Conjecture

If G is any torsion-free group, S a finite subset of G, |S | ≥ 4, and

|S2| ≤ 3|S | − 2,

then 〈S〉 is metabelian and, if it is nilpotent, it is nilpotent of class 2

It follows from results of E. Breuillard, B. Green and T. Tao that

Remark

If |S2| ≤ 3|S | − 4, then there exists a nilpotent subgroup H of nilpotency
class c(3) and generated by at most d(3) elements such that S ⊆ ZH,
for some subset Z of the group such that |Z | ≤ s(3).
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Remark

If |S2| ≤ 3|S | − 4, then there exists a nilpotent subgroup H of nilpotency
class c(3) and generated by at most d(3) elements such that S ⊆ ZH,
for some subset Z of the group such that |Z | ≤ s(3).
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