Davenport and Gao constants for a weighted zero-sum problem with quadratic residues

François Hennecart (Institut Camille Jordan Lyon St-Étienne)

Colloque
Additive Combinatorics in Bordeaux
Université de Bordeaux
11-15 avril 2016

Definitions

Let $R,+, \cdot$ be a finite ring and $A \subset R \backslash\{0\}$.

- Weighted Davenport constant $\boldsymbol{D}_{\mathbf{A}}(\boldsymbol{R})$: least integer such that any sequence S of R with length $\|S\| \geq D_{A}(R)$ has a (non empty) subsequence $g_{1} \cdot g_{2} \cdots \cdots g_{\ell}$ such that

$$
0 \in \sum_{i=1}^{\ell} A g_{i} \subset \Sigma_{A}^{(\ell)}(S):=\{A \text {-weighted sums of } \ell \text { terms of } S\} \text {. }
$$

Definitions

Let $R,+, \cdot$ be a finite ring and $A \subset R \backslash\{0\}$.

- Weighted Davenport constant $\boldsymbol{D}_{\mathbf{A}}(\boldsymbol{R})$: least integer such that any sequence S of R with length $\|S\| \geq D_{A}(R)$ has a (non empty) subsequence $g_{1} \cdot g_{2} \cdots \cdots g_{\ell}$ such that

$$
0 \in \sum_{i=1}^{\ell} A g_{i} \subset \Sigma_{A}^{(\ell)}(S):=\{A \text {-weighted sums of } \ell \text { terms of } S\} .
$$

- Weighted Gao constant $E_{A}(R)$: least integer such that any sequence of R with length $E_{A}(R)$ has a subsequence $g_{1} \cdot g_{2} \cdots \cdots g_{|R|}$ such that

$$
0 \in \sum_{i=1}^{|R|} A g_{i}
$$

Definitions

Let $R,+, \cdot$ be a finite ring and $A \subset R \backslash\{0\}$.

- Weighted Davenport constant $\boldsymbol{D}_{\mathbf{A}}(\boldsymbol{R})$: least integer such that any sequence S of R with length $\|S\| \geq D_{A}(R)$ has a (non empty) subsequence $g_{1} \cdot g_{2} \cdots \cdots g_{\ell}$ such that

$$
0 \in \sum_{i=1}^{\ell} A g_{i} \subset \Sigma_{A}^{(\ell)}(S):=\{A \text {-weighted sums of } \ell \text { terms of } S\} \text {. }
$$

- Weighted Gao constant $E_{A}(R)$: least integer such that any sequence of R with length $E_{A}(R)$ has a subsequence $g_{1} \cdot g_{2} \cdots \cdot g_{|R|}$ such that

$$
0 \in \sum_{i=1}^{|R|} A g_{i}
$$

- Notation: for a sequence S of R we denote $\Sigma_{A}(S)$ all (non empty) A-weighted sums of terms of S. Hence

$$
D_{A}(R):=\min \left\{k \geq 1 \text { such that }\|S\| \geq k \Rightarrow 0 \in \Sigma_{A}(S)\right\}
$$

Remarks and the fundamental result

- Remark 1: $D_{A}(G)$ and $E_{A}(G)$ can be defined when $G,+$ is a finite group and $A \subset \mathbf{Z} \backslash\{0\}$.

Remarks and the fundamental result

- Remark 1: $D_{A}(G)$ and $E_{A}(G)$ can be defined when $G,+$ is a finite group and $A \subset \mathbf{Z} \backslash\{0\}$.
- Remark 2: the case $A=\{1\}$ (or any invertible element of R) refers to the classical Davenport and Gao constants, simply denoted by $D(G)$ and $E(G)$.

Remarks and the fundamental result

- Remark 1: $D_{A}(G)$ and $E_{A}(G)$ can be defined when $G,+$ is a finite group and $A \subset \mathbf{Z} \backslash\{0\}$.
- Remark 2: the case $A=\{1\}$ (or any invertible element of R) refers to the classical Davenport and Gao constants, simply denoted by $D(G)$ and $E(G)$.
- Remark 3: replacing $|R|$ by $\exp (R)$ for the required length of the subsequence in the definition of $E_{A}(R)$ leads to the Erdős-Ginzburg-Ziv constant.

Remarks and the fundamental result

- Remark 1: $D_{A}(G)$ and $E_{A}(G)$ can be defined when $G,+$ is a finite group and $A \subset \mathbf{Z} \backslash\{0\}$.
- Remark 2: the case $A=\{1\}$ (or any invertible element of R) refers to the classical Davenport and Gao constants, simply denoted by $D(G)$ and $E(G)$.
- Remark 3: replacing $|R|$ by $\exp (R)$ for the required length of the subsequence in the definition of $E_{A}(R)$ leads to the Erdös-Ginzburg-Ziv constant.
- Remark 4: when $R=\mathbf{Z} / n \mathbf{Z}$ both Gao and Erdős-Ginzburg-Ziv constants coincide.

Remarks and the fundamental result

- Remark 1: $D_{A}(G)$ and $E_{A}(G)$ can be defined when $G,+$ is a finite group and $A \subset \mathbf{Z} \backslash\{0\}$.
- Remark 2: the case $A=\{1\}$ (or any invertible element of R) refers to the classical Davenport and Gao constants, simply denoted by $D(G)$ and $E(G)$.
- Remark 3: replacing $|R|$ by $\exp (R)$ for the required length of the subsequence in the definition of $E_{A}(R)$ leads to the Erdös-Ginzburg-Ziv constant.
- Remark 4: when $R=\mathbf{Z} / n \mathbf{Z}$ both Gao and Erdős-Ginzburg-Ziv constants coincide.
- Gao Theorem (1995): let $G,+$ be an abelian group. Then $E(G)=D(G)+|G|-1$.

Remarks and the fundamental result

- Remark 1: $D_{A}(G)$ and $E_{A}(G)$ can be defined when $G,+$ is a finite group and $A \subset \mathbf{Z} \backslash\{0\}$.
- Remark 2: the case $A=\{1\}$ (or any invertible element of R) refers to the classical Davenport and Gao constants, simply denoted by $D(G)$ and $E(G)$.
- Remark 3: replacing $|R|$ by $\exp (R)$ for the required length of the subsequence in the definition of $E_{A}(R)$ leads to the Erdös-Ginzburg-Ziv constant.
- Remark 4: when $R=\mathbf{Z} / n \mathbf{Z}$ both Gao and Erdős-Ginzburg-Ziv constants coincide.
- Gao Theorem (1995): let $G,+$ be an abelian group. Then $E(G)=D(G)+|G|-1$.
- Grynkiewicz-Marchan-Ordaz Theorem (2012):
$E_{A}(R)=D_{A}(R)+|R|-1$.
The case $R=\mathbf{Z} / n \mathbf{Z}$ is known since Yuan and Zeng (2010).

Examples

Denote for simplicity $Q^{*}=Q_{n}^{*}$ the set of invertible squares in a given fixed ring R.

- $D(\mathbf{Z} / n \mathbf{Z})=n$ (Erdős-Ginzburg-Ziv).

Examples

Denote for simplicity $Q^{*}=Q_{n}^{*}$ the set of invertible squares in a given fixed ring R.

- $D(\mathbf{Z} / n \mathbf{Z})=n$ (Erdős-Ginzburg-Ziv).
- $D_{Q^{*}}(\mathbf{Z} / p \mathbf{Z})=3$ if $p \geq 7$ is prime.

Proof. We have $\left|Q^{*}\right|=(p-1) / 2$. Then by the Cauchy-Davenport Theorem

$$
\left|Q^{*} a+Q^{*} b+Q^{*} c\right| \geq \min (p, 3(p-1) / 2-2)=p
$$

if a, b, c are not 0 . Otherwise we plainly have $0 \in Q^{*} a \cup Q^{*} b \cup Q^{*} c$.
Conversely take x be a nonsquare modulo p. Then

$$
0 \notin Q^{*} \cup-Q^{*} x \cup\left(Q^{*}-Q^{*} x\right) .
$$

Examples

Denote for simplicity $Q^{*}=Q_{n}^{*}$ the set of invertible squares in a given fixed ring R.

- $D(\mathbf{Z} / n \mathbf{Z})=n$ (Erdős-Ginzburg-Ziv).
- $D_{Q^{*}}(\mathbf{Z} / p \mathbf{Z})=3$ if $p \geq 7$ is prime.

Proof. We have $\left|Q^{*}\right|=(p-1) / 2$. Then by the Cauchy-Davenport Theorem

$$
\left|Q^{*} a+Q^{*} b+Q^{*} c\right| \geq \min (p, 3(p-1) / 2-2)=p
$$

if a, b, c are not 0 . Otherwise we plainly have $0 \in Q^{*} a \cup Q^{*} b \cup Q^{*} c$.
Conversely take x be a nonsquare modulo p. Then $0 \notin Q^{*} \cup-Q^{*} x \cup\left(Q^{*}-Q^{*} x\right)$.

- $D_{Q^{*}}(\mathbf{Z} / 3 \mathbf{Z})=D(\mathbf{Z} / 3 \mathbf{Z})=3$.

Examples - continued

- $D_{Q^{*}}(\mathbf{Z} / 5 \mathbf{Z})=D_{\{-1,1\}}(\mathbf{Z} / 5 \mathbf{Z})=3$.

If a sequence S of $\mathbf{Z} / 5 \mathbf{Z}$ has length ≥ 3 then

- either $0 \in S$ and $0=1 \cdot 0$;
- or there exists $x \in S$ such that $-x \in S$: this implies $0=1 \cdot x+1 \cdot(-x)$;
- or S contains two identical terms x, giving $0=1 \cdot x+(-1) \cdot x$.

Examples - continued

- $D_{Q^{*}}(\mathbf{Z} / 5 \mathbf{Z})=D_{\{-1,1\}}(\mathbf{Z} / 5 \mathbf{Z})=3$.

If a sequence S of $\mathbf{Z} / 5 \mathbf{Z}$ has length ≥ 3 then

- either $0 \in S$ and $0=1 \cdot 0$;
- or there exists $x \in S$ such that $-x \in S$: this implies
$0=1 \cdot x+1 \cdot(-x)$;
- or S contains two identical terms x, giving $0=1 \cdot x+(-1) \cdot x$.
- Write $k=3 q+r$. Then $Q^{*}=\{1,9\}+8 \mathbf{Z} / 2^{k} \mathbf{Z}$ and

$$
D_{Q^{*}}\left(\mathbf{Z} / 2^{k} \mathbf{Z}\right)=7 q+2^{r}=7\left\lfloor\frac{k}{3}\right\rfloor+2^{3\left\{\frac{k}{3}\right\}}
$$

Examples - continued

- $D_{Q^{*}}(\mathbf{Z} / 5 \mathbf{Z})=D_{\{-1,1\}}(\mathbf{Z} / 5 \mathbf{Z})=3$.

If a sequence S of $\mathbf{Z} / 5 \mathbf{Z}$ has length ≥ 3 then

- either $0 \in S$ and $0=1 \cdot 0$;
- or there exists $x \in S$ such that $-x \in S$: this implies
$0=1 \cdot x+1 \cdot(-x)$;
- or S contains two identical terms x, giving $0=1 \cdot x+(-1) \cdot x$.
- Write $k=3 q+r$. Then $Q^{*}=\{1,9\}+8 \mathbf{Z} / 2^{k} \mathbf{Z}$ and

$$
D_{Q^{*}}\left(\mathbf{Z} / 2^{k} \mathbf{Z}\right)=7 q+2^{r}=7\left\lfloor\frac{k}{3}\right\rfloor+2^{3\left\{\frac{k}{3}\right\}} .
$$

- Let $p \geq 3$ be an odd prime number ; then

$$
D_{Q^{*}}\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)=2 k+1
$$

Examples - continued

- $D_{Q^{*}}(\mathbf{Z} / 5 \mathbf{Z})=D_{\{-1,1\}}(\mathbf{Z} / 5 \mathbf{Z})=3$.

If a sequence S of $\mathbf{Z} / 5 \mathbf{Z}$ has length ≥ 3 then

- either $0 \in S$ and $0=1 \cdot 0$;
- or there exists $x \in S$ such that $-x \in S$: this implies
$0=1 \cdot x+1 \cdot(-x)$;
- or S contains two identical terms x, giving $0=1 \cdot x+(-1) \cdot x$.
- Write $k=3 q+r$. Then $Q^{*}=\{1,9\}+8 \mathbf{Z} / 2^{k} \mathbf{Z}$ and

$$
D_{Q^{*}}\left(\mathbf{Z} / 2^{k} \mathbf{Z}\right)=7 q+2^{r}=7\left\lfloor\frac{k}{3}\right\rfloor+2^{3\left\{\frac{k}{3}\right\}} .
$$

- Let $p \geq 3$ be an odd prime number ; then

$$
D_{Q^{*}}\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)=2 k+1
$$

- Question: is it true that if $\operatorname{gcd}(n, 2)=1$ then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$?

A critical situation

Assume that $n=15$ and let $S=(1,1,1,1,1)$. One has $Q^{*}=\{1,4\}$ and consequently

$$
0 \notin \boldsymbol{\Sigma}_{Q^{*}}(S)!
$$

We have $D_{Q^{*}}(\mathbf{Z} / 15 \mathbf{Z})>5=2 \Omega(15)+1$.

A critical situation

Assume that $n=15$ and let $S=(1,1,1,1,1)$. One has $Q^{*}=\{1,4\}$ and consequently

$$
0 \notin \Sigma_{Q^{*}}(S)!
$$

We have $D_{Q^{*}}(\mathbf{Z} / 15 \mathbf{Z})>5=2 \Omega(15)+1$.

- Remark: the primes 2,3 and 5 play a bad role.

A critical situation

Assume that $n=15$ and let $S=(1,1,1,1,1)$. One has $Q^{*}=\{1,4\}$ and consequently

$$
0 \notin \Sigma_{Q^{*}}(S)!
$$

We have $D_{Q^{*}}(\mathbf{Z} / 15 \mathbf{Z})>5=2 \Omega(15)+1$.

- Remark: the primes 2,3 and 5 play a bad role.
- An attempt of conjecture: if $\operatorname{gcd}(n, 2)=1$ and n is not a multiple of 15 then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$.

A critical situation

Assume that $n=15$ and let $S=(1,1,1,1,1)$. One has $Q^{*}=\{1,4\}$ and consequently

$$
0 \notin \Sigma_{Q^{*}}(S)!
$$

We have $D_{Q^{*}}(\mathbf{Z} / 15 \mathbf{Z})>5=2 \Omega(15)+1$.

- Remark: the primes 2,3 and 5 play a bad role.
- An attempt of conjecture: if $\operatorname{gcd}(n, 2)=1$ and n is not a multiple of 15 then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$.
- Theorem (Chintamani-Moriya, 2012): if $\operatorname{gcd}(n, 30)=1$ then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$.

A critical situation

Assume that $n=15$ and let $S=(1,1,1,1,1)$. One has $Q^{*}=\{1,4\}$ and consequently

$$
0 \notin \Sigma_{Q^{*}}(S)!
$$

We have $D_{Q^{*}}(\mathbf{Z} / 15 \mathbf{Z})>5=2 \Omega(15)+1$.

- Remark: the primes 2,3 and 5 play a bad role.
- An attempt of conjecture: if $\operatorname{gcd}(n, 2)=1$ and n is not a multiple of 15 then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$.
- Theorem (Chintamani-Moriya, 2012): if $\operatorname{gcd}(n, 30)=1$ then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$.
- The proof uses an inductive argument and an addition theorem:

A critical situation

Assume that $n=15$ and let $S=(1,1,1,1,1)$. One has $Q^{*}=\{1,4\}$ and consequently

$$
0 \notin \Sigma_{Q^{*}}(S)!
$$

We have $D_{Q^{*}}(\mathbf{Z} / 15 \mathbf{Z})>5=2 \Omega(15)+1$.

- Remark: the primes 2,3 and 5 play a bad role.
- An attempt of conjecture: if $\operatorname{gcd}(n, 2)=1$ and n is not a multiple of 15 then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$.
- Theorem (Chintamani-Moriya, 2012): if $\operatorname{gcd}(n, 30)=1$ then

$$
D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1
$$

- The proof uses an inductive argument and an addition theorem:
- Chowla Theorem: if $X \subset \mathbf{Z} / n \mathbf{Z}$ and $Y \subset(\mathbf{Z} / n \mathbf{Z})^{\times}$then

$$
|X+Y| \geq \min (n,|X|+|Y|-1) .
$$

Idea of the proof (upper bound)

Let S be a sequence of length $\|S\|=2 \Omega(n)+1$.

- First case: if for some $p \mid n, S$ has at most two terms non divisible by p then one applies the induction hypothesis to $S^{\prime}:=\frac{1}{p} \times \tilde{S}$ where \tilde{S} is the subsequence of S formed by the terms divisible by $p: S^{\prime}$ can be viewed has a sequence of $\mathbf{Z} / m \mathbf{Z}$ where $m=n / p$ with length $\geq 2 \Omega(n)+1-2=2 \Omega(m)+1$.

Idea of the proof (upper bound)

Let S be a sequence of length $\|S\|=2 \Omega(n)+1$.

- First case: if for some $p \mid n, S$ has at most two terms non divisible by p then one applies the induction hypothesis to $S^{\prime}:=\frac{1}{p} \times \tilde{S}$ where \tilde{S} is the subsequence of S formed by the terms divisible by $p: S^{\prime}$ can be viewed has a sequence of $\mathbf{Z} / m \mathbf{Z}$ where $m=n / p$ with length $\geq 2 \Omega(n)+1-2=2 \Omega(m)+1$.
- Second case: for each $p \mid n, S$ has at least 3 terms coprime to p. There are $p^{k}(p-1) / 2$ square units modulo p^{k}. Hence if $p \nmid a b c$, by Chowla Theorem $\left|Q_{p^{k}}^{*} a+Q_{p^{k}}^{*} b+Q_{p^{k}}^{*} c\right|=p^{k}$, that is

$$
Q_{p^{k}}^{*} a+Q_{p^{k}}^{*} b+Q_{p^{k}}^{*} c=\mathbf{Z} / p^{k} \mathbf{Z}
$$

By the Chinese remainder Theorem, taking the minimal subsequence $s_{1} \cdots s_{\ell}$ of S containing 3 terms coprime to p for each $p \mid n$, one has

$$
\sum_{i=1}^{\ell} Q_{n}^{*} s_{i}=\mathbf{Z} / n \mathbf{Z} \quad \text { hence } \quad 0 \in \sum_{i=1}^{\ell} Q_{n}^{*} s_{i}
$$

Main results

- Theorem 1 (Grynkiewicz-H., 2015) If $\operatorname{gcd}(n, 6)=1$ or $\operatorname{gcd}(n, 10)=1$ then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$.

Main results

- Theorem 1 (Grynkiewicz-H., 2015) If $\operatorname{gcd}(n, 6)=1$ or $\operatorname{gcd}(n, 10)=1$ then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$.
- Theorem 2 (Grynkiewicz-H., 2015) If n is an odd integer then

$$
2 \Omega(n)+1+\min \left(v_{3}(n), v_{5}(n)\right) \leq D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z}) \leq 2 \Omega(n)+1+v_{5}(n) .
$$

Main results

- Theorem 1 (Grynkiewicz-H., 2015) If $\operatorname{gcd}(n, 6)=1$ or $\operatorname{gcd}(n, 10)=1$ then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$.
- Theorem 2 (Grynkiewicz-H., 2015) If n is an odd integer then

$$
2 \Omega(n)+1+\min \left(v_{3}(n), v_{5}(n)\right) \leq D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z}) \leq 2 \Omega(n)+1+v_{5}(n) .
$$

- Corollary: for any odd integer n, the exact value of $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})$ is known when $n=q m$ where $\operatorname{gcd}(m, 30)=1$ and $q=3^{k}$ or 5^{k} or 15^{k}.

Main results

- Theorem 1 (Grynkiewicz-H., 2015)

If $\operatorname{gcd}(n, 6)=1$ or $\operatorname{gcd}(n, 10)=1$ then $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+1$.

- Theorem 2 (Grynkiewicz-H., 2015)

If n is an odd integer then

$$
2 \Omega(n)+1+\min \left(v_{3}(n), v_{5}(n)\right) \leq D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z}) \leq 2 \Omega(n)+1+v_{5}(n) .
$$

- Corollary: for any odd integer n, the exact value of $D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})$ is known when $n=q m$ where $\operatorname{gcd}(m, 30)=1$ and $q=3^{k}$ or 5^{k} or 15^{k}.
- Reformulation of Theorem 1 when $\operatorname{gcd}(n, 6)=1$: if $m \geq 3 \omega(n)+\min \left(1, v_{5}(n)\right)$ then for all sequence S of $\mathbf{Z} / n \mathbf{Z}$ with length $m+2 \Omega(n)$

$$
0 \in \Sigma_{Q^{*}}^{(m)}(S)
$$

Taking $m=n$ gives the Gao constant $E_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=n+2 \Omega(n)$ when $n \geq 3 \omega(n)+\min \left(1, v_{5}(n)\right)$ (namely when $\left.n \geq 5\right)$ and $\operatorname{gcd}(n, 6)=1$.

Lower bound

- If $p \geq 3$ is a prime number then

$$
D_{Q^{*}}\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)=2 k+1 .
$$

Lower bound

- If $p \geq 3$ is a prime number then

$$
D_{Q^{*}}\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)=2 k+1
$$

- For any pair of positive integers m, n

$$
D_{Q^{*}}(\mathbf{Z} / m n \mathbf{Z}) \geq D_{Q^{*}}(\mathbf{Z} / m \mathbf{Z})+D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})-1 .
$$

Lower bound

- If $p \geq 3$ is a prime number then

$$
D_{Q^{*}}\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)=2 k+1
$$

- For any pair of positive integers m, n

$$
D_{Q^{*}}(\mathbf{Z} / m n \mathbf{Z}) \geq D_{Q^{*}}(\mathbf{Z} / m \mathbf{Z})+D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})-1
$$

- When $\operatorname{gcd}(n, 6)=1$ or $\operatorname{gcd}(n, 10)=1$ write

$$
n=\prod_{i=1}^{s} p_{i}^{k_{i}}, \quad k_{i}:=v_{p_{i}}(n)
$$

- When $15 \mid n$ write

$$
n=15^{k} \prod_{i=1}^{s} p_{i}^{k_{i}}
$$

and observe that $D_{Q^{*}}\left(\mathbf{Z} / 15^{k} \mathbf{Z}\right) \geq 5 k+1$.

Upper bound

- When $5 \mid n$, we use sharper addition theorems instead of Chowla's theorem.

Upper bound

- When $5 \mid n$, we use sharper addition theorems instead of Chowla's theorem.
- The case $\operatorname{gcd}(n, 6)=1$ can be managed by induction in a similar way as for $\operatorname{gcd}(n, 30)=1$.

Upper bound

- When $5 \mid n$, we use sharper addition theorems instead of Chowla's theorem.
- The case $\operatorname{gcd}(n, 6)=1$ can be managed by induction in a similar way as for $\operatorname{gcd}(n, 30)=1$.
- The general case needs an additional combinatorial tool based on the study of the hypergraph structure of the sequences.

Admissible functions and stable sequences

Let $G=\mathbf{Z} / n \mathbf{Z}$.
A function $f:\{$ subgroups of $G\} \rightarrow \mathbf{Z}_{+}^{*}$ is said to be admissible if

- f is strongly increasing: $H<H^{\prime} \leq G \Longrightarrow f(H) \leq f\left(H^{\prime}\right)-2$,
- f is subadditive: $f\left(H+H^{\prime}\right) \leq f(H)+f\left(H^{\prime}\right)-f\left(H \cap H^{\prime}\right)$ for $H, H^{\prime} \leq G$.

Admissible functions and stable sequences

Let $G=\mathbf{Z} / n \mathbf{Z}$.
A function $f:\{$ subgroups of $G\} \rightarrow \mathbf{Z}_{+}^{*}$ is said to be admissible if

- f is strongly increasing: $H<H^{\prime} \leq G \Longrightarrow f(H) \leq f\left(H^{\prime}\right)-2$,
- f is subadditive: $f\left(H+H^{\prime}\right) \leq f(H)+f\left(H^{\prime}\right)-f\left(H \cap H^{\prime}\right)$ for $H, H^{\prime} \leq G$.
- Example 1: $f(H)=m+2 \Omega(|H|)$ is admissible.

Admissible functions and stable sequences

Let $G=\mathbf{Z} / n \mathbf{Z}$.
A function $f:\{$ subgroups of $G\} \rightarrow \mathbf{Z}_{+}^{*}$ is said to be admissible if

- f is strongly increasing: $H<H^{\prime} \leq G \Longrightarrow f(H) \leq f\left(H^{\prime}\right)-2$,
- f is subadditive: $f\left(H+H^{\prime}\right) \leq f(H)+f\left(H^{\prime}\right)-f\left(H \cap H^{\prime}\right)$ for $H, H^{\prime} \leq G$.
- Example 1: $f(H)=m+2 \Omega(|H|)$ is admissible.
- Example 2: if f is admissible and $K<G$, then $f_{K}(H)=f(H+K)$ is admissible.

Admissible functions and stable sequences

Let $G=\mathbf{Z} / n \mathbf{Z}$.
A function $f:\{$ subgroups of $G\} \rightarrow \mathbf{Z}_{+}^{*}$ is said to be admissible if

- f is strongly increasing: $H<H^{\prime} \leq G \Longrightarrow f(H) \leq f\left(H^{\prime}\right)-2$,
- f is subadditive: $f\left(H+H^{\prime}\right) \leq f(H)+f\left(H^{\prime}\right)-f\left(H \cap H^{\prime}\right)$ for $H, H^{\prime} \leq G$.
- Example 1: $f(H)=m+2 \Omega(|H|)$ is admissible.
- Example 2: if f is admissible and $K<G$, then $f_{K}(H)=f(H+K)$ is admissible.

A sequence S of G of length $\|S\| \geq f(G)$ is said to be \boldsymbol{f}-stable with respect to G if

- S generates G,
- \|S\| - \|S $S_{H} \| f(G)-f(H)+1$ for all subgroups $H<G$,
where S_{E} denotes the subsequence of S of all terms of S belonging to E.

Admissible functions and stable sequences

Let $G=\mathbf{Z} / n \mathbf{Z}$.
A function $f:\{$ subgroups of $G\} \rightarrow \mathbf{Z}_{+}^{*}$ is said to be admissible if

- f is strongly increasing: $H<H^{\prime} \leq G \Longrightarrow f(H) \leq f\left(H^{\prime}\right)-2$,
- f is subadditive: $f\left(H+H^{\prime}\right) \leq f(H)+f\left(H^{\prime}\right)-f\left(H \cap H^{\prime}\right)$ for $H, H^{\prime} \leq G$.
- Example 1: $f(H)=m+2 \Omega(|H|)$ is admissible.
- Example 2: if f is admissible and $K<G$, then $f_{K}(H)=f(H+K)$ is admissible.

A sequence S of G of length $\|S\| \geq f(G)$ is said to be \boldsymbol{f}-stable with respect to G if

- S generates G,
- \|S\| - \|S $S_{H} \| f(G)-f(H)+1$ for all subgroups $H<G$,
where S_{E} denotes the subsequence of S of all terms of S belonging to E.
Remark: when S is not f-stable, the induction works pretty well.

Structure for f-stable sequences

- An \boldsymbol{f}-component of S is a subsequence V of S satisfying - $S \backslash V$ is f-stable with respect to $H:=\langle S \backslash V\rangle$,
- $\|V\| \leq f(G)-f(H)+1$.

Structure for f-stable sequences

- An \boldsymbol{f}-component of S is a subsequence V of S satisfying - $S \backslash V$ is f-stable with respect to $H:=\langle S \backslash V\rangle$,
- $\|V\| \leq f(G)-f(H)+1$.
- Proposition: any f-stable sequence S can be decomposed as a disjoint union

$$
S=V_{1} \cdot V_{2} \cdots \cdots V_{r}
$$

of f-components V_{i}.

Structure for f-stable sequences

- An \boldsymbol{f}-component of S is a subsequence V of S satisfying
- $S \backslash V$ is f-stable with respect to $H:=\langle S \backslash V\rangle$,
$-\|V\| \leq f(G)-f(H)+1$.
- Proposition: any f-stable sequence S can be decomposed as a disjoint union

$$
S=V_{1} \cdot V_{2} \cdots \cdots V_{r}
$$

of f-components V_{i}.

- An \boldsymbol{f}-near component of S is a subsequence E of S satisfying
- $S \backslash E$ is f-stable with respect to $H:=\langle S \backslash E\rangle$,
- $\|E\| \leq f(G)-f(H)+2$,
- E is maximal for inclusion (as a subsequence of S).

Structure for f-stable sequences

- An \boldsymbol{f}-component of S is a subsequence V of S satisfying
- $S \backslash V$ is f-stable with respect to $H:=\langle S \backslash V\rangle$,
- $\|V\| \leq f(G)-f(H)+1$.
- Proposition: any f-stable sequence S can be decomposed as a disjoint union

$$
S=V_{1} \cdot V_{2} \cdots \cdots V_{r}
$$

of f-components V_{i}.

- An \boldsymbol{f}-near component of S is a subsequence E of S satisfying - $S \backslash E$ is f-stable with respect to $H:=\langle S \backslash E\rangle$,
- $\|E\| \leq f(G)-f(H)+2$,
- E is maximal for inclusion (as a subsequence of S).
- Proposition: any f-near component $\mathrm{f} S$ is a disjoint union of f-components of S :

$$
E=V_{i_{1}} \cdot V_{i_{2}} \cdots \cdots V_{i_{t}} .
$$

Pairwise balanced design

We assume 3 | n.

- Definition: an hypergraph is a pairwise balanced design if each pair of vertices belongs to exactly λ edges.

Pairwise balanced design

We assume 3 | n.

- Definition: an hypergraph is a pairwise balanced design if each pair of vertices belongs to exactly λ edges.
- Theorem (DG-FH, 2015):

The hypergraph $\mathcal{H}=(\{f$-components $\},\{f$-near components $\})$ is a pairwise balanced design with $\lambda=1$.

Pairwise balanced design

We assume $3 \mid n$.

- Definition: an hypergraph is a pairwise balanced design if each pair of vertices belongs to exactly λ edges.
- Theorem (DG-FH, 2015):

The hypergraph $\mathcal{H}=(\{f$-components $\},\{f$-near components $\})$ is a pairwise balanced design with $\lambda=1$.

- Classical lemma: let

$$
\mathcal{E}=\{\text { number of edges in } E, E \text { is a } f \text {-near component of } S\}
$$

and $e=\operatorname{gcd}\{k(k-1), k \in \mathcal{E}\}$. Then

$$
v(v-1) \equiv 0 \quad(\bmod e)
$$

Application

Let $S=W \cdot 0^{\|S\|-m}$ with $W=V_{1} \cdot V_{2} \cdots \cdot V_{r}$ with $\|W\|=m$, where the V_{i} 's are f-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.

Application

Let $S=W \cdot 0^{\|S\|-m}$ with $W=V_{1} \cdot V_{2} \cdots \cdot V_{r}$ with $\|W\|=m$, where the V_{i} 's are f-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.
Assume $\sigma(S)=\sigma(W) \equiv x(\bmod G / 3 G)$ with $x \neq 0$ (otherwise we can conclude).

Application

Let $S=W \cdot 0^{\|S\|-m}$ with $W=V_{1} \cdot V_{2} \cdots \cdot V_{r}$ with $\|W\|=m$, where the V_{i} 's are f-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.
Assume $\sigma(S)=\sigma(W) \equiv x(\bmod G / 3 G)$ with $x \neq 0$ (otherwise we can conclude).
If for some $i, \sigma\left(V_{i}\right) \equiv x(\bmod G / 3 G)$ then $\sigma\left(W \backslash V_{i}\right) \equiv 0(\bmod G / 3 G)$ and we can conclude.

Application

Let $S=W \cdot 0^{\|S\|-m}$ with $W=V_{1} \cdot V_{2} \cdots \cdot V_{r}$ with $\|W\|=m$, where the V_{i} 's are f-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.
Assume $\sigma(S)=\sigma(W) \equiv x(\bmod G / 3 G)$ with $x \neq 0$ (otherwise we can conclude).
If for some $i, \sigma\left(V_{i}\right) \equiv x(\bmod G / 3 G)$ then $\sigma\left(W \backslash V_{i}\right) \equiv 0(\bmod G / 3 G)$ and we can conclude.
Let v the number of V_{i} 's such that $\sigma\left(V_{i}\right) \equiv-x(\bmod G / 3 G)$. Then

$$
x \equiv-v x \quad(\bmod 3) \quad \text { thus } \quad v \equiv-1 \quad(\bmod 3) .
$$

Application

Let $S=W \cdot 0^{\|S\|-m}$ with $W=V_{1} \cdot V_{2} \cdots \cdot V_{r}$ with $\|W\|=m$, where the V_{i} 's are f-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.
Assume $\sigma(S)=\sigma(W) \equiv x(\bmod G / 3 G)$ with $x \neq 0$ (otherwise we can conclude).
If for some $i, \sigma\left(V_{i}\right) \equiv x(\bmod G / 3 G)$ then $\sigma\left(W \backslash V_{i}\right) \equiv 0(\bmod G / 3 G)$ and we can conclude.
Let v the number of V_{i} 's such that $\sigma\left(V_{i}\right) \equiv-x(\bmod G / 3 G)$. Then

$$
x \equiv-v x \quad(\bmod 3) \quad \text { thus } \quad v \equiv-1 \quad(\bmod 3) .
$$

Each edge of \mathcal{H} has 0 or $1(\bmod 3)$ vertices. Hence $e \equiv 0(\bmod 6)$.

Application

Let $S=W \cdot 0^{\|S\|-m}$ with $W=V_{1} \cdot V_{2} \cdots \cdot V_{r}$ with $\|W\|=m$, where the V_{i} 's are f-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.
Assume $\sigma(S)=\sigma(W) \equiv x(\bmod G / 3 G)$ with $x \neq 0$ (otherwise we can conclude).
If for some $i, \sigma\left(V_{i}\right) \equiv x(\bmod G / 3 G)$ then $\sigma\left(W \backslash V_{i}\right) \equiv 0(\bmod G / 3 G)$ and we can conclude.
Let v the number of V_{i} 's such that $\sigma\left(V_{i}\right) \equiv-x(\bmod G / 3 G)$. Then

$$
x \equiv-v x \quad(\bmod 3) \quad \text { thus } \quad v \equiv-1 \quad(\bmod 3) .
$$

Each edge of \mathcal{H} has 0 or $1(\bmod 3)$ vertices. Hence $e \equiv 0(\bmod 6)$. A contradiction !

Final remarks

Final remarks

- Conjecture 1: for all odd integer $n \geq 3$

$$
D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+\min \left(v_{3}(n), v_{5}(n)\right)+1 .
$$

Final remarks

- Conjecture 1: for all odd integer $n \geq 3$

$$
D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+\min \left(v_{3}(n), v_{5}(n)\right)+1 .
$$

- Conjecture 2: for all odd integer $n \geq 3$, all integer $m \geq$ cste $\times \Omega(n)$ divisible by $\operatorname{gcd}(n, 3)$ and all sequence S of $\mathbf{Z} / n \mathbf{Z}$

$$
\|S\| \geq m+2 \Omega(n)+\min \left(v_{3}(n), v_{5}(n)\right) \Longrightarrow 0 \in \Sigma_{Q^{*}}^{(m)}(S) .
$$

Final remarks

- Conjecture 1: for all odd integer $n \geq 3$

$$
D_{Q^{*}}(\mathbf{Z} / n \mathbf{Z})=2 \Omega(n)+\min \left(v_{3}(n), v_{5}(n)\right)+1 .
$$

- Conjecture 2: for all odd integer $n \geq 3$, all integer $m \geq \operatorname{cste} \times \Omega(n)$ divisible by $\operatorname{gcd}(n, 3)$ and all sequence S of $\mathbf{Z} / n \mathbf{Z}$

$$
\|S\| \geq m+2 \Omega(n)+\min \left(v_{3}(n), v_{5}(n)\right) \Longrightarrow 0 \in \Sigma_{Q^{*}}^{(m)}(S) .
$$

- Conjecture 3: for all odd integer $n \geq 3$

$$
D_{Q^{*}}\left(\mathbf{Z} / 2^{k} n \mathbf{Z}\right)=7\left\lfloor\frac{k}{3}\right\rfloor+2^{3\left\{\frac{k}{3}\right\}}+2 \Omega(n)+\min \left(v_{3}(n), v_{5}(n)\right) .
$$

Thank you for your attention

