Davenport and Gao constants for a weighted zero-sum problem with quadratic residues

François Hennecart (Institut Camille Jordan Lyon St-Étienne)

Colloque Additive Combinatorics in Bordeaux Université de Bordeaux 11-15 avril 2016

1 / 16

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● の < @

Definitions

Let $R, +, \cdot$ be a finite ring and $A \subset R \setminus \{0\}$.

► Weighted Davenport constant D_A(R): least integer such that any sequence S of R with length ||S|| ≥ D_A(R) has a (non empty) subsequence g₁ • g₂ • · · · · g_ℓ such that

$$0 \in \sum_{i=1}^{\ell} Ag_i \subset \Sigma_A^{(\ell)}(S) := \{A \text{-weighted sums of } \ell \text{ terms of } S\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● の < @

Definitions

Let $R, +, \cdot$ be a finite ring and $A \subset R \setminus \{0\}$.

Weighted Davenport constant D_A(R): least integer such that any sequence S of R with length ||S|| ≥ D_A(R) has a (non empty) subsequence g₁ • g₂ • · · · • g_ℓ such that

$$0 \in \sum_{i=1}^{\ell} Ag_i \subset \Sigma_A^{(\ell)}(S) := \{A ext{-weighted sums of } \ell ext{ terms of } S\}.$$

• Weighted Gao constant $E_A(R)$: least integer such that any sequence of R with length $E_A(R)$ has a subsequence $g_1 \cdot g_2 \cdot \cdots \cdot g_{|R|}$ such that

$$0\in\sum_{i=1}^{|\mathcal{R}|}Ag_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Definitions

Let $R, +, \cdot$ be a finite ring and $A \subset R \setminus \{0\}$.

Weighted Davenport constant D_A(R): least integer such that any sequence S of R with length ||S|| ≥ D_A(R) has a (non empty) subsequence g₁ • g₂ • · · · • g_ℓ such that

$$0 \in \sum_{i=1}^{\ell} Ag_i \subset \Sigma_A^{(\ell)}(S) := \{A ext{-weighted sums of } \ell ext{ terms of } S\}.$$

Weighted Gao constant E_A(R): least integer such that any sequence of R with length E_A(R) has a subsequence g₁ • g₂ • · · · • g_{|R|} such that

$$0 \in \sum_{i=1}^{|R|} Ag_i$$

Notation: for a sequence S of R we denote Σ_A(S) all (non empty) A-weighted sums of terms of S. Hence

 $D_{\mathcal{A}}(R) := \min \left\{ k \ge 1 \text{ such that } \|S\| \ge k \Rightarrow 0 \in \Sigma_{\mathcal{A}}(S) \right\}.$ (ACB 2016) 2 / 16

► Remark 1: D_A(G) and E_A(G) can be defined when G, + is a finite group and A ⊂ Z \ {0}.

- ► Remark 1: D_A(G) and E_A(G) can be defined when G, + is a finite group and A ⊂ Z \ {0}.
- Remark 2: the case A = {1} (or any invertible element of R) refers to the classical Davenport and Gao constants, simply denoted by D(G) and E(G).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

- ► Remark 1: D_A(G) and E_A(G) can be defined when G, + is a finite group and A ⊂ Z \ {0}.
- Remark 2: the case A = {1} (or any invertible element of R) refers to the classical Davenport and Gao constants, simply denoted by D(G) and E(G).
- Remark 3: replacing |R| by exp(R) for the required length of the subsequence in the definition of E_A(R) leads to the Erdős-Ginzburg-Ziv constant.

- ► Remark 1: D_A(G) and E_A(G) can be defined when G, + is a finite group and A ⊂ Z \ {0}.
- Remark 2: the case A = {1} (or any invertible element of R) refers to the classical Davenport and Gao constants, simply denoted by D(G) and E(G).
- Remark 3: replacing |R| by exp(R) for the required length of the subsequence in the definition of E_A(R) leads to the Erdős-Ginzburg-Ziv constant.
- Remark 4: when R = Z/nZ both Gao and Erdős-Ginzburg-Ziv constants coincide.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

- ► Remark 1: D_A(G) and E_A(G) can be defined when G, + is a finite group and A ⊂ Z \ {0}.
- Remark 2: the case A = {1} (or any invertible element of R) refers to the classical Davenport and Gao constants, simply denoted by D(G) and E(G).
- Remark 3: replacing |R| by exp(R) for the required length of the subsequence in the definition of E_A(R) leads to the Erdős-Ginzburg-Ziv constant.
- Remark 4: when R = Z/nZ both Gao and Erdős-Ginzburg-Ziv constants coincide.
- Gao Theorem (1995): let G, + be an abelian group. Then E(G) = D(G) + |G| 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ りへの

- ► Remark 1: D_A(G) and E_A(G) can be defined when G, + is a finite group and A ⊂ Z \ {0}.
- Remark 2: the case A = {1} (or any invertible element of R) refers to the classical Davenport and Gao constants, simply denoted by D(G) and E(G).
- Remark 3: replacing |R| by exp(R) for the required length of the subsequence in the definition of E_A(R) leads to the Erdős-Ginzburg-Ziv constant.
- Remark 4: when R = Z/nZ both Gao and Erdős-Ginzburg-Ziv constants coincide.
- Gao Theorem (1995): let G, + be an abelian group. Then E(G) = D(G) + |G| 1.
- Grynkiewicz-Marchan-Ordaz Theorem (2012): $E_A(R) = D_A(R) + |R| - 1.$

The case $R = \mathbf{Z}/n\mathbf{Z}$ is known since Yuan and Zeng (2010).

Examples

Denote for simplicity $Q^* = Q_n^*$ the set of invertible squares in a given fixed ring R.

► $D(\mathbf{Z}/n\mathbf{Z}) = n$ (Erdős-Ginzburg-Ziv).

Examples

Denote for simplicity $Q^* = Q_n^*$ the set of invertible squares in a given fixed ring R.

- ► $D(\mathbf{Z}/n\mathbf{Z}) = n$ (Erdős-Ginzburg-Ziv).
- D_{Q*}(Z/pZ) = 3 if p ≥ 7 is prime.
 Proof. We have |Q*| = (p − 1)/2. Then by the Cauchy-Davenport Theorem

$$|Q^*a + Q^*b + Q^*c| \ge \min(p, 3(p-1)/2 - 2) = p$$

if a, b, c are not 0. Otherwise we plainly have $0 \in Q^* a \cup Q^* b \cup Q^* c$. Conversely take x be a nonsquare modulo p. Then $0 \notin Q^* \cup -Q^* x \cup (Q^* - Q^* x)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

Denote for simplicity $Q^* = Q_n^*$ the set of invertible squares in a given fixed ring R.

- ► $D(\mathbf{Z}/n\mathbf{Z}) = n$ (Erdős-Ginzburg-Ziv).
- D_{Q*}(Z/pZ) = 3 if p ≥ 7 is prime.
 Proof. We have |Q*| = (p − 1)/2. Then by the Cauchy-Davenport Theorem

$$|Q^*a + Q^*b + Q^*c| \ge \min(p, 3(p-1)/2 - 2) = p$$

if a, b, c are not 0. Otherwise we plainly have $0 \in Q^* a \cup Q^* b \cup Q^* c$.

Conversely take x be a nonsquare modulo p. Then $0 \notin Q^* \cup -Q^* x \cup (Q^* - Q^* x)$.

►
$$D_{Q^*}(\mathbf{Z}/3\mathbf{Z}) = D(\mathbf{Z}/3\mathbf{Z}) = 3.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

►
$$D_{Q^*}(\mathbf{Z}/5\mathbf{Z}) = D_{\{-1,1\}}(\mathbf{Z}/5\mathbf{Z}) = 3.$$

If a sequence *S* of $\mathbf{Z}/5\mathbf{Z}$ has length ≥ 3 then

- either $0 \in S$ and $0 = 1 \cdot 0$;

- or there exists $x \in S$ such that $-x \in S$: this implies

 $0 = 1 \cdot x + 1 \cdot (-x);$

- or S contains two identical terms x, giving $0 = 1 \cdot x + (-1) \cdot x$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- or S contains two identical terms x, giving $0 = 1 \cdot x + (-1) \cdot x$.
- Write k = 3q + r. Then $Q^* = \{1, 9\} + 8\mathbb{Z}/2^k\mathbb{Z}$ and

$$D_{Q^*}(\mathbf{Z}/2^k\mathbf{Z}) = 7q + 2^r = 7\left\lfloor \frac{k}{3} \right\rfloor + 2^{3\{\frac{k}{3}\}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

• Write
$$k = 3q + r$$
. Then $Q^* = \{1, 9\} + 8\mathbb{Z}/2^k\mathbb{Z}$ and

$$D_{Q^*}(\mathbf{Z}/2^k\mathbf{Z}) = 7q + 2^r = 7\left\lfloor \frac{k}{3} \right\rfloor + 2^{3\left\{\frac{k}{3}\right\}}.$$

• Let $p \ge 3$ be an odd prime number ; then

$$D_{Q^*}(\mathbf{Z}/p^k\mathbf{Z})=2k+1.$$

5 / 16

• Write
$$k = 3q + r$$
. Then $Q^* = \{1, 9\} + 8\mathbb{Z}/2^k\mathbb{Z}$ and

$$D_{Q^*}(\mathbf{Z}/2^k\mathbf{Z}) = 7q + 2^r = 7\left\lfloor \frac{k}{3} \right\rfloor + 2^{3\left\{\frac{k}{3}\right\}}.$$

• Let $p \ge 3$ be an odd prime number ; then

$$D_{Q^*}(\mathbf{Z}/p^k\mathbf{Z}) = 2k+1.$$

• Question: is it true that if gcd(n, 2) = 1 then $D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) = 2\Omega(n) + 1$?

(ACB 2016)

5 / 16

Assume that n = 15 and let S = (1, 1, 1, 1, 1). One has $Q^* = \{1, 4\}$ and consequently

$0 ot\in \Sigma_{Q^*}(S)$!

We have $D_{Q^*}(\mathbf{Z}/15\mathbf{Z}) > 5 = 2\Omega(15) + 1$.

Assume that n = 15 and let S = (1, 1, 1, 1, 1). One has $Q^* = \{1, 4\}$ and consequently

$0 ot\in \Sigma_{Q^*}(S)$!

We have $D_{Q^*}(\mathbf{Z}/15\mathbf{Z}) > 5 = 2\Omega(15) + 1$.

Remark: the primes 2, 3 and 5 play a *bad* role.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assume that n = 15 and let S = (1, 1, 1, 1, 1). One has $Q^* = \{1, 4\}$ and consequently

$0 ot\in \Sigma_{Q^*}(S)$!

We have $D_{Q^*}(\mathbf{Z}/15\mathbf{Z}) > 5 = 2\Omega(15) + 1$.

- Remark: the primes 2, 3 and 5 play a bad role.
- An attempt of conjecture: if gcd(n, 2) = 1 and n is not a multiple of 15 then $D_{Q^*}(\mathbb{Z}/n\mathbb{Z}) = 2\Omega(n) + 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Assume that n = 15 and let S = (1, 1, 1, 1, 1). One has $Q^* = \{1, 4\}$ and consequently

$0 ot\in \Sigma_{Q^*}(S)$!

We have $D_{Q^*}(\mathbf{Z}/15\mathbf{Z}) > 5 = 2\Omega(15) + 1$.

- Remark: the primes 2, 3 and 5 play a bad role.
- An attempt of conjecture: if gcd(n, 2) = 1 and n is not a multiple of 15 then D_{Q*}(Z/nZ) = 2Ω(n) + 1.
- Theorem (Chintamani-Moriya, 2012): if gcd(n, 30) = 1 then $D_{Q^*}(\mathbb{Z}/n\mathbb{Z}) = 2\Omega(n) + 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume that n = 15 and let S = (1, 1, 1, 1, 1). One has $Q^* = \{1, 4\}$ and consequently

$0 ot\in \Sigma_{Q^*}(S)$!

We have $D_{Q^*}(\mathbf{Z}/15\mathbf{Z}) > 5 = 2\Omega(15) + 1$.

- Remark: the primes 2, 3 and 5 play a bad role.
- An attempt of conjecture: if gcd(n, 2) = 1 and n is not a multiple of 15 then D_{Q*}(Z/nZ) = 2Ω(n) + 1.
- Theorem (Chintamani-Moriya, 2012): if gcd(n, 30) = 1 then $D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) = 2\Omega(n) + 1$.
- The proof uses an inductive argument and an addition theorem:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume that n = 15 and let S = (1, 1, 1, 1, 1). One has $Q^* = \{1, 4\}$ and consequently

$0 ot\in \Sigma_{Q^*}(S)$!

We have $D_{Q^*}(\mathbf{Z}/15\mathbf{Z}) > 5 = 2\Omega(15) + 1$.

- Remark: the primes 2, 3 and 5 play a bad role.
- An attempt of conjecture: if gcd(n, 2) = 1 and n is not a multiple of 15 then D_{Q*}(Z/nZ) = 2Ω(n) + 1.
- Theorem (Chintamani-Moriya, 2012): if gcd(n, 30) = 1 then $D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) = 2\Omega(n) + 1$.
- The proof uses an inductive argument and an addition theorem:
- Chowla Theorem: if $X \subset \mathbb{Z}/n\mathbb{Z}$ and $Y \subset (\mathbb{Z}/n\mathbb{Z})^{\times}$ then

 $|X + Y| \ge \min(n, |X| + |Y| - 1).$

Idea of the proof (upper bound)

Let S be a sequence of length $||S|| = 2\Omega(n) + 1$.

First case: if for some $p \mid n, S$ has at most two terms non divisible by p then one applies the induction hypothesis to $S' := \frac{1}{p} \times \tilde{S}$ where \tilde{S} is the subsequence of S formed by the terms divisible by p: S' can be viewed has a sequence of $\mathbf{Z}/m\mathbf{Z}$ where m = n/p with length $\geq 2\Omega(n) + 1 - 2 = 2\Omega(m) + 1.$

7 / 16

Idea of the proof (upper bound)

Let S be a sequence of length $||S|| = 2\Omega(n) + 1$.

- First case: if for some $p \mid n, S$ has at most two terms non divisible by p then one applies the induction hypothesis to $S' := \frac{1}{p} \times \tilde{S}$ where \tilde{S} is the subsequence of S formed by the terms divisible by p: S' can be viewed has a sequence of $\mathbf{Z}/m\mathbf{Z}$ where m = n/p with length $\geq 2\Omega(n) + 1 - 2 = 2\Omega(m) + 1$.
- Second case: for each $p \mid n, S$ has at least 3 terms coprime to p. There are $p^k(p-1)/2$ square units modulo p^k . Hence if $p \nmid abc$, by Chowla Theorem $\left| Q_{p^k}^* a + Q_{p^k}^* b + Q_{p^k}^* c \right| = p^k$, that is

$$Q_{p^k}^*a + Q_{p^k}^*b + Q_{p^k}^*c = \mathbf{Z}/p^k\mathbf{Z}.$$

By the Chinese remainder Theorem, taking the minimal subsequence $s_1 \cdot \cdots \cdot s_\ell$ of S containing 3 terms coprime to p for each $p \mid n$, one has

$$\sum_{i=1}^{\ell} Q_n^* s_i = \mathbf{Z}/n\mathbf{Z} \quad \text{hence} \quad 0 \in \sum_{i=1}^{\ell} Q_n^* s_i.$$
(ACB 2016)
$$(ACB 2016) \quad (ACB 2016)$$

• Theorem 1 (Grynkiewicz-H., 2015) If gcd(n, 6) = 1 or gcd(n, 10) = 1 then $D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) = 2\Omega(n) + 1$.

(ACB 2016)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Theorem 1 (Grynkiewicz-H., 2015) If gcd(n, 6) = 1 or gcd(n, 10) = 1 then $D_{Q^*}(\mathbb{Z}/n\mathbb{Z}) = 2\Omega(n) + 1$.

Theorem 2 (Grynkiewicz-H., 2015)

If *n* is an odd integer then

 $2\Omega(n)+1+\min(v_3(n),v_5(n)) \leq D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) \leq 2\Omega(n)+1+v_5(n).$

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● の < @

- Theorem 1 (Grynkiewicz-H., 2015) If gcd(n, 6) = 1 or gcd(n, 10) = 1 then $D_{Q^*}(\mathbb{Z}/n\mathbb{Z}) = 2\Omega(n) + 1$.
- Theorem 2 (Grynkiewicz-H., 2015) If n is an odd integer then

 $2\Omega(n)+1+\min(v_3(n),v_5(n)) \leq D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) \leq 2\Omega(n)+1+v_5(n).$

• **Corollary**: for any odd integer *n*, the exact value of $D_{Q^*}(\mathbf{Z}/n\mathbf{Z})$ is known when n = qm where gcd(m, 30) = 1 and $q = 3^k$ or 5^k or 15^k .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Theorem 1 (Grynkiewicz-H., 2015) If gcd(n, 6) = 1 or gcd(n, 10) = 1 then $D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) = 2\Omega(n) + 1$.
- Theorem 2 (Grynkiewicz-H., 2015) If *n* is an odd integer then

 $2\Omega(n) + 1 + \min(v_3(n), v_5(n)) \le D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) \le 2\Omega(n) + 1 + v_5(n).$

- **Corollary**: for any odd integer n, the exact value of $D_{Q^*}(\mathbb{Z}/n\mathbb{Z})$ is known when n = qm where gcd(m, 30) = 1 and $q = 3^k$ or 5^k or 15^k .
- Reformulation of Theorem 1 when gcd(n, 6) = 1: if $m \ge 3\omega(n) + \min(1, v_5(n))$ then for all sequence S of $\mathbb{Z}/n\mathbb{Z}$ with length $m + 2\Omega(n)$

$$0\in \Sigma_{Q^*}^{(m)}(S).$$

Taking m = n gives the Gao constant $E_{Q^*}(\mathbf{Z}/n\mathbf{Z}) = n + 2\Omega(n)$ when $n \geq 3\omega(n) + \min(1, v_5(n))$ (namely when $n \geq 5$) and gcd(n, 6) = 1. ▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ● (ACB 2016)

Lower bound

• If $p \ge 3$ is a prime number then

$$D_{Q^*}(\mathbf{Z}/p^k\mathbf{Z})=2k+1.$$

Lower bound

• If $p \ge 3$ is a prime number then

$$D_{Q^*}(\mathbf{Z}/p^k\mathbf{Z})=2k+1.$$

► For any pair of positive integers *m*, *n*

$$D_{Q^*}(\mathbf{Z}/m\mathbf{Z}) \geq D_{Q^*}(\mathbf{Z}/m\mathbf{Z}) + D_{Q^*}(\mathbf{Z}/m\mathbf{Z}) - 1.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへで

Lower bound

• If $p \ge 3$ is a prime number then

$$D_{Q^*}(\mathbf{Z}/p^k\mathbf{Z}) = 2k+1.$$

► For any pair of positive integers *m*, *n*

 $D_{Q^*}(\mathbf{Z}/m\mathbf{Z}) \geq D_{Q^*}(\mathbf{Z}/m\mathbf{Z}) + D_{Q^*}(\mathbf{Z}/m\mathbf{Z}) - 1.$

• When gcd(n, 6) = 1 or gcd(n, 10) = 1 write

$$n=\prod_{i=1}^{s}p_i^{k_i}, \quad k_i:=v_{p_i}(n).$$

▶ When 15 | *n* write

$$n=15^k\prod_{i=1}^s p_i^{k_i}$$

and observe that $D_{Q^*}(\mathbf{Z}/15^k\mathbf{Z}) \geq 5k+1$.

(ACB 2016)

9 / 16

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少へ⊙

When 5 | n, we use sharper addition theorems instead of Chowla's theorem.

Upper bound

- When 5 | n, we use sharper addition theorems instead of Chowla's theorem.
- The case gcd(n, 6) = 1 can be managed by induction in a similar way as for gcd(n, 30) = 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Upper bound

- When 5 | n, we use sharper addition theorems instead of Chowla's theorem.
- The case gcd(n, 6) = 1 can be managed by induction in a similar way as for gcd(n, 30) = 1.
- The general case needs an additional combinatorial tool based on the study of the hypergraph structure of the sequences.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Admissible functions and stable sequences Let $G = \mathbf{Z}/n\mathbf{Z}$.

A function $f : {subgroups of } G } \rightarrow \mathbf{Z}^*_+$ is said to be **admissible** if

- f is strongly increasing: $H < H' \leq G \Longrightarrow f(H) \leq f(H') 2$,
- f is subadditive: $f(H+H') \leq f(H) + f(H') f(H \cap H')$ for $H, H' \leq G$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目 のへで

A function $f : {subgroups of } G } \rightarrow \mathbf{Z}^*_+$ is said to be **admissible** if

- f is strongly increasing: $H < H' \leq G \Longrightarrow f(H) \leq f(H') 2$,
- f is subadditive: $f(H+H') \leq f(H) + f(H') f(H \cap H')$ for $H, H' \leq G$.
 - Example 1: $f(H) = m + 2\Omega(|H|)$ is admissible.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目 のへで

A function $f : {subgroups of } G } \rightarrow \mathbf{Z}^*_+$ is said to be **admissible** if

- f is strongly increasing: $H < H' \leq G \Longrightarrow f(H) \leq f(H') 2$,
- f is subadditive: $f(H+H') \leq f(H) + f(H') f(H \cap H')$ for $H, H' \leq G$.
 - Example 1: $f(H) = m + 2\Omega(|H|)$ is admissible.
 - Example 2: if f is admissible and K < G, then f_K(H) = f(H + K) is admissible.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目 のへで

A function $f : {subgroups of } G } \rightarrow \mathbf{Z}^*_+$ is said to be **admissible** if

- f is strongly increasing: $H < H' \leq G \Longrightarrow f(H) \leq f(H') 2$,
- f is subadditive: $f(H+H') \leq f(H) + f(H') f(H \cap H')$ for $H, H' \leq G$.
 - Example 1: $f(H) = m + 2\Omega(|H|)$ is admissible.
 - Example 2: if f is admissible and K < G, then f_K(H) = f(H + K) is admissible.

A sequence S of G of length $||S|| \ge f(G)$ is said to be **f**-stable with respect to G if

- S generates G,

- $||S|| - ||S_H|| \ge f(G) - f(H) + 1$ for all subgroups H < G,

where S_E denotes the subsequence of S of all terms of S belonging to E.

A function $f : {subgroups of } G } \rightarrow \mathbf{Z}^*_+$ is said to be **admissible** if

- f is strongly increasing: $H < H' \leq G \Longrightarrow f(H) \leq f(H') 2$,
- f is subadditive: $f(H+H') \leq f(H) + f(H') f(H \cap H')$ for $H, H' \leq G$.
 - Example 1: $f(H) = m + 2\Omega(|H|)$ is admissible.
 - Example 2: if f is admissible and K < G, then f_K(H) = f(H + K) is admissible.

A sequence S of G of length $||S|| \ge f(G)$ is said to be **f**-stable with respect to G if

- S generates G,

- $||S|| - ||S_H|| \ge f(G) - f(H) + 1$ for all subgroups H < G,

where S_E denotes the subsequence of S of all terms of S belonging to E.

Remark: when S is not f-stable, the induction works pretty well ACB 2016 (ACB 2016)

- ► An *f*-component of *S* is a subsequence *V* of *S* satisfying
 - $S \setminus V$ is *f*-stable with respect to $H := \langle S \setminus V \rangle$,

$$- \|V\| \le f(G) - f(H) + 1.$$

- An *f*-component of S is a subsequence V of S satisfying
 - $S \setminus V$ is *f*-stable with respect to $H := \langle S \setminus V \rangle$,
 - $\|V\| \le f(G) f(H) + 1.$
- Proposition: any f-stable sequence S can be decomposed as a disjoint union

$$S = V_1 \cdot V_2 \cdot \cdots \cdot V_r$$

of *f*-components V_i .

12 / 16

- An *f*-component of S is a subsequence V of S satisfying
 - $S \setminus V$ is *f*-stable with respect to $H := \langle S \setminus V \rangle$,
 - $\|V\| \le f(G) f(H) + 1.$
- Proposition: any *f*-stable sequence S can be decomposed as a disjoint union

$$S = V_1 \cdot V_2 \cdot \cdots \cdot V_r$$

of f-components V_i .

- ► An *f*-near component of *S* is a subsequence *E* of *S* satisfying
 - $S \setminus E$ is *f*-stable with respect to $H := \langle S \setminus E \rangle$,
 - $||E|| \le f(G) f(H) + 2$,
 - E is maximal for inclusion (as a subsequence of S).

12 / 16

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ りへの

- An *f*-component of *S* is a subsequence *V* of *S* satisfying
 - $S \setminus V$ is *f*-stable with respect to $H := \langle S \setminus V \rangle$,
 - $\|V\| \le f(G) f(H) + 1.$
- Proposition: any *f*-stable sequence S can be decomposed as a disjoint union

$$S = V_1 \cdot V_2 \cdot \cdots \cdot V_r$$

of f-components V_i .

► An *f*-near component of *S* is a subsequence *E* of *S* satisfying

- $S \setminus E$ is *f*-stable with respect to $H := \langle S \setminus E \rangle$,

$$||E|| \leq f(G) - f(H) + 2,$$

- E is maximal for inclusion (as a subsequence of S).
- Proposition: any *f*-near component f S is a disjoint union of *f*-components of S:

$$E = V_{i_1} \cdot V_{i_2} \cdot \cdots \cdot V_{i_t}.$$

12 / 16

Pairwise balanced design

We assume $3 \mid n$.

Definition: an hypergraph is a pairwise balanced design if each pair of vertices belongs to exactly λ edges.

Pairwise balanced design

We assume $3 \mid n$.

Definition: an hypergraph is a pairwise balanced design if each pair of vertices belongs to exactly λ edges.

► Theorem (DG-FH, 2015):

The hypergraph $\mathcal{H} = (\{f\text{-components}\}, \{f\text{-near components}\})$ is a pairwise balanced design with $\lambda = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

Pairwise balanced design

We assume $3 \mid n$.

Definition: an hypergraph is a pairwise balanced design if each pair of vertices belongs to exactly \u03c6 edges.

► Theorem (DG-FH, 2015):

The hypergraph $\mathcal{H} = (\{f\text{-components}\}, \{f\text{-near components}\})$ is a pairwise balanced design with $\lambda = 1$.

Classical lemma: let

 $\mathcal{E} = \{$ number of edges in E, E is a f-near component of $S \}$

and $e = \gcd\{k(k-1), k \in \mathcal{E}\}$. Then

$$v(v-1) \equiv 0 \pmod{e}.$$

13 / 16

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $S = W \cdot 0^{||S||-m}$ with $W = V_1 \cdot V_2 \cdot \cdots \cdot V_r$ with ||W|| = m, where the V_i 's are *f*-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.

Let $S = W \cdot 0^{||S||-m}$ with $W = V_1 \cdot V_2 \cdot \cdots \cdot V_r$ with ||W|| = m, where the V_i 's are *f*-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T. Assume $\sigma(S) = \sigma(W) \equiv x \pmod{G/3G}$ with $x \neq 0$ (otherwise we can conclude).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Let $S = W \cdot 0^{||S||-m}$ with $W = V_1 \cdot V_2 \cdot \cdots \cdot V_r$ with ||W|| = m, where the V_i 's are *f*-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.

Assume $\sigma(S) = \sigma(W) \equiv x \pmod{G/3G}$ with $x \neq 0$ (otherwise we can conclude).

If for some *i*, $\sigma(V_i) \equiv x \pmod{G/3G}$ then $\sigma(W \setminus V_i) \equiv 0 \pmod{G/3G}$ and we can conclude.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目 のへで

Let $S = W \cdot 0^{||S||-m}$ with $W = V_1 \cdot V_2 \cdot \cdots \cdot V_r$ with ||W|| = m, where the V_i 's are *f*-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.

Assume $\sigma(S) = \sigma(W) \equiv x \pmod{G/3G}$ with $x \neq 0$ (otherwise we can conclude).

If for some *i*, $\sigma(V_i) \equiv x \pmod{G/3G}$ then $\sigma(W \setminus V_i) \equiv 0 \pmod{G/3G}$ and we can conclude.

Let v the number of V_i 's such that $\sigma(V_i) \equiv -x \pmod{G/3G}$. Then

 $x \equiv -vx \pmod{3}$ thus $v \equiv -1 \pmod{3}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Let $S = W \cdot 0^{||S||-m}$ with $W = V_1 \cdot V_2 \cdot \cdots \cdot V_r$ with ||W|| = m, where the V_i 's are *f*-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.

Assume $\sigma(S) = \sigma(W) \equiv x \pmod{G/3G}$ with $x \neq 0$ (otherwise we can conclude).

If for some *i*, $\sigma(V_i) \equiv x \pmod{G/3G}$ then $\sigma(W \setminus V_i) \equiv 0 \pmod{G/3G}$ and we can conclude.

Let v the number of V_i 's such that $\sigma(V_i) \equiv -x \pmod{G/3G}$. Then

 $x \equiv -vx \pmod{3}$ thus $v \equiv -1 \pmod{3}$.

Each edge of \mathcal{H} has 0 or 1 (mod 3) vertices. Hence $e \equiv 0 \pmod{6}$.

(ACB 2016)

14 / 16

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Let $S = W \cdot 0^{||S||-m}$ with $W = V_1 \cdot V_2 \cdot \cdots \cdot V_r$ with ||W|| = m, where the V_i 's are *f*-components. Write $\sigma(T)$ for the sum of all terms of a given sequence T.

Assume $\sigma(S) = \sigma(W) \equiv x \pmod{G/3G}$ with $x \neq 0$ (otherwise we can conclude).

If for some *i*, $\sigma(V_i) \equiv x \pmod{G/3G}$ then $\sigma(W \setminus V_i) \equiv 0 \pmod{G/3G}$ and we can conclude.

Let v the number of V_i 's such that $\sigma(V_i) \equiv -x \pmod{G/3G}$. Then

 $x \equiv -vx \pmod{3}$ thus $v \equiv -1 \pmod{3}$.

Each edge of \mathcal{H} has 0 or 1 (mod 3) vertices. Hence $e \equiv 0 \pmod{6}$. **A contradiction !**

(ACB 2016)

14 / 16

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

(ACB 2016)

15 / 16

• **Conjecture 1:** for all odd integer $n \ge 3$

$$D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) = 2\Omega(n) + \min(v_3(n), v_5(n)) + 1.$$

• **Conjecture 1:** for all odd integer $n \ge 3$

$$D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) = 2\Omega(n) + \min(v_3(n), v_5(n)) + 1.$$

Conjecture 2: for all odd integer n ≥ 3, all integer m ≥ cste × Ω(n) divisible by gcd(n, 3) and all sequence S of Z/nZ

$$\|S\| \ge m + 2\Omega(n) + \min(v_3(n), v_5(n)) \Longrightarrow 0 \in \Sigma_{Q^*}^{(m)}(S).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• **Conjecture 1:** for all odd integer $n \ge 3$

$$D_{Q^*}(\mathbf{Z}/n\mathbf{Z}) = 2\Omega(n) + \min(v_3(n), v_5(n)) + 1.$$

Conjecture 2: for all odd integer n ≥ 3, all integer m ≥ cste × Ω(n) divisible by gcd(n, 3) and all sequence S of Z/nZ

$$\|S\| \ge m + 2\Omega(n) + \min(v_3(n), v_5(n)) \Longrightarrow 0 \in \Sigma_{Q^*}^{(m)}(S).$$

• **Conjecture 3:** for all odd integer $n \ge 3$

$$D_{Q^*}(\mathbf{Z}/2^k n\mathbf{Z}) = 7 \left\lfloor \frac{k}{3} \right\rfloor + 2^{3\left\{\frac{k}{3}\right\}} + 2\Omega(n) + \min(v_3(n), v_5(n)).$$

(ACB 2016)

15 / 16

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Thank you for your attention

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ