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Information theory: then to now

Early days. . .

• Q.1: What are the fundamental limits of data compression?

• Q.2: What are the fundamental limits of communication across a noisy
channel?

• Answered for simple settings by Shannon ’48, using a probabilistic formu-
lation

Over the decades. . .

• Recognition of the fundamental role of notions like entropy in probability
(e.g., in large deviations theory)

• Use of information theory to explore fundamental limits of statistical
inference

• Growing recognition of the usefulness of information theoretic ideas in
“pure mathematics”



Entropy of a Discrete Random Variable

•When random variable X has probability mass function p on a finite or
countable set A, the entropy of X is

H(X) = H(p) := −
∑
x∈A

p(x) log p(x) = E[− log p(X)]

• If the “alphabet” A is finite, H(X) ≤ log |A| with equality iff X is
uniformly distributed on A

• If X and Y are discrete random variables (on the same probability space),
then so is (X, Y ); so one can talk about the “joint entropy” H(X, Y ).
It is easy to see that H(X, Y ) ≤ H(X) + H(Y ), with equality iff X
and Y are independent

Why is it relevant?

• Entropy is a very meaningful measure of randomness: H(X) is the num-
ber of bits needed on average to encode X [Shannon ’48]



Motivation for this talk

The entropy of sums of random variables is ubiquitous in information theory.
What is the most general setting in which studying these makes sense?

Why should we care?

• Information theory: Our work has led to recent advances in the under-
standing of the interference channel [Wu-Shamai-Verdú ’15, Stotz-Boelcskei ’15],
and carries much promise for other problems

• Probability: Related to basic questions, even when the group is plain old
Rn. E.g.: rate of convergence in the (entropic) Central Limit Theorem
[Stam ’59, Johnson-Barron ’04, Artstein-Ball-Barthe-Naor ’04, M.-Barron ’07, etc.]

• Additive combinatorics: Sumset inequalities (inequalities for cardinalities
of sums of sets) play a key role in this fast-developing area of mathemat-
ics, and entropy allows one to adopt a more general probabilistic approach
to additive combinatorics [Ruzsa ’09, M.-Marcus-Tetali ’10–’12, Tao ’10, etc.]

• Convex geometry: Related to the “geometrization of probability” pro-
gram popularized by V. Milman (also C. Borell, K. Ball, etc.) [Lutwak-

Yang-Zhang ’04-’15, Bobkov-M.’11-’15, Fradelizi-M.-Wang ’15]



Classical Sumset inequalities

Despite the origins of additive combinatorics in number theory, the canvas of the field

has expanded in recent years to locally compact groups (we only consider locally compact

abelian– or LCA– groups). Sumset inequalities are a very useful tool. . .

Examples of “direct” inequalities

• Ruzsa triangle inequality

|A− C| ≤ |A−B| · |B − C|
|B|

• Sum-difference inequality

|A + B| ≤ |A−B|
3

|A| · |B|
• The “Cauchy-Davenport inequality on Z” says that

|A + B| ≥ |A| + |B| − 1

with equality iff A and B are AP’s with the same “step”

Examples from the Freiman (inverse) theory

• The Freiman theory provides structural (inverse sumset) results

E.g.: if |A + A| is not too large relative to |A|, then A is “close” to a “generalized

AP”



Combinatorics and Entropy

Discrete entropy: For probability mass function p(·) on a countable set A,
entropy H(p) = −

∑
x∈A p(x) log p(x)

Natural connection: For a finite set A, H(Unif(A)) = log |A| is the
maximum entropy of any distribution supported on A

Entropy in Classical Combinatorics

• Intersection families [Chung-Graham-Frankl-Shearer ’86]

• New proof of Bregman’s theorem, etc. [Radhakrishnan ’97-’03]

• Various counting problems [Kahn ’01, Friedgut-Kahn ’98, Brightwell-Tetali ’03,

Galvin-Tetali ’04, M.-Tetali ’07, Johnson-Kontoyiannis-M.’09]

Entropy in Additive Combinatorics

• Ruzsa ’09 (pioneered this approach, formulated basic questions)

• M.-Marcus-Tetali ’10, ’12, Jog-Anantharam ’12, M.-Wang-Woo ’14 (entropic “di-
rect” theory)

• Tao ’10 (entropic “inverse” theory, including Freiman’s theorem)



Differential Entropy on Rn

When random variable X = (X1, . . . , Xn) has density f (x) on Rn, the
entropy of X is

h(X) = h(f ) := −
∫
Rn
f (x) log f (x)dx

where dx represents Lebesgue measure on Rn

Key properties

• Translation-invariance:
h(X + b) = h(X) for any constant b ∈ Rn

• SL(n,R)-invariance:
Since h(AX) = h(X)+log det(A) for any n×n matrix A of real entries,
h(AX) = h(X) when det(A) = 1

Key non-properties

• Unlike discrete entropy, differential entropy is NOT always non-negative

• Unlike discrete entropy, differential entropy is NOT invariant with respect
to bijections



Non-Gaussianity

• The relative entropy between the distributions of X ∼ f and Y ∼ g is

D(f‖g) =

∫
f (x) log

f (x)

g(x)
dx

For any f, g, D(f‖g) ≥ 0 with equality iff f = g

• Relative Entropy is a very useful notion of “distance” between probability
measures (e.g., dominates total variation distance)

• For X ∼ f in Rn, its relative entropy from Gaussianity is

D(X) := D(X‖XG),

where XG is Gaussian with the same mean and covariance matrix as X

Observe:

• For any random vector X , its non-Gaussianity D(X) = h(XG)− h(X)

Proof: Gaussian density is exponential in first two moments

• Thus Gaussian is MaxEnt: N(0, σ2) has maximum entropy among all
densities on R with variance ≤ σ2

Proof: D(X) ≥ 0



Entropic Central Limit Theorem– I

Two observations . . .

• Gaussian is MaxEnt: N(0, σ2) has maximum entropy among all densities
on R with variance ≤ σ2

• Let Xi be i.i.d. with EX1 = 0 and EX2
1 = σ2.

For the CLT, we are interested in SM :=
1√
M

M∑
i=1

Xi

The CLT scaling preserves variance

suggest . . .

Question: Is it possible that the CLT may be interpreted like the 2nd law of
thermodynamics, in the sense that h(SM) monotonically increases in M until
it hits the maximum entropy possible (namely, the entropy of the Gaussian)?



Entropic Central Limit Theorem– II

Entropic CLT

If D(SM) <∞ for some M , then as M →∞,

D(SM) ↓ 0 or equivalently, h(SM) ↑ h(N(0, σ2))

Convergence shown by Barron ’86; monotonicity shown by Artstein-Ball-Barthe-

Naor ’04 with simple proof by Barron–M.’07

Remarks

•Monotonicity in n indicates that the entropy is a natural measure for
CLT convergence (cf. second law of thermodynamics)

• A key step towards the Entropic CLT is the Entropy Power Inequality
(“EPI”)
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Haar measure on LCA groups

Haar measure: Under some topological assumptions, an abelian group G
admits a measure λ that is translation-invariant, i.e., such that

λ(A + x) = λ(A) ∀A ⊂ G, ∀x ∈ G
where A+ x = {a+ x : a ∈ A}. Such a measure is called a Haar measure,
and is unique up to scaling by a positive constant

What assumptions? “LCA”

• The set G is a topological space such that x + y is a continuous function of (x, y)

• The topology on G is Hausdorff and locally compact

• The Haar measure is then a countably additive measure defined on the Borel σ-field on

G



Entropy on Groups

Let G be an LCA group, and λ be a Haar measure on G. If µ � λ is a
probability measure on G, the entropy of X ∼ µ is defined by

h(X) = −
∫
G

f (x) log f (x)λ(dx)

where f (x) = dµ
dλ(x) is the density of µ with respect to the Haar measure λ

Remarks

• Recall that X ∼ µ is said to have density f when

P(X ∈ A) =

∫
A

f (x)λ(dx), A ∈ G

• Usual abuse of notation: we write h(X) though h depends only on f

• In general, h(X) may or may not exist; if it does, it takes values in the
extended real line [−∞,+∞]

• If G is compact, the Haar measure λ is finite, and so we can normalize it
to get the “uniform” probability measure on G. Then, for every RV X ,

h(X) = −D(µ‖λ) ≤ 0



Entropy on Groups: Examples

Classical examples

• G discrete with counting measure: discrete entropy

• G = Rn with Lebesgue measure: differential entropy

Non-classical examples

• G = Tn, torus with Lebesgue measure: differential entropy on the torus

• G = (0,∞) with the Haar measure λ(dx) = x−1dx:
if f is the density (w.r.t. Lebesgue measure) of a positive random variable
X , then P(X ∈ A) =

∫
A f (x)dx =

∫
A xf (x)dxx , so

hG(X) = −
∫ ∞
0

[xf (x)] log[xf (x)]λ(dx) = −
∫ ∞
0

f (x)[log x + log f (x)]dx

= hR(X)− E[logX ]



Key Properties of Entropy on Groups

We cannot even talk about things like linear transformations on general
groups because they do not have a linear structure. Yet one has. . .

Lemma 1 (Translation-invariance)
Let X be a random variable taking values in G. If b ∈ G, then

h(X + b) = h(X)

Lemma 2 (SL(n,Z)-invariance) [M.-Singla ’15]

Let X be a random variable taking values in Gn, and denote by SLn(Z)
the set of n × n matrices A with integer entries and determinant 1. If
A ∈ SLn(Z), then

h(AX) = h(X)

Remark

• Integer linear combinations of group elements always makes sense in an
abelian group, e.g., 2x− 3y represents x + x + (−y) + (−y) + (−y)



A Question and an Answer

Setup: Let Y and Y ′ be i.i.d. G-valued random variables, with density f .
As usual, the entropy is h(Y ) = E[− log f (Y )]

Question

How different can h(Y + Y ′) and h(Y − Y ′) be?

First answer

For G = Z or G = R, the entropies of the sum and difference of two i.i.d.
random variables can differ by an arbitrarily real number

Precise formulation: [Abbe–Li–M.’16] Let G = Z or G = R. Given any
M ∈ R, there exist i.i.d. random variables Y, Y ′ of finite entropy such that

h(Y − Y ′)− h(Y + Y ′) = M (Ans. 1)

Note: [Lapidoth–Pete ’08] showed that for every M > 0, there exist i.i.d. random variables

Y, Y ′ such that h(Y −Y ′)−h(Y +Y ′) > M ; our answer also implies the opposite (which

is not symmetrical)



Achievable differences: examples

Fact: There exist i.i.d. Z-valued (or R-valued) random variables Y and Y ′

with finite entropy, such that h(Y −Y ′) and h(Y +Y ′) differ by an arbitrary
real number

Remarks:

• The analogous question for sets has a long history: Conway’s 1967 “con-
jecture”; MSTD set {1, 2, 3, 5, 8, 9, 13, 15, 16} of [Marica ’69]; Conway’s
MSTD set {0, 2, 3, 4, 7, 11, 12, 14}
• Non-MSTD sets can give rise to examples relevant to us: {0, 1, 3, 4, 5, 6, 7, 10}
• [Hegarty ’07] proved that there is no MSTD set in Z of size 7 and, up to

linear transformations, Conway’s set is the unique MSTD set of size 8.

• On Z/3Z, h(X −X ′) ≥ h(X + X ′) [Abbe-Li-M.’16]

• Just to prove that the difference can be arbitrarily large in either di-
rection, one can use a construction based on a dilation observation of
[S. K. Stein ’73] (for more differences than sums) or [Ruzsa ’92] (for both)



Achievable differences: proof

Fact: There exist i.i.d. Z-valued (or R-valued) random variables Y and Y ′

with finite entropy, such that h(Y −Y ′) and h(Y +Y ′) differ by an arbitrary
real number

Proof: If X ∈ {0, 1, · · · , n− 1}, H(X + Y )−H(X − Y ) is a continuous
function of n variables. By assuming n large enough, we know that this
function can take both positive and negative values. Since the function
is continuous, the intermediate value theorem implies that its range must
contain an open interval (a, b) with a < 0 < b. Let X ′ = (X1, · · · , Xk),
where Xi are independent copies of X , and let Y ′ be an independent copy
of X ′. Then

H(X ′ + Y ′)−H(X ′ − Y ′) = k[H(X + Y )−H(X − Y )]

The range of H(X ′ + Y ′) − H(X ′ − Y ′) thus contains (ka, kb), which
includes any real number by taking k large enough. While X ′, Y ′ ∈ Zk, the
linear transformation (x1, · · · , xk)→ x1 + dx2 + · · · + dk−1xk maps X, Y
to Z-valued random variables, and moreover, preserves entropy by taking d
large enough.



A Question and another Answer

Question

If Y and Y ′ are i.i.d. random variables taking values in the LCA group G,
how different can h(Y + Y ′) and h(Y − Y ′) be?

Another answer [Kontoyiannis–M.’15]

The entropies of the sum and difference of two i.i.d. random variables are
not too different

Precise formulation: Let G be any LCA group. For any two G-valued i.i.d.
random variables Y, Y ′ with finite entropy:

1

2
≤ h(Y + Y ′)− h(Y )

h(Y − Y ′)− h(Y )
≤ 2 (Ans. 2)



What do the two Answers tell us?

Together, they suggest that the natural quantities to consider are the differ-
ences

∆+ = h(Y + Y ′)− h(Y ) and ∆− = h(Y − Y ′)− h(Y )

Then (Ans. 1) states that the difference ∆+−∆− can be arbitrarily large,
while (Ans. 2) asserts that the ratio ∆+/∆− must always lie between 1

2 and
2

Remarks

• Observe that if G = Rn, ∆+ and ∆− are affine-invariant; so these facts
are related to the shape of the density

• This statement for discrete random variables (half due to [Ruzsa ’09, Tao

’10], half due to [M.-Marcus-Tetali ’12]) is the exact analogue of the doubling–
difference inequality for sets in additive combinatorics

• Only for discrete setting, [Abbe–Li–M.’16] observe that the analog of Freiman-
Pigarev inequality follows:

3

4
<
H(X + Y )

H(X − Y )
<

4

3
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Conditional entropy and mutual information

Conditional entropy of X given Y is

h(X|Y ) =

∫
h(X|Y = y)PY (dy)

where h(X|Y = y) is the entropy of the (regular) conditional distribution
PX(·|Y = y).

Two useful facts

• Shannon’s Chain Rule:

h(X, Y ) = h(Y ) + h(X|Y )

• Conditioning reduces entropy (or) mutual information is non-negative:

h(X)− h(X|Y ) = D(pX,Y ‖pX × pY ) := I(X ;Y ) ≥ 0



The Ruzsa divergence

Suppose X and Y are G-valued random variables with finite entropy. The
quantity

dR(X‖Y ) := h(X − Y ′)− h(X),

where X and Y ′ are taken to be independent random vectors with Y ′ having
the same distribution as Y , will be called the Ruzsa divergence

Lemma: If X and Y are independent RVs, then

dR(X‖Y ) = I(X − Y ;Y )

Proof:

dR(X‖Y ) = h(X − Y )− h(X)

= h(X − Y )− h(X|Y ) [independence]

= h(X − Y )− h(X − Y |Y ) [translation-invariance]

= I(X − Y ;Y )

Note: In particular, dR(X, Y ) ≥ 0 (for some groups like Rn, it is never 0 in
non-degenerate situations)



Key properties of the Ruzsa divergence

Theorem 1: If Xi are independent, then

dR(X1‖X3) ≤ dR(X1‖X2) + dR(X2‖X3)

Theorem 2: If X and Yi are all mutually independent, then

dR

(
X

∥∥∥∥ k∑
i=1

Yi

)
≤

k∑
i=1

dR(X‖Yi)

Remarks

• Theorem 1 is the analog of Ruzsa’s triangle inequality for sumsets

• Theorem 2 is the analog of Plünnecke-Ruzsa inequality for sumsets

• Theorem 2 is equivalent to the Submodularity Lemma:

h(X1 + X2 + X3) + h(X2) ≤ h(X1 + X2) + h(X3 + X2)



The Submodularity Lemma

Given independent G-valued RVs X1, X2, X3 with finite entropies,

h(X1 + X2 + X3) + h(X2) ≤ h(X1 + X2) + h(X3 + X2) [M. ’08]

Remarks

• For discrete groups, the Lemma is implicit in Kăımanovich-Vershik ’83, but was redis-

covered and significantly generalized by M.-Marcus-Tetali ’12 en route to proving some

conjectures of Ruzsa

• Discrete entropy is subadditive; trivially,

H(X1 + X2) ≤ H(X1, X2) ≤ H(X1) + H(X2)

This corresponds to putting X2 = 0 in discrete form of the Lemma

• Entropy is not subadditive in continuous settings; it is easy to construct examples on R
with

h(X1 + X2) > h(X1) + h(X2)

Note that putting X2 = 0 in the Lemma is no help since h(const.) = −∞

• This Lemma has many other applications, e.g., to convex geometry [Bobkov-M.’12]



Completing the proof of (Ans.2)

Want to show: If Y, Y ′ are i.i.d.,

h(Y + Y ′)− h(Y )

h(Y − Y ′)− h(Y )
∈ [12, 2]

Proof: If Y, Y ′, Z are independent random variables, then the Submodularity
Lemma says

h(Y + Y ′ + Z) + h(Z) ≤ h(Y + Z) + h(Y ′ + Z)

Since h(Y + Y ′) ≤ h(Y + Y ′ + Z),

h(Y + Y ′) + h(Z) ≤ h(Y + Z) + h(Y ′ + Z) (1)

Also the Ruzsa triangle inequality can be rewritten:

h(Y − Y ′) + h(Z) ≤ h(Y − Z) + h(Y ′ − Z) (2)

Taking now Y, Y ′ to be i.i.d. and Z to be an independent copy of −Y ,

h(Y + Y ′) + h(Y ) ≤ 2h(Y − Y ′)
h(Y − Y ′) + h(Y ) ≤ 2h(Y + Y ′)

which are the desired bounds
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Notation

Entropies

• Differential Entropy

h(f ) = −
∫
R
f log f

• Shannon Entropy

H(p) = H1(p) = −
∑
i∈Z

p(i) log p(i)

• Rényi Entropy of order r ∈ (0, 1) ∪ (1,∞), r = 0, and r =∞

Hr(p) =
1

1− r
log

[∑
i∈Z

p(i)r
]

H0(p) = log |supp(p)|

H∞(p) = − log

[
sup
i∈Z

p(i)

]
Given a random variable X ∼ f on R, or Y ∼ p on Z, we write

hr(X) = hr(f ) and Hr(Y ) = Hr(p)



Entropy Power Inequality on R

If X and Y independent R-valued random variables

e2h(X+Y ) ≥ e2h(X) + e2h(Y )

Remark

• Equivalent Formulation:

h(X + Y ) ≥ h(X# + Y #)

where X# and Y # independent Gaussians with h(X#) = h(X) and
h(Y #) = h(Y )

• Sharp lower bounds on entropies of convolutions

•Weak Formulation: If X and X ′ are IID,

h(X + X ′)− h(X) ≥ 1

2
log 2

• Closely related to the central limit theorem, log-Sobolev inequality, Heisen-
berg uncertainty principle etc.

Question: Is there a discrete analogue of the EPI?



Earlier Work

Unconditional results for Z-valued random variables

• [Tao ’10] proved the asymptotically sharp result: If X and X ′ are IID,

H(X + X ′)−H(X) ≥ 1

2
log 2− o(1)

where o(1) disappears as H(X) tends to infinity

• [Haghighatshoar–Abbe–Telatar ’13] If X and X ′ are IID,

H(X + X ′)−H(X) ≥ g(H(X))

for an increasing function g : R+ → R+ with g(0) = 0

Conditional results

• [Johnson–Yu ’10] have results involving thinning for ultra-log-concave ran-
dom variables (not directly related to our goals)

• Results mimicking EPI on R available for special subclasses of distribu-
tions on Z



Naive EPI for integers

The first (naive) conjecture that one might make for distributions on the
integers is

N(X + Y ) ≥ N(X) + N(Y ) (3)

where N(X) = exp{2H(X)} and H(·) denotes the Shannon entropy of the
independent Z-valued random variables X, Y

Remarks

• Counterexample: take both X and Y to be constants. More generally,
if X and Y are i.i.d. Bernoulli(p) with p 6= 0.5, then N(X + Y ) <
N(X) + N(Y ) [Sharma–Das–Muthukrishnan ’11]

• However, it is known that the inequality (3) holds true for binomial ran-
dom variables with parameter 1/2 [Harremöes–Vignat ’03]

• [Sharma–Das–Muthukrishnan ’11] showed that

N(Bin(m + n, p)) ≥ N(Bin(n, p)) + N(Bin(m, p))

if m,n ≥ n0(p)

• Not obvious that N(X) is the right functional to look at for Z-valued
random variables (in the real-valued case, the motivation comes from
Gaussian comparison, which is no longer directly relevant)



Suggestive set analogues

• Brunn-Minkowski inequality over R: For A,B ⊂ R,

|A + B| ≥ |A| + |B|
where m is Lebesgue measure

Proof: Since m(A + a) = m(A) for any a ∈ R, we may assume that sup(A) =

inf(B) = {0}, and also that 0 ∈ A∩B without changing the Lebesgue measure of any

of the sets A,B and A + B. Then A ∪B ⊆ A + B. This implies

m(A + B) ≥ m(A ∪B)

= m(A) + m(B)−m({0}) = m(A) + m(B).

• Cauchy-Davenport inequality over Z: For A,B ⊂ Z,

|A + B| ≥ |A| + |B| − 1 (4)

Proof: If c is counting measure on Z,

c(A + B) ≥ c(A ∪B)

= c(A) + c(B)− c({0}) = c(A) + c(B)− 1

• It is clear that the additional term −1 appears to remove the redun-
dancy: With a counting measure, the volume of a singleton set should
be considered, whereas it does not matter for Lebesgue measure.



A Natural Conjecture

By analogy with the inequalities for sets, one may wonder if

N(X + Y ) ≥ N(X) + N(Y )− 1

for independent Z-valued random variables X, Y

Remarks

• The old counterexample (constants) does not falsify this: the −1 is pre-
cisely the term needed to counter the zero entropy of the second constant
random variable.

• [Woo–M.’15] show Theorem: If X and Y are uniformly distributed over
finite sets A ⊂ Z and B ⊂ Z respectively

N(X + Y ) ≥ N(X) + N(Y )− 1

• Nonetheless the conjecture fails to hold in general: if X, Y are IID
Bernoulli(p) with 0 < p < 0.08 or 0.92 < p < 1, N(X + Y ) <
N(X) + N(Y )− 1 (a “small p effect”)



Other conjectures

More generally, is a Kneser-type inequality true for entropy? If X , Y , and
Z are independent, is it true that

N(X + Y + Z) + N(Z)

≥ N(X + Z) + N(Y + Z)?

Remarks

• False as asked; X and Y uniform on {0, 1} and Z uniform on {0, 1, 2}
gives a counterexample

• Heuristic reason for believing this may hold when Z is log-concave: If
A,B,C are finite subsets of Z, with C being a contiguous subset, then

|A + B + C| + |C| ≥ |A + C| + |B + C|
Proof is a simple extension of the reasoning for Cauchy-Davenport. Such
a result also holds in Rn when A,B,C convex and conjectured to hold
just under convexity of C [Fradelizi–M.–Marsiglietti–Zvavitch ’16]



A General EPI

Discrete Analogue of EPI [Wang–Woo–M.’14]

H(X + Y ) ≥ H(X+ + Y ∗)

where X and Y independent random variables, X+ and Y ∗ defined later

Remarks

• Sharp lower bound on entropy of convolutions

• Based on discrete rearrangements

• Unifies results for sets and random variables since it generalizes to Rényi
entropy

• Similar continuous version proved by [Wang–M.’14]



Rearrangements

A non-negative function p indexed by Z, p ∈ c0(Z), the space of functions
on Z vanishing at infinity

• p+ to be a permutation of p such that

p+(0) ≥ p+(1) ≥ p+(−1) ≥ p+(2) ≥ p+(−2) ≥ · · ·

• +p to be a permutation of p such that

+p(0) ≥+ p(−1) ≥+ p(1) ≥+ p(−2) ≥+ p(2) ≥ · · ·

• If p+ =+ p, define p∗ = p+(call p regular)

Remarks

• p+ and +p mirror images each other

• If p∗ exists, p largest value an odd number of times and each of the other
values an even number of times

• Rearrangements do not change Rényi entropy

Hr(p) = Hr(p
+) = Hr(

+p)



Examples of Rearrangement

−7 −4 1 3

p

−1 0 1 2

p+

⇒

−2 −1 0 1

+p

⇒

−7 −4 −1 1 3

p

−2 −1 0 1 2

p∗⇒



Majorization

For two probability mass functions p and q on Z, we say that p is majorized
by q (and write p ≺ q) if and only if for all non-negative integer k, we have∑

|i|≤k

p+(i) ≤
∑
|i|≤k

q+(i)

k+1∑
i=−k

p+(i) ≤
k+1∑
i=−k

q+(i)

Remarks

• The largest sum of k points in p is less than or equal to that in q

• Entire sums are the same



Rearrangement Inequality

Lemma 1

Let pj ∈ c0(Z), j = 1, 2, ··, n be non-negative functions on Z. Suppose
pj, j ≥ 2 are regular. Let a non-negative function g ∈ c0(Z). Then∑

i∈Z

g(i)p1 ? p2 ? · · ?pn(i) ≤
∑
i∈Z

g+(i)p+1 ? p
∗
2 ? p

∗
3 · · ? p∗n(i)

Remarks

• Based on Hardy-Littlewood-Pólya’s rearrangement inequality

q ? p1 ? p2 ? · · ?pn(0) ≤ +q ? p+1 ? p
∗
2 ? p

∗
3 · · ? p∗n(0)

• Let g(i) = q(−i) on i ∈ Z
• Restriction that pj, j ≥ 2 are regular is essential

• Implies a powerful majorization



Lower Bounds on Rényi Entropy of Convolutions

Theorem 1

Let pj, j = 1, 2, ··, n be probability mass functions on Z. Suppose pj, j ≥ 2
are regular.

p1 ? p2 ? · · ?pn ≺ p+1 ? p
∗
2 ? p

∗
3 ? · · ?p∗n

Theorem 2

Let φ(x) be a convex function defined on the non-negative real line such
that φ(0) = 0 and it is continuous at 0. Suppose p and q are probability
mass functions on Z. If p ≺ q∑

i

φ(p(i)) ≤
∑
i

φ(q(i))

provided that both sides are well defined

Theorem 3

Given same assumptions of Theorem 1 and 2∑
i

φ(p1 ? p2 ? · · ?pn(i)) ≤
∑
i

φ(p+1 ? p
∗
2 ? p

∗
3 ? · · ?p∗n(i))

provided that both sides are well defined



Lower Bounds on Rényi Entropy of Convolutions

Key Corollary

By using the continuous convexity and the nullity at zero of xr for 1 < r <
+∞, x log(x), and −xr for 0 < r < 1, we may conclude for any r ∈ [0,∞],

Hr(p ? q) ≥ Hr(p
∗ ? q+)

where p is regular

Implication

Consider two finite sets A and B on Z. Let p and q be uniformly distributed
on A and B with |A| odd.

supp(p ? q) = A + B supp(p∗ ? q+) = A# + B#

where A# := supp(p∗) and B# := supp(q+). Then |A#| = |A| and |B#| =
|B|. Since p is regular, r = 0 case implies

|A + B| ≥ |A# + B#| = |A| + |B| − 1

which is Cauchy-Davenport Inequality on Z



More Entropy Inequalities

More entropy inequalities are available if we use Sperner Theory

#-log-concave

Let p ∈ c0(Z) be a non-negative function on Z. Define p# to be a re-
arrangement of p such that supp(p#) is both order-preserving (i.e., i < j
implies p#(i) < p#(j)) and is supported on a set of consecutive integers

We call p #-log-concave if the distribution of p# is log-concave which is
equivalent to p#(i)2 ≥ p#(i− 1)p#(i + 1) for all i ∈ Z

−7 −4 1 3

p

−2 −1 0 1

p#

⇒ψp



More Entropy Inequalities

One of Our Results [Wang–Woo–M.’14]

For any 0 ≤ r ≤ +∞,

Hr(p ? q) ≥ Hr(p
# ? q#)

where p and q are #-log-concave

Implication

Let us consider p and q, uniformly distributed on finite sets A and B re-
spectively. Both p and q are #-log-concave. Let A# := supp(p#) and
B# := supp(q#), then |A| = |A#| and |B| = |B#|. We may conclude
Cauchy-Davenport Inequality on Z

|A + B| ≥ |A# + B#| = |A| + |B| − 1

Note that this removes the odd cardinality constraint of p in the previous
result



Probabilistic statement of Littlewood-Offord lemma

Setup

Let Xi be i.i.d. Bernoulli random variables, taking values 0 and 1, each with
probability 1

2. Suppose vi are real numbers with vi 6= 0. Define the random
variable

Sv =

n∑
i=1

Xivi,

and let Q(v) = maxxP(Sv = x)

Classical results

• [Littlewood–Offord ’43] proved that

Q(v) = O(n−1/2)

• [Erdős ’45] refined this by identifying an extremal set of vi; specifically he
showed that if v∗i = 1 for each i, then

Q(v) ≤ Q(v∗)



Application to Littlewood-Offord-type Inequalities

General Littlewood-Offord-Erdős-type question:

Let Xi be independent Z-valued random variables, and V = (0,∞)n. For
given v = (v1, . . . , vn) ∈ V , form the sum Sv =

∑n
i=1Xivi and define

Qr(v) = e−Hr(Sv)

We wish to study the problem

Maximize Qr(v) (or) Minimize Hr(Sv)

subject to v ∈ V

Theorem: Let Xi be independent Z-valued random variables, whose proba-
bility mass functions are symmetric and unimodal. For any v ∈ V ,

Qr(v) ≤ Qr(v
∗)

or equivalently, Hr(Sv) ≥ Hr(S
∗
v)

Remarks

• Observe that Q(v) = maxxP(Sv = x) defined earlier is just Q∞(v)

• The Theorem generalizes the Littlewood-Offord-Erdős lemma in 2 ways: much larger

class of distributions, and large class of entropies, but the extremizers stay the same!



Summary

• Steps towards an entropy theory for additive combinatorics of probability
densities in the general abelian setting

• Special phenomena of combinatorial interest in the finite abelian setting

• For Rn, the theory has close connections to convex geometry/geometric
functional analysis, as well as probability

Thank you!

◦ − ◦ − ◦


