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Definitions
Let R,+, · be a finite ring and A ⊂ R \ {0}.

I Weighted Davenport constant DA(R): least integer such that any
sequence S of R with length ‖S‖ ≥ DA(R) has a (non empty)
subsequence g1 · g2 · · · · · g` such that

0 ∈
∑̀
i=1

Agi ⊂ Σ
(`)
A (S) := {A-weighted sums of ` terms of S}.

I Weighted Gao constant EA(R): least integer such that any
sequence of R with length EA(R) has a subsequence g1 · g2 · · · · · g|R|
such that

0 ∈
|R|∑
i=1

Agi

I Notation: for a sequence S of R we denote ΣA(S) all (non empty)
A-weighted sums of terms of S . Hence

DA(R) := min {k ≥ 1 such that ‖S‖ ≥ k ⇒ 0 ∈ ΣA(S)} .
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Remarks and the fundamental result

I Remark 1: DA(G ) and EA(G ) can be defined when G ,+ is a finite
group and A ⊂ Z \ {0}.

I Remark 2: the case A = {1} (or any invertible element of R) refers
to the classical Davenport and Gao constants, simply denoted by
D(G ) and E (G ).

I Remark 3: replacing |R| by exp(R) for the required length of the
subsequence in the definition of EA(R) leads to the
Erdős-Ginzburg-Ziv constant.

I Remark 4: when R = Z/nZ both Gao and Erdős-Ginzburg-Ziv
constants coincide.

I Gao Theorem (1995): let G ,+ be an abelian group. Then
E(G) = D(G) + |G | − 1.

I Grynkiewicz-Marchan-Ordaz Theorem (2012):
EA(R) = DA(R) + |R| − 1.
The case R = Z/nZ is known since Yuan and Zeng (2010).
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Examples

Denote for simplicity Q∗ = Q∗n the set of invertible squares in a given fixed
ring R.

I D(Z/nZ) = n (Erdős-Ginzburg-Ziv).

I DQ∗(Z/pZ) = 3 if p ≥ 7 is prime.
Proof. We have |Q∗| = (p − 1)/2. Then by the Cauchy-Davenport
Theorem

|Q∗a + Q∗b + Q∗c | ≥ min(p, 3(p − 1)/2− 2) = p

if a, b, c are not 0. Otherwise we plainly have 0 ∈ Q∗a ∪ Q∗b ∪ Q∗c .

Conversely take x be a nonsquare modulo p. Then
0 6∈ Q∗ ∪ −Q∗x ∪ (Q∗ − Q∗x).

I DQ∗(Z/3Z) = D(Z/3Z) = 3.
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Examples - continued

I DQ∗(Z/5Z) = D{−1,1}(Z/5Z) = 3.
If a sequence S of Z/5Z has length ≥ 3 then
- either 0 ∈ S and 0 = 1 · 0;
- or there exists x ∈ S such that −x ∈ S : this implies
0 = 1 · x + 1 · (−x);
- or S contains two identical terms x , giving 0 = 1 · x + (−1) · x .

I Write k = 3q + r . Then Q∗ = {1, 9}+ 8Z/2kZ and

DQ∗(Z/2kZ) = 7q + 2r = 7

⌊
k

3

⌋
+ 23{ k

3
}.

I Let p ≥ 3 be an odd prime number ; then

DQ∗(Z/pkZ) = 2k + 1.

I Question: is it true that if gcd(n, 2) = 1 then
DQ∗(Z/nZ) = 2Ω(n) + 1 ?
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A critical situation

Assume that n = 15 and let S = (1, 1, 1, 1, 1). One has Q∗ = {1, 4} and
consequently

0 6∈ ΣQ∗(S) !

We have DQ∗(Z/15Z) > 5 = 2Ω(15) + 1.

I Remark: the primes 2, 3 and 5 play a bad role.

I An attempt of conjecture: if gcd(n, 2) = 1 and n is not a multiple
of 15 then DQ∗(Z/nZ) = 2Ω(n) + 1.

I Theorem (Chintamani-Moriya, 2012): if gcd(n, 30) = 1 then
DQ∗(Z/nZ) = 2Ω(n) + 1.

I The proof uses an inductive argument and an addition theorem:

I Chowla Theorem: if X ⊂ Z/nZ and Y ⊂
(
Z/nZ

)×
then

|X + Y | ≥ min(n, |X |+ |Y | − 1).
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Idea of the proof (upper bound)
Let S be a sequence of length ‖S‖ = 2Ω(n) + 1.

I First case: if for some p | n, S has at most two terms non divisible
by p then one applies the induction hypothesis to S ′ := 1

p × S̃ where

S̃ is the subsequence of S formed by the terms divisible by p: S ′ can
be viewed has a sequence of Z/mZ where m = n/p with length
≥ 2Ω(n) + 1− 2 = 2Ω(m) + 1.

I Second case: for each p | n, S has at least 3 terms coprime to p.
There are pk(p − 1)/2 square units modulo pk . Hence if p - abc, by

Chowla Theorem
∣∣∣Q∗pka + Q∗

pk
b + Q∗

pk
c
∣∣∣ = pk , that is

Q∗pka + Q∗pkb + Q∗pk c = Z/pkZ.

By the Chinese remainder Theorem, taking the minimal subsequence
s1 · · · · · s` of S containing 3 terms coprime to p for each p | n, one has∑̀

i=1

Q∗nsi = Z/nZ hence 0 ∈
∑̀
i=1

Q∗nsi .
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Main results

I Theorem 1 (Grynkiewicz-H., 2015)
If gcd(n, 6) = 1 or gcd(n, 10) = 1 then DQ∗(Z/nZ) = 2Ω(n) + 1.

I Theorem 2 (Grynkiewicz-H., 2015)
If n is an odd integer then

2Ω(n) + 1 + min(v3(n), v5(n)) ≤ DQ∗(Z/nZ) ≤ 2Ω(n) + 1 + v5(n).

I Corollary: for any odd integer n, the exact value of DQ∗(Z/nZ) is
known when n = qm where gcd(m, 30) = 1 and q = 3k or 5k or 15k .

I Reformulation of Theorem 1 when gcd(n, 6) = 1:
if m ≥ 3ω(n) + min(1, v5(n)) then for all sequence S of Z/nZ with
length m + 2Ω(n)

0 ∈ Σ
(m)
Q∗ (S).

Taking m = n gives the Gao constant EQ∗(Z/nZ) = n + 2Ω(n) when
n ≥ 3ω(n) + min(1, v5(n)) (namely when n ≥ 5) and gcd(n, 6) = 1.
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Lower bound

I If p ≥ 3 is a prime number then

DQ∗(Z/pkZ) = 2k + 1.

I For any pair of positive integers m, n

DQ∗(Z/mnZ) ≥ DQ∗(Z/mZ) + DQ∗(Z/nZ)− 1.

I When gcd(n, 6) = 1 or gcd(n, 10) = 1 write

n =
s∏

i=1

pkii , ki := vpi (n).

I When 15 | n write

n = 15k
s∏

i=1

pkii

and observe that DQ∗(Z/15kZ) ≥ 5k + 1.
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Upper bound

I When 5 | n, we use sharper addition theorems instead of Chowla’s
theorem.

I The case gcd(n, 6) = 1 can be managed by induction in a similar way
as for gcd(n, 30) = 1.

I The general case needs an additional combinatorial tool based on the
study of the hypergraph structure of the sequences.
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Admissible functions and stable sequences
Let G = Z/nZ.

A function f : {subgroups of G} → Z∗+ is said to be admissible if

- f is strongly increasing: H < H ′ ≤ G =⇒ f (H) ≤ f (H ′)− 2,
- f is subadditive: f (H +H ′) ≤ f (H) + f (H ′)− f (H ∩H ′) for H,H ′ ≤ G .

I Example 1: f (H) = m + 2Ω(|H|) is admissible.

I Example 2: if f is admissible and K < G , then fK (H) = f (H + K ) is
admissible.

A sequence S of G of length ‖S‖ ≥ f (G ) is said to be f -stable with
respect to G if

- S generates G ,
- ‖S‖ − ‖SH‖ ≥ f (G )− f (H) + 1 for all subgroups H < G ,

where SE denotes the subsequence of S of all terms of S belonging to E .

Remark: when S is not f -stable, the induction works pretty well.
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Structure for f -stable sequences
I An f -component of S is a subsequence V of S satisfying

- S \ V is f -stable with respect to H := 〈S \ V 〉,
- ‖V ‖ ≤ f (G )− f (H) + 1.

I Proposition: any f -stable sequence S can be decomposed as a
disjoint union

S = V1 · V2 · · · · · Vr

of f -components Vi .
I An f -near component of S is a subsequence E of S satisfying

- S \ E is f -stable with respect to H := 〈S \ E 〉,
- ‖E‖ ≤ f (G )− f (H) + 2,
- E is maximal for inclusion (as a subsequence of S).

I Proposition: any f -near component f S is a disjoint union of
f -components of S :

E = Vi1 · Vi2 · · · · · Vit .
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Pairwise balanced design

We assume 3 | n.

I Definition: an hypergraph is a pairwise balanced design if each
pair of vertices belongs to exactly λ edges.

I Theorem (DG-FH, 2015):
The hypergraph H = ({f -components}, {f -near components}) is a
pairwise balanced design with λ = 1.

I Classical lemma: let

E = {number of edges in E , E is a f -near component of S}

and e = gcd{k(k − 1), k ∈ E}. Then

v(v − 1) ≡ 0 (mod e).
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Application

Let S = W · 0‖S‖−m with W = V1 ·V2 · · · · ·Vr with ‖W ‖ = m, where the
Vi ’s are f -components. Write σ(T ) for the sum of all terms of a given
sequence T .

Assume σ(S) = σ(W ) ≡ x (mod G/3G ) with x 6= 0 (otherwise we can
conclude).
If for some i , σ(Vi ) ≡ x (mod G/3G ) then σ(W \ Vi ) ≡ 0 (mod G/3G )
and we can conclude.
Let v the number of Vi ’s such that σ(Vi ) ≡ −x (mod G/3G ). Then

x ≡ −vx (mod 3) thus v ≡ −1 (mod 3).

Each edge of H has 0 or 1 (mod 3) vertices. Hence e ≡ 0 (mod 6).
A contradiction !
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Final remarks

I Conjecture 1: for all odd integer n ≥ 3

DQ∗(Z/nZ) = 2Ω(n) + min(v3(n), v5(n)) + 1.

I Conjecture 2: for all odd integer n ≥ 3, all integer m ≥ cste× Ω(n)
divisible by gcd(n, 3) and all sequence S of Z/nZ

‖S‖ ≥ m + 2Ω(n) + min(v3(n), v5(n)) =⇒ 0 ∈ Σ
(m)
Q∗ (S).

I Conjecture 3: for all odd integer n ≥ 3

DQ∗(Z/2knZ) = 7

⌊
k

3

⌋
+ 23{ k

3
} + 2Ω(n) + min(v3(n), v5(n)).
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Thank you for your attention
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