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Outline

This talk is about two seemingly unrelated notions of largeness for sets of
integers. . .

Nil–Bohr sets

Sets of return times for nilrotations
(more details soon)

Arise naturally in higher order
Fourier analysis (→ Bohr sets)

SG∗d sets

A purely combinatorial construction

Refinement of the notion of IP∗ sets

Theorem (“⇐=”, Host-Kra)

Any SG∗d set is strongly piecewise Nil–Bohr0 of step d.

Theorem (“=⇒”, K.)

Any Nil–Bohr0 of step d is SG∗d′ , where d
′ =

(
d+2
2

)
.
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(Higher order) Fourier analysis

Problem: Let A ⊂ {1, 2, . . . , N}, |A| = δN (δ = const., N →∞). Study
k-term arithmetic progressions in A. In particular: show that some exist.
[We will pretend that: [N ] = Z/NZ, N prime. We use e(t) = e2πit.]

Fourier analysis
k = 3 (Roth’s theorem)

Higher order theory
k ≥ 4 (Szemeredi’s theorem)

Uniformity: Put fA = 1A − δ1[N ]. The set A is uniform if . . .

maxa∈[N ]|f̂A(a)| = o(1), where
fA(n) =

∑
a∈[N ] f̂A(a)e(an

N
).

‖fA‖Uk−1 = o(1), where ‖·‖U l is the l-th
Gowers uniformity norm.

If A is uniform then #{k-APs in A} ∼ δkN2 (expected number).

Structure: If A fails to be uniform then . . .

∃ large Fourier coefficient:
f̂A(a) = Ex∈[N ]fA(x)e(ax

N
) = Ω(1).

∃ (k − 2)-step nilsequence ψ, (bounded
complexity), |ψ| ≤ 1, which correlates
with fA: Ex∈[N ]fA(x)ψ(x) = Ω(1).
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Nilmanifolds, nilsequences, and Nil–Bohr sets

Definition (nilsequences)

Let G be a (d-step) nilpotent Lie group, and Γ < G a cocompact discrete
subgroup.

1 The space X = G/Γ is a nilmanifold.
2 For g ∈ G, the map Tg : X → X, x 7→ gx is a nilrotation.
3 If F : X → R is a (smooth) function, x0 ∈ X, then ψ(n) = F (gnx0) is a

(d-step) nilsequence.

A reassuring example: Take G = R, Γ = Z. Then G/Γ = T, the unit
circle, equipped with rotations x 7→ x+ θ. The additive characters
n 7→ e(nθ) are 1-step nilsequences.

Definition (Nil–Bohr sets)

Let ψ be a (d-step) nilsequence, and V ⊂ R an open set.
A set A = {n : ψ(n) ∈ V } is called a (d-step) Nil–Bohr set (if 6= ∅).
If ψ(0) ∈ V (i.e. 0 ∈ A), then A is called a Nil–Bohr0 set.

Slogan: A set is either uniform or resembles a Nil–Bohr set.
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Examples

1 Linear phases: Let θ ∈ R.
ψ(n) = e(nθ) is 1-step nilsequence.
A = {n ∈ N : nθ ∈ (− 1

10
, 1
10

) mod 1} is a Bohr0 set.

2 Polynomial phases: Let p ∈ R[x] with deg(p) = d, p(0) = 0.
ψ(n) = e(p(n)) is d-step nilsequence.
A = {n ∈ N : p(n) ∈ (− 1

10
, 1
10

) mod 1} is a Nil–Bohr0 of step d.

3 Generalised polynomial phases:
Generalised polynomials = polynomials + floor function.
Example: g(n) =

√
3n2 ·

⌊√
2n benc

⌋
·
⌊√

5n3
⌋

+ πn2.
ψ(n) = e(g(n)) is (morally) a nilsequence.
A = {n ∈ N : g(n) ∈ (− 1

10
, 1
10

) mod 1} is a Nil–Bohr set
(with any luck).

Warning: We’re skipping technicalities here.
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Combinatorial constructions: IP sets

Finite sums. For ~n = (ni)
∞
i=1, ni ∈ N, define:

FS(~n) =
{∑
i∈α

ni : α ⊂ N, finite, α 6= ∅
}
.

Convenient to write: F := {α ⊂ N, finite, 6= ∅} and nα :=
∑
i∈α ni, so that

FS(~n) = {nα : α ∈ F}.

A set A ⊂ N is IP is there is ~n with A ⊃ FS(~n).
A set B ⊂ N is IP∗ if B ∩A 6= ∅ for any IP set A.

Fact

Any IP∗ set is syndetic (i.e. intersects any sufficiently long interval).

Theorem (Hindman)

If A is an IP set, A = A1 ∪A2 ∪ · · · ∪Ar then ∃j : Aj is IP.
If B1, B2 . . . , Br are IP∗ sets then B = B1 ∩B2 ∩ · · · ∩Br is IP∗.
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Combinatorial constructions: SGd sets

Finite sums and bounded gaps. For ~n = (ni)
∞
i=1, ni ∈ N, define:

SGd(~n) =
{∑
i∈α

ni : α ⊂ N, finite, α 6= ∅, gaps ≤ d
}

=
{
nα : α ∈ Sd

}
,

where gaps of α = {a1 < a2 < · · · < ar} are ai+1 − ai, i = 1, . . . , r − 1, and
Sd = {α ∈ F : gaps ≤ d}.

A set A ⊂ N is SGd is there is ~n with A ⊃ SGd(~n).
A set B ⊂ N is SG∗d if B ∩A 6= ∅ for any SGd set A.

Fact

We have the chain of implications:
SG1 ⇐= SG2 ⇐= SG3 . . .⇐= IP;
SG∗1 =⇒ SG∗2 =⇒ SG∗3 . . . =⇒ IP∗.
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Combinatorial properties of Nil–Bohr sets

Theorem (Host-Kra)

Suppose that A ⊂ N is SG∗d. Then A contains a strongly piecewise
Nil–Bohr0 set of step d.
In particular, there are Nil–Bohr0 set B of step d and a thick set
T =

⋃∞
i=1[ni,mi], mi − ni →∞ such that A ⊃ B ∩ T .

Conjecture: If A is a Nil–Bohr0 set of step d, then A is SG∗d.

Basic facts:
Any Nil–Bohr0 set is IP∗. (Fact about distal dynamical systems.)
Any Bohr0 set is SG∗1, i.e. intersects S − S, for S ⊂ N, infinite.

Theorem (K.)

Any d-step Nil–Bohr0 set A is SG∗d′ , where d
′ =

(
d+2
2

)
.

For A = {n : p(n) ∈ (−ε, ε) mod 1}, p(x) ∈ R[x], this holds d′ = d.
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Proof: Basics

Setup: Let G/Γ be a d-step nilmanifold, a ∈ G; ~n = (ni)
∞
i=1, ni ∈ N;

and k ≥
(
d+2
2

)
. Need to show that eΓ ∈ cl{anαΓ : α ∈ Sk}, where

nα =
∑
i∈α ni.

Hence, we study functions of the form

f : F∅ → G/Γ, f(α) = anαΓ. (∗)

Some useful operations:
Subsequences: For (βi)

∞
i=1, βi ∈ F , disjoint, consider

f̃(α) := f(βα), βα =
⋃
i∈α

βi.

[Will insist that α 7→ βα maps Sl to Sk for some l ≤ k.]

Pointwise limits: Given fm : F∅ → G/Γ, consider

f̃(α) = lim
m→∞

fm(α).
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Proof: Polynomials

Problem: The class of functions given by

f : F∅ → G/Γ, f(α) = anαΓ (∗)
is closed under subsequences, but not under pointwise limits.
Solution: Introduce the class of polynomial maps from F to G/Γ with
respect to pre-filtration G• = G0 ⊇ G1 ⊇ G2 . . . (i.e. G0 = G,
[Gi, Gj ] ⊂ Gi+j , Gd+1 = {e}).
A function f : F → G is polynomial w.r.t. G• if either f = e and
G1 = {e}, or for any β ∈ F , the discrete derivative

∆βf(α) := f(β)−1f(α ∪ β)f(α)−1, (α ∩ β = ∅)
is polynomial w.r.t. shifted pre-filtration G•+1 = G1 ⊇ G2 ⊇ . . . .
Likewise, f̄ : F → G/Γ is polynomial w.r.t. G• if f̄(α) = f(α)Γ,
f : F → G polynomial.

Generalization: Functions in (∗) are polynomials w.r.t. the lower central
series G0 = G1 = G, Gi+1 = [Gi, G].
Closure properties: Polynomials w.r.t. a given filtration are closed under
both subsequences and pointwise limits.
Abelian case: For G = R, Γ = Z, G0 = G1 = · · · = Gd = R,
Gd+1 = {0}, these are the maps

α 7→
∑

γ⊂α,|γ|≤d
aγ , aγ ∈ R.
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Proof: Inductive step

Lemma

Let g : F∅ → G/Γ be a polynomial with respect to filtration G• of length ≤ d,
with g(∅) = eΓ. Let r be the least index s.t. Gr 6= G, k ≥ r. Then, there
exist a polynomial sequence g̃ : F∅ → G/Γ (limit of subsequences of g) such
that

{g̃(α) : α ∈ Sk−r} ⊆ cl{g(α) : α ∈ Sk},
g̃(α) ∈ π(Gr) for any α ∈ F , where π : G→ G/Γ is the quotient.

Proof of Main theorem, assuming the Lemma.

Claim: With notation above, eΓ ∈ cl{g(α) : α ∈ Sk}, provided that
k ≥ r + (r + 1) + · · ·+ (d+ 1).
Apply Lemma to produce g̃; suffice to show eΓ ∈ cl{g̃(α) : α ∈ Sk−r}.
Can construe g̃ as polynomial on the simpler sub-nilmanifold
G̃/Γ̃ = Gr/Gr ∩ Γ w.r.t. pre-filtration G̃j = Gj ∩Gr.
Apply the inductive claim to g̃, where k̃ = k − r, r̃ ≥ r + 1 (except if
r = d+ 1 — then we are done).
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Proof: Proving the lemma

Lemma

If g : F∅ → G/Γ is a polynomial w.r.t. G• of length ≤ d, g(∅) = eΓ,
Gr 6= G, then there exist a polynomial sequence g̃ : F∅ → G/Γ such that
{g̃(α) : α ∈ Sk−r} ⊆ cl{g(α) : α ∈ Sk},
g̃(α) ∈ π(Gr) for any α ∈ F (π : G→ G/Γ is the quotient map).

Proof of the Lemma.

Quotient out Gr: can assume that Gr = {e}. W.l.o.g.
G/Γ = Rm/Zm = Tm, and g(α) =

∑
γ⊂α, |γ|≤d aγ , aγ ∈ Rm.

Repeatedly pass to limits of subsequences of g(α) to obtain “simplest
possible sequence”. May assume that:

aγ are k-periodic: aγ+k = aγ ,
aγ = 0 whenever γ has diameter > k.

Let Σ be the closure of the set of subsequences h(α) = g(βα) where
α 7→ βα maps Sk−r to Sk, and βi’s are somewhat “generic”.
Let ∆ be the set of maps δ such that h+ δ ∈ Σ whenever h ∈ Σ.
Find elements of ∆ by modifying a few βi’s. Conclude that Σ ⊂ ∆.
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The End

Thank You for your attention!
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