

Patrizia LONGOBARDI

UNIVERSITÀ DEGLI STUDI DI SALERNO

Additive Combinatorics in Bordeaux Institut de Mathématiques de Bordeaux, France 11-15 avril 2016

Gregory A. Freiman, Marcel Herzog, P. L., Mercede Maj, Yonutz V. Stanchescu

Direct and inverse problems

in additive number theory and in non – abelian group theory

European J. Combin. 40 (2014), 42-54.

A small doubling structure theorem in a Baumslag - Solitar group

European J. Combin. 44 (2015), 106-124.

Paper's authors

Gregory A. Freiman - Marcel Herzog

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel e-mail: grisha@post.tau.ac.il email: herzogm@post.tau.ac.il

Patrizia Longobardi - Mercede Maj

Dipartimento di Matematica, Universita' di Salerno, 84084 Fisciano (Salerno), Italy email: plongobardi@unisa.it email: mmaj@unisa.it

Yonutz V. Stanchescu

Afeka Academic College, Tel Aviv 69107, Israel and The Open University of Israel, Raanana 43107, Israel email: yonis@afeka.ac.il and ionut@openu.ac.il

Definition

If X, Y are subsets of a (semi)group G, then we denote

 $XY = \{xy \mid x \in X, y \in Y\}$ and $X^2 = \{x_1x_2 \mid x_1, x_2 \in X\}$.

If $X = \{x\}$, then we denote XY by xY and if $Y = \{y\}$, then we write Xy instead of $X\{y\}$.

If G is an additive group, then we denote

 $X + Y = \{x + y \mid x \in X, y \in Y\}$ and $2X = \{x_1 + x_2 \mid x_1, x_2 \in X\}$.

X + Y is also called the (Minkowski) sumset of X and Y.

Direct and Inverse problems

Gregory A. Freiman, Structure theory of set addition, *Astérisque*, **258** (1999), 1-33

"Thus a **direct problem** in additive number theory is a problem which, given summands and some conditions, we discover something about the set of sums. An **inverse problem** in additive number theory is a problem in which, using some knowledge of the set of sums, we learn something about the set of summands."

Remark

Let X and Y be finite on-empty sets of integers.

Obviously

 $|X + Y| \ge |X| + |Y| - 1$

and

|X + Y| = |X| + |Y| - 1

if and only if

X and Y are arithmetic progressions with the same difference, unless one of them is a singeton.

3

Small doubling property

Let G be a group and S a finite subset of G. Let $S^2 = \{s_1s_2 \mid s_1, s_2 \in S\}.$

Problem

What if the structure of S if $|S^2|$ satisfies

 $|S^2| \le \alpha |S| + \beta,$

for some small $\alpha \geq 1$ and small $|\beta|$?

Definition

The subset S of G is said to satisfy the *small doubling property* if

$$|S^2| \le \alpha |S| + \beta,$$

<ロ> (四) (四) (日) (日) (日)

where α and β denote real numbers, $\alpha \geq 1$.

Let X and Y be finite sets of integers with k and h elements, respectively. Assume that

X and Y are arithmetic progressions with the same difference:

 $\begin{aligned} X &= \{a, a + d, a + 2d, ..., a + (k - 1)d\} \text{ and} \\ Y &= \{b, b + d, b + 2d, ..., b + (h - 1)d\} \text{ for some } k, h > 1 \text{ and } d \neq 0. \end{aligned}$ If, for instance, $h \leq k$, then

$$Y \subseteq \{(b-a) + x \mid x \in X\} = (b-a) + X.$$

Subsets of $\ensuremath{\mathbb{Z}}$ of the form

$$r * A := \{ rx \mid x \in A \},$$

where *r* is a **positive** integer and *A* is a **finite** subset of \mathbb{Z} , are called *r*-*dilates*.

Minkowski sums of dilates are defined as follows:

$$r_1 * A + \ldots + r_s * A = \{r_1 x_1 + \ldots + r_s x_s \mid x_i \in A, \ 1 \le i \le s\}.$$

イロト イポト イヨト イヨト

э

These sums have been recently studied in different situations by *Bukh*, *Cilleruelo*, *Hamidoune*, *Plagne*, *Rué*, *Silva*, *Vinuesa* and others.

In particular, they examined sums of two dilates of the form

$$A + r * A = \{a + rb \mid a, b \in A\}$$

and solved various *direct* and *inverse* problems concerning their sizes.

Dilates

For example, it was shown by J. Cilleruelo, M. Silva, C. Vinuesa (A sumset problem, *J. Comb. Number Theory* 2 (2010), no. 1, 79–89) that

$$|A+2*A| \ge 3|A|-2$$

and that

Theorem

$$|A + 2 * A| = 3|A| - 2$$

if and only if

A is an arithmetic progression.

$|A+2*A| \ge 3|A|-2$

J. Cilleruelo, M. Silva, C. Vinuesa,

A sumset problem,

J. Comb. Number Theory 2 (2010), no. 1, 79-89

announced in

M. B. Nathanson,

Inverse problems for linear forms over finite sets of integers, *J. Ramanujan Math. Soc.* **23** (2008), no. 2, 151–165.

Theorem (Y.O. Hamidoune, A. Plagne, 2002)

Let A be a finite set of integers. Then

 $|A + r * A| \ge 3|A| - 2$

for any integer $r \geq 2$.

Theorem (M.B. Nathanson, 2008)

Let A be a finite set of integers. Then

$$|A+r*A| \geq \frac{7}{2}|A|-2$$

for any integer $r \geq 3$.

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa, 2010)

For any finite set A of integers we have

 $|A+3*A| \ge 4|A|-4.$

Furthermore if |A + 3 * A| = 4|A| - 4, then $A = 3 * \{0, ..., n\} \cup (3 * \{0, ..., n\} + 1)$ or $A = \{0, 1, 3\}$ or $A = \{0, 1, 4\}$ or *A* is an affine transform of one of these sets.

Let A be **finite** subset of \mathbb{Z} .

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

 $|A + 3 * A| \ge 4|A| - 4.$

Question

What about
$$|A + r * A|$$
, where $r \ge 4$?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If
$$r \ge 3$$
, then $|A + r * A| \ge 4|A| - 4$.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 国 ▶ ● ○ ○

J. Cilleruelo, M. Silva, C. Vinuesa

Let A be a finite set of integers and let r > 1. Divide A into residue classes modulo r, and define \hat{A} to be the projection of A into $\mathbb{Z}/r\mathbb{Z}$.

Lemma

For arbitrary finite non empty sets B and $A = \bigcup_{i \in \hat{A}} (r * A_i + i)$ we have

(i)
$$|A + r * B| = \sum_{i \in \hat{A}} |A_i + B|$$

- (ii) $|A + r * B| \ge |A| + |A|(|B| 1)$
- (iii) Furthermore, if equality holds in (ii), then either |B| = 1or $|A_i| = 1$ for all $i \in \hat{A}_i$ or B and all the sets A_i with more than one element are arithmetic progressions with the same difference.

Proof. Let $A = \{x_1, x_2, \dots, x_k\}$ and assume $x_1 < x_2 < \dots < x_k$. Clearly $x_1 + rx_1 < x_2 + rx_1 < x_1 + rx_2 < x_2 + rx_2 < x_3 + rx_2 < x_2 + rx_3 < \dots$ $\dots < x_{k-1} + rx_{k-1} < x_k + rx_{k-1} < x_{k-1} + rx_k < x_k + rx_k$.

Then, for each *i* such that $1 \le i \le k - 1$ we have the three elements $x_i + rx_i < x_{i+1} + rx_i < x_i + rx_{i+1}$ and one more element $x_k + rx_k$. Therefore $|A + r * A| \ge 3(k - 1) + 1 = 3|A| - 2$, as required. //

Dilates

A similar argument shows that:

Theorem

If A is a finite set of integers and r, s are positive integers, $r \neq s$, then

 $|s*A+r*A|\geq 3|A|-2.$

Theorem (M.B. Nathanson, 2008)

If A is a finite set of integers and r, s are positive coprime integers, at least one of which is \geq 3, then

$$|s*A+r*A|\geq \frac{7}{2}|A|-3.$$

Theorem (A. Balog, G. Shakan)

For any relatively prime integers $1 \le p < q$ and for any finite set A of integers, one has

$$|p * A + q * A| \ge (p + q)|A| - (pq)^{(p+q-3)(p+q)+1}$$

A. Balog, G. Shakan, On the sum of dilatations of a set, *Acta Arith*. 2360 (2014), 153-162.

イロト イポト イヨト イヨト

3

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If |A + 2 * A| = 3|A| - 2, then A must be an arithmetic progression.

Question

What is the structure of the set A if |A + 2 * A| < 4|A| - 4?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If |A+2*A| < 4|A| - 4, $|A| \ge 3$,

then A is a subset of an arithmetic progression of size $\leq 2|A| - 3$.

Useful results

Write $[m, n] = \{x \in \mathbb{Z} \mid m \le x \le n\}$ and $\mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}$. Let A be a finite subset of \mathbb{Z} . Let $A = \{a_0 < a_1 < ... < a_{k-1}\}$ be a finite increasing set of k integers. By the *length* $\ell(A)$ of A we mean the difference

 $\ell(A) := \max(A) - \min(A) = a_{k-1} - a_0$

between its maximal and minimal elements and

 $h_A := \ell(A) + 1 - |A|$

denotes the number of *holes* in A, that is $h_A = |[a_0, a_{k-1}] \setminus A|$. Finally, if $k \ge 2$, then we denote

$$d(A) := g.c.d.(a_1 - a_0, a_2 - a_0, ..., a_{k-1} - a_0).$$

Useful results

Theorem (V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu)

Let A and B be finite subsets of \mathbb{N} such that $0 \in A \cap B$. Define

$$\delta_{A,B} = \begin{cases} 1, & \text{if } \ell(A) = \ell(B), \\ 0, & \text{if } \ell(A) \neq \ell(B). \end{cases}$$

Then the following statements hold:

(i) If $\ell(A) = \max(\ell(A), \ell(B)) \ge |A| + |B| - 1 - \delta_{A,B}$ and d(A) = 1, then

$$|A + B| \ge |A| + 2|B| - 2 - \delta_{A,B}.$$

(ii) If $\max(\ell(A), \ell(B)) \le |A| + |B| - 2 - \delta_{A,B}$, then

 $|A+B| \ge (|A|+|B|-1) + \max(h_A, h_B) = \max(\ell(A)+|B|, \ell(B)+|A|).$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If
$$|A+2*A| < 4|A|-4$$
 ,

then A is a subset of an arithmetic progression of size $\leq 2|A| - 3$.

(日) (部) (王) (王) (王)

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

- (a) If $1 \le k \le 2$, then |A + 2 * A| = 3k 2 and A is an arithmetic progression of size k.
- (b) If k ≥ 3, assume that |A + 2 * A| = (3k 2) + h < 4k 4. Then h≥ 0, |A + 2 * A| ≥ 3k - 2 and the set A is a subset of an arithmetic progression P = {a₀, a₀ + d, a₀ + 2d, ..., a₀ + (t - 1)d} of size |P| bounded by |P| ≤ k + h = |A + 2 * A| - 2k + 2 ≤ 2k - 3.
 (c) If k ≥ 1 and |A + 2 * A| = 3k - 2, then A is an arithmetic progression A = {a₀, a₀ + d, a₀ + 2d, ..., a₀ + (k - 1)d}.

Proof of the Theorem - sketch

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A = \{a_0 < a_1 < a_2 < \cdots < a_{k-1}\} \subset \mathbb{Z}$ be a finite set of integers of size $k = |A| \ge 1$. Then the following statements hold.

(b) If $k \ge 3$, assume that |A + 2 * A| = (3k - 2) + h < 4k - 4. Then $h \ge 0$, $|A + 2 * A| \ge 3k - 2$ and the set A is a subset of an arithmetic progression $P = \{a_0, a_0 + d, a_0 + 2d, \dots, a_0 + (t - 1)d\}$ of size |P| bounded by $|P| \le k + h = |A + 2 * A| - 2k + 2 \le 2k - 3$.

Sketch of the Proof (b) Suppose, first, that A is normal, i.e. $\min(A) = a_0 = 0$ and d = d(A) = gcd(A) = 1. Thus $\ell(A) = a_{k-1}$.

We split the set A into a disjoint union $A = A_0 \cup A_1$, where $A_0 \subseteq 2\mathbb{Z}$ and $A_1 \subseteq 2\mathbb{Z} + 1$. Since $0 = a_0 \in A_0$ and d(A) = 1, it follows that $A_0 \neq \emptyset$ and $A_1 \neq \emptyset$. Therefore

$$m := |A_0| \ge 1, n := |A_1| \ge 1$$
 and $k = m + n$. . .

. . . It follows that Theorem (b) holds for **normal** sets A satisfying the hypothesis.

Let now A be an **arbitrary** finite set of $k = |A| \ge 3$ integers satisfying the hypothesis. We define

$$B = \frac{1}{d(A)}(A - a_0) = \{\frac{1}{d(A)}(x - a_0) : x \in A\}.$$

...

//

3

Small doubling property

Let G be a (semi)group and S a finite subset of G. Let $S^2 = \{s_1s_2 \mid s_1, s_2 \in S\}.$

Problem

What if the structure of S if $|S^2|$ satisfies

 $|S^2| \le \alpha |S| + \beta,$

for some small $\alpha \geq 1$ and small $|\beta|$?

Definition

The subset S of G is said to satisfy the *small doubling property* if

$$|S^2| \le \alpha |S| + \beta,$$

<ロ> (四) (四) (日) (日) (日)

where α and β denote real numbers, $\alpha \geq 1$.

For integers *m* and *n*, the general Baumslag-Solitar group $\mathcal{BS}(m, n)$ is a group with two generators *a*, *b* and one defining relation $b^{-1}a^mb = a^n$:

$$\mathcal{BS}(m,n) = \langle a, b \mid a^m b = ba^n \rangle.$$

"The Baumslag-Solitar groups are a particular class of two-generator one-relator groups which have played a surprisingly useful role in combinatorial and, more recently (the 1990s), geometric group theory. In a number of situations they have provided examples which mark boundaries between different classes of groups and they often provide a testbed for theories and techniques."

Encyclopedia of Mathematics

The groups $\mathcal{BS}(m, n) = \langle a, b \mid a^m b = ba^n \rangle$

$$\mathcal{BS}(m,n) = \langle a,b \mid a^m b = ba^n \rangle$$

1933-2014

These groups were introduced by **Gilbert Baumslag** and **Donald Solitar** in 1962 in order to provide some simple <u>examples of</u> non-Hopfian groups.

1932-2008

("Some two generator one-relator non-Hopfian groups", *Bull. Amer. Math. Soc.*, **689** (1962), 199-201).

A group is called *Hopfian* (or nowadays *Hopf*) if every epimorphism from the group to itself is an isomorphism.

The name is derived from the topologist *Heinz Hopf* and is thought to reflect the fact that whether fundamental groups of manifolds are *Hopfian* is of interest.

1874-1971

In the early 30's *Heinz Hopf* asked whether a finitely generated group can be isomorphic to a proper factor group of itself (*i.e. whether a finitely generated non-Hopfian group exists*).

In 1944 *Reinhold Baer* published an example of a non-Hopfian 2-generator group but then he discovered a mistake.

1902-1979

1909-2002

B.H. Neumann in 1950 found an example of a 2-generator infinitely related non-Hopfian group.

("A two-generator group isomorphic to a proper facotor group, *J. London Math. Soc.*, **25** (1950), 247-248)

One year after *Graham Higman* exhibited an example of a finitely presented non-Hopfian group; more precisesely, this group was 3-generator and with 2 defining relations.

1917-2008

<ロ> (四) (四) (三) (三) (三)

("A finitely related group with an isomorphic proper factor group, *J. London Math. Soc.*, **26** (1951), 59-61).

In his paper he quoted *Bernhard* and *Hanna Neumann* for a proof that one-relator groups had to be Hopfian, but they were only trying to show this, unsuccessfully.

Finally, in 1962, *Gilbert Baumslag* and *Donald Solitar* showed that the group

$$\mathcal{BS}(2,3) = \langle a, b \mid a^2b = ba^3 \rangle$$

is non-Hopfian.

When $\mathcal{BS}(m, n)$ is a Hopfian group

More generally:

$$\mathcal{BS}(m,n) = \langle a,b \mid a^mb = ba^n
angle$$

is Hopfian if and only if : (i) |m| = |n| or (ii) |m| = 1 or (iii) |n| = 1 or (iv) $\pi(m) = \pi(n)$ where $\pi(m)$ denotes the set of prime divisors of m.

We shall concentrate on the Baumslag-Solitar groups

$$\mathcal{BS}(1,n) = \langle a, b \mid ab = ba^n \rangle.$$

They are extensions of a copy of the additive group of *n*-adic rational numbers by an infinite cyclic group. They are orderable groups.

Let S be a finite subset of $\mathcal{BS}(1,n)$ of size k contained in the coset $b^r < a >$ for some $\mathbf{r} \ge \mathbf{0}$. Then

$$S = \{b^r a^{x_0}, b^r a^{x_1}, \dots, b^r a^{x_{k-1}}\},\$$

where $A = \{x_0, x_1, \dots, x_{k_1-1}\}$ is a subset of \mathbb{Z} . We introduce now the notation

$$S = \{b^r a^x : x \in A\} =: b^r a^A.$$

Thus |S| = |A|.

Let S be a finite subset of $\mathcal{BS}(1, n)$ of size k contained in the coset $b^r < a >$ for some $r \in \mathbb{N}$ and let T be a finite subset of $\mathcal{BS}(1, n)$ of size h contained in the coset $b^s < a >$ for some $s \in \mathbb{N}$.

Then

$$S=b^ra^A$$
 , $T=b^sa^B$

for some subsets $A = \{x_0, x_1, \dots, x_{k-1}\}$ and $B = \{y_0, y_1, \dots, y_{h-1}\}$ of \mathbb{Z} . From $a^{\times}b = ba^{n\times}$ for each $x \in \mathbb{Z}$ it follows

 $(b^{r}a^{x})(b^{s}a^{y}) = b^{r}(a^{x}b^{s})a^{y} = b^{r}(b^{s}a^{n^{s}x})a^{y} = b^{r+s}a^{n^{s}x+y}.$

The groups $\mathcal{BS}(1, n) = \langle a, b \mid ab = ba^n \rangle$

Therefore if

$$S=b^ra^A$$
 , $T=b^sa^B$

where $A = \{x_0, x_1, \dots, x_{k-1}\}$ and $B = \{y_0, y_1, \dots, y_{h-1}\}$ are subsets of \mathbb{Z} , from $(b^r a^x)(b^s a^y) = b^{r+s} a^{n^s x+y}$ it follows

$$ST = b^{r+s}a^{n^s*A+B}$$
 and $|ST| = |n^s*A+B|$.

In particular

$$S^2 = b^{2r}a^{n^r*A+A}$$
 and $|S^2| = |n^r*A+A|$.

The groups
$$\mathcal{BS}(1, n) = \langle a, b \mid ab = ba^n \rangle$$

Theorem

Suppose that $S = b^r a^A \subseteq \mathcal{BS}(1, n), T = b^s a^B \subseteq \mathcal{BS}(1, n),$ where $r, s \in \mathbb{Z}, r, s \ge 0$ and A, B are finite subsets of \mathbb{Z} . Then

 $ST = b^{r+s}a^{n^s*A+B}$

and

$$|ST| = |n^s * A + B|.$$

In particular,

$$S^2 = b^{2r} a^{n^r * A + A}$$

and

$$|S^{2}| = |n^{r} * A + A| = |A + n^{r} * A|.$$

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If A is a finite set of integers, then $|A + 2 * A| \ge 3|A| - 2$ and |A + 2 * A| = 3|A| - 2 if and only if A is an arithmetic progression.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If $S = ba^A \subseteq \mathcal{BS}(1,2)$, where A is a finite subset of \mathbb{Z} , then

 $|S^2| \ge 3|S| - 2$

and if $|S^2| = 3|S| - 2$, then A is an arithmetic progression and S is a geometric progression.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If A is a finite set of integers, $|A| \ge 3$ and |A + 2 * A| < 4|A| - 4, then A is a subset of an arithmetic progression of size $\le 2|A| - 3$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If $S = ba^A \subseteq \mathcal{BS}(1,2)$, $|S| \ge 3$ and $|S^2| < 4|S| - 4$, then A is a subset of an arithmetic progression of size $\le 2|S| - 3$.

The group
$$\mathcal{BS}(1,2) = \langle a,b \mid ab = ba^2 \rangle$$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If A is a finite set of integers, $r \ge 3$, then $|A + r * A| \ge 4|A| - 4$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $S = b^m a^A \subseteq BS(1, 2)$, where A is a finite set of integers of size $k \ge 2$ and $m \ge 2$. Then

 $|S^2| \ge 4k - 4.$

イロト (局) (ヨ) (ヨ) (ヨ) の(の

The group $\mathcal{BS}(1, n) = \langle a, b \mid ab = ba^n \rangle$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If A is a finite set of integers, $r \ge 3$, then $|A + r * A| \ge 4|A| - 4$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $S \subseteq \mathcal{BS}(1, n)$ be a finite set of size $k = |S| \ge 2$ and suppose that $n \ge 3$ and

 $S = ba^A$,

where $A \subseteq \mathbb{Z}$ is a finite set of integers. Then

$$|S^2| = |A+n*A| \ge 4k-4.$$

The group
$$\mathcal{BS}(1,2) = \langle a, b \mid ab = ba^2 \rangle$$

Problem

What is the structure of an arbitrary subset of $\mathcal{BS}(1,2)$, satisfying some small doubling condition?

Very difficult!

Definition

Consider the submonoid

 $\mathcal{BS}^+(1,2):=\{b^ma^x\in\mathcal{BS}(1,2)\mid x,m\in\mathbb{Z},m\geq 0\}$ of $\mathcal{BS}(1,2).$

Definition

```
Consider the submonoid
```

 $\mathcal{BS}^+(1,2)=\{b^ma^x\in\mathcal{BS}(1,2)\mid x,m\in\mathbb{Z},m\geq 0\}$ of $\mathcal{BS}(1,2).$

Remark

All elements of

 $\mathcal{BS}^+(1,2)$

can be uniquely represented by a word of the form $b^m a^x$, which is not the case in $\mathcal{BS}(1,2)$.

$$\mathcal{BS}^+(1,2) = \{b^m a^x \in \mathcal{BS}(1,2) \mid x,m \in \mathbb{Z},m \geq 0\}$$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let S be a finite non-abelian subset of $\mathcal{BS}^+(1,2)$ and suppose that

$$|S^2| < \frac{7}{2}|S| - 4.$$

Then

$$S = ba^A$$
,

where A is a set of integers of size |S|, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S| - 2$.

$\mathcal{BS}^+(1,2) = \{b^m a^x \in \mathcal{BS}(1,2) \mid x, m \in \mathbb{Z}, m \ge 0\}$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let *S* be a finite non-abelian subset of $\mathcal{BS}^+(1,2)$ and suppose that $|S^2| < \frac{7}{2}|S| - 4$. Then $S = ba^A$, where *A* is a set of integers of size |S|, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S| - 2$.

Remark

This result is best possible.

In fact, there exist non-abelian subsets *S* of $\mathcal{BS}^+(1,2)$ satisfying $|S^2| = \frac{7}{2}|S| - 4$, which are not contained in one coset of $\langle a \rangle$ in $\mathcal{BS}^+(1,2)$.

イロト イポト イヨト イヨト 二日

$\mathcal{BS}^+(1,2) = \{b^m a^x \in \mathcal{BS}(1,2) \mid x, m \in \mathbb{Z}, m \ge 0\}$

There exist non-abelian subsets *S* of $\mathcal{BS}^+(1,2)$ satisfying $|S^2| = \frac{7}{2}|S| - 4$, which are not contained in one coset of $\langle a \rangle$ in $\mathcal{BS}^+(1,2)$.

Example Let $S = a^{A_0} \cup \{b\} \subset \mathcal{BS}^+(1,2),$ where $A_0 = \{0, 1, 2, ..., k-2\}$ and k > 2 is even.

The set S is clearly non-abelian, and it intersects non-trivially the two distinct cosets $1\langle a \rangle$ and $b\langle a \rangle$ of $\langle a \rangle$ in $\mathcal{BS}^+(1,2)$. Moreover, $|S^2| = \frac{7}{2}k - 4$.

$$S=a^{\mathcal{A}_0}\cup\{b\}\subset\mathcal{BS}^+(1,2)$$
, $A_0=\{0,1,2,...,k-2\},k>2$ even

For,

$$S^2 = a^{A_0}a^{A_0} \cup ba^{A_0} \cup a^{A_0}b \cup \{b^2\},$$

and using $a^{A_0}b = ba^{2*A_0}$, we get

 $S^{2} = a^{A_{0}+A_{0}} \cup (ba^{A_{0}} \cup ba^{2*A_{0}}) \cup \{b^{2}\} = a^{A_{0}+A_{0}} \cup ba^{A_{0} \cup 2*A_{0}} \cup \{b^{2}\}$

. Since

$$a^{A_0+A_0}\subseteq a^{\mathbb{Z}}, \qquad ba^{A_0\cup 2*A_0}\subseteq ba^{\mathbb{Z}}, \quad \{b^2\}\subseteq b^2a^{\mathbb{Z}},$$

it follows that the three components of S^2 are disjoint in pairs and hence

$$|S^2| = |A_0 + A_0| + |A_0 \cup 2 * A_0| + 1 =$$

$$(2k-3) + (\frac{3}{2}k-2) + 1 = \frac{7}{2}k - 4.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem - sketch of the Proof

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let S be a finite non-abelian subset of $\mathcal{BS}^+(1,2)$ and suppose that $|S^2| < \frac{7}{2}|S| - 4$. Then $S = ba^A$, where A is a set of integers of size |S|, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S| - 2$.

Write

 $S = S_0 \cup S_1 \cup \ldots \cup S_t,$

where $t \ge 0$,

$$S_i = b^{m_i} a^{A_i} \subseteq b^{m_i} a^{\mathbb{Z}},$$

 $0 \leq m_0 < m_1 < \ldots < m_t,$

and

$$k_i=|S_i|=|A_i|\geq 1.$$

イロト イポト イヨト イヨト

Lemma (1)

Let $S \subseteq BS^+(1,2)$ be a finite set of size k = |S|. Suppose that $t \ge 1$ and there is $0 \le j \le t$ such that $k_j = |S_j| \ge 2$. Then S generates a non-abelian group.

Proof. If j = 0 and $m_0 = 0$, then $k_0 = |S_0| = |A_0| \ge 2$ implies that $S_0 \ne \{1\}$ and $A_0 \ne \{0\}$. Since $t \ge 1$, it follows that there are three integers m, x, z such that $m \ge 1, x \ne 0, a^x \in S_0$ and $b^m a^z \in S_1$. In this case

$$a^{ imes}(b^ma^z)=b^ma^{z+2^m imes}
eq(b^ma^z)a^{ imes}=b^ma^{z+ imes}$$

and therefore S generates a non-abelian group.

It remains to examine the following two cases:

- (i) $j \ge 1$.
- (ii) j = 0 and $m_0 \ge 1$.

If $j \ge 1$, then $m_j \ge 1$ and $k_j = |S_j| = |b^{m_j}a^{A_j}| \ge 2$ implies that $|A_j| \ge 2$. On the other hand, if j = 0 and $m_0 \ge 1$, then $k_0 = |S_0| = |b^{m_0}a^{A_0}| \ge 2$ implies that $|A_0| \ge 2$. In both cases, let $m = m_j$. Then $m \ge 1$ and there are two integers $x \ne y$ such that $\{b^m a^x, b^m a^y\} \subseteq S_j$. We conclude that

$$(b^{m}a^{x})(b^{m}a^{y}) = b^{2m}a^{y+2^{m}x} \neq (b^{m}a^{y})(b^{m}a^{x}) = b^{2m}a^{x+2^{m}y},$$

since $x \neq y$ and $m \geq 1$. The proof of Lemma is complete. //

$S = S_0 \cup S_1 \cup ... \cup S_t$, $t \ge 0$, $S_i = b^{m_i} a^{\mathcal{A}_i}$, $0 \le m_0 < m_1 < ... < m_t$

Let $S \subseteq \mathcal{BS}^+(1,2)$ be a finite set of size k = |S|.

Lemma (2)

Suppose that t = 1. Then $|S^2| \ge \frac{7}{2}|S| - 4$.

Lemma (3)

Suppose that $t \ge 2$. If $k_0 = |S_0| \ge 2$ and $k_i = |S_i| = 1$ for every $1 \le i \le t$, then $|S^2| \ge 4k - 5 > \frac{7}{2}|S| - 4$ and the inequality is tight.

Lemma (4)

Suppose that $t \ge 2$. If $k_t = |S_t| \ge 2$ and $k_i = |S_i| = 1$ for every $0 \le i \le t - 1$, then $|S^2| \ge 4k - 5 > \frac{7}{2}|S| - 4$ and the inequality is tight.

...

Question

What about arbitrary finite subsets of $\mathcal{BS}(1,2)$?

Question

What about arbitrary finite subsets of $\mathcal{BS}(1, n)$, $n \neq 2$?

Question

What about arbitrary finite subsets of any $\mathcal{BS}(m, n)$?

メロト メポト メヨト メヨト ヨー わえの

Thank you for the attention !

▲ 同 ▶ ▲ 国 ▶ ▲

э

P. Longobardi Dipartimento di Matematica Università di Salerno via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy E-mail address : plongobardi@unisa.it

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- A. Balog, G. Shakan, On the sum of dilatations of a set, *Acta Arith.* **2360** (2014), 153-162.
- O. Bogopolski, Abstract commensurators of solvable Baumslag-Solitar groups, *Communications of Algebra*, 40(7) (2012), 2494-2502.
- E. Breuillard, B. Green, T. Tao, The structure of approximate groups, *Publications mathématiques de l'IHÉS*, **116** (2012), no. 1, 115-221.
- B. Bukh, Sums of dilates, *Combin. Probab. Comput.* **17** (2008), no. 5, 627-639.
- J. Cilleruelo, Y. O. Hamidoune, O. Serra, On sums of dilates, *Combin. Probab. Comput.* **18** (2009), no. 6, 871-880.

- J. Cilleruelo, M. Silva, C. Vinuesa, A sumset problem, J. Comb. Number Theory 2 (2010), no. 1, 79-89.
- G. A. Freiman, Foundations of a structural theory of set addition, Translations of mathematical monographs, v. 37. American Mathematical Society, Providence, Rhode Island, 1973.
- G. A. Freiman, Structure Theory of Set Addition, *Astérisque*, **258** (1999), 1-33.
- G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Small doubling in ordered groups, *J. Austral. Math. Soc.*, **96** (2014), 316-325.

- G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, Direct and inverse problems in Additive Number Theory and in non-abelian group theory, *European J. Combin.*, **40** (2014), 42-54.
- G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, A small doubling structure theorem in a Baumslag-Solitar group, *European J. Combin.*, **44** (2015), 106-124.
- G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, Inverse problems in Additive Number Theory and in Non-Abelian Group Theory, *arXiv*:1303.3053 (2013), preprint, 1-31.
- A. Geroldinger, I. Z. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Birkäuser Verlag, Basel - Boston - Berlin, 2009.

- B. Green, What is ... an approximate group ?, *Notices Amer. Math. Soc.* **59** (2012), no. 5, 655-656.
- Y. O. Hamidoune, A. Plagne, A generalization of Freiman's 3k–3 theorem, *Acta Arith.* **103** (2002), no. 2, 147-156.
- Y. O. Hamidoune, J. Rué, A lower bound for the size of a Minkowski sum of dilates, *Combin. Probab. Comput.* **20** (2011), no. 2, 249-256.
- M. I. Kargapolov, Completely orderable groups, *Algebra i Logica (2)* **1** (1962), 16-21.
- V. F. Lev, P. Y. Smeliansky, On addition of two distinct sets of integers, *Acta Arith.* **70** (1995), no. 1, 85-91.

- M. B. Nathanson, Additive number theory Inverse problems and geometry of sumsets, Springer, New York, 1996.
- M. B. Nathanson, Inverse problems for linear forms over finite sets of integers, *J. Ramanujan Math. Soc.* **23** (2008), no. 2, 151-165.
- A. Plagne, S. Tringali, Sums of dilates in ordered groups, *arXiv*:1403.0934v2 (2014), preprint, 1-14, *Comm. in Algebra*, to appear.
- Z. Ruzsa, Generalized arithmetic progressions and sumsets, *Acta Math. Hungar.* **65(4)** (1994), 379-388.
- T. Sanders, The structure theory of set addition revisited, *Bull. Amer. Math. Soc.* **50(1)** (2013), 93-127.

- D. Shan-Shan, C. Hui-Qin, S. Zhi-Wei, On a sumset problem for integers, *Electron. J. Combin.* **21** (2014), no. 1, 1-25.
- Y. V. Stanchescu, On addition of two distinct sets of integers, *Acta Arith.* **75** (1996), no. 2, 191-194.
- Y. V. Stanchescu, On the structure of sets with small doubling property on the plane.I., *Acta Arith.* **83** (1998), no. 2, 127-141.
- Y. V. Stanchescu, The structure of d-dimensional sets with small sumset, *J. Number Theory* **130** (2010), no. 2, 289-303.
- T. C. Tao, Product set estimates for non-commutative groups, *Combinatorica* **28(5)** (2008), 547-594.