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Problem: Let A C {1,2,...,N}, |[A| =0N (§ = const., N — o0). Study
k-term arithmetic progressions in A. In particular: show that some exist.
[We will pretend that: [N] = Z/NZ, N prime. We use e(t) = €27 ]

Fourier analysis Higher order theory
k =3 (Roth’s theorem) k > 4 (Szemeredi’s theorem)

Uniformity: Put fa =14 — 51[N]. The set A is uniform if ...

maxe(n)|fa(a)| = o(1), where | fallyr—1 = o(1), where |||y« is the {-th
fa(n) =32 cin fala)e(R)- Gowers uniformity norm.

If A is uniform then #{k-APs in A} ~ §*N? (expected number).

Structure: If A fails to be uniform then ...

3 (k — 2)-step nilsequence 1, (bounded
1 o complexity), || < 1, which correlates
fa(a) = Ezev fa(@)e(F) = Q(1). with fa: Epenfa(z)d(z) = Q(1).

3 large Fourier coefficient:
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Let G be a (d-step) nilpotent Lie group, and I' < G a cocompact discrete
subgroup.

@ The space X = G/T is a nilmanifold.

@ For g € G, the map Ty: X — X, x — gz is a nilrotation.

@ If F: X — R is a (smooth) function, zg € X, then ¢)(n) = F(g"x0) is a
(d-step) nilsequence.

A reassuring example: Take G =R, I' = Z. Then G/T' =T, the unit
circle, equipped with rotations x +— = + 6. The additive characters
n — e(nf) are 1-step nilsequences.

Definition (Nil-Bohr sets)

Let ¢ be a (d-step) nilsequence, and V C R an open set.
A set A= {n:9(n) € V}is called a (d-step) Nil-Bohr set (if # 0).
If 4(0) € V (i.e. 0 € A), then A is called a Nil-Bohry set.

Slogan: A set is either uniform or resembles a Nil-Bohr set.
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Examples

@ Linear phases: Let 6 € R.
e 1(n) = e(nh) is 1-step nilsequence.
e A={neN:nbec (—%, %) mod 1} is a Bohrg set.

@ Polynomial phases: Let p € R[z] with deg(p) = d, p(0) = 0.
e (n) = e(p(n)) is d-step nilsequence.

o A={neN: p(n)e (—1—10, 1—10) mod 1} is a Nil-Bohrg of step d.

@ Generalised polynomial phases:
o Generalised polynomials = polynomials + floor function.
Example: g(n) = +/3n? - {ﬁn LenJJ . {\/gng’J + mn?.
o ¢(n) =e(g(n)) is (morally) a nilsequence.
e A={neN: g(n)e (—%, %) mod 1} is a Nil-Bohr set
(with any luck).

Warning: We’re skipping technicalities here.
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Finite sums. For @7 = (n;){2,, n; € N, define:
FS(ii) = {Zm : a C N, finite, o # (Z)}.
1€

Convenient to write: F := {a C N, finite, # 0} and ny := Y
FS(7) = {na : a € F}.

ica Tiy SO that

o A set A C NisIP is there is @ with A D FS(7).
o Aset BCNisIP*if BNA#( for any IP set A.

Fact

Any IP™ set is syndetic (i.e. intersects any sufficiently long interval).

Theorem (Hindman)

o If AisanIP set, A= A1 UAxU---UA, then 3j: Aj is IP.
o If B1,Bs..., B, are IP* sets then B= B1 N B2N---N B, is IP*.



Combinatorial constructions: SGy sets

Finite sums and bounded gaps. For 77 = (n;)2;, n; € N, define:
SGa(i) = {an : a C N, finite, a # ), gaps < d} = {na € Sd},
1€

where gaps of o = {a1 < a2 <---<ar} are ai41 —a;, i =1,...,7 — 1, and
Sqi={a€F : gaps < d}.



Combinatorial constructions: SGy sets

Finite sums and bounded gaps. For 77 = (n;)2;, n; € N, define:
SGa(i) = {an : a C N, finite, a # ), gaps < d} = {na € Sd},
1€

where gaps of o = {a1 < a2 <---<ar} are ai41 —a;, i =1,...,7 — 1, and
Sqi={a€F : gaps < d}.

o A set A C Nis SGq is there is 77 with A D SG4(7).
o A set BCNisSGjif BNA#( for any SGq set A.



Combinatorial constructions: SGy sets

Finite sums and bounded gaps. For 77 = (n;)2;, n; € N, define:
SGa(i) = {an : a C N, finite, a # ), gaps < d} = {na € Sd},
1€

where gaps of o = {a1 < a2 <---<ar} are ai41 —a;, i =1,...,7 — 1, and
Sqi={a€F : gaps < d}.

o A set A C Nis SGq is there is 77 with A D SG4(7).
o A set BCNisSGjif BNA#( for any SGq set A.

We have the chain of implications:
o SG; <— SGo <:SG3...<:IP;
e SGi = SG5 = SG3... = IP".



Combinatorial properties of Nil-Bohr sets

Theorem (Host-Kra)

Suppose that A C N is SG;. Then A contains a strongly piecewise
Nil-Bohry set of step d.

In particular, there are Nil-Bohro set B of step d and a thick set
T = U2, [ni, ms], mi —n; — oo such that AD BNT.



Combinatorial properties of Nil-Bohr sets

Theorem (Host-Kra)

Suppose that A C N is SG;. Then A contains a strongly piecewise
Nil-Bohry set of step d.

In particular, there are Nil-Bohro set B of step d and a thick set
T = U2, [ni, ms], mi —ni — oo such that A D> BNT.

Conjecture: If A is a Nil-Bohrg set of step d, then A is SGJ.

Basic facts:
o Any Nil-Bohrg set is IP*. (Fact about distal dynamical systems.)
o Any Bohrg set is SGJ, i.e. intersects S — S, for S C N, infinite.



Combinatorial properties of Nil-Bohr sets

Theorem (Host-Kra)

Suppose that A C N is SG;. Then A contains a strongly piecewise
Nil-Bohry set of step d.

In particular, there are Nil-Bohro set B of step d and a thick set
T = U2, [ni, ms], mi —ni — oo such that A D> BNT.

Conjecture: If A is a Nil-Bohrg set of step d, then A is SGJ.

Basic facts:
o Any Nil-Bohrg set is IP*. (Fact about distal dynamical systems.)
o Any Bohrg set is SGJ, i.e. intersects S — S, for S C N, infinite.

Theorem (K.)
o Any d-step Nil-Bohro set A is SG),, where d' = (d;rz)).
e For A= {n : p(n) € (—¢,&) mod 1}, p(x) € R[z], this holds d’ = d.



Proof: Basics

e Setup: Let G/I' be a d-step nilmanifold, a € G; @ = (n;)i2,, n: € N;

and k > (*1?). Need to show that el € cl{a"*T" : a € Sk}, where

Na = 1€EQ .

Hence, we study functions of the form

f:Fo— G/T, f(a)=a"T. (*)

o Some useful operations:
o Subsequences: For (B8;)2,, B; € F, disjoint, consider

fl@):=f(Ba)s Ba=J B

i€
[Will insist that o — Bo maps S; to Sk for some | < k.|
o Pointwise limits: Given fn,: Fy — G/I', consider

fl@)= lim_fm(a).



Proof: Polynomials

e Problem: The class of functions given by
fi Fo—GIT, fla)=a™T ()

is closed under subsequences, but not under pointwise limits.
o Solution: Introduce the class of polynomial maps from F to G/T" with
respect to pre-filtration Ge = Go 2 G1 2 G2... (i.e. Go =G,
[Gi, G;5] C Giyj, Gay1 = {e}).
A function f: F — G is polynomial w.r.t. G, if either f = e and
G1 = {e}, or for any § € F, the discrete derivative

-1 -1
Apf(a) = f(B) fl@up)fle)™",  (anp=0)
is polynomial w.r.t. shifted pre-filtration Ge4+1 = G1 D G2 D .. ..
Likewise, f: F — G/I" is polynomial w.r.t. G, if f(a) = f(a)T,
f: F — G polynomial.
o Generalization: Functions in (%) are polynomials w.r.t. the lower central
series Go = G1 = G, Gi41 =[G4, G].
o Closure properties: Polynomials w.r.t. a given filtration are closed under
both subsequences and pointwise limits.
o Abelian case: For G =R, I'=7Z,Go =G =--- =G4 =R,
G441 = {0}, these are the maps

o E a~, ay €R.
vCa,ly|<d



Proof: Inductive step

Lemma

Let g: Fy — G/T be a polynomial with respect to filtration Ge of length < d,
with g(0) = el'. Let r be the least index s.t. G» # G, k > r. Then, there
exist a polynomial sequence §: Fy — G/T' (limit of subsequences of g) such
that

o {g(a) : a € Sk—r} Cclfg(a) : a € Sk},
o §(a) € m(Gy) for any oo € F, where w: G — G /T is the quotient.

Proof of Main theorem, assuming the Lemma.

o Claim: With notation above, eI’ € cl{g(a) : a € Sx}, provided that
E>r+(r+1)+---+(d+1).
e Apply Lemma to produce g; suffice to show eI’ € cl{g(a) : o € Sp—}.
e Can construe g as polynomial on the simpler sub-nilmanifold
G/T' = G, /G- NT w.r.t. prefiltration G; = G; N G,
o Apply the inductive claim to §, where k =k —r, 7 > r + 1 (except if
r =d+ 1 — then we are done). O



Proof: Proving the lemma

Lemma

If g: Fp — G/T is a polynomial w.r.t. Ge of length < d, g(0) = eI,

G, # G, then there exist a polynomial sequence g: Fg — G /T such that
o {j(a) : @ € Sk—r} Ccl{g(a) : o € Sk},
o g(a) € m(Gy) for any a € F (n: G — G/T is the quotient map).

Proof of the Lemma.

e Quotient out G,: can assume that G, = {e}. W.l.o.g.
G/T =R™/Z™ =T™, and g(a) = Y ly|<d @y, Gy € R™.

o Repeatedly pass to limits of subsequences of g(a) to obtain “simplest
possible sequence”. May assume that:

7Ca,

o ay are k-periodic: ayig = a~,
e a~ = 0 whenever v has diameter > k.
o Let X be the closure of the set of subsequences h(a) = g(B.) where
a +— Bo maps Sk to Sk, and f;’s are somewhat “generic”.
o Let A be the set of maps § such that h + 9§ € X whenever h € X.
Find elements of A by modifying a few §;’s. Conclude that ¥ C A. [



The End
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