Doubling and Volume: on a conjecture of Freiman

Oriol Serra
Department of Mathematics
Universitat Politècnica de Catalunya, Barcelona

Additive Combinatorics in Bordeaux, April 2016 Joint work with G.A. Freiman

The Freiman-Ruzsa Theorem

Theorem (Freiman-Ruzsa)
Let $A \subset \mathbb{Z}$ be a finite set. If

$$
|2 A| \leq c|A|,
$$

then A is contained in a d-dimensional arithmetic progression Q such that

$$
|Q| \leq c^{\prime}|A|
$$

where d and c^{\prime} depend only on c

Estimates of c^{\prime}

Obtaining good estimates for c^{\prime} is a significant problem.
Some results:

- $c^{\prime} \leq(2 d)^{\exp \exp \exp (9 c \log 2 c)}$ (Freiman, 1988, Bilu 1999)
- $c^{\prime} \leq \exp \left(c^{c^{c}}\right)$ (Ruzsa, 1994)
- $c^{\prime} \leq \exp \left(K c^{2}\left(\log \left(c^{3}\right)\right)\right)$ (Mei Chu-Chang, 2002)
- $c^{\prime} \leq \exp \left(O\left(c^{7 / 4} \log ^{3} c\right)\right.$ (Sanders, 2008)
- $c^{\prime} \leq \exp (c \log c)($ Konyagin, 2011)
- $c^{\prime} \leq \exp \left(c^{1+K(\log c)^{-1 / 2}}\right)$ (Schoen, 2011)

One can not do better than $d \leq c-1$ and $c^{\prime}=e^{O(c)}$: Schoen's estimation is essentially best possible.

$$
\text { Freiman conjecture: } c^{\prime}=2^{c-2}(k-c+b+1)
$$

Small doubling and structure: a quest for exact results

Let $A \subset \mathbb{Z}$ be a finite subset
We have

$$
2|A|-1 \leq|2 A|
$$

and equality holds iff A is an arithmetic progression.

Inverse problem: What is the structure of A if $|2 A| \leq c|A|$?

Some Notation

$$
A=\left\{a_{0}<a_{1} \cdots<a_{k-1}\right\} \text { finite set of integers. }
$$

- Doubling $2 A=A+A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\}$.
- $T=|2 A|$ cardinality of doubling.
- A is in normal form if $a_{0}=0$ and $\operatorname{gcd}(A)=1$.

Freiman homomorphism and isomorphism

- G, H abelian groups, $A \subset G, B \subset H$ finite sets.
- $\phi: A \rightarrow B$ bijective is a Freiman-homomorphism if, for $a_{i}, a_{j}, a_{k}, a_{l} \in A$,

$$
a_{i}+a_{j}=a_{k}+a_{l} \Rightarrow \phi\left(a_{i}\right)+\phi\left(a_{j}\right)=\phi\left(a_{k}\right)+\phi\left(a_{l}\right)
$$

If the implication is if and only if, then ϕ is a Freiman-isomorphism:

$$
A \equiv_{F} B .
$$

F-isomorphic sets are indistinguishable with respect to additive structure.

- If $\phi: G \rightarrow H$ group isomorphism then ϕ is an F-isomorphism between any finite set $A \subset G$ and $\phi(A) \subset H$.
- Translations are F-isomorphisms.
- $A \subset \mathbb{Z}$ normal set, $A^{-}=-A+\max (A)$, the reverse of A, is normal set F-isomorphic to A.

Dimension and d-dimensional arithmetic progressions

- A d-dimensional arithmetic progression Q is a set of integers of the form

$$
\begin{aligned}
Q & =a+Q_{1}+Q_{2}+\cdots+Q_{d} \\
& =a+\left\{t_{1} q_{1}+\cdots+t_{d} q_{d}, 0 \leq t_{1} \leq h_{1}-1, \ldots, 0 \leq t_{d} \leq h_{d}-1\right\},
\end{aligned}
$$

where Q_{i} is an arithmetic progression with difference q_{i} with length h_{i}. Its volume is

$$
\operatorname{vol}(Q)=h_{1} \cdots h_{d}
$$

The arithmetic progression Q is proper if

$$
|Q|=\operatorname{vol}(Q) .
$$

$$
\{0,1,2\}+\{0,5,10\}+\{0,13,26\}
$$

Dimension and d-dimensional arithmetic progressions

- A d-dimensional arithmetic progression Q is a set of integers of the form

$$
\begin{aligned}
Q & =a+Q_{1}+Q_{2}+\cdots+Q_{d} \\
& =a+\left\{t_{1} q_{1}+\cdots+t_{d} q_{d}, 0 \leq t_{1} \leq h_{1}-1, \ldots, 0 \leq t_{d} \leq h_{d}-1\right\},
\end{aligned}
$$

where Q_{i} is an arithmetic progression with difference q_{i} with length h_{i}. Its volume is

$$
\operatorname{vol}(Q)=h_{1} \cdots h_{d}
$$

The arithmetic progression Q is proper if

$$
|Q|=\operatorname{vol}(Q) .
$$

- G abelian group, $A \subset G$ finite set.
- The dimension of A is the largest d for which there is $B \subset \mathbb{Z}^{d}$ such that
- $B \equiv_{F} A$, and
- B is d-dimensional (not contained in a proper hyperplane of \mathbb{Z}^{d}.)

Volume

- $A \subset G$ finite set.
- The Additive Volume vol (A) of a finite set $A \subset G$ is the smallest cardinality of the convex hull of an F-isomorphic copy of A in $\mathbb{Z}^{d}, d=\operatorname{dim}(A)$.
- For given k and $T, \operatorname{vol}(k, T)$ is the maximum volume among all sets with cardinality k and doubling T.
- A set $A \subset \mathbb{Z}$ is extremal if

$$
\operatorname{vol}(A)=\operatorname{vol}(|A|,|2 A|)
$$

Parametrization of doubling

For each $T \in\left[2 k,\binom{k}{2}+2\right]$ there are unique

$$
c=c(k, T) \in[2, k-1] \text { and } b=b(k, T) \in[1, k-c-1]
$$

such that

$$
T=T(k, c, b)=c k-\binom{c+1}{2}+b+1
$$

If $A \subset \mathbb{Z}$ has cardinality k and doubling

$$
T=|2 A| \in I_{c}=\left[c k-\binom{c+1}{2}+2,(c+1) k-\binom{c+2}{2}+1\right]
$$

then the doubling constant of A is c.

c	2	2	2	3	4	$k-2$
b	1	2	$k-3$	1	1	1
T	$2 k$	$2 k+1$	$3 k-4$	$3 k-3$	$4 k-7$	$\binom{k}{2}+2$

Freiman Conjecture for the maximum volume

Conjecture (Freiman, 2008)
Let $A \subset \mathbb{Z}$ with $k=|A|$ and

$$
|2 A|=T=c k-\binom{c+1}{2}+b+1
$$

Then

$$
\operatorname{vol}(A) \leq \mu(k, T)
$$

with

$$
\mu(k, T)=2^{c-2}(k+1-c+b)
$$

that is,

$$
\operatorname{vol}(k, T)=\mu(k, T)
$$

Freiman Conjecture for the maximum volume

The conjecture holds for $c=2$: The $(3 k-4)$-Theorem.
Theorem (Freiman, 1959)
Let $A \subset \mathbb{Z}$. If

$$
T=2 k-1+b \leq 3 k-4
$$

then

$$
\operatorname{vol}(A) \leq k-1+b .
$$

- For each $T \in[2 k-1,3 k-4]$ there are extremal sets A with cardinality k and doubling T.

- If $T \geq 3 k-3(c \geq 3)$ a new picture appears:

Freiman Conjecture for the maximum volume

The value for the maximum is tight: $\operatorname{vol}(k, T) \geq \mu(k, T)$
if $A \subset \mathbb{Z}$ has doubling $T=T(k, c, b)$ and $\operatorname{vol}(A)=\mu(k, T)$, then

- $D(A)=A \cup\{2 \max (A)\}$, and
- $D_{x}(A)=2 \cdot A \cup\{x\}, x \in 2 A \backslash A$ odd
have doubling $T^{\prime}=T(k+1, c+1, b)=T+k$ and volume $\mu\left(k+1, T^{\prime}\right)=2 \mu(k, T)$

For every k and T one can construct sets with doubling T and volume $\mu(k, T)$ starting with a set under the $(3 k-4)$-Theorem.

Freiman Conjecture for the maximum volume

Beyond $3 k-4$

- Freiman: $3 k-3,3 k-2$
- Hamidoune, Plagne: $3 k-3,3 k-2$ (isoperimetric method)
- Grynkiewicz, Serra: $3 k-3,3 k-2$ (Kemperman Structure Theorem)
- Jin $(3+\epsilon) k$ (nonstandard analysis)

Main result

Theorem (Freiman, Serra)
Let A be a chain with $k=|A|$ and $T=|2 A|$. Then

$$
\max (A)=\mu(k, T)
$$

Theorem (Freiman, Serra)
Let A be an extremal set with $k=|A|$ and $T \leq 4 k-8$. Then

$$
\operatorname{vol}(A) \leq \mu(k, T)
$$

Chains

A normalized 1-dimensional extremal set A is a chain if there is a sequence

$$
A_{3} \subset A_{4} \subset \cdots \subset A_{k}=A
$$

such that

- A_{i} is (isomorphic to) a 1-dimensional extremal set with cardinality i, $3 \leq i \leq k$,
- A_{i} is obtained from A_{i+1} by deleting $\max \left(A_{i+1}\right)$ or $\min \left(A_{i+1}\right)$.

A chain:

An extremal set not a chain

Chains

A normalized 1-dimensional extremal set A is a chain if there is a sequence

$$
A_{3} \subset A_{4} \subset \cdots \subset A_{k}=A
$$

such that

- A_{i} is (isomorphic to) a 1-dimensional extremal set with cardinality i, $3 \leq i \leq k$,
- A_{i} is obtained from A_{i+1} by deleting $\max \left(A_{i+1}\right)$ or $\min \left(A_{i+1}\right)$.
\mathcal{C} class of chains.

$$
\operatorname{vol}_{\mathcal{C}}(k, T)=\max \{\max (A): A \text { chain, } k=|A|, T=|2 A|\}
$$

Theorem

$$
\operatorname{vol}_{\mathcal{C}}(k, T)=\mu(k, T)
$$

Computation of dimension

Basic additive relations: $A=\left\{a_{1}, \ldots, a_{k}\right\}$ finite set in an additive group

$$
a_{i}+a_{j}=a_{r}+a_{s}, a_{i}, a_{j}, a_{r}, a_{s} \in A,\left\{a_{i}, a_{j}\right\} \neq\left\{a_{r}, a_{s}\right\}
$$

Basic relations in $\mathbb{R}^{k}=\left\langle e_{1}, \ldots, e_{k}\right\rangle$:

$$
a_{i}+a_{j}=a_{r}+a_{s} \rightarrow v(i, j, r, s)=e_{i}+e_{j}-e_{r}-e_{s}
$$

Theorem (Konyagin, Lev)

The additive dimension of a set A satisfies

$$
\operatorname{dim}(A)=k-1-\lambda(A),
$$

where $\lambda(A)=\operatorname{dim}\left\langle v(i, j, r, s): a_{i}+a_{j}=a_{r}+a_{s}\right\rangle$.

$$
\begin{gathered}
a_{1}+a_{4}=2 a_{2} \rightarrow(1,-2,0,1) \\
a_{2}+a_{4}=2 a_{3} \rightarrow(0,1,-2,1) \\
\lambda(A)=2, \operatorname{dim}(A)=1
\end{gathered}
$$

Computation of dimension

Basic additive relations: $A=\left\{a_{1}, \ldots, a_{k}\right\}$ finite set in an additive group

$$
a_{i}+a_{j}=a_{r}+a_{s}, a_{i}, a_{j}, a_{r}, a_{s} \in A,\left\{a_{i}, a_{j}\right\} \neq\left\{a_{r}, a_{s}\right\}
$$

Basic relations in $\mathbb{R}^{k}=\left\langle e_{1}, \ldots, e_{k}\right\rangle$:

$$
a_{i}+a_{j}=a_{r}+a_{s} \rightarrow v(i, j, r, s)=e_{i}+e_{j}-e_{r}-e_{s}
$$

Theorem (Konyagin, Lev)

The additive dimension of a set A satisfies

$$
\operatorname{dim}(A)=k-1-\lambda(A),
$$

where $\lambda(A)=\operatorname{dim}\left\langle v(i, j, r, s): a_{i}+a_{j}=a_{r}+a_{s}\right\rangle$.

If $A_{3} \subset A_{4} \subset \cdots A_{k}=A$ is a chain,

$$
\left|2 A_{i}\right| \leq\left|2 A_{i-1}\right|+(i-1) \text { and } \quad \max \left(A_{i}^{*}\right) \leq 2 \max \left(A_{i-1}^{*}\right)
$$

A^{*} normalization of A.

Structure of Chains

A set $A=\left\{0=a_{0}<a_{1}<\cdots<a_{k-1}\right\}$ is stable if

$$
2 A \cap\left[0, a_{k-1}\right]=A .
$$

A is right-stable if its reflexion A^{-}is stable.
Theorem (Freiman (2009))
Let A be an extremal set with $|2 A| \leq 3 k-4$.
There are A_{0} stable set, P segment and A_{1} right-stable set such that

$$
A=A_{0} \circ P \circ A_{1},
$$

where $X \circ Y=X \cup(\max (X)+Y)$ denotes concatenation.
Moreover

$$
2 A=A_{0} \circ P^{\prime} \circ A_{1} .
$$

Structure of Chains

A set $A=\left\{0=a_{0}<a_{1}<\cdots<a_{k-1}\right\}$ is stable if

$$
2 A \cap\left[0, a_{k-1}\right]=A .
$$

A is right-stable if its reflexion A^{-}is stable.
Theorem (Freiman (2009))
Let A be an extremal set with $|2 A| \leq 3 k-4$.
There are A_{0} stable set, P segment and A_{1} right-stable set such that

$$
A=A_{0} \circ P \circ A_{1},
$$

where $X \circ Y=X \cup(\max (X)+Y)$ denotes concatenation.
Moreover

$$
2 A=A_{0} \circ P^{\prime} \circ A_{1} .
$$

- A stable if $2 A \cap[0, \max (A)]=A$ and $1, \max (A)-1 \notin A$

Structure of Chains

A set $A=\left\{0=a_{0}<a_{1}<\cdots<a_{k-1}\right\}$ is stable if

$$
2 A \cap\left[0, a_{k-1}\right]=A .
$$

A is right-stable if its reflexion A^{-}is stable.
Theorem (Freiman (2009))
Let A be an extremal set with $|2 A| \leq 3 k-4$.
There are A_{0} stable set, P segment and A_{1} right-stable set such that

$$
A=A_{0} \circ P \circ A_{1},
$$

where $X \circ Y=X \cup(\max (X)+Y)$ denotes concatenation.
Moreover

$$
2 A=A_{0} \circ P^{\prime} \circ A_{1} .
$$

- A stable if $2 A \cap[0, \max (A)]=A$ and $1, \max (A)-1 \notin A$
- If A is stable then $|A \cap[0, x]| \leq\left\lceil\frac{x+1}{2}\right\rceil$.

Chain extension

Lemma

Let $A=A_{0} \circ P \circ A_{2}$ be an extremal set with $|2 A| \leq 3|A|-4$.
If $A_{x}=A \cup\{x\}$ is extremal with $\left|2 A_{x}\right|>3\left|A_{x}\right|-4$, then x is even and

$$
x \geq \ell\left(A_{1}\right)+\ell\left(A_{2}\right)-2 \text { and }\left|A_{1} \cap\left(t+A_{2}\right) \cap[0,2 a-x]\right|=\left\lceil\frac{2 a-x+1}{2}\right\rceil
$$

Chain extension

Lemma

Let $A=A_{0} \circ P \circ A_{2}$ be an extremal set with $|2 A| \leq 3|A|-4$.
If $A_{x}=A \cup\{x\}$ is extremal with $\left|2 A_{x}\right|>3\left|A_{x}\right|-4$, then x is even and

$$
x \geq \ell\left(A_{1}\right)+\ell\left(A_{2}\right)-2 \text { and }\left|A_{1} \cap\left(t+A_{2}\right) \cap[0,2 a-x]\right|=\left\lceil\frac{2 a-x+1}{2}\right\rceil .
$$

The last condition can only hold if both A_{1} and A_{2} are 2-progressions. Otherwise $x=2 a$.

Lemma

If the only extension of an extremal set A is $A^{\prime}=A \cup 2 \max (A)$ then the same happens with A^{\prime}.

Structure of Chains

Theorem

Let A be a chain. Then,

$$
\operatorname{vol}_{\mathcal{C}}(A)=\mu(|A|,|2 A|) .
$$

Moreover, there is a subchain $B=B_{0} \circ P \circ B_{1}$ with $|2 B| \leq 3|B|-4$ such that

$$
A=D^{t}(B)
$$

unless B_{0}, B_{1} are both 2-progressions.

-。。

Theorem applies to chains with $|2 A| \leq\binom{|A|+1}{2}-|A|+2$

Beyond chains: a $(4 k-8)$-theorem

Theorem

Let A be an extremal set with $T \leq 4 k-8$. Then,

$$
\operatorname{vol}(A)=\mu(k, T)
$$

Moreover, A is 1-dimensional.

Dimension descent

Largest volume occurs for 1-dimensional sets.
Theorem
Let A be 2-dimensional set with cardinality k and doubling $T=T(A)$.
There is a 1-dimensional set B and an injective Freiman homomorphism $\phi: A \rightarrow B$ such that

$$
T(B)<T(A) \text { and } \operatorname{Vol}(B)>\operatorname{Vol}(A) .
$$

Dimension descent

Lemma

Let $A \subset \mathbb{Z}^{d}$ be a d-dimensional set and $\phi: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{m}$ a group homomorphism. If ϕ is injective on A then
(i) $\operatorname{dim}(\phi(A)) \leq \operatorname{dim}(A)$, and
(ii) $T(\phi(A)) \leq T(A)$.

Dimension descent

Lemma

Let $A \subset \mathbb{Z}^{d}$ be a d-dimensional set and $\phi: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{m}$ a group homomorphism. If ϕ is injective on A then
(i) $\operatorname{dim}(\phi(A)) \leq \operatorname{dim}(A)$, and
(ii) $T(\phi(A)) \leq T(A)$.

A projection can be found such that $\operatorname{dim}(\phi(A))=1$ and $\operatorname{vol}(\phi(A))>\operatorname{vol}(A)$.

A $(4 k-8)$-theorem

Theorem

Let A be an extremal set with $T \leq 4 k-8$. Then,

$$
\operatorname{vol}(A)=\mu(k, T) .
$$

Moreover A is 1-dimensional.

- Proved if $T \leq 3 k-4$ and if A is a chain.
- If $T \geq 3 k-3$ and A is not a chain, find a sequence $A_{i} \subset A_{i+1} \subset \cdots \subset A$ of 1-dimensional sets where A_{i} is not extremal and A_{i+1} is extremal: one shows that $\max \left(A_{i+1}\right)=\mu\left(\left|A_{i}\right|,\left|2 A_{i}\right|\right)$.

Some applications: the Freiman-Vosper Theorem

Theorem (Freiman)
Let $A \subset \mathbb{Z} / p \mathbb{Z}$ with $|A| \leq p / 35$ and $|2 A| \leq(5 / 2)|A|$. Then A is covered by an arithmetic progression of length at most $|2 A|-|A|+1$.

Some applications: the Freiman-Vosper Theorem

Theorem (Freiman)
Let $A \subset \mathbb{Z} / p \mathbb{Z}$ with $|A| \leq p / 35$ and $|2 A| \leq(5 / 2)|A|$. Then A is covered by an arithmetic progression of length at most $|2 A|-|A|+1$.

Conjecture (Bilu, Lev Ruzsa; Serra, Zémor)

Let $A \subset \mathbb{Z} / p \mathbb{Z}$ with $k=|A|$. If

$$
|2 A|=2 k-1+b, 0 \leq b \leq \min \{k-3, p / 2-k-1\}
$$

then A is contained in a progression with length at most $k+b$.

- Vosper-Freiman theorem. Improved to $|A| \leq p / 10$ by Rødseth.
- $b=1$ (Hamidoune-Rødseth)
- $|A| \leq 10^{-180} p$ (Green and Ruzsa: rectification)
- $|2 A| \leq(2+\epsilon) p$ (Serra and Zémor: isoperimetric method and rectification)

Some applications: the Freiman-Vosper Theorem

Theorem (Freiman)
Let $A \subset \mathbb{Z} / p \mathbb{Z}$ with $|A| \leq p / 35$ and $|2 A| \leq(5 / 2)|A|$. Then A is covered by an arithmetic progression of length at most $|2 A|-|A|+1$.

Conjecture (Bilu, Lev Ruzsa; Serra, Zémor)
Let $A \subset \mathbb{Z} / p \mathbb{Z}$ with $k=|A|$. If

$$
|2 A|=2 k-1+b, 0 \leq b \leq \min \{k-3, p / 2-k-1\}
$$

then A is contained in a progression with length at most $k+b$.

Theorem (Freiman, Rué, Serra, Spiegel)
The BLR conjecture holds for 1-dimensional sets.

Final remarks

- Is it possible to prove the Freiman conjecture for $c=f(|A|)$?
- The Freiman-Ruzsa theorem is extended to abelian groups: the Green-Ruzsa theorem. Can the structure of extremal sets be given in this case?
- The knowledge of structure of extremal sets will be helpful in many of the applications of Freiman theorem. How relevant will it be?
- Some steps in the extension of Freiman-Ruzsa theorem to nonabelian groups (approximate groups) rely on the Freiman-Ruzsa theorem for the integers. How relevant can the structure of extremal sets be in that step?

