Partitions of the set of nonnegative integers with the same representation functions

Sándor Kiss

Budapest University of Technology and Economics Mathematical Institute

2016.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Definitions

Definition

Let $k \ge 2$ be a fixed integer and $A = \{a_1, a_2, ...\}$ $(a_1 < a_2 < ...)$ be an infinite set of nonnegative integers. Let $R_1(A, n, k)$, $R_2(A, n, k)$, $R_3(A, n, k)$ denote the number of solutions of the equations

$$a_{i_1} + a_{i_2} + \ldots + a_{i_k} = n, \quad a_{i_1}, a_{i_2}, \ldots, a_{i_k} \in A,$$

 $a_{i_1} + a_{i_2} + \ldots + a_{i_k} = n, \quad a_{i_1} < a_{i_2} < \ldots < a_{i_k}, \quad a_{i_1}, a_{i_2}, \ldots, a_{i_k} \in A,$
 $a_{i_1} + a_{i_2} + \ldots + a_{i_k} = n, \quad a_{i_1} \le a_{i_2} \le \ldots \le a_{i_k}, \quad a_{i_1}, a_{i_2}, \ldots, a_{i_k} \in A$
respectively.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

▲□→ ▲注→ ▲注→

Definitions

Definition

â

Let $k \ge 2$ be a fixed integer and $A = \{a_1, a_2, ...\}$ $(a_1 < a_2 < ...)$ be an infinite set of nonnegative integers. Let $R_1(A, n, k)$, $R_2(A, n, k)$, $R_3(A, n, k)$ denote the number of solutions of the equations

$$a_{i_1} + a_{i_2} + \ldots + a_{i_k} = n, \quad a_{i_1}, a_{i_2}, \ldots, a_{i_k} \in A,$$

 $a_{i_1} + a_{i_2} + \ldots + a_{i_k} = n, \quad a_{i_1} < a_{i_2} < \ldots < a_{i_k}, \quad a_{i_1}, a_{i_2}, \ldots, a_{i_k} \in A,$
 $a_{i_1} + a_{i_2} + \ldots + a_{i_k} = n, \quad a_{i_1} \le a_{i_2} \le \ldots \le a_{i_k}, \quad a_{i_1}, a_{i_2}, \ldots, a_{i_k} \in A$
respectively.

For k = 2 we have

$$R_2(A, n, 2) = \left[\frac{R_1(A, n, 2)}{2}\right], \quad R_3(A, n, 2) = \left\lceil \frac{R_1(A, n, 2)}{2} \right\rceil.$$

Sándor Kiss Budapest University of Technology and Econom

Partitions of the set of nonnegative integers with the same i

Theorem (Erdős, Turán, 1941)

For an infinite set $A \subset \mathbb{N}$ the representation function $R_1(A, n, 2)$ cannot be a constant from a certain point on.

Theorem (Dirac, Newman, 1951)

For an infinite set $A \subset \mathbb{N}$ the representation function $R_3(A, n, 2)$ cannot be a constant from a certain point on.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Erdős, Turán, 1941)

For an infinite set $A \subset \mathbb{N}$ the representation function $R_1(A, n, 2)$ cannot be a constant from a certain point on.

Theorem (Dirac, Newman, 1951)

For an infinite set $A \subset \mathbb{N}$ the representation function $R_3(A, n, 2)$ cannot be a constant from a certain point on.

Theorem (Erdős, Fuchs, 1956)

If c is a positive constant, $A \subset \mathbb{N}$ then

$$\sum_{n=1}^{N} R_1(A, n, 2) = cN + o(N^{1/4} (\log N)^{-1/2})$$

cannot hold.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Problem (Gauss circle problem)

Consider a circle in \mathbb{R}^2 with centre at the origin and radius r. Gauss circle problem asks how many points there are inside this circle of the form (m, n) where m and n are both integers.

Problem (Gauss circle problem)

Consider a circle in \mathbb{R}^2 with centre at the origin and radius r. Gauss circle problem asks how many points there are inside this circle of the form (m, n) where m and n are both integers.

The number of such points is $r^2\pi + E(r)$. It is conjectured that $E(r) = O(r^{1/2+\varepsilon})$. It follows from the above theorem that $E(r) \neq o(r^{1/2}(\log r)^{-1/2})$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Problem (Gauss circle problem)

Consider a circle in \mathbb{R}^2 with centre at the origin and radius r. Gauss circle problem asks how many points there are inside this circle of the form (m, n) where m and n are both integers.

The number of such points is $r^2\pi + E(r)$. It is conjectured that $E(r) = O(r^{1/2+\varepsilon})$. It follows from the above theorem that $E(r) \neq o(r^{1/2}(\log r)^{-1/2})$. Sidon asked: Does there exist a set $A \subset \mathbb{N}$ such that $R_1(A, n, 2) > 0$ for $n > n_0$ and for every $\varepsilon > 0$,

$$\lim_{n\to\infty}\frac{R_1(A,n,2)}{n^{\varepsilon}}=0?$$

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Theorem (Erdős, 1956)

There exists a set $A \subset \mathbb{N}$ so that there are two constans c_1 and c_2 for which for every n

 $c_1 \log n < R_1(A, n, 2) < c_2 \log n.$

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

<ロ> (四) (四) (三) (三) (三) 三目

Theorem (Erdős, 1956)

There exists a set $A \subset \mathbb{N}$ so that there are two constans c_1 and c_2 for which for every n

 $c_1 \log n < R_1(A, n, 2) < c_2 \log n.$

Conjecture (Erdős, 1956)

There does not exists a set $A \subset \mathbb{N}$ such that

$$\lim_{n\to\infty}\frac{R_1(A,n,2)}{\log n}=c,$$

where c > 0.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・

Conjecture (Erdős, Turán, 1941)

If $R_1(A, n, 2) > 0$ from a certain point on, then $R_1(A, n, 2)$ cannot be bounded.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Conjecture (Erdős, Turán, 1941)

If $R_1(A, n, 2) > 0$ from a certain point on, then $R_1(A, n, 2)$ cannot be bounded.

Conjecture (Erdős, Turán, 1941)

If $A = \{a_1, a_2, ...\}$ $(a_1 < a_2 < ...)$ is an infinite set of positive integers such that for some c > 0 and all $k \in \mathbb{N}$ we have $a_k < ck^2$, then $R_1(A, n, 2)$ cannot be bounded.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Conjecture (Erdős, Turán, 1941)

If $R_1(A, n, 2) > 0$ from a certain point on, then $R_1(A, n, 2)$ cannot be bounded.

Conjecture (Erdős, Turán, 1941)

If $A = \{a_1, a_2, ...\}$ $(a_1 < a_2 < ...)$ is an infinite set of positive integers such that for some c > 0 and all $k \in \mathbb{N}$ we have $a_k < ck^2$, then $R_1(A, n, 2)$ cannot be bounded.

Theorem (Ruzsa, 1990)

There exists an infinite set $A\subset \mathbb{N}$ such that $R_1(A,n,2)>0$ for all $n>n_0$ and

$$\limsup_{N\to+\infty}\frac{1}{N}\Big(\sum_{n=1}^N R_1^2(A,n,2)\Big)<+\infty.$$

Sándor Kiss Budapest University of Technology and Econom

Partitions of the set of nonnegative integers with the same i

Theorem (Nathanson, 1978)

Let A and B be infinite sets of nonnegative integers, $A \neq B$. Then $R_1(A, n, 2) = R_1(B, n, 2)$ from a certain point on if and only if there exist positive integers n_0 , M and finite sets F_A , F_B , T with $F_A \cup F_B \subset [0, Mn_0 - 1]$, $T \subset [0, M - 1]$ such that

$$A = F_A \cup \{kM + t : k \ge n_0, t \in T\},$$

$$B = F_B \cup \{kM + t : k \ge n_0, t \in T\},\$$

(1 - z^M)|(F_A(z) - F_B(z))T(z).

 $F_A(z) = \sum_{a \in A} z^a$, $F_B(z) = \sum_{b \in B} z^b$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Conjecture (Kiss, Sándor, Rozgonyi, 2012)

For k > 2 let A and B be infinite sets of nonnegative integers, $A \neq B$. Then $R_1(A, n, k) = R_1(B, n, k)$ from a certain point on if and only if there exist positive integers n_0 , M and finite sets F_A , F_B , T with $F_A \cup F_B \subset [0, Mn_0 - 1]$, $T \subset [0, M - 1]$ such that

$$A = F_A \cup \{kM + t : k \ge n_0, t \in T\},$$

$$B = F_B \cup \{kM + t : k \ge n_0, t \in T\}$$

$$(1 - z^M)^{k-1} | (F_A(z) - F_B(z))T(z)^{k-1}.$$

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

(D) (A) (A) (A)

Conjecture (Kiss, Sándor, Rozgonyi, 2012)

For k > 2 let A and B be infinite sets of nonnegative integers, $A \neq B$. Then $R_1(A, n, k) = R_1(B, n, k)$ from a certain point on if and only if there exist positive integers n_0 , M and finite sets F_A , F_B , T with $F_A \cup F_B \subset [0, Mn_0 - 1]$, $T \subset [0, M - 1]$ such that

$$A=F_A\cup\{kM+t:k\geq n_0,t\in T\},$$

$$B = F_B \cup \{kM + t : k \ge n_0, t \in T\}$$
$$(1 - z^M)^{k-1} | (F_A(z) - F_B(z))T(z)^{k-1}$$

Theorem (Kiss, Sándor, Rozgonyi, 2012)

If the conditions of the above conjecture hold, then $R_1(A, n, k) = R_1(B, n, k)$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Conjecture (Kiss, Sándor, Rozgonyi, 2012)

For k > 2 let A and B be infinite sets of nonnegative integers, $A \neq B$. Then $R_1(A, n, k) = R_1(B, n, k)$ from a certain point on if and only if there exist positive integers n_0 , M and finite sets F_A , F_B , T with $F_A \cup F_B \subset [0, Mn_0 - 1]$, $T \subset [0, M - 1]$ such that

$$A=F_A\cup\{kM+t:k\geq n_0,t\in T\},$$

$$B = F_B \cup \{kM + t : k \ge n_0, t \in T\}$$
$$(1 - z^M)^{k-1} | (F_A(z) - F_B(z))T(z)^{k-1}|$$

Theorem (Kiss, Sándor, Rozgonyi, 2012)

If the conditions of the above conjecture hold, then $R_1(A, n, k) = R_1(B, n, k)$.

Theorem (Sándor, Rozgonyi 2014)

The above conjecture holds, when $k = p^s$, where $s \ge 1$ and p is a prime.

Sándor Kiss Budapest University of Technology and Econom

Partitions of the set of nonnegative integers with the same r

Sárközy asked: there exist two sets A and B of positive integers with infinite symmetric difference, i.e, $|(A \cup B) \setminus (A \cap B)| = \infty$ and having $R_i(A, n, 2) = R_i(B, n, 2)$ for all sufficiently large n and i = 1, 2, 3.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

- 4 문 4 문 4 문 4 문 5 문 문

Sárközy asked: there exist two sets A and B of positive integers with infinite symmetric difference, i.e, $|(A \cup B) \setminus (A \cap B)| = \infty$ and having $R_i(A, n, 2) = R_i(B, n, 2)$ for all sufficiently large n and i = 1, 2, 3.

Theorem (Dombi, 2002)

The set of nonnegative integers can be partitioned into two subsets A and B such that $R_2(A, n, 2) = R_2(B, n, 2)$ for all nonnegative integer n.

Theorem (Chen, Wang, 2003)

The set of positive integers can be partitioned into two subsets A and B such that $R_3(A, n, 2) = R_3(B, n, 2)$ for all positive integer n.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Theorem (Lev, Sándor, 2004)

Let N be a positive integer. The equality $R_3(A, n, 2) = R_3(\mathbb{N} \setminus A, n, 2)$ holds for $n \ge 2N - 1$ if and only if $|A \cap [0, 2N - 1]| = N$ and $2m \in A$ if and only if $m \notin A$, $2m + 1 \in A$ if and only if $m \in A$ for $m \ge N$.

Theorem (Lev, Sándor, 2004)

Let N be a positive integer. The equality $R_2(A, n, 2) = R_2(\mathbb{N} \setminus A, n, 2)$ holds for $n \ge 2N - 1$ if and only if $|A \cap [0, 2N - 1]| = N$ and $2m \in A$ if and only if $m \in A$, $2m + 1 \in A$ if and only if $m \notin A$ for $m \ge N$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Theorem (Lev, Sándor, 2004)

Let N be a positive integer. The equality $R_3(A, n, 2) = R_3(\mathbb{N} \setminus A, n, 2)$ holds for $n \ge 2N - 1$ if and only if $|A \cap [0, 2N - 1]| = N$ and $2m \in A$ if and only if $m \notin A$, $2m + 1 \in A$ if and only if $m \in A$ for $m \ge N$.

Theorem (Lev, Sándor, 2004)

Let N be a positive integer. The equality $R_2(A, n, 2) = R_2(\mathbb{N} \setminus A, n, 2)$ holds for $n \ge 2N - 1$ if and only if $|A \cap [0, 2N - 1]| = N$ and $2m \in A$ if and only if $m \in A$, $2m + 1 \in A$ if and only if $m \notin A$ for $m \ge N$.

Problem

Characterize all the sets of nonnegative integers A and B such that $R_2(A, n, 2) = R_2(B, n, 2)$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Definition

Let X be an additive semigroup and A_1, \ldots, A_h are nonempty subsets of X. Let $R_{A_1+\ldots+A_h}(x)$ denote the number of solutions of the equation

$$a_1+\ldots+a_h=x,$$

where $a_1 \in A_1, \ldots, a_h \in A_h$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Definition

Let X be an additive semigroup and A_1, \ldots, A_h are nonempty subsets of X. Let $R_{A_1+\ldots+A_h}(x)$ denote the number of solutions of the equation

 $a_1+\ldots+a_h=x,$

where $a_1 \in A_1, \ldots, a_h \in A_h$.

Theorem (Kiss, Sándor, Rozgonyi, 2014)

The equality $R_{A+B}(n) = R_{\mathbb{N}\setminus A+\mathbb{N}\setminus B}(n)$ holds from a certain point on if and only if $|\mathbb{N} \setminus (A \cup B)| = |A \cap B| < \infty$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Theorem (Chen, Yang, 2012)

The equality $R_1(A, n, 2) = R_1(\mathbb{Z}_m \setminus A, n, 2)$ holds for all $n \in \mathbb{Z}_m$ if and only if m is even and |A| = m/2.

Theorem (Chen, Yang, 2012)

For $i \in \{2,3\}$, the equality $R_i(A, n, 2) = R_i(\mathbb{Z}_m \setminus A, n, 2)$ holds for all $n \in \mathbb{Z}_m$ if and only if m is even and $t \in A$ if and only if $t + m/2 \notin A$ for t = 0, 1, ..., m/2 - 1.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ →

Theorem (Chen, Yang, 2012)

The equality $R_1(A, n, 2) = R_1(\mathbb{Z}_m \setminus A, n, 2)$ holds for all $n \in \mathbb{Z}_m$ if and only if m is even and |A| = m/2.

Theorem (Chen, Yang, 2012)

For $i \in \{2,3\}$, the equality $R_i(A, n, 2) = R_i(\mathbb{Z}_m \setminus A, n, 2)$ holds for all $n \in \mathbb{Z}_m$ if and only if m is even and $t \in A$ if and only if $t + m/2 \notin A$ for t = 0, 1, ..., m/2 - 1.

Theorem (Kiss, Sándor, Rozgonyi, 2014)

Let G be a finite group, A, $B \subset G$. Then

(i) If there exists a $g \in G$ for which the equality $R_{A+B}(g) = R_{G \setminus A+G \setminus B}(g)$ holds, then |A| + |B| = |G|.

(ii) If |A| + |B| = |G|, then the equality $R_{A+B}(g) = R_{G\setminus A+G\setminus B}(g)$ holds for all $g \in G$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Theorem (Kiss, Sándor, Rozgonyi, 2014)

Let
$$X = G$$
 be a finite group, $A \subset G$ and $h \ge 2$ a fixed integer.

- (i) If the equality $R_1(A, g, h) = R_1(G \setminus A, g, h)$ holds for all $g \in G$, then |G| is even and |A| = |G|/2.
- (ii) If h is even and |A| = |G|/2 then $R_1(A, g, h) = R_1(G \setminus A, g, h)$ holds for all $g \in G$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

(同) (三) (三) (三)

Theorem (Kiss, Sándor, Rozgonyi, 2014)

Let
$$X = G$$
 be a finite group, $A \subset G$ and $h \ge 2$ a fixed integer.

- (i) If the equality $R_1(A, g, h) = R_1(G \setminus A, g, h)$ holds for all $g \in G$, then |G| is even and |A| = |G|/2.
- (ii) If h is even and |A| = |G|/2 then $R_1(A, g, h) = R_1(G \setminus A, g, h)$ holds for all $g \in G$.

Problem

Let h > 1 be a fixed odd positive integer. Let G be an Abelian group and $A \subset G$ be a nonempty subset. Does there exist a $g \in G$ such that $R_1(A, g, h) \neq R_1(G \setminus A, g, h)$?

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Theorem (Kiss, Sándor, Rozgonyi, 2014)

Let $X = \mathbb{Z}_m$ and h > 2 be a fixed odd integer. If $A \subset \mathbb{Z}_m$ such that |A| = m/2 then there exists a $g \in \mathbb{Z}_m$ such that $R_1(A, g, h) \neq R_1(\mathbb{Z}_m \setminus A, g, h)$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

(日) (日) (日)

Theorem (Kiss, Sándor, Rozgonyi, 2014)

Let $X = \mathbb{Z}_m$ and h > 2 be a fixed odd integer. If $A \subset \mathbb{Z}_m$ such that |A| = m/2 then there exists a $g \in \mathbb{Z}_m$ such that $R_1(A, g, h) \neq R_1(\mathbb{Z}_m \setminus A, g, h)$.

Problem

Let G be an Abelian group and $h \ge 2$. Characterize all the partitions of G into pairwise disjoint sets $A_1, A_2, ..., A_h$ such that for every $g \in G$ and for every $1 \le i, j \le h$, $R_1(A_i, g, h) = R_1(A_j, g, h)$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Theorem (Z. Qu, 2015)

Let G be an Abelian group and $h \ge 3$ an odd integer. Then it is not possible to partition G into h disjoint sets $A_1, A_2, ..., A_h$ such that for every $g \in G$ and for every $1 \le i, j \le h$, $R_1(A_i, g, h) = R_1(A_j, g, h)$.

▲御♪ ★ 塗♪ ★ 塗♪ …

Let A be the set of those nonnegative integers which contains even number of 1 binary digits in its binary representation and let B be the complement of A. Put $A_l = A \cap [0, 2^l - 1]$ and $B_l = B \cap [0, 2^l - 1]$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

(日本)(日本)(日本)(日本)

Let A be the set of those nonnegative integers which contains even number of 1 binary digits in its binary representation and let B be the complement of A. Put $A_l = A \cap [0, 2^l - 1]$ and $B_l = B \cap [0, 2^l - 1]$.

Theorem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that $C \cup D = \mathbb{N}$ and $C \cap D = \emptyset$, $0 \in C$. Then $R_2(C, n, 2) = R_2(D, n, 2)$ if and only if C = A and D = B.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let A be the set of those nonnegative integers which contains even number of 1 binary digits in its binary representation and let B be the complement of A. Put $A_l = A \cap [0, 2^l - 1]$ and $B_l = B \cap [0, 2^l - 1]$.

Theorem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that $C \cup D = \mathbb{N}$ and $C \cap D = \emptyset$, $0 \in C$. Then $R_2(C, n, 2) = R_2(D, n, 2)$ if and only if C = A and D = B.

Theorem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that $C \cup D = [0, m]$ and $C \cap D = \emptyset$, $0 \in C$. Then $R_2(C, n, 2) = R_2(D, n, 2)$ if and only if there exists an I natural number such that $C = A_1$ and $D = B_1$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Theorem (Tang, Yu, 2012)

If $C \cup D = \mathbb{N}$ and $C \cap D = \{4k : k \in \mathbb{N}\}$, then $R_2(C, n, 2) = R_2(D, n, 2)$ cannot hold for all sufficiently large n.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

▲理 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem (Tang, Yu, 2012)

If $C \cup D = \mathbb{N}$ and $C \cap D = \{4k : k \in \mathbb{N}\}$, then $R_2(C, n, 2) = R_2(D, n, 2)$ cannot hold for all sufficiently large n.

Conjecture (Tang, Yu, 2012)

Let $m \in \mathbb{N}$ and $R \subset \{0, 1, ..., m-1\}$. If $C \cup D = \mathbb{N}$ and $C \cap D = \{r + km : k \in \mathbb{N}, r \in R\}$, then $R_2(C, n, 2) = R_2(D, n, 2)$ cannot hold for all sufficiently large n.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Theorem (Tang, Yu, 2012)

If $C \cup D = \mathbb{N}$ and $C \cap D = \{4k : k \in \mathbb{N}\}$, then $R_2(C, n, 2) = R_2(D, n, 2)$ cannot hold for all sufficiently large n.

Conjecture (Tang, Yu, 2012)

Let $m \in \mathbb{N}$ and $R \subset \{0, 1, ..., m-1\}$. If $C \cup D = \mathbb{N}$ and $C \cap D = \{r + km : k \in \mathbb{N}, r \in R\}$, then $R_2(C, n, 2) = R_2(D, n, 2)$ cannot hold for all sufficiently large n.

Theorem (Chen - Lev, 2015)

Let I be a positive integer. There exist sets $C, D \subset \mathbb{N}$ such that $C \cup D = \mathbb{N}, C \cap D = (2^{2l} - 1) + (2^{2l+1} - 1)\mathbb{N}$ and $R_2(C, n, 2) = R_2(D, n, 2).$

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Problem (Chen - Lev, 2015)

Let C and D be sets of nonnegative integers such that $C \cup D = [0, m - 1]$ and $C \cap D = \{r\}$, where $r \ge 0$, $m \ge 2$ and $R_2(C, n, 2) = R_2(D, n, 2)$. Does there exists an integer $l \ge 1$ such that $r = 2^{2l} - 1$, $m = 2^{2l+1} - 1$, $C = A_{2l} \cup (2^{2l} - 1 + B_{2l})$ and $D = B_{2l} \cup (2^{2l} - 1 + A_{2l})$?

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Problem (Chen - Lev, 2015)

Let C and D be sets of nonnegative integers such that $C \cup D = [0, m - 1]$ and $C \cap D = \{r\}$, where $r \ge 0$, $m \ge 2$ and $R_2(C, n, 2) = R_2(D, n, 2)$. Does there exists an integer $l \ge 1$ such that $r = 2^{2l} - 1$, $m = 2^{2l+1} - 1$, $C = A_{2l} \cup (2^{2l} - 1 + B_{2l})$ and $D = B_{2l} \cup (2^{2l} - 1 + A_{2l})$?

Theorem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that $C \cup D = [0, m - 1]$ and $C \cap D = \{r\}, 0 \in C$. Then $R_2(C, n, 2) = R_2(D, n, 2)$ if and only if there exists an I natural number such that $C = A_{2l} \cup (2^{2l} - 1 + B_{2l})$ and $D = B_{2l} \cup (2^{2l} - 1 + A_{2l})$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Problem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that $C \cup D = [0, m-1]$ and $C \cap D = \{r + n\mathbb{N}\}$, where $r \ge 0$, $m \ge 2$ integers and $R_2(C, n, 2) = R_2(D, n, 2)$. Does there exists an integer $l \ge 1$ such that $r = 2^{2l} - 1$, $m = 2^{2l+1} - 1$?

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

▲御♪ ★ 塗♪ ★ 塗♪

Problem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that $C \cup D = [0, m-1]$ and $C \cap D = \{r + n\mathbb{N}\}$, where $r \ge 0$, $m \ge 2$ integers and $R_2(C, n, 2) = R_2(D, n, 2)$. Does there exists an integer $l \ge 1$ such that $r = 2^{2l} - 1$, $m = 2^{2l+1} - 1$?

Theorem (Kiss, Sándor, 2016)

Let $m \ge 2$ be an even positive integer and let A and B be sets of nonnegative integers such that $A \cup B = \mathbb{N}$ and $A \cap B = m\mathbb{N}$. Then there exist infinitely many positive integer n such that $R_A(n) \ne R_B(n)$.

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

Thank you for your attention!

Sándor Kiss Budapest University of Technology and Econom Partitions of the set of nonnegative integers with the same i

◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○