Combinatorial properties of Nil-Bohr sets of integers

Jakub Konieczny

Univeristy of Oxford

Additive Combinatorics in Bordeaux
14 April 2016

Outline

This talk is about two seemingly unrelated notions of largeness for sets of integers...

Outline

This talk is about two seemingly unrelated notions of largeness for sets of integers...

Nil-Bohr sets

SG_{d}^{*} sets

- Sets of return times for nilrotations (more details soon)
- Arise naturally in higher order Fourier analysis (\rightarrow Bohr sets)
- A purely combinatorial construction
- Refinement of the notion of IP* sets

Outline

This talk is about two seemingly unrelated notions of largeness for sets of integers...

Nil-Bohr sets

$\mathbf{S G}_{d}^{*}$ sets

- Sets of return times for nilrotations (more details soon)
- Arise naturally in higher order Fourier analysis (\rightarrow Bohr sets)
- A purely combinatorial construction
- Refinement of the notion of IP* sets

[^0]
Outline

This talk is about two seemingly unrelated notions of largeness for sets of integers...

Nil-Bohr sets

$\mathbf{S G}_{d}^{*}$ sets

- Sets of return times for nilrotations (more details soon)
- Arise naturally in higher order Fourier analysis (\rightarrow Bohr sets)
- A purely combinatorial construction
- Refinement of the notion of IP* sets

```
Theorem ("\Longleftarrow", Host-Kra)
Any \(\mathrm{SG}_{d}^{*}\) set is strongly piecewise Nil-Bohro of step d.
```


Theorem (" \Longrightarrow ", K.)

Any Nil-Bohr of step d is $\mathrm{SG}_{d^{\prime}}^{*}$, where $d^{\prime}=\binom{d+2}{2}$.

(Higher order) Fourier analysis

Problem: Let $A \subset\{1,2, \ldots, N\},|A|=\delta N(\delta=$ const., $N \rightarrow \infty)$. Study k-term arithmetic progressions in A. In particular: show that some exist. [We will pretend that: $[N]=\mathbb{Z} / N \mathbb{Z}, N$ prime. We use $e(t)=e^{2 \pi i t}$.]

(Higher order) Fourier analysis

Problem: Let $A \subset\{1,2, \ldots, N\},|A|=\delta N(\delta=$ const., $N \rightarrow \infty)$. Study k-term arithmetic progressions in A. In particular: show that some exist. [We will pretend that: $[N]=\mathbb{Z} / N \mathbb{Z}, N$ prime. We use $e(t)=e^{2 \pi i t}$.]

Fourier analysis
$k=3$ (Roth's theorem)

Higher order theory
$k \geq 4$ (Szemeredi's theorem)

(Higher order) Fourier analysis

Problem: Let $A \subset\{1,2, \ldots, N\},|A|=\delta N(\delta=$ const., $N \rightarrow \infty)$. Study k-term arithmetic progressions in A. In particular: show that some exist. [We will pretend that: $[N]=\mathbb{Z} / N \mathbb{Z}, N$ prime. We use $e(t)=e^{2 \pi i t}$.]

Fourier analysis
$k=3$ (Roth's theorem)

Higher order theory
$k \geq 4$ (Szemeredi's theorem)

Uniformity: Put $f_{A}=1_{A}-\delta 1_{[N]}$. The set A is uniform if \ldots

$$
\begin{aligned}
& \max _{a \in[N]}\left|\hat{f}_{A}(a)\right|=o(1), \text { where } \\
& f_{A}(n)=\sum_{a \in[N]} \hat{f}_{A}(a) e\left(\frac{a n}{N}\right)
\end{aligned}
$$

If A is uniform then $\#\{k$-APs in $A\} \sim \delta^{k} N^{2}$ (expected number).

(Higher order) Fourier analysis

Problem: Let $A \subset\{1,2, \ldots, N\},|A|=\delta N(\delta=$ const., $N \rightarrow \infty)$. Study k-term arithmetic progressions in A. In particular: show that some exist. [We will pretend that: $[N]=\mathbb{Z} / N \mathbb{Z}, N$ prime. We use $e(t)=e^{2 \pi i t}$.]

Fourier analysis
$k=3$ (Roth's theorem)

Higher order theory
$k \geq 4$ (Szemeredi's theorem)

Uniformity: Put $f_{A}=1_{A}-\delta 1_{[N]}$. The set A is uniform if \ldots
$\max _{a \in[N]}\left|\hat{f}_{A}(a)\right|=o(1)$, where $f_{A}(n)=\sum_{a \in[N]} \hat{f}_{A}(a) e\left(\frac{a n}{N}\right)$.

If A is uniform then $\#\{k$-APs in $A\} \sim \delta^{k} N^{2}$ (expected number).
Structure: If A fails to be uniform then ...
\exists large Fourier coefficient:
$\hat{f}_{A}(a)=\mathbb{E}_{x \in[N]} f_{A}(x) e\left(\frac{a x}{N}\right)=\Omega(1)$.

(Higher order) Fourier analysis

Problem: Let $A \subset\{1,2, \ldots, N\},|A|=\delta N(\delta=$ const., $N \rightarrow \infty)$. Study k-term arithmetic progressions in A. In particular: show that some exist. [We will pretend that: $[N]=\mathbb{Z} / N \mathbb{Z}, N$ prime. We use $e(t)=e^{2 \pi i t}$.]

Fourier analysis
$k=3$ (Roth's theorem)

Higher order theory
$k \geq 4$ (Szemeredi's theorem)

Uniformity: Put $f_{A}=1_{A}-\delta 1_{[N]}$. The set A is uniform if \ldots
$\max _{a \in[N] \mid}\left|\hat{f}_{A}(a)\right|=o(1)$, where $f_{A}(n)=\sum_{a \in[N]} \hat{f}_{A}(a) e\left(\frac{a n}{N}\right)$.
$\left\|f_{A}\right\|_{U^{k-1}}=o(1)$, where $\|\cdot\|_{U^{l}}$ is the l-th Gowers uniformity norm.

If A is uniform then $\#\{k$-APs in $A\} \sim \delta^{k} N^{2}$ (expected number).
Structure: If A fails to be uniform then ...
\exists large Fourier coefficient:
$\hat{f}_{A}(a)=\mathbb{E}_{x \in[N]} f_{A}(x) e\left(\frac{a x}{N}\right)=\Omega(1)$.

(Higher order) Fourier analysis

Problem: Let $A \subset\{1,2, \ldots, N\},|A|=\delta N(\delta=$ const., $N \rightarrow \infty)$. Study k-term arithmetic progressions in A. In particular: show that some exist. [We will pretend that: $[N]=\mathbb{Z} / N \mathbb{Z}, N$ prime. We use $e(t)=e^{2 \pi i t}$.]

Fourier analysis
$k=3$ (Roth's theorem)

Higher order theory
$k \geq 4$ (Szemeredi's theorem)

Uniformity: Put $f_{A}=1_{A}-\delta 1_{[N]}$. The set A is uniform if \ldots
$\max _{a \in[N] \mid}\left|\hat{f}_{A}(a)\right|=o(1)$, where $f_{A}(n)=\sum_{a \in[N]} \hat{f}_{A}(a) e\left(\frac{a n}{N}\right)$.
$\left\|f_{A}\right\|_{U^{k-1}}=o(1)$, where $\|\cdot\|_{U^{l}}$ is the l-th Gowers uniformity norm.

If A is uniform then $\#\{k$-APs in $A\} \sim \delta^{k} N^{2}$ (expected number).
Structure: If A fails to be uniform then ...
\exists large Fourier coefficient:
$\hat{f}_{A}(a)=\mathbb{E}_{x \in[N]} f_{A}(x) e\left(\frac{a x}{N}\right)=\Omega(1)$.
$\exists(k-2)$-step nilsequence ψ, (bounded complexity), $|\psi| \leq 1$, which correlates with $f_{A}: \quad \mathbb{E}_{x \in[N]} f_{A}(x) \psi(x)=\Omega(1)$.

Nilmanifolds, nilsequences, and Nil-Bohr sets

Definition (nilsequences)

Let G be a (d-step) nilpotent Lie group, and $\Gamma<G$ a cocompact discrete subgroup.
(1) The space $X=G / \Gamma$ is a nilmanifold.
(2) For $g \in G$, the map $T_{g}: X \rightarrow X, x \mapsto g x$ is a nilrotation.
(3) If $F: X \rightarrow \mathbb{R}$ is a (smooth) function, $x_{0} \in X$, then $\psi(n)=F\left(g^{n} x_{0}\right)$ is a (d-step) nilsequence.

Nilmanifolds, nilsequences, and Nil-Bohr sets

Definition (nilsequences)

Let G be a (d-step) nilpotent Lie group, and $\Gamma<G$ a cocompact discrete subgroup.
(1) The space $X=G / \Gamma$ is a nilmanifold.
(2) For $g \in G$, the map $T_{g}: X \rightarrow X, x \mapsto g x$ is a nilrotation.
(3) If $F: X \rightarrow \mathbb{R}$ is a (smooth) function, $x_{0} \in X$, then $\psi(n)=F\left(g^{n} x_{0}\right)$ is a (d-step) nilsequence.

A reassuring example: Take $G=\mathbb{R}, \Gamma=\mathbb{Z}$. Then $G / \Gamma=\mathbb{T}$, the unit circle, equipped with rotations $x \mapsto x+\theta$. The additive characters $n \mapsto e(n \theta)$ are 1-step nilsequences.

Nilmanifolds, nilsequences, and Nil-Bohr sets

Definition (nilsequences)

Let G be a (d-step) nilpotent Lie group, and $\Gamma<G$ a cocompact discrete subgroup.
(1) The space $X=G / \Gamma$ is a nilmanifold.
(2) For $g \in G$, the map $T_{g}: X \rightarrow X, x \mapsto g x$ is a nilrotation.
(3) If $F: X \rightarrow \mathbb{R}$ is a (smooth) function, $x_{0} \in X$, then $\psi(n)=F\left(g^{n} x_{0}\right)$ is a (d-step) nilsequence.

A reassuring example: Take $G=\mathbb{R}, \Gamma=\mathbb{Z}$. Then $G / \Gamma=\mathbb{T}$, the unit circle, equipped with rotations $x \mapsto x+\theta$. The additive characters $n \mapsto e(n \theta)$ are 1-step nilsequences.

Definition (Nil-Bohr sets)

Let ψ be a (d-step) nilsequence, and $V \subset \mathbb{R}$ an open set.
A set $A=\{n: \psi(n) \in V\}$ is called a (d-step) Nil-Bohr set (if $\neq \emptyset$).
If $\psi(0) \in V$ (i.e. $0 \in A$), then A is called a Nil- Bohr_{0} set.
Slogan: A set is either uniform or resembles a Nil-Bohr set.

Examples

(1) Linear phases: Let $\theta \in \mathbb{R}$.

- $\psi(n)=e(n \theta)$ is 1 -step nilsequence.
- $A=\left\{n \in \mathbb{N}: n \theta \in\left(-\frac{1}{10}, \frac{1}{10}\right) \bmod 1\right\}$ is a Bohr_{0} set.

Examples

(1) Linear phases: Let $\theta \in \mathbb{R}$.

- $\psi(n)=e(n \theta)$ is 1-step nilsequence.
- $A=\left\{n \in \mathbb{N}: n \theta \in\left(-\frac{1}{10}, \frac{1}{10}\right) \bmod 1\right\}$ is a Bohr_{0} set.
(2) Polynomial phases: Let $p \in \mathbb{R}[x]$ with $\operatorname{deg}(p)=d, p(0)=0$.
- $\psi(n)=e(p(n))$ is d-step nilsequence.
- $A=\left\{n \in \mathbb{N}: p(n) \in\left(-\frac{1}{10}, \frac{1}{10}\right) \bmod 1\right\}$ is a Nil-Bohr ${ }_{0}$ of step d.

Examples

(1) Linear phases: Let $\theta \in \mathbb{R}$.

- $\psi(n)=e(n \theta)$ is 1-step nilsequence.
- $A=\left\{n \in \mathbb{N}: n \theta \in\left(-\frac{1}{10}, \frac{1}{10}\right) \bmod 1\right\}$ is a Bohr $_{0}$ set.
(2) Polynomial phases: Let $p \in \mathbb{R}[x]$ with $\operatorname{deg}(p)=d, p(0)=0$.
- $\psi(n)=e(p(n))$ is d-step nilsequence.
- $A=\left\{n \in \mathbb{N}: p(n) \in\left(-\frac{1}{10}, \frac{1}{10}\right) \bmod 1\right\}$ is a Nil- Bohr $_{0}$ of step d.
(3) Generalised polynomial phases:
- Generalised polynomials $=$ polynomials + floor function.

Example: $g(n)=\sqrt{3} n^{2} \cdot\lfloor\sqrt{2} n\lfloor e n\rfloor\rfloor \cdot\left\lfloor\sqrt{5} n^{3}\right\rfloor+\pi n^{2}$.

- $\psi(n)=e(g(n))$ is (morally) a nilsequence.
- $A=\left\{n \in \mathbb{N}: g(n) \in\left(-\frac{1}{10}, \frac{1}{10}\right) \bmod 1\right\}$ is a Nil-Bohr set (with any luck).
Warning: We're skipping technicalities here.

Combinatorial constructions: IP sets

Finite sums. For $\vec{n}=\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\mathrm{FS}(\vec{n})=\left\{\sum_{i \in \alpha} n_{i}: \alpha \subset \mathbb{N}, \text { finite, } \alpha \neq \emptyset\right\}
$$

Convenient to write: $\mathcal{F}:=\{\alpha \subset \mathbb{N}$, finite, $\neq \emptyset\}$ and $n_{\alpha}:=\sum_{i \in \alpha} n_{i}$, so that $\mathrm{FS}(\vec{n})=\left\{n_{\alpha}: \alpha \in \mathcal{F}\right\}$.

Combinatorial constructions: IP sets

Finite sums. For $\vec{n}=\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\operatorname{FS}(\vec{n})=\left\{\sum_{i \in \alpha} n_{i}: \alpha \subset \mathbb{N}, \text { finite, } \alpha \neq \emptyset\right\}
$$

Convenient to write: $\mathcal{F}:=\{\alpha \subset \mathbb{N}$, finite, $\neq \emptyset\}$ and $n_{\alpha}:=\sum_{i \in \alpha} n_{i}$, so that $\mathrm{FS}(\vec{n})=\left\{n_{\alpha}: \alpha \in \mathcal{F}\right\}$.

- A set $A \subset \mathbb{N}$ is IP is there is \vec{n} with $A \supset \mathrm{FS}(\vec{n})$.
- A set $B \subset \mathbb{N}$ is IP* if $B \cap A \neq \emptyset$ for any IP set A.

Combinatorial constructions: IP sets

Finite sums. For $\vec{n}=\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\mathrm{FS}(\vec{n})=\left\{\sum_{i \in \alpha} n_{i}: \alpha \subset \mathbb{N}, \text { finite, } \alpha \neq \emptyset\right\}
$$

Convenient to write: $\mathcal{F}:=\{\alpha \subset \mathbb{N}$, finite, $\neq \emptyset\}$ and $n_{\alpha}:=\sum_{i \in \alpha} n_{i}$, so that $\mathrm{FS}(\vec{n})=\left\{n_{\alpha}: \alpha \in \mathcal{F}\right\}$.

- A set $A \subset \mathbb{N}$ is IP is there is \vec{n} with $A \supset \operatorname{FS}(\vec{n})$.
- A set $B \subset \mathbb{N}$ is IP^{*} if $B \cap A \neq \emptyset$ for any IP set A.

Fact

Any IP^{*} set is syndetic (i.e. intersects any sufficiently long interval).

Combinatorial constructions: IP sets

Finite sums. For $\vec{n}=\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\mathrm{FS}(\vec{n})=\left\{\sum_{i \in \alpha} n_{i}: \alpha \subset \mathbb{N}, \text { finite, } \alpha \neq \emptyset\right\}
$$

Convenient to write: $\mathcal{F}:=\{\alpha \subset \mathbb{N}$, finite, $\neq \emptyset\}$ and $n_{\alpha}:=\sum_{i \in \alpha} n_{i}$, so that $\mathrm{FS}(\vec{n})=\left\{n_{\alpha}: \alpha \in \mathcal{F}\right\}$.

- A set $A \subset \mathbb{N}$ is IP is there is \vec{n} with $A \supset \operatorname{FS}(\vec{n})$.
- A set $B \subset \mathbb{N}$ is IP^{*} if $B \cap A \neq \emptyset$ for any IP set A.

Fact

Any IP^{*} set is syndetic (i.e. intersects any sufficiently long interval).

Theorem (Hindman)

- If A is an IP set, $A=A_{1} \cup A_{2} \cup \cdots \cup A_{r}$ then $\exists j: A_{j}$ is IP.
- If $B_{1}, B_{2} \ldots, B_{r}$ are IP* sets then $B=B_{1} \cap B_{2} \cap \cdots \cap B_{r}$ is IP^{*}.

Combinatorial constructions: SG_{d} sets

Finite sums and bounded gaps. For $\vec{n}=\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\mathrm{SG}_{d}(\vec{n})=\left\{\sum_{i \in \alpha} n_{i}: \alpha \subset \mathbb{N}, \text { finite, } \alpha \neq \emptyset, \text { gaps } \leq d\right\}=\left\{n_{\alpha}: \alpha \in \mathcal{S}_{d}\right\}
$$

where gaps of $\alpha=\left\{a_{1}<a_{2}<\cdots<a_{r}\right\}$ are $a_{i+1}-a_{i}, i=1, \ldots, r-1$, and $\mathcal{S}_{d}=\{\alpha \in \mathcal{F}:$ gaps $\leq d\}$.

Combinatorial constructions: SG_{d} sets

Finite sums and bounded gaps. For $\vec{n}=\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\mathrm{SG}_{d}(\vec{n})=\left\{\sum_{i \in \alpha} n_{i}: \alpha \subset \mathbb{N}, \text { finite, } \alpha \neq \emptyset, \text { gaps } \leq d\right\}=\left\{n_{\alpha}: \alpha \in \mathcal{S}_{d}\right\}
$$

where gaps of $\alpha=\left\{a_{1}<a_{2}<\cdots<a_{r}\right\}$ are $a_{i+1}-a_{i}, i=1, \ldots, r-1$, and $\mathcal{S}_{d}=\{\alpha \in \mathcal{F}:$ gaps $\leq d\}$.

- A set $A \subset \mathbb{N}$ is SG_{d} is there is \vec{n} with $A \supset \mathrm{SG}_{d}(\vec{n})$.
- A set $B \subset \mathbb{N}$ is SG_{d}^{*} if $B \cap A \neq \emptyset$ for any SG_{d} set A.

Combinatorial constructions: SG_{d} sets

Finite sums and bounded gaps. For $\vec{n}=\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$, define:

$$
\mathrm{SG}_{d}(\vec{n})=\left\{\sum_{i \in \alpha} n_{i}: \alpha \subset \mathbb{N}, \text { finite, } \alpha \neq \emptyset, \text { gaps } \leq d\right\}=\left\{n_{\alpha}: \alpha \in \mathcal{S}_{d}\right\}
$$

where gaps of $\alpha=\left\{a_{1}<a_{2}<\cdots<a_{r}\right\}$ are $a_{i+1}-a_{i}, i=1, \ldots, r-1$, and $\mathcal{S}_{d}=\{\alpha \in \mathcal{F}:$ gaps $\leq d\}$.

- A set $A \subset \mathbb{N}$ is SG_{d} is there is \vec{n} with $A \supset \mathrm{SG}_{d}(\vec{n})$.
- A set $B \subset \mathbb{N}$ is SG_{d}^{*} if $B \cap A \neq \emptyset$ for any SG_{d} set A.

Fact

We have the chain of implications:

- $\mathrm{SG}_{1} \Longleftarrow \mathrm{SG}_{2} \Longleftarrow \mathrm{SG}_{3} \ldots \Longleftarrow \mathrm{IP} ;$
- $\mathrm{SG}_{1}^{*} \Longrightarrow \mathrm{SG}_{2}^{*} \Longrightarrow \mathrm{SG}_{3}^{*} \ldots \Longrightarrow \mathrm{IP}^{*}$.

Combinatorial properties of Nil-Bohr sets

Theorem (Host-Kra)

Suppose that $A \subset \mathbb{N}$ is SG_{d}^{*}. Then A contains a strongly piecewise Nil-Bohr r_{0} set of step d.
In particular, there are Nil-Bohr r_{0} set B of step d and a thick set $T=\bigcup_{i=1}^{\infty}\left[n_{i}, m_{i}\right], m_{i}-n_{i} \rightarrow \infty$ such that $A \supset B \cap T$.

Combinatorial properties of Nil-Bohr sets

Theorem (Host-Kra)

Suppose that $A \subset \mathbb{N}$ is SG_{d}^{*}. Then A contains a strongly piecewise Nil-Bohr r_{0} set of step d.
In particular, there are Nil-Bohr r_{0} set B of step d and a thick set $T=\bigcup_{i=1}^{\infty}\left[n_{i}, m_{i}\right], m_{i}-n_{i} \rightarrow \infty$ such that $A \supset B \cap T$.

Conjecture: If A is a Nil- Bohr_{0} set of step d, then A is SG_{d}^{*}.
Basic facts:

- Any Nil-Bohro set is IP*. (Fact about distal dynamical systems.)
- Any Bohr $_{0}$ set is SG_{1}^{*}, i.e. intersects $S-S$, for $S \subset \mathbb{N}$, infinite.

Combinatorial properties of Nil-Bohr sets

Theorem (Host-Kra)

Suppose that $A \subset \mathbb{N}$ is SG_{d}^{*}. Then A contains a strongly piecewise
Nil-Bohr r_{0} set of step d.
In particular, there are Nil-Bohr r_{0} set B of step d and a thick set $T=\bigcup_{i=1}^{\infty}\left[n_{i}, m_{i}\right], m_{i}-n_{i} \rightarrow \infty$ such that $A \supset B \cap T$.

Conjecture: If A is a Nil- Bohr_{0} set of step d, then A is SG_{d}^{*}.

Basic facts:

- Any Nil-Bohro set is IP*. (Fact about distal dynamical systems.)
- Any Bohr $_{0}$ set is SG_{1}^{*}, i.e. intersects $S-S$, for $S \subset \mathbb{N}$, infinite.

Theorem (K.)

- Any d-step Nil-Bohr r_{0} set A is $\mathrm{SG}_{d^{\prime}}^{*}$, where $d^{\prime}=\binom{d+2}{2}$.
- For $A=\{n: p(n) \in(-\varepsilon, \varepsilon) \bmod 1\}, p(x) \in \mathbb{R}[x]$, this holds $d^{\prime}=d$.

Proof: Basics

- Setup: Let G / Γ be a d-step nilmanifold, $a \in G ; \vec{n}=\left(n_{i}\right)_{i=1}^{\infty}, n_{i} \in \mathbb{N}$; and $k \geq\binom{ d+2}{2}$. Need to show that $e \Gamma \in \operatorname{cl}\left\{a^{n_{\alpha}} \Gamma: \alpha \in \mathcal{S}_{k}\right\}$, where $n_{\alpha}=\sum_{i \in \alpha} n_{i}$.

Hence, we study functions of the form

$$
\begin{equation*}
f: \mathcal{F}_{\emptyset} \rightarrow G / \Gamma, \quad f(\alpha)=a^{n_{\alpha}} \Gamma . \tag{*}
\end{equation*}
$$

- Some useful operations:
- Subsequences: For $\left(\beta_{i}\right)_{i=1}^{\infty}, \beta_{i} \in \mathcal{F}$, disjoint, consider

$$
\tilde{f}(\alpha):=f\left(\beta_{\alpha}\right), \quad \beta_{\alpha}=\bigcup_{i \in \alpha} \beta_{i} .
$$

[Will insist that $\alpha \mapsto \beta_{\alpha}$ maps \mathcal{S}_{l} to \mathcal{S}_{k} for some $l \leq k$.]

- Pointwise limits: Given $f_{m}: \mathcal{F}_{\emptyset} \rightarrow G / \Gamma$, consider

$$
\tilde{f}(\alpha)=\lim _{m \rightarrow \infty} f_{m}(\alpha)
$$

Proof: Polynomials

- Problem: The class of functions given by

$$
\begin{equation*}
f: \mathcal{F}_{\emptyset} \rightarrow G / \Gamma, \quad f(\alpha)=a^{n_{\alpha}} \Gamma \tag{*}
\end{equation*}
$$

is closed under subsequences, but not under pointwise limits.

- Solution: Introduce the class of polynomial maps from \mathcal{F} to G / Γ with respect to pre-filtration $G_{\bullet}=G_{0} \supseteq G_{1} \supseteq G_{2} \ldots$ (i.e. $G_{0}=G$, $\left.\left[G_{i}, G_{j}\right] \subset G_{i+j}, G_{d+1}=\{e\}\right)$.
A function $f: \mathcal{F} \rightarrow G$ is polynomial w.r.t. G_{\bullet} if either $f=e$ and $G_{1}=\{e\}$, or for any $\beta \in \mathcal{F}$, the discrete derivative

$$
\Delta_{\beta} f(\alpha):=f(\beta)^{-1} f(\alpha \cup \beta) f(\alpha)^{-1}, \quad(\alpha \cap \beta=\emptyset)
$$

is polynomial w.r.t. shifted pre-filtration $G_{\bullet+1}=G_{1} \supseteq G_{2} \supseteq \ldots$ Likewise, $\bar{f}: \mathcal{F} \rightarrow G / \Gamma$ is polynomial w.r.t. G_{\bullet} if $\bar{f}(\alpha)=f(\alpha) \Gamma$, $f: \mathcal{F} \rightarrow G$ polynomial.

- Generalization: Functions in (*) are polynomials w.r.t. the lower central series $G_{0}=G_{1}=G, G_{i+1}=\left[G_{i}, G\right]$.
- Closure properties: Polynomials w.r.t. a given filtration are closed under both subsequences and pointwise limits.
- Abelian case: For $G=\mathbb{R}, \Gamma=\mathbb{Z}, G_{0}=G_{1}=\cdots=G_{d}=\mathbb{R}$, $G_{d+1}=\{0\}$, these are the maps

$$
\alpha \mapsto \sum_{\gamma \subset \alpha,|\gamma| \leq d} a_{\gamma}, \quad a_{\gamma} \in \mathbb{R} .
$$

Proof: Inductive step

Lemma

Let $g: \mathcal{F}_{\emptyset} \rightarrow G / \Gamma$ be a polynomial with respect to filtration $G \bullet$ of length $\leq d$, with $g(\emptyset)=e \Gamma$. Let r be the least index s.t. $G_{r} \neq G, k \geq r$. Then, there exist a polynomial sequence $\tilde{g}: \mathcal{F}_{\emptyset} \rightarrow G / \Gamma$ (limit of subsequences of g) such that

- $\left\{\tilde{g}(\alpha): \alpha \in \mathcal{S}_{k-r}\right\} \subseteq \operatorname{cl}\left\{g(\alpha): \alpha \in \mathcal{S}_{k}\right\}$,
- $\tilde{g}(\alpha) \in \pi\left(G_{r}\right)$ for any $\alpha \in \mathcal{F}$, where $\pi: G \rightarrow G / \Gamma$ is the quotient.

Proof of Main theorem, assuming the Lemma.

- Claim: With notation above, $e \Gamma \in \operatorname{cl}\left\{g(\alpha): \alpha \in \mathcal{S}_{k}\right\}$, provided that $k \geq r+(r+1)+\cdots+(d+1)$.
- Apply Lemma to produce \tilde{g}; suffice to show $e \Gamma \in \operatorname{cl}\left\{\tilde{g}(\alpha): \alpha \in \mathcal{S}_{k-r}\right\}$.
- Can construe \tilde{g} as polynomial on the simpler sub-nilmanifold $\tilde{G} / \tilde{\Gamma}=G_{r} / G_{r} \cap \Gamma$ w.r.t. pre-filtration $\tilde{G}_{j}=G_{j} \cap G_{r}$.
- Apply the inductive claim to \tilde{g}, where $\tilde{k}=k-r, \tilde{r} \geq r+1$ (except if $r=d+1$ - then we are done).

Proof: Proving the lemma

Lemma

If $g: \mathcal{F}_{\emptyset} \rightarrow G / \Gamma$ is a polynomial w.r.t. $G \bullet$ of length $\leq d, g(\emptyset)=e \Gamma$, $G_{r} \neq G$, then there exist a polynomial sequence $\tilde{g}: \mathcal{F}_{\emptyset} \rightarrow G / \Gamma$ such that

- $\left\{\tilde{g}(\alpha): \alpha \in \mathcal{S}_{k-r}\right\} \subseteq \operatorname{cl}\left\{g(\alpha): \alpha \in \mathcal{S}_{k}\right\}$,
- $\tilde{g}(\alpha) \in \pi\left(G_{r}\right)$ for any $\alpha \in \mathcal{F}(\pi: G \rightarrow G / \Gamma$ is the quotient map).

Proof of the Lemma.

- Quotient out G_{r} : can assume that $G_{r}=\{e\}$. W.l.o.g.

$$
G / \Gamma=\mathbb{R}^{m} / \mathbb{Z}^{m}=\mathbb{T}^{m}, \text { and } g(\alpha)=\sum_{\gamma \subset \alpha,|\gamma| \leq d} a_{\gamma}, a_{\gamma} \in \mathbb{R}^{m}
$$

- Repeatedly pass to limits of subsequences of $g(\alpha)$ to obtain "simplest possible sequence". May assume that:
- a_{γ} are k-periodic: $a_{\gamma+k}=a_{\gamma}$,
- $a_{\gamma}=0$ whenever γ has diameter $>k$.
- Let Σ be the closure of the set of subsequences $h(\alpha)=g\left(\beta_{\alpha}\right)$ where $\alpha \mapsto \beta_{\alpha} \operatorname{maps} \mathcal{S}_{k-r}$ to \mathcal{S}_{k}, and β_{i} 's are somewhat "generic".
- Let Δ be the set of maps δ such that $h+\delta \in \Sigma$ whenever $h \in \Sigma$. Find elements of Δ by modifying a few β_{i} 's. Conclude that $\Sigma \subset \Delta$.

The End

Thank You for your attention!

[^0]:
 Any SG_{d}^{*} set is strongly piecewise Nil-Bohro of step d.

