Partitions of the set of nonnegative integers with the same representation functions

Sándor Kiss

Budapest University of Technology and Economics Mathematical Institute

2016.

Definitions

Definition

Let $k \geq 2$ be a fixed integer and $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\ldots\right)$ be an infinite set of nonnegative integers. Let $R_{1}(A, n, k)$, $R_{2}(A, n, k), R_{3}(A, n, k)$ denote the number of solutions of the equations

$$
\begin{gathered}
a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}=n, \quad a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}} \in A \\
a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}=n, \quad a_{i_{1}}<a_{i_{2}}<\ldots<a_{i_{k}}, \quad a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}} \in A \\
a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}=n, \quad a_{i_{1}} \leq a_{i_{2}} \leq \ldots \leq a_{i_{k}}, \quad a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}} \in A
\end{gathered}
$$ respectively.

Definitions

Definition

Let $k \geq 2$ be a fixed integer and $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\ldots\right)$ be an infinite set of nonnegative integers. Let $R_{1}(A, n, k)$, $R_{2}(A, n, k), R_{3}(A, n, k)$ denote the number of solutions of the equations

$$
\begin{aligned}
& \qquad a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}=n, \quad a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}} \in A \\
& a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}=n, \quad a_{i_{1}}<a_{i_{2}}<\ldots<a_{i_{k}}, \quad a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}} \in A \\
& a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}=n, \quad a_{i_{1}} \leq a_{i_{2}} \leq \ldots \leq a_{i_{k}}, \quad a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}} \in A \\
& \text { respectively. }
\end{aligned}
$$

For $k=2$ we have

$$
R_{2}(A, n, 2)=\left[\frac{R_{1}(A, n, 2)}{2}\right], \quad R_{3}(A, n, 2)=\left\lceil\frac{R_{1}(A, n, 2)}{2}\right\rceil .
$$

Motivation

Theorem (Erdős, Turán, 1941)

For an infinite set $A \subset \mathbb{N}$ the representation function $R_{1}(A, n, 2)$ cannot be a constant from a certain point on.

Theorem (Dirac, Newman, 1951)

For an infinite set $A \subset \mathbb{N}$ the representation function $R_{3}(A, n, 2)$ cannot be a constant from a certain point on.

Motivation

Theorem (Erdős, Turán, 1941)

For an infinite set $A \subset \mathbb{N}$ the representation function $R_{1}(A, n, 2)$ cannot be a constant from a certain point on.

Theorem (Dirac, Newman, 1951)

For an infinite set $A \subset \mathbb{N}$ the representation function $R_{3}(A, n, 2)$ cannot be a constant from a certain point on.

Theorem (Erdős, Fuchs, 1956)

If c is a positive constant, $A \subset \mathbb{N}$ then

$$
\sum_{n=1}^{N} R_{1}(A, n, 2)=c N+o\left(N^{1 / 4}(\log N)^{-1 / 2}\right)
$$

cannot hold.

Motivation

Problem (Gauss circle problem)

Consider a circle in \mathbb{R}^{2} with centre at the origin and radius r. Gauss circle problem asks how many points there are inside this circle of the form (m, n) where m and n are both integers.

Motivation

Problem (Gauss circle problem)

Consider a circle in \mathbb{R}^{2} with centre at the origin and radius r. Gauss circle problem asks how many points there are inside this circle of the form (m, n) where m and n are both integers.

The number of such points is $r^{2} \pi+E(r)$. It is conjectured that $E(r)=O\left(r^{1 / 2+\varepsilon}\right)$. It follows from the above theorem that $E(r) \neq o\left(r^{1 / 2}(\log r)^{-1 / 2}\right)$.

Motivation

Problem (Gauss circle problem)

Consider a circle in \mathbb{R}^{2} with centre at the origin and radius r. Gauss circle problem asks how many points there are inside this circle of the form (m, n) where m and n are both integers.

The number of such points is $r^{2} \pi+E(r)$. It is conjectured that $E(r)=O\left(r^{1 / 2+\varepsilon}\right)$. It follows from the above theorem that $E(r) \neq o\left(r^{1 / 2}(\log r)^{-1 / 2}\right)$.
Sidon asked: Does there exist a set $A \subset \mathbb{N}$ such that $R_{1}(A, n, 2)>0$ for $n>n_{0}$ and for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{R_{1}(A, n, 2)}{n^{\varepsilon}}=0 ?
$$

Motivation

Theorem (Erdős, 1956)

There exists a set $A \subset \mathbb{N}$ so that there are two constans c_{1} and c_{2} for which for every n

$$
c_{1} \log n<R_{1}(A, n, 2)<c_{2} \log n
$$

Motivation

Theorem (Erdős, 1956)

There exists a set $A \subset \mathbb{N}$ so that there are two constans c_{1} and c_{2} for which for every n

$$
c_{1} \log n<R_{1}(A, n, 2)<c_{2} \log n
$$

Conjecture (Erdős, 1956)

There does not exists a set $A \subset \mathbb{N}$ such that

$$
\lim _{n \rightarrow \infty} \frac{R_{1}(A, n, 2)}{\log n}=c
$$

where $c>0$.

Motivation

> Conjecture (Erdős, Turán, 1941)
> If $R_{1}(A, n, 2)>0$ from a certain point on, then $R_{1}(A, n, 2)$ cannot be bounded.

Motivation

Conjecture (Erdős, Turán, 1941)

If $R_{1}(A, n, 2)>0$ from a certain point on, then $R_{1}(A, n, 2)$ cannot be bounded.

Conjecture (Erdôs, Turán, 1941)

If $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\ldots\right)$ is an infinite set of positive integers such that for some $c>0$ and all $k \in \mathbb{N}$ we have $a_{k}<c k^{2}$, then $R_{1}(A, n, 2)$ cannot be bounded.

Motivation

Conjecture (Erdős, Turán, 1941)

If $R_{1}(A, n, 2)>0$ from a certain point on, then $R_{1}(A, n, 2)$ cannot be bounded.

Conjecture (Erdős, Turán, 1941)

If $A=\left\{a_{1}, a_{2}, \ldots\right\}\left(a_{1}<a_{2}<\ldots\right)$ is an infinite set of positive integers such that for some $c>0$ and all $k \in \mathbb{N}$ we have $a_{k}<c k^{2}$, then $R_{1}(A, n, 2)$ cannot be bounded.

Theorem (Ruzsa, 1990)

There exists an infinite set $A \subset \mathbb{N}$ such that $R_{1}(A, n, 2)>0$ for all $n>n_{0}$ and

$$
\limsup _{N \rightarrow+\infty} \frac{1}{N}\left(\sum_{n=1}^{N} R_{1}^{2}(A, n, 2)\right)<+\infty
$$

Coincide representation functions

Theorem (Nathanson, 1978)

Let A and B be infinite sets of nonnegative integers, $A \neq B$. Then $R_{1}(A, n, 2)=R_{1}(B, n, 2)$ from a certain point on if and only if there exist positive integers n_{0}, M and finite sets F_{A}, F_{B}, T with $F_{A} \cup F_{B} \subset\left[0, M n_{0}-1\right], T \subset[0, M-1]$ such that

$$
\begin{gathered}
A=F_{A} \cup\left\{k M+t: k \geq n_{0}, t \in T\right\}, \\
B=F_{B} \cup\left\{k M+t: k \geq n_{0}, t \in T\right\}, \\
\\
\left(1-z^{M}\right) \mid\left(F_{A}(z)-F_{B}(z)\right) T(z) .
\end{gathered}
$$

$$
F_{A}(z)=\sum_{a \in A} z^{a}, F_{B}(z)=\sum_{b \in B} z^{b} .
$$

Conjecture (Kiss, Sándor, Rozgonyi, 2012)

For $k>2$ let A and B be infinite sets of nonnegative integers, $A \neq B$. Then $R_{1}(A, n, k)=R_{1}(B, n, k)$ from a certain point on if and only if there exist positive integers n_{0}, M and finite sets F_{A}, F_{B}, T with $F_{A} \cup F_{B} \subset\left[0, M n_{0}-1\right], T \subset[0, M-1]$ such that

$$
\begin{gathered}
A=F_{A} \cup\left\{k M+t: k \geq n_{0}, t \in T\right\} \\
B=F_{B} \cup\left\{k M+t: k \geq n_{0}, t \in T\right\} \\
\left(1-z^{M}\right)^{k-1} \mid\left(F_{A}(z)-F_{B}(z)\right) T(z)^{k-1}
\end{gathered}
$$

Conjecture (Kiss, Sándor, Rozgonyi, 2012)

For $k>2$ let A and B be infinite sets of nonnegative integers, $A \neq B$. Then $R_{1}(A, n, k)=R_{1}(B, n, k)$ from a certain point on if and only if there exist positive integers n_{0}, M and finite sets F_{A}, F_{B}, T with $F_{A} \cup F_{B} \subset\left[0, M n_{0}-1\right], T \subset[0, M-1]$ such that

$$
\begin{gathered}
A=F_{A} \cup\left\{k M+t: k \geq n_{0}, t \in T\right\} \\
B=F_{B} \cup\left\{k M+t: k \geq n_{0}, t \in T\right\} \\
\left(1-z^{M}\right)^{k-1} \mid\left(F_{A}(z)-F_{B}(z)\right) T(z)^{k-1}
\end{gathered}
$$

Theorem (Kiss, Sándor, Rozgonyi, 2012)

If the conditions of the above conjecture hold, then $R_{1}(A, n, k)=R_{1}(B, n, k)$.

Conjecture (Kiss, Sándor, Rozgonyi, 2012)

For $k>2$ let A and B be infinite sets of nonnegative integers, $A \neq B$. Then $R_{1}(A, n, k)=R_{1}(B, n, k)$ from a certain point on if and only if there exist positive integers n_{0}, M and finite sets F_{A}, F_{B}, T with $F_{A} \cup F_{B} \subset\left[0, M n_{0}-1\right], T \subset[0, M-1]$ such that

$$
\begin{gathered}
A=F_{A} \cup\left\{k M+t: k \geq n_{0}, t \in T\right\} \\
B=F_{B} \cup\left\{k M+t: k \geq n_{0}, t \in T\right\} \\
\left(1-z^{M}\right)^{k-1} \mid\left(F_{A}(z)-F_{B}(z)\right) T(z)^{k-1}
\end{gathered}
$$

Theorem (Kiss, Sándor, Rozgonyi, 2012)

If the conditions of the above conjecture hold, then $R_{1}(A, n, k)=R_{1}(B, n, k)$.

Theorem (Sándor, Rozgonyi 2014)

The above conjecture holds, when $k=p^{s}$, where $s \geq 1$ and p is a prime.

Partitions and their representation functions

Sárközy asked: there exist two sets A and B of positive integers with infinite symmetric difference, i.e, $|(A \cup B) \backslash(A \cap B)|=\infty$ and having $R_{i}(A, n, 2)=R_{i}(B, n, 2)$ for all sufficiently large n and $i=1,2,3$.

Partitions and their representation functions

Sárközy asked: there exist two sets A and B of positive integers with infinite symmetric difference, i.e, $|(A \cup B) \backslash(A \cap B)|=\infty$ and having $R_{i}(A, n, 2)=R_{i}(B, n, 2)$ for all sufficiently large n and $i=1,2,3$.

Theorem (Dombi, 2002)

The set of nonnegative integers can be partitioned into two subsets A and B such that $R_{2}(A, n, 2)=R_{2}(B, n, 2)$ for all nonnegative integer n.

Theorem (Chen, Wang, 2003)

The set of positive integers can be partitioned into two subsets A and B such that $R_{3}(A, n, 2)=R_{3}(B, n, 2)$ for all positive integer n.

Partitions and their representation functions

Theorem (Lev, Sándor, 2004)

Let N be a positive integer. The equality $R_{3}(A, n, 2)=R_{3}(\mathbb{N} \backslash A, n, 2)$ holds for $n \geq 2 N-1$ if and only if $|A \cap[0,2 N-1]|=N$ and $2 m \in A$ if and only if $m \notin A, 2 m+1 \in A$ if and only if $m \in A$ for $m \geq N$.

Theorem (Lev, Sándor, 2004)

Let N be a positive integer. The equality $R_{2}(A, n, 2)=R_{2}(\mathbb{N} \backslash A, n, 2)$ holds for $n \geq 2 N-1$ if and only if $|A \cap[0,2 N-1]|=N$ and $2 m \in A$ if and only if $m \in A, 2 m+1 \in A$ if and only if $m \notin A$ for $m \geq N$.

Partitions and their representation functions

Theorem (Lev, Sándor, 2004)

Let N be a positive integer. The equality $R_{3}(A, n, 2)=R_{3}(\mathbb{N} \backslash A, n, 2)$ holds for $n \geq 2 N-1$ if and only if $|A \cap[0,2 N-1]|=N$ and $2 m \in A$ if and only if $m \notin A, 2 m+1 \in A$ if and only if $m \in A$ for $m \geq N$.

Theorem (Lev, Sándor, 2004)

Let N be a positive integer. The equality $R_{2}(A, n, 2)=R_{2}(\mathbb{N} \backslash A, n, 2)$ holds for $n \geq 2 N-1$ if and only if $|A \cap[0,2 N-1]|=N$ and $2 m \in A$ if and only if $m \in A, 2 m+1 \in A$ if and only if $m \notin A$ for $m \geq N$.

Problem

Characterize all the sets of nonnegative integers A and B such that $R_{2}(A, n, 2)=R_{2}(B, n, 2)$.

Partitions and their representation functions

Definition

Let X be an additive semigroup and A_{1}, \ldots, A_{h} are nonempty subsets of X. Let $R_{A_{1}+\ldots+A_{h}}(x)$ denote the number of solutions of the equation

$$
a_{1}+\ldots+a_{h}=x
$$

where $a_{1} \in A_{1}, \ldots, a_{h} \in A_{h}$.

Partitions and their representation functions

Definition

Let X be an additive semigroup and A_{1}, \ldots, A_{h} are nonempty subsets of X. Let $R_{A_{1}+\ldots+A_{h}}(x)$ denote the number of solutions of the equation

$$
a_{1}+\ldots+a_{h}=x
$$

where $a_{1} \in A_{1}, \ldots, a_{h} \in A_{h}$.

Theorem (Kiss, Sándor, Rozgonyi, 2014)

The equality $R_{A+B}(n)=R_{\mathbb{N} \backslash A+\mathbb{N} \backslash B}(n)$ holds from a certain point on if and only if $|\mathbb{N} \backslash(A \cup B)|=|A \cap B|<\infty$.

Partitions and their representation functions

Theorem (Chen, Yang, 2012)

The equality $R_{1}(A, n, 2)=R_{1}\left(\mathbb{Z}_{m} \backslash A, n, 2\right)$ holds for all $n \in \mathbb{Z}_{m}$ if and only if m is even and $|A|=m / 2$.

Theorem (Chen, Yang, 2012)

For $i \in\{2,3\}$, the equality $R_{i}(A, n, 2)=R_{i}\left(\mathbb{Z}_{m} \backslash A, n, 2\right)$ holds for all $n \in \mathbb{Z}_{m}$ if and only if m is even and $t \in A$ if and only if $t+m / 2 \notin A$ for $t=0,1, \ldots, m / 2-1$.

Partitions and their representation functions

Theorem (Chen, Yang, 2012)

The equality $R_{1}(A, n, 2)=R_{1}\left(\mathbb{Z}_{m} \backslash A, n, 2\right)$ holds for all $n \in \mathbb{Z}_{m}$ if and only if m is even and $|A|=m / 2$.

Theorem (Chen, Yang, 2012)

For $i \in\{2,3\}$, the equality $R_{i}(A, n, 2)=R_{i}\left(\mathbb{Z}_{m} \backslash A, n, 2\right)$ holds for all $n \in \mathbb{Z}_{m}$ if and only if m is even and $t \in A$ if and only if $t+m / 2 \notin A$ for $t=0,1, \ldots, m / 2-1$.

Theorem (Kiss, Sándor, Rozgonyi, 2014)

Let G be a finite group, $A, B \subset G$. Then
(i) If there exists a $g \in G$ for which the equality
$R_{A+B}(g)=R_{G \backslash A+G \backslash B}(g)$ holds, then $|A|+|B|=|G|$.
(ii) If $|A|+|B|=|G|$, then the equality $R_{A+B}(g)=R_{G \backslash A+G \backslash B}(g)$ holds for all $g \in G$.

Partitions and their representation functions

Theorem (Kiss, Sándor, Rozgonyi, 2014)

Let $X=G$ be a finite group, $A \subset G$ and $h \geq 2$ a fixed integer.
(i) If the equality $R_{1}(A, g, h)=R_{1}(G \backslash A, g, h)$ holds for all $g \in G$, then $|G|$ is even and $|A|=|G| / 2$.
(ii) If h is even and $|A|=|G| / 2$ then $R_{1}(A, g, h)=R_{1}(G \backslash A, g, h)$ holds for all $g \in G$.

Partitions and their representation functions

Theorem (Kiss, Sándor, Rozgonyi, 2014)

Let $X=G$ be a finite group, $A \subset G$ and $h \geq 2$ a fixed integer.
(i) If the equality $R_{1}(A, g, h)=R_{1}(G \backslash A, g, h)$ holds for all $g \in G$, then $|G|$ is even and $|A|=|G| / 2$.
(ii) If h is even and $|A|=|G| / 2$ then $R_{1}(A, g, h)=R_{1}(G \backslash A, g, h)$ holds for all $g \in G$.

Problem

Let $h>1$ be a fixed odd positive integer. Let G be an Abelian group and $A \subset G$ be a nonempty subset. Does there exist a $g \in G$ such that $R_{1}(A, g, h) \neq R_{1}(G \backslash A, g, h)$?

Partitions and their representation functions

> Theorem (Kiss, Sándor, Rozgonyi, 2014)
> Let $X=\mathbb{Z}_{m}$ and $h>2$ be a fixed odd integer. If $A \subset \mathbb{Z}_{m}$ such that $|A|=m / 2$ then there exists a $g \in \mathbb{Z}_{m}$ such that $R_{1}(A, g, h) \neq R_{1}\left(\mathbb{Z}_{m} \backslash A, g, h\right)$.

Partitions and their representation functions

Theorem (Kiss, Sándor, Rozgonyi, 2014)

Let $X=\mathbb{Z}_{m}$ and $h>2$ be a fixed odd integer. If $A \subset \mathbb{Z}_{m}$ such that $|A|=m / 2$ then there exists a $g \in \mathbb{Z}_{m}$ such that $R_{1}(A, g, h) \neq R_{1}\left(\mathbb{Z}_{m} \backslash A, g, h\right)$.

Problem

Let G be an Abelian group and $h \geq 2$. Characterize all the partitions of G into pairwise disjoint sets $A_{1}, A_{2}, \ldots, A_{h}$ such that for every $g \in G$ and for every $1 \leq i, j \leq h$, $R_{1}\left(A_{i}, g, h\right)=R_{1}\left(A_{j}, g, h\right)$.

Partitions and their representation functions

Theorem (Z. Qu, 2015)

Let G be an Abelian group and $h \geq 3$ an odd integer. Then it is not possible to partition G into h disjoint sets $A_{1}, A_{2}, \ldots, A_{h}$ such that for every $g \in G$ and for every $1 \leq i, j \leq h$, $R_{1}\left(A_{i}, g, h\right)=R_{1}\left(A_{j}, g, h\right)$.

Partitions and their representation functions

Let A be the set of those nonnegative integers which contains even number of 1 binary digits in its binary representation and let B be the complement of A. Put $A_{I}=A \cap\left[0,2^{\prime}-1\right]$ and
$B_{I}=B \cap\left[0,2^{\prime}-1\right]$.

Partitions and their representation functions

Let A be the set of those nonnegative integers which contains even number of 1 binary digits in its binary representation and let B be the complement of A. Put $A_{I}=A \cap\left[0,2^{I}-1\right]$ and $B_{I}=B \cap\left[0,2^{\prime}-1\right]$.

Theorem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that $C \cup D=\mathbb{N}$ and $C \cap D=\emptyset, 0 \in C$. Then $R_{2}(C, n, 2)=R_{2}(D, n, 2)$ if and only if $C=A$ and $D=B$.

Partitions and their representation functions

Let A be the set of those nonnegative integers which contains even number of 1 binary digits in its binary representation and let B be the complement of A. Put $A_{I}=A \cap\left[0,2^{\prime}-1\right]$ and $B_{I}=B \cap\left[0,2^{\prime}-1\right]$.

Theorem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that $C \cup D=\mathbb{N}$ and $C \cap D=\emptyset, 0 \in C$. Then $R_{2}(C, n, 2)=R_{2}(D, n, 2)$ if and only if $C=A$ and $D=B$.

Theorem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that
$C \cup D=[0, m]$ and $C \cap D=\emptyset, 0 \in C$. Then
$R_{2}(C, n, 2)=R_{2}(D, n, 2)$ if and only if there exists an I natural number such that $C=A_{l}$ and $D=B_{l}$.

Partitions and their representation functions

```
Theorem (Tang, Yu, 2012)
If C\cupD=\mathbb{N}\mathrm{ and }C\capD={4k:k\in\mathbb{N}}\mathrm{ , then}
R2(C,n,2)= R2(D,n,2) cannot hold for all sufficiently large n.
```


Partitions and their representation functions

```
Theorem (Tang, Yu, 2012)
If C\cupD=\mathbb{N}\mathrm{ and }C\capD={4k:k\in\mathbb{N}}\mathrm{ , then}
R2(C,n,2)= R2(D,n,2) cannot hold for all sufficiently large n.
```


Conjecture (Tang, Yu, 2012)

Let $m \in \mathbb{N}$ and $R \subset\{0,1, \ldots, m-1\}$. If $C \cup D=\mathbb{N}$ and $C \cap D=\{r+k m: k \in \mathbb{N}, r \in R\}$, then $R_{2}(C, n, 2)=R_{2}(D, n, 2)$ cannot hold for all sufficiently large n.

Partitions and their representation functions

Theorem (Tang, Yu, 2012)

If $C \cup D=\mathbb{N}$ and $C \cap D=\{4 k: k \in \mathbb{N}\}$, then $R_{2}(C, n, 2)=R_{2}(D, n, 2)$ cannot hold for all sufficiently large n.

Conjecture (Tang, Yu, 2012)

Let $m \in \mathbb{N}$ and $R \subset\{0,1, \ldots, m-1\}$. If $C \cup D=\mathbb{N}$ and
$C \cap D=\{r+k m: k \in \mathbb{N}, r \in R\}$, then $R_{2}(C, n, 2)=R_{2}(D, n, 2)$
cannot hold for all sufficiently large n.

Theorem (Chen - Lev, 2015)

Let I be a positive integer. There exist sets $C, D \subset \mathbb{N}$ such that $C \cup D=\mathbb{N}, C \cap D=\left(2^{2 I}-1\right)+\left(2^{2 /+1}-1\right) \mathbb{N}$ and $R_{2}(C, n, 2)=R_{2}(D, n, 2)$.

Partitions and their representation functions

Problem (Chen - Lev, 2015)

Let C and D be sets of nonnegative integers such that $C \cup D=[0, m-1]$ and $C \cap D=\{r\}$, where $r \geq 0, m \geq 2$ and $R_{2}(C, n, 2)=R_{2}(D, n, 2)$. Does there exists an integer $l \geq 1$ such that $r=2^{2 l}-1, m=2^{2 l+1}-1, C=A_{2 \prime} \cup\left(2^{2 \prime}-1+B_{2 \prime}\right)$ and $D=B_{2 \prime} \cup\left(2^{2 \prime}-1+A_{2 \prime}\right)$?

Partitions and their representation functions

Problem (Chen - Lev, 2015)

Let C and D be sets of nonnegative integers such that $C \cup D=[0, m-1]$ and $C \cap D=\{r\}$, where $r \geq 0, m \geq 2$ and $R_{2}(C, n, 2)=R_{2}(D, n, 2)$. Does there exists an integer $l \geq 1$ such that $r=2^{2 l}-1, m=2^{2 l+1}-1, C=A_{2 \prime} \cup\left(2^{2 \prime}-1+B_{2 l}\right)$ and $D=B_{2 \prime} \cup\left(2^{2 I}-1+A_{2 I}\right)$?

Theorem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that
$C \cup D=[0, m-1]$ and $C \cap D=\{r\}, 0 \in C$. Then $R_{2}(C, n, 2)=R_{2}(D, n, 2)$ if and only if there exists an I natural number such that $C=A_{2 \prime} \cup\left(2^{2 \prime}-1+B_{2 \prime}\right)$ and $D=B_{2 \prime} \cup\left(2^{2 \prime}-1+A_{2 \prime}\right)$.

Partitions and their representation functions

Problem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that $C \cup D=[0, m-1]$ and $C \cap D=\{r+n \mathbb{N}\}$, where $r \geq 0, m \geq 2$ integers and $R_{2}(C, n, 2)=R_{2}(D, n, 2)$. Does there exists an integer $l \geq 1$ such that $r=2^{2 l}-1, m=2^{2 l+1}-1$?

Partitions and their representation functions

Problem (Kiss, Sándor, 2016)

Let C and D be sets of nonnegative integers such that $C \cup D=[0, m-1]$ and $C \cap D=\{r+n \mathbb{N}\}$, where $r \geq 0, m \geq 2$ integers and $R_{2}(C, n, 2)=R_{2}(D, n, 2)$. Does there exists an integer $I \geq 1$ such that $r=2^{2 I}-1, m=2^{2 I+1}-1$?

Theorem (Kiss, Sándor, 2016)

Let $m \geq 2$ be an even positive integer and let A and B be sets of nonnegative integers such that $A \cup B=\mathbb{N}$ and $A \cap B=m \mathbb{N}$. Then there exist infinitely many positive integer n such that $R_{A}(n) \neq R_{B}(n)$.

Thank you for your attention!

