Dilates and
 Baumslag-Solitar groups

Patrizia LONGOBARDI

UNIVERSITÀ DEGLI STUDI DI SALERNO

Additive Combinatorics in Bordeaux
Institut de Mathématiques de Bordeaux, France 11-15 avril 2016

Papers

Gregory A. Freiman, Marcel Herzog, P. L., Mercede Maj, Yonutz V. Stanchescu

Direct and inverse problems

 in additive number theory and in non - abelian group theoryEuropean J. Combin. 40 (2014), 42-54.

A small doubling structure theorem in a Baumslag - Solitar group

European J. Combin. 44 (2015), 106-124.

Paper's authors

Gregory A. Freiman - Marcel HerzogSchool of Mathematical Sciences, Tel Aviv University,Tel Aviv 69978, Israele-mail: grisha@post.tau.ac.ilemail: herzogm@post.tau.ac.il
Patrizia Longobardi - Mercede Maj
Dipartimento di Matematica, Universita' di Salerno,84084 Fisciano (Salerno), Italy
email: plongobardi@unisa.it
email: mmaj@unisa.it
Yonutz V. StanchescuAfeka Academic College, Tel Aviv 69107, Israel andThe Open University of Israel, Raanana 43107, Israelemail: yonis@afeka.ac.il and ionut@openu.ac.il

Basic definition

Definition

If X, Y are subsets of a (semi)group G, then we denote

$$
X Y=\{x y \mid x \in X, y \in Y\} \quad \text { and } \quad X^{2}=\left\{x_{1} x_{2} \mid x_{1}, x_{2} \in X\right\} .
$$

If $X=\{x\}$, then we denote $X Y$ by $x Y$ and if $Y=\{y\}$, then we write $X y$ instead of $X\{y\}$.
If G is an additive group, then we denote
$X+Y=\{x+y \mid x \in X, y \in Y\} \quad$ and $\quad 2 X=\left\{x_{1}+x_{2} \mid x_{1}, x_{2} \in X\right\}$.
$X+Y$ is also called the (Minkowski) sumset of X and Y.

Background

Direct and Inverse problems

Gregory A. Freiman, Structure theory of set addition, Astérisque, 258 (1999), 1-33
"Thus a direct problem in additive number theory is a problem which, given summands and some conditions, we discover something about the set of sums. An inverse problem in additive number theory is a problem in which, using some knowledge of the set of sums, we learn something about the set of summands."

Background

Remark

Let X and Y be finite on-empty sets of integers.
Obviously

$$
|X+Y| \geq|X|+|Y|-1
$$

and

$$
\begin{gathered}
|X+Y|=|X|+|Y|-1 \\
\text { if and only if }
\end{gathered}
$$

X and Y are arithmetic progressions with the same difference, unless one of them is a singeton.

Small doubling property

Let G be a group and S a finite subset of G.
Let $S^{2}=\left\{s_{1} s_{2} \mid s_{1}, s_{2} \in S\right\}$.

Problem

What if the structure of S if $\left|S^{2}\right|$ satisfies

$$
\left|S^{2}\right| \leq \alpha|S|+\beta,
$$

for some small $\alpha \geq 1$ and small $|\beta|$?

Definition

The subset S of G is said to satisfy the small doubling property if

$$
\left|S^{2}\right| \leq \alpha|S|+\beta
$$

where α and β denote real numbers, $\alpha \geq 1$.

A remark

Let X and Y be finite sets of integers with k and h elements, respectively. Assume that
X and Y are arithmetic progressions with the same difference:
$X=\{a, a+d, a+2 d, \ldots, a+(k-1) d\}$ and
$Y=\{b, b+d, b+2 d, \ldots, b+(h-1) d\}$ for some $k, h>1$ and $d \neq 0$.
If, for instance, $h \leq k$, then

$$
Y \subseteq\{(b-a)+x \mid x \in X\}=(b-a)+X
$$

Dilates

Subsets of \mathbb{Z} of the form

$$
r * A:=\{r x \mid x \in A\}
$$

where r is a positive integer and A is a finite subset of \mathbb{Z}, are called r-dilates.

Minkowski sums of dilates are defined as follows:

$$
r_{1} * A+\ldots+r_{s} * A=\left\{r_{1} x_{1}+\ldots+r_{s} x_{s} \mid x_{i} \in A, 1 \leq i \leq s\right\} .
$$

Dilates

These sums have been recently studied in different situations by Bukh, Cilleruelo, Hamidoune, Plagne, Rué, Silva, Vinuesa and others.

In particular, they examined sums of two dilates of the form

$$
A+r * A=\{a+r b \mid a, b \in A\}
$$

and solved various direct and inverse problems concerning their sizes.

Dilates

For example, it was shown by J. Cilleruelo, M. Silva, C. Vinuesa (A sumset problem, J. Comb. Number Theory 2 (2010), no. 1, 79-89) that

$$
|A+2 * A| \geq 3|A|-2
$$

and that

Theorem

$$
\begin{gathered}
|A+2 * A|=3|A|-2 \\
\text { if and only if }
\end{gathered}
$$

A is an arithmetic progression.

Dilates

$$
|A+2 * A| \geq 3|A|-2
$$

J. Cilleruelo, M. Silva, C. Vinuesa,

A sumset problem,
J. Comb. Number Theory 2 (2010), no. 1, 79-89
announced in

M. B. Nathanson,

Inverse problems for linear forms over finite sets of integers, J. Ramanujan Math. Soc. 23 (2008), no. 2, 151-165.

Dilates

Theorem (Y.O. Hamidoune, A. Plagne, 2002)

Let A be a finite set of integers. Then

$$
|A+r * A| \geq 3|A|-2
$$

for any integer $r \geq 2$.

Theorem (M.B. Nathanson, 2008)
Let A be a finite set of integers. Then

$$
|A+r * A| \geq \frac{7}{2}|A|-2
$$

for any integer $r \geq 3$.

Dilates

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa, 2010)

For any finite set A of integers we have

$$
|A+3 * A| \geq 4|A|-4
$$

Furthermore if $|A+3 * A|=4|A|-4$, then
$A=3 *\{0, \ldots, n\} \cup(3 *\{0, \ldots, n\}+1)$ or $A=\{0,1,3\}$ or $A=\{0,1,4\}$ or A is an affine transform of one of these sets.

Dilates

Let A be finite subset of \mathbb{Z}.
Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

$$
|A+3 * A| \geq 4|A|-4
$$

Question

$$
\text { What about }|A+r * A|, \text { where } r \geq 4 \text { ? }
$$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

$$
\text { If } r \geq 3 \text {, then }|A+r * A| \geq 4|A|-4 \text {. }
$$

Dilates: $|A+2 * A| \geq 3|A|-2$

J. Cilleruelo, M. Silva, C. Vinuesa

Let A be a finite set of integers and let $r>1$. Divide A into residue classes modulo r, and define \hat{A} to be the projection of A into $\mathbb{Z} / r \mathbb{Z}$.

Lemma

For arbitrary finite non empty sets B and $A=\bigcup_{i \in \hat{A}}\left(r * A_{i}+i\right)$ we have
(i) $|A+r * B|=\sum_{i \in \hat{A}}\left|A_{i}+B\right|$
(ii) $|A+r * B| \geq|A|+|\hat{A}|(|B|-1)$
(iii) Furthermore, if equality holds in (ii), then either $|B|=1$ or $\left|A_{i}\right|=1$ for all $i \in \hat{A}_{i}$ or B and all the sets A_{i} with more than one element are arithmetic progressions with the same difference.

Dilates: $|A+r * A| \geq 3|A|-2$, for any $r \geq 2$

Proof. Let $A=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ and assume $x_{1}<x_{2}<\cdots<x_{k}$. Clearly

$$
\begin{gathered}
x_{1}+r x_{1}<x_{2}+r x_{1}<x_{1}+r x_{2}<x_{2}+r x_{2}<x_{3}+r x_{2}<x_{2}+r x_{3}<\ldots \\
\ldots<x_{k-1}+r x_{k-1}<x_{k}+r x_{k-1}<x_{k-1}+r x_{k}<x_{k}+r x_{k}
\end{gathered}
$$

Then, for each i such that $1 \leq i \leq k-1$ we have the three elements $x_{i}+r x_{i}<x_{i+1}+r x_{i}<x_{i}+r x_{i+1}$ and one more element $x_{k}+r x_{k}$. Therefore $|A+r * A| \geq 3(k-1)+1=3|A|-2$, as required. //

Dilates

A similar argument shows that:

Theorem

If A is a finite set of integers and r, s are positive integers, $r \neq s$, then

$$
|s * A+r * A| \geq 3|A|-2
$$

Theorem (M.B. Nathanson, 2008)

If A is a finite set of integers and r, s are positive coprime integers, at least one of which is ≥ 3, then

$$
|s * A+r * A| \geq \frac{7}{2}|A|-3 .
$$

Dilates

Theorem (A. Balog, G. Shakan)

For any relatively prime integers $1 \leq p<q$ and for any finite set A of integers, one has

$$
|p * A+q * A| \geq(p+q)|A|-(p q)^{(p+q-3)(p+q)+1} .
$$

A. Balog, G. Shakan, On the sum of dilatations of a set, Acta Arith. 2360 (2014), 153-162.

Dilates

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If $|A+2 * A|=3|A|-2$, then A must be an arithmetic progression.

Question

What is the structure of the set A if $|A+2 * A|<4|A|-4$?

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

$$
\text { If }|A+2 * A|<4|A|-4,|A| \geq 3,
$$

then A is a subset of an arithmetic progression of size $\leq 2|A|-3$.

Useful results

Write $[m, n]=\{x \in \mathbb{Z} \mid m \leq x \leq n\}$ and $\mathbb{N}=\{x \in \mathbb{Z} \mid x \geq 0\}$.
Let A be a finite subset of \mathbb{Z}.
Let $A=\left\{a_{0}<a_{1}<\ldots<a_{k-1}\right\}$ be a finite increasing set of k integers. By the length $\ell(A)$ of A we mean the difference

$$
\ell(A):=\max (A)-\min (A)=a_{k-1}-a_{0}
$$

between its maximal and minimal elements and

$$
h_{A}:=\ell(A)+1-|A|
$$

denotes the number of holes in A, that is $h_{A}=\left|\left[a_{0}, a_{k-1}\right] \backslash A\right|$.
Finally, if $k \geq 2$, then we denote

$$
d(A):=\text { g.c.d. }\left(a_{1}-a_{0}, a_{2}-a_{0}, \ldots, a_{k-1}-a_{0}\right) .
$$

Useful results

Theorem (V.F. Lev - P.Y. Smelianski and Y.V. Stanchescu)

Let A and B be finite subsets of \mathbb{N} such that $0 \in A \cap B$. Define

$$
\delta_{A, B}= \begin{cases}1, & \text { if } \ell(A)=\ell(B) \\ 0, & \text { if } \ell(A) \neq \ell(B)\end{cases}
$$

Then the following statements hold:
(i) If $\ell(A)=\max (\ell(A), \ell(B)) \geq|A|+|B|-1-\delta_{A, B}$ and $d(A)=1$, then

$$
|A+B| \geq|A|+2|B|-2-\delta_{A, B} .
$$

(ii) If $\max (\ell(A), \ell(B)) \leq|A|+|B|-2-\delta_{A, B}$, then

$$
|A+B| \geq(|A|+|B|-1)+\max \left(h_{A}, h_{B}\right)=\max (\ell(A)+|B|, \ell(B)+|A|) .
$$

Dilates

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

$$
\text { If }|A+2 * A|<4|A|-4
$$

then A is a subset of an arithmetic progression of size $\leq 2|A|-3$.

Dilates

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A=\left\{a_{0}<a_{1}<a_{2}<\cdots<a_{k-1}\right\} \subset \mathbb{Z}$ be a finite set of integers of size $k=|A| \geq 1$. Then the following statements hold.
(a) If $1 \leq k \leq 2$, then $|A+2 * A|=3 k-2$ and A is an arithmetic progression of size k.
(b) If $k \geq 3$, assume that $\quad|A+2 * A|=(3 k-2)+h<4 k-4$.

Then

$$
h \geq 0, \quad|A+2 * A| \geq 3 k-2
$$

and the set A is a subset of an arithmetic progression

$$
P=\left\{a_{0}, a_{0}+d, a_{0}+2 d, \ldots, a_{0}+(t-1) d\right\}
$$

of size $|P|$ bounded by $|P| \leq k+h=|A+2 * A|-2 k+2 \leq 2 k-3$.
(c) If $k \geq 1$ and $|A+2 * A|=3 k-2$, then A is an arithmetic progression

$$
A=\left\{a_{0}, a_{0}+d, a_{0}+2 d, \ldots, a_{0}+(k-1) d\right\} .
$$

Proof of the Theorem - sketch

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let $A=\left\{a_{0}<a_{1}<a_{2}<\cdots<a_{k-1}\right\} \subset \mathbb{Z}$ be a finite set of integers of size $k=|A| \geq 1$. Then the following statements hold.
(b) If $k \geq 3$, assume that $\quad|A+2 * A|=(3 k-2)+h<4 k-4$.

Then $\quad h \geq 0, \quad|A+2 * A| \geq 3 k-2$
and the set A is a subset of an arithmetic progression

$$
P=\left\{a_{0}, a_{0}+d, a_{0}+2 d, \ldots, a_{0}+(t-1) d\right\}
$$

of size $|P|$ bounded by $|P| \leq k+h=|A+2 * A|-2 k+2 \leq 2 k-3$.
Sketch of the Proof (b) Suppose, first, that A is normal, i.e. $\min (A)=a_{0}=0$ and $d=d(A)=\operatorname{gcd}(A)=1$. Thus $\ell(A)=a_{k-1}$.

We split the set A into a disjoint union $\quad A=A_{0} \cup A_{1}$, where $A_{0} \subseteq 2 \mathbb{Z}$ and $A_{1} \subseteq 2 \mathbb{Z}+1$. Since $0=a_{0} \in A_{0}$ and $d(A)=1$, it follows that $A_{0} \neq \emptyset$ and $A_{1} \neq \emptyset$. Therefore

$$
m:=\left|A_{0}\right| \geq 1, n:=\left|A_{1}\right| \geq 1 \text { and } k=m+n \ldots
$$

Proof of the Theorem - sketch

. . . It follows that Theorem (b) holds for normal sets A satisfying the hypothesis.
Let now A be an arbitrary finite set of $k=|A| \geq 3$ integers satisfying the hypothesis. We define

$$
B=\frac{1}{d(A)}\left(A-a_{0}\right)=\left\{\frac{1}{d(A)}\left(x-a_{0}\right): x \in A\right\} .
$$

Small doubling property

Let G be a (semi)group and S a finite subset of G.
Let $S^{2}=\left\{s_{1} s_{2} \mid s_{1}, s_{2} \in S\right\}$.

Problem

What if the structure of S if $\left|S^{2}\right|$ satisfies

$$
\left|S^{2}\right| \leq \alpha|S|+\beta,
$$

for some small $\alpha \geq 1$ and small $|\beta|$?

Definition

The subset S of G is said to satisfy the small doubling property if

$$
\left|S^{2}\right| \leq \alpha|S|+\beta,
$$

where α and β denote real numbers, $\alpha \geq 1$.

The groups $\mathcal{B S}(m, n)$

For integers m and n, the general Baumslag-Solitar group $\mathcal{B S}(m, n)$ is a group with two generators a, b and one defining relation $b^{-1} a^{m} b=a^{n}$:

$$
\mathcal{B S}(m, n)=\left\langle a, b \mid \quad a^{m} b=b a^{n}\right\rangle
$$

"The Baumslag-Solitar groups are a particular class of two-generator one-relator groups which have played a surprisingly useful role in combinatorial and, more recently (the 1990s), geometric group theory. In a number of situations they have provided examples which mark boundaries between different classes of groups and they often provide a testbed for theories and techniques."

Encyclopedia of Mathematics

The groups $\mathcal{B S}(m, n)=\left\langle a, b \mid \quad a^{m} b=b a^{n}\right\rangle$

$$
\mathcal{B S}(m, n)=\left\langle a, b \mid a^{m} b=b a^{n}\right\rangle
$$

These groups were introduced by Gilbert Baumslag and Donald Solitar in 1962 in order to provide some simple examples of non-Hopfian groups.

1932-2008
("Some two generator one-relator non-Hopfian groups", Bull. Amer. Math. Soc., 689 (1962), 199-201).

A group is called Hopfian (or nowadays Hopf) if every epimorphism from the group to itself is an isomorphism.

Hopfian groups

The name is derived from the topologist Heinz Hopf and is thought to reflect the fact that whether fundamental groups of manifolds are Hopfian is of interest.

1874-1971

In the early 30 's Heinz Hopf asked whether a finitely generated group can be isomorphic to a proper factor group of itself (i.e. whether a finitely generated non-Hopfian group exists).

Hopfian groups

In 1944 Reinhold Baer published an example of a non-Hopfian 2-generator group but then he discovered a mistake.

1902-1979

B.H. Neumann in 1950 found an example of a 2-generator infinitely related non-Hopfian group.

1909-2002
("A two-generator group isomorphic to a proper facotor group, J. London Math. Soc., 25 (1950), 247-248)

Hopfian groups

One year after Graham Higman exhibited an example of a finitely presented non-Hopfian group; more precisesely, this group was 3 -generator and with 2 defining relations.

1917-2008
("A finitely related group with an isomorphic proper factor group, J. London Math. Soc., 26 (1951), 59-61).

In his paper he quoted Bernhard and Hanna Neumann for a proof that one-relator groups had to be Hopfian, but they were only trying to show this, unsuccessfully.

Finally, in 1962, Gilbert Baumslag and Donald Solitar showed that the group

$$
\mathcal{B S}(2,3)=\left\langle a, b \mid \quad a^{2} b=b a^{3}\right\rangle
$$

is non-Hopfian.

When $\mathcal{B S}(m, n)$ is a Hopfian group

More generally:

$$
\mathcal{B S}(m, n)=\left\langle a, b \mid \quad a^{m} b=b a^{n}\right\rangle
$$

is Hopfian if and only if :
(i) $|m|=|n|$ or
(ii) $|m|=1 \quad$ or
(iii) $|n|=1 \quad$ or
(iv) $\pi(m)=\pi(n)$ where $\pi(m)$ denotes the set of prime divisors of m.

We shall concentrate on the Baumslag-Solitar groups

$$
\mathcal{B S}(1, n)=\left\langle a, b \mid \quad a b=b a^{n}\right\rangle
$$

They are extensions of a copy of the additive group of n-adic rational numbers by an infinite cyclic group. They are orderable groups.

The groups $\mathcal{B S}(1, n)=\left\langle a, b \mid a b=b a^{n}\right\rangle$

Let S be a finite subset of $\mathcal{B S}(1, n)$ of size k contained in the coset $b^{r}<a>$ for some $\mathbf{r} \geq \mathbf{0}$. Then

$$
S=\left\{b^{r} a^{x_{0}}, b^{r} a^{x_{1}}, \ldots, b^{r} a^{x_{k-1}}\right\}
$$

where $A=\left\{x_{0}, x_{1}, \ldots, x_{k_{1}-1}\right\}$ is a subset of \mathbb{Z}. We introduce now the notation

$$
S=\left\{b^{r} a^{x}: x \in A\right\}=: b^{r} a^{A}
$$

Thus $|S|=|A|$.

The groups $\mathcal{B S}(1, n)=\left\langle a, b \mid \quad a b=b a^{n}\right\rangle$

Let S be a finite subset of $\mathcal{B S}(1, n)$ of size k contained in the coset $\left.b^{r}<a\right\rangle$ for some $r \in \mathbb{N}$ and let T be a finite subset of $\mathcal{B S}(1, n)$ of size h contained in the coset $b^{s}<a>$ for some $s \in \mathbb{N}$.
Then

$$
S=b^{r} a^{A}, \quad T=b^{S} a^{B}
$$

for some subsets $A=\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$ and $B=\left\{y_{0}, y_{1}, \ldots, y_{h-1}\right\}$ of \mathbb{Z}.
From $a^{x} b=b a^{n x}$ for each $x \in \mathbb{Z}$ it follows

$$
\left(b^{r} a^{x}\right)\left(b^{s} a^{y}\right)=b^{r}\left(a^{x} b^{s}\right) a^{y}=b^{r}\left(b^{s} a^{n^{s} x}\right) a^{y}=b^{r+s} a^{n^{s} x+y} .
$$

The groups $\mathcal{B S}(1, n)=\left\langle a, b \mid a b=b a^{n}\right\rangle$

Therefore if

$$
S=b^{r} a^{A}, \quad T=b^{S} a^{B}
$$

where $A=\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$ and $B=\left\{y_{0}, y_{1}, \ldots, y_{h-1}\right\}$ are subsets of \mathbb{Z}, from $\left(b^{r} a^{x}\right)\left(b^{s} a^{y}\right)=b^{r+s} a^{n^{s} x+y}$ it follows

$$
S T=b^{r+s} a^{n^{s} * A+B} \quad \text { and } \quad|S T|=\left|n^{s} * A+B\right|
$$

In particular

$$
S^{2}=b^{2 r} a^{n^{r} * A+A} \quad \text { and } \quad\left|S^{2}\right|=\left|n^{r} * A+A\right|
$$

The groups $\mathcal{B S}(1, n)=\left\langle a, b \mid \quad a b=b a^{n}\right\rangle$

Theorem

Suppose that $\quad S=b^{r} a^{A} \subseteq \mathcal{B S}(1, n), \quad T=b^{s} a^{B} \subseteq \mathcal{B S}(1, n)$, where $r, s \in \mathbb{Z}, r, s \geq 0$ and A, B are finite subsets of \mathbb{Z}. Then

$$
S T=b^{r+s} a^{n^{s} * A+B}
$$

and

$$
|S T|=\left|n^{5} * A+B\right|
$$

In particular,

$$
S^{2}=b^{2 r} a^{n^{r} * A+A}
$$

and

$$
\left|S^{2}\right|=\left|n^{r} * A+A\right|=\left|A+n^{r} * A\right| .
$$

The group $\mathcal{B S}(1,2)=\left\langle a, b \mid \quad a b=b a^{2}\right\rangle$

Theorem (J. Cilleruelo, M. Silva, C. Vinuesa)

If A is a finite set of integers, then $|A+2 * A| \geq 3|A|-2$ and $|A+2 * A|=3|A|-2$ if and only if A is an arithmetic progression.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu) If $S=b a^{A} \subseteq \mathcal{B S}(1,2)$, where A is a finite subset of \mathbb{Z}, then

$$
\left|S^{2}\right| \geq 3|S|-2
$$

and if $\left|S^{2}\right|=3|S|-2$, then A is an arithmetic progression and S is a geometric progression.

The group $\mathcal{B S}(1,2)=\left\langle a, b \mid a b=b a^{2}\right\rangle$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)
If A is a finite set of integers, $|A| \geq 3$ and $|A+2 * A|<4|A|-4$, then A is a subset of an arithmetic progression of size $\leq 2|A|-3$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu) If $S=b a^{A} \subseteq \mathcal{B S}(1,2),|S| \geq 3$ and $\left|S^{2}\right|<4|S|-4$, then A is a subset of an arithmetic progression of size $\leq 2|S|-3$.

The group $\mathcal{B S}(1,2)=\left\langle a, b \mid a b=b a^{2}\right\rangle$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)
If A is a finite set of integers, $r \geq 3$, then $|A+r * A| \geq 4|A|-4$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)
Let $S=b^{m} a^{A} \subseteq \mathcal{B S}(1,2)$, where A is a finite set of integers of size $k \geq 2$ and $m \geq 2$. Then

$$
\left|S^{2}\right| \geq 4 k-4
$$

The group $\mathcal{B S}(1, n)=\left\langle a, b \mid \quad a b=b a^{n}\right\rangle$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

If A is a finite set of integers, $r \geq 3$, then $|A+r * A| \geq 4|A|-4$.

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)
Let $S \subseteq \mathcal{B S}(1, n)$ be a finite set of size $k=|S| \geq 2$ and suppose that $n \geq 3$ and

$$
S=b a^{A}
$$

where $A \subseteq \mathbb{Z}$ is a finite set of integers.
Then

$$
\left|S^{2}\right|=|A+n * A| \geq 4 k-4
$$

The group $\mathcal{B S}(1,2)=\left\langle a, b \mid \quad a b=b a^{2}\right\rangle$

Problem

What is the structure of an arbitrary subset of $\mathcal{B S}(1,2)$, satisfying some small doubling condition?

Very difficult!

Definition

Consider the submonoid

$$
\mathcal{B S}^{+}(1,2):=\left\{b^{m} a^{x} \in \mathcal{B S}(1,2) \mid x, m \in \mathbb{Z}, m \geq 0\right\}
$$

of $\mathcal{B S}(1,2)$.

The monoid $\mathcal{B S}^{+}(1,2)$

Definition

Consider the submonoid

$$
\mathcal{B S} \mathcal{S}^{+}(1,2)=\left\{b^{m} a^{x} \in \mathcal{B S}(1,2) \mid x, m \in \mathbb{Z}, m \geq 0\right\}
$$

of $\mathcal{B S}(1,2)$.

Remark

All elements of

$$
\mathcal{B S}^{+}(1,2)
$$

can be uniquely represented by a word of the form $b^{m} a^{x}$, which is not the case in $\mathcal{B S}(1,2)$.

$\mathcal{B S}{ }^{+}(1,2)=\left\{b^{m} a^{x} \in \mathcal{B S}(1,2) \mid x, m \in \mathbb{Z}, m \geq 0\right\}$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let S be a finite non-abelian subset of $\mathcal{B S}^{+}(1,2)$ and suppose that

$$
\left|S^{2}\right|<\frac{7}{2}|S|-4
$$

Then

$$
S=b a^{A},
$$

where A is a set of integers of size $|S|$, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S|-2$.

$\mathcal{B S}^{+}(1,2)=\left\{b^{m} a^{x} \in \mathcal{B S}(1,2) \mid x, m \in \mathbb{Z}, m \geq 0\right\}$

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let S be a finite non-abelian subset of $\mathcal{B S}^{+}(1,2)$ and suppose that $\left|S^{2}\right|<\frac{7}{2}|S|-4$. Then $S=b a^{A}$, where A is a set of integers of size $|S|$, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S|-2$.

Remark

This result is best possible.
In fact, there exist non-abelian subsets S of $\mathcal{B S}^{+}(1,2)$ satisfying $\left|S^{2}\right|=\frac{7}{2}|S|-4$, which are not contained in one coset of $\langle a\rangle$ in $\mathcal{B S}^{+}(1,2)$.

$\mathcal{B S}{ }^{+}(1,2)=\left\{b^{m} a^{x} \in \mathcal{B S}(1,2) \mid x, m \in \mathbb{Z}, m \geq 0\right\}$

There exist non-abelian subsets S of $\mathcal{B S}^{+}(1,2)$ satisfying $\left|S^{2}\right|=\frac{7}{2}|S|-4$, which are not contained in one coset of $\langle a\rangle$ in $\mathcal{B S}^{+}(1,2)$.

Example

Let

$$
S=a^{A_{0}} \cup\{b\} \subset \mathcal{B S} \mathcal{S}^{+}(1,2)
$$

where

$$
A_{0}=\{0,1,2, \ldots, k-2\} \text { and } k>2 \text { is even. }
$$

The set S is clearly non-abelian, and it intersects non-trivially the two distinct cosets $1\langle a\rangle$ and $b\langle a\rangle$ of $\langle a\rangle$ in $\mathcal{B S}^{+}(1,2)$. Moreover, $\left|S^{2}\right|=\frac{7}{2} k-4$.

$$
S=a^{A_{0}} \cup\{b\} \subset \mathcal{B} S^{+}(1,2), A_{0}=\{0,1,2, \ldots, k-2\}, k>2 \text { even }
$$

For,

$$
S^{2}=a^{A_{0}} a^{A_{0}} \cup b a^{A_{0}} \cup a^{A_{0}} b \cup\left\{b^{2}\right\}
$$

and using $a^{A_{0}} b=b a^{2 * A_{0}}$, we get
$S^{2}=a^{A_{0}+A_{0}} \cup\left(b a^{A_{0}} \cup b a^{2 * A_{0}}\right) \cup\left\{b^{2}\right\}=a^{A_{0}+A_{0}} \cup b a^{A_{0} \cup 2 * A_{0}} \cup\left\{b^{2}\right\}$
. Since

$$
a^{A_{0}+A_{0}} \subseteq a^{\mathbb{Z}}, \quad b a^{A_{0} \cup 2 * A_{0}} \subseteq b a^{\mathbb{Z}}, \quad\left\{b^{2}\right\} \subseteq b^{2} a^{\mathbb{Z}}
$$

it follows that the three components of S^{2} are disjoint in pairs and hence

$$
\begin{gathered}
\left|S^{2}\right|=\left|A_{0}+A_{0}\right|+\left|A_{0} \cup 2 * A_{0}\right|+1= \\
(2 k-3)+\left(\frac{3}{2} k-2\right)+1=\frac{7}{2} k-4
\end{gathered}
$$

Theorem - sketch of the Proof

Theorem (G.A. Freiman, M. Herzog, P. L., M. Maj, Y.V. Stanchescu)

Let S be a finite non-abelian subset of $\mathcal{B S ^ { + }}(1,2)$ and suppose that $\left|S^{2}\right|<\frac{7}{2}|S|-4$. Then $S=b a^{A}$, where A is a set of integers of size $|S|$, which is contained in an arithmetic progression of size less than $\frac{3}{2}|S|-2$.

Write

$$
S=S_{0} \cup S_{1} \cup \ldots \cup S_{t}
$$

where $t \geq 0$,

$$
\begin{gathered}
S_{i}=b^{m_{i}} a^{A_{i}} \subseteq b^{m_{i}} a^{\mathbb{Z}} \\
0 \leq m_{0}<m_{1}<\ldots<m_{t}
\end{gathered}
$$

and

$$
k_{i}=\left|S_{i}\right|=\left|A_{i}\right| \geq 1
$$

$S=S_{0} \cup S_{1} \cup \ldots \cup S_{t}, t \geq 0, S_{i}=b^{m_{i}} a^{A_{i}}, 0 \leq m_{0}<m_{1}<\ldots<m_{t}$

Lemma (1)

Let $S \subseteq \mathcal{B S}^{+}(1,2)$ be a finite set of size $k=|S|$. Suppose that $t \geq 1$ and there is $0 \leq j \leq t$ such that $k_{j}=\left|S_{j}\right| \geq 2$. Then S generates a non-abelian group.

Proof. If $j=0$ and $m_{0}=0$, then $k_{0}=\left|S_{0}\right|=\left|A_{0}\right| \geq 2$ implies that $S_{0} \neq\{1\}$ and $A_{0} \neq\{0\}$. Since $t \geq 1$, it follows that there are three integers m, x, z such that $m \geq 1, x \neq 0, a^{x} \in S_{0}$ and $b^{m} a^{z} \in S_{1}$. In this case

$$
a^{x}\left(b^{m} a^{z}\right)=b^{m} a^{z+2^{m} x} \neq\left(b^{m} a^{z}\right) a^{x}=b^{m} a^{z+x}
$$

and therefore S generates a non-abelian group.

$t \geq 1$ and there is $0 \leq j \leq t$ such that $k_{j}=\left|S_{j}\right| \geq 2$

It remains to examine the following two cases:
(i) $j \geq 1$.
(ii) $j=0$ and $m_{0} \geq 1$.

If $j \geq 1$, then $m_{j} \geq 1$ and $k_{j}=\left|S_{j}\right|=\left|b^{m_{j}} a^{A_{j}}\right| \geq 2$ implies that $\left|A_{j}\right| \geq 2$. On the other hand, if $j=0$ and $m_{0} \geq 1$, then $k_{0}=\left|S_{0}\right|=\left|b^{m_{0}} a^{A_{0}}\right| \geq 2$ implies that $\left|A_{0}\right| \geq 2$. In both cases, let $m=m_{j}$. Then $m \geq 1$ and there are two integers $x \neq y$ such that $\left\{b^{m} a^{x}, b^{m} a^{y}\right\} \subseteq S_{j}$. We conclude that

$$
\left(b^{m} a^{x}\right)\left(b^{m} a^{y}\right)=b^{2 m} a^{y+2^{m} x} \neq\left(b^{m} a^{y}\right)\left(b^{m} a^{x}\right)=b^{2 m} a^{x+2^{m} y}
$$

since $x \neq y$ and $m \geq 1$. The proof of Lemma is complete. //

$S=S_{0} \cup S_{1} \cup \ldots \cup S_{t}, t \geq 0, S_{i}=b^{m_{i}} a^{A_{i}}, 0 \leq m_{0}<m_{1}<\ldots<m_{t}$

Let $S \subseteq \mathcal{B S}^{+}(1,2)$ be a finite set of size $k=|S|$.

Lemma (2)

Suppose that $t=1$. Then $\left|S^{2}\right| \geq \frac{7}{2}|S|-4$.

Lemma (3)

Suppose that $t \geq 2$. If $k_{0}=\left|S_{0}\right| \geq 2$ and $k_{i}=\left|S_{i}\right|=1$ for every $1 \leq i \leq t$, then $\left|S^{2}\right| \geq 4 k-5>\frac{7}{2}|S|-4$ and the inequality is tight.

Lemma (4)

Suppose that $t \geq 2$. If $k_{t}=\left|S_{t}\right| \geq 2$ and $k_{i}=\left|S_{i}\right|=1$ for every $0 \leq i \leq t-1$, then $\left|S^{2}\right| \geq 4 k-5>\frac{7}{2}|S|-4$ and the inequality is tight.

Open problems

Question

What about arbitrary finite subsets of $\mathcal{B S}(1,2)$?

Question

What about arbitrary finite subsets of $\mathcal{B S}(1, n), n \neq 2$?

Question
What about arbitrary finite subsets of any $\mathcal{B S}(m, n)$?

Thank you for the attention!
P. Longobardi

Dipartimento di Matematica
Università di Salerno
via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
E-mail address : plongobardi@unisa.it

Bibliography

冨 A．Balog，G．Shakan，On the sum of dilatations of a set，Acta Arith． 2360 （2014），153－162．
O．Bogopolski，Abstract commensurators of solvable Baumslag－Solitar groups，Communications of Algebra，40（7）（2012）， 2494－2502．
固 E．Breuillard，B．Green，T．Tao，The structure of approximate groups，Publications mathématiques de l＇IHÉS， 116 （2012），no．1， 115－221．
囯 B．Bukh，Sums of dilates，Combin．Probab．Comput． 17 （2008）， no．5，627－639．
E J．Cilleruelo，Y．O．Hamidoune，O．Serra，On sums of dilates， Combin．Probab．Comput． 18 （2009），no．6，871－880．

Bibliography

國 J．Cilleruelo，M．Silva，C．Vinuesa，A sumset problem，J． Comb．Number Theory 2 （2010），no．1，79－89．
目 G．A．Freiman，Foundations of a structural theory of set addition， Translations of mathematical monographs，v．37．American Mathematical Society，Providence，Rhode Island， 1973.
（ G．A．Freiman，Structure Theory of Set Addition，Astérisque， 258 （1999），1－33．
嗇 G．A．Freiman，M．Herzog，P．Longobardi，M．Maj，Small doubling in ordered groups，J．Austral．Math．Soc．， 96 （2014）， 316－325．

Bibliography

國 G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, Direct and inverse problems in Additive Number Theory and in non-abelian group theory, European J. Combin., 40 (2014), 42-54.

國 G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, A small doubling structure theorem in a BaumslagSolitar group, European J. Combin., 44 (2015), 106-124.
? G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Y. V. Stanchescu, Inverse problems in Additive Number Theory and in Non-Abelian Group Theory, arXiv:1303.3053 (2013), preprint, 1-31.
(A. Geroldinger, I. Z. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Birkäuser Verlag, Basel - Boston - Berlin, 2009.

Bibliography

圊 B．Green，What is ．．．an approximate group ？，Notices Amer． Math．Soc． 59 （2012），no．5，655－656．
围 Y．O．Hamidoune，A．Plagne，A generalization of Freiman＇s 3k－3 theorem，Acta Arith． 103 （2002），no．2，147－156．
目 Y．O．Hamidoune，J．Rué，A lower bound for the size of a Minkowski sum of dilates，Combin．Probab．Comput． 20 （2011），no． 2，249－256．
囯 M．I．Kargapolov，Completely orderable groups，Algebra i Logica（2） 1 （1962），16－21．
固 V．F．Lev，P．Y．Smeliansky，On addition of two distinct sets of integers，Acta Arith． 70 （1995），no．1，85－91．

Bibliography

國 M．B．Nathanson，Additive number theory－Inverse problems and geometry of sumsets，Springer，New York， 1996.

E M．B．Nathanson，Inverse problems for linear forms over finite sets of integers，J．Ramanujan Math．Soc． 23 （2008），no．2，151－165．
國 A．Plagne，S．Tringali，Sums of dilates in ordered groups， arXiv：1403．0934v2（2014），preprint，1－14，Comm．in Algebra，to appear．
目 Z．Ruzsa，Generalized arithmetic progressions and sumsets，Acta Math．Hungar．65（4）（1994），379－388．
围 T．Sanders，The structure theory of set addition revisited，Bull． Amer．Math．Soc．50（1）（2013），93－127．

Bibliography

E- D. Shan-Shan, C. Hui-Qin, S. Zhi-Wei, On a sumset problem for integers, Electron. J. Combin. 21 (2014), no. 1, 1-25.
P. Y. V. Stanchescu, On addition of two distinct sets of integers, Acta Arith. 75 (1996), no. 2, 191-194.
國 Y. V. Stanchescu, On the structure of sets with small doubling property on the plane.I., Acta Arith. 83 (1998), no. 2, 127-141.
圊 Y. V. Stanchescu, The structure of d-dimensional sets with small sumset, J. Number Theory 130 (2010), no. 2, 289-303.
T. C. Tao, Product set estimates for non-commutative groups, Combinatorica 28(5) (2008), 547-594.

