Doubling and Volume: on a conjecture of Freiman

Oriol Serra

Department of Mathematics Universitat Politècnica de Catalunya, Barcelona

Additive Combinatorics in Bordeaux, April 2016 Joint work with G.A. Freiman

イロト 不得下 イヨト イヨト

The Freiman-Ruzsa Theorem

Theorem (Freiman–Ruzsa)

Let $A \subset \mathbb{Z}$ be a finite set. If

 $|2A| \le c|A|,$

then A is contained in a d-dimensional arithmetic progression Q such that

 $|Q| \leq c'|A|$

where d and c' depend only on c

イロン イ部ン イヨン イヨ

Estimates of c'

Obtaining good estimates for c' is a significant problem.

Some results:

- $c' \leq (2d)^{exp \ exp \ exp \ (9c \ \log 2c)}$ (Freiman, 1988, Bilu 1999)
- $c' \leq exp(c^{c^c})$ (Ruzsa, 1994)
- $c' \leq exp(Kc^2(\log(c^3)))$ (Mei Chu-Chang, 2002)
- $c' \le exp(O(c^{7/4} \log^3 c) \text{ (Sanders, 2008)})$
- $c' \leq exp(c \log c)$ (Konyagin, 2011)
- $c' \le exp(c^{1+K(\log c)^{-1/2}})$ (Schoen, 2011)

One can not do better than $d \le c - 1$ and $c' = e^{O(c)}$: Schoen's estimation is essentially best possible.

Freiman conjecture:
$$c' = 2^{c-2}(k - c + b + 1)$$

イロト 不得下 イヨト イヨト 二日

Small doubling and structure: a quest for exact results

Let $A \subset \mathbb{Z}$ be a finite subset

We have

$$2|A| - 1 \le |2A|$$

and equality holds iff A is an arithmetic progression.

Inverse problem: What is the structure of A if $|2A| \le c|A|$?

Some Notation

 $A = \{a_0 < a_1 \cdots < a_{k-1}\}$ finite set of integers.

- Doubling $2A = A + A = \{a + a' : a, a' \in A\}$.
- T = |2A| cardinality of doubling.
- A is in normal form if $a_0 = 0$ and gcd(A) = 1.

Freiman homomorphism and isomorphism

- G, H abelian groups, $A \subset G, B \subset H$ finite sets.
- $\phi: A \rightarrow B$ bijective is a Freiman-homomorphism if, for $a_i, a_j, a_k, a_l \in A$,

$$\mathbf{a}_i + \mathbf{a}_j = \mathbf{a}_k + \mathbf{a}_l \ \Rightarrow \ \phi(\mathbf{a}_i) + \phi(\mathbf{a}_j) = \phi(\mathbf{a}_k) + \phi(\mathbf{a}_l).$$

If the implication is if and only if, then ϕ is a Freiman–isomorphism:

$$A \equiv_F B.$$

F-isomorphic sets are indistinguishable with respect to additive structure.

- If φ : G → H group isomorphism then φ is an F-isomorphism between any finite set A ⊂ G and φ(A) ⊂ H.
- Translations are *F*-isomorphisms.
- $A \subset \mathbb{Z}$ normal set, $A^- = -A + \max(A)$, the reverse of A, is normal set *F*-isomorphic to A.

Dimension and *d*-dimensional arithmetic progressions

• A d-dimensional arithmetic progression Q is a set of integers of the form

$$Q = a + Q_1 + Q_2 + \dots + Q_d$$

= $a + \{t_1q_1 + \dots + t_dq_d, \ 0 \le t_1 \le h_1 - 1, \dots, 0 \le t_d \le h_d - 1\},$

where Q_i is an arithmetic progression with difference q_i with length h_i . Its volume is

$$vol(Q) = h_1 \cdots h_d.$$

The arithmetic progression Q is proper if

$$|Q| = vol(Q).$$

Dimension and *d*-dimensional arithmetic progressions

• A d-dimensional arithmetic progression Q is a set of integers of the form

$$Q = a + Q_1 + Q_2 + \dots + Q_d$$

= $a + \{t_1q_1 + \dots + t_dq_d, \ 0 \le t_1 \le h_1 - 1, \dots, 0 \le t_d \le h_d - 1\},$

where Q_i is an arithmetic progression with difference q_i with length h_i . Its volume is

$$vol(Q) = h_1 \cdots h_d.$$

The arithmetic progression Q is proper if

$$|Q| = vol(Q).$$

• G abelian group, $A \subset G$ finite set.

• The dimension of A is the largest d for which there is $B \subset \mathbb{Z}^d$ such that

• $B \equiv_F A$, and

▶ *B* is *d*-dimensional (not contained in a proper hyperplane of \mathbb{Z}^d .)

イロト 不得下 イヨト イヨト

Volume

- $A \subset G$ finite set.
- The Additive Volume vol(A) of a finite set A ⊂ G is the smallest cardinality of the convex hull of an F-isomorphic copy of A in Z^d, d = dim(A).
- For given k and T, vol(k, T) is the maximum volume among all sets with cardinality k and doubling T.
- A set $A \subset \mathbb{Z}$ is extremal if

$$vol(A) = vol(|A|, |2A|)$$

イロト 不得下 イヨト イヨト

Parametrization of doubling

For each $T \in [2k, \binom{k}{2} + 2]$ there are unique

$$c = c(k, T) \in [2, k - 1]$$
 and $b = b(k, T) \in [1, k - c - 1]$

such that

$$T = T(k,c,b) = ck - \binom{c+1}{2} + b + 1.$$

If $A \subset \mathbb{Z}$ has cardinality k and doubling

$$\mathcal{T}=|2A|\in \mathcal{I}_c=\left[ck-inom{c+1}{2}+2,(c+1)k-inom{c+2}{2}+1
ight]$$

then the doubling constant of A is c.

Conjecture (Freiman, 2008)

Let $A \subset \mathbb{Z}$ with k = |A| and

$$|2A| = T = ck - \binom{c+1}{2} + b + 1$$

Then

$$vol(A) \leq \mu(k, T),$$

with

$$\mu(k, T) = 2^{c-2}(k+1-c+b)$$

that is,

$$vol(k, T) = \mu(k, T)$$

The conjecture holds for c = 2: The (3k - 4)-Theorem.

Theorem (Freiman, 1959)
Let
$$A \subset \mathbb{Z}$$
. If
 $T = 2k - 1 + b \le 3k - 4$
then
 $vol(A) \le k - 1 + b$.

For each T ∈ [2k − 1, 3k − 4] there are extremal sets A with cardinality k and doubling T.

• If $T \ge 3k - 3$ $(c \ge 3)$ a new picture appears:

The value for the maximum is tight: $vol(k, T) \ge \mu(k, T)$

if $A \subset \mathbb{Z}$ has doubling T = T(k, c, b) and $vol(A) = \mu(k, T)$, then

have doubling T' = T(k+1, c+1, b) = T + k and volume $\mu(k+1, T') = 2\mu(k, T)$

For every k and T one can construct sets with doubling T and volume $\mu(k, T)$ starting with a set under the (3k - 4)-Theorem.

Beyond 3k - 4

- Freiman: 3*k* − 3, 3*k* − 2
- Hamidoune, Plagne: 3k 3, 3k 2 (isoperimetric method)
- Grynkiewicz, Serra: 3k 3, 3k 2 (Kemperman Structure Theorem)
- Jin $(3 + \epsilon)k$ (nonstandard analysis)

(a)

Main result

Theorem (Freiman, Serra)

Let A be a chain with k = |A| and T = |2A|. Then

 $\max(A) = \mu(k, T).$

Theorem (Freiman, Serra)

Let A be an extremal set with k = |A| and $T \le 4k - 8$. Then

 $vol(A) \leq \mu(k, T).$

<ロ> (日) (日) (日) (日) (日)

Chains

A normalized 1-dimensional extremal set A is a chain if there is a sequence

$$A_3 \subset A_4 \subset \cdots \subset A_k = A$$

such that

- A_i is (isomorphic to) a 1-dimensional extremal set with cardinality i, $3 \le i \le k$,
- A_i is obtained from A_{i+1} by deleting $\max(A_{i+1})$ or $\min(A_{i+1})$.

A chain:

An extremal set not a chain

•	0	0	•	•	0	٠	•	•	
			•	•	0	•	•	•	not extremal
•	o	o	•	•	o	•	•		2-dimensional

<ロ> (日) (日) (日) (日) (日)

Chains

A normalized 1-dimensional extremal set A is a chain if there is a sequence

$$A_3 \subset A_4 \subset \cdots \subset A_k = A$$

such that

- A_i is (isomorphic to) a 1-dimensional extremal set with cardinality i, $3 \le i \le k$,
- A_i is obtained from A_{i+1} by deleting $\max(A_{i+1})$ or $\min(A_{i+1})$.

 $\ensuremath{\mathcal{C}}$ class of chains.

$$vol_{\mathcal{C}}(k, T) = \max\{\max(A) : A \text{ chain}, k = |A|, T = |2A|\}$$

Theorem

$$\operatorname{vol}_{\mathcal{C}}(k,T) = \mu(k,T)$$

Computation of dimension

Basic additive relations: $A = \{a_1, \ldots, a_k\}$ finite set in an additive group

$$a_i + a_j = a_r + a_s, \ a_i, a_j, a_r, a_s \in A, \ \{a_i, a_j\} \neq \{a_r, a_s\}$$

Basic relations in $\mathbb{R}^k = \langle e_1, \ldots, e_k \rangle$:

$$a_i + a_j = a_r + a_s \rightarrow v(i, j, r, s) = e_i + e_j - e_r - e_s$$

Theorem (Konyagin, Lev)

The additive dimension of a set A satisfies

$$\dim(A) = k - 1 - \lambda(A),$$

where $\lambda(A) = \dim \langle v(i, j, r, s) : a_i + a_j = a_r + a_s \rangle$.

イロト 不得下 イヨト イヨト

Computation of dimension

Basic additive relations: $A = \{a_1, \ldots, a_k\}$ finite set in an additive group

$$a_i + a_j = a_r + a_s, \ a_i, a_j, a_r, a_s \in A, \ \{a_i, a_j\} \neq \{a_r, a_s\}$$

Basic relations in $\mathbb{R}^k = \langle e_1, \ldots, e_k \rangle$:

$$a_i + a_j = a_r + a_s \rightarrow v(i, j, r, s) = e_i + e_j - e_r - e_s$$

Theorem (Konyagin, Lev)

The additive dimension of a set A satisfies

$$\dim(A) = k - 1 - \lambda(A),$$

where $\lambda(A) = \dim \langle v(i, j, r, s) : a_i + a_j = a_r + a_s \rangle$.

If $A_3 \subset A_4 \subset \cdots A_k = A$ is a chain,

$$|2A_i| \le |2A_{i-1}| + (i-1)$$
 and $\max(A_i^*) \le 2\max(A_{i-1}^*)$

A* normalization of A.

(a)

A set
$$A = \{0 = a_0 < a_1 < \dots < a_{k-1}\}$$
 is stable if
 $2A \cap [0, a_{k-1}] = A.$

A is right-stable if its reflexion A^- is stable.

Theorem (Freiman (2009))

Let A be an extremal set with $|2A| \le 3k - 4$. There are A_0 stable set, P segment and A_1 right-stable set such that

$$A=A_0\circ P\circ A_1,$$

where $X \circ Y = X \cup (\max(X) + Y)$ denotes concatenation. Moreover

$$2A = A_0 \circ P' \circ A_1.$$

A set $A = \{0 = a_0 < a_1 < \dots < a_{k-1}\}$ is stable if $2A \cap [0, a_{k-1}] = A.$

A is right-stable if its reflexion A^- is stable.

Theorem (Freiman (2009))

Let A be an extremal set with $|2A| \le 3k - 4$. There are A_0 stable set, P segment and A_1 right-stable set such that

$$A=A_0\circ P\circ A_1,$$

where $X \circ Y = X \cup (\max(X) + Y)$ denotes concatenation. Moreover

$$2A = A_0 \circ P' \circ A_1.$$

• A stable if $2A \cap [0, \max(A)] = A$ and $1, \max(A) - 1 \notin A$

A set $A = \{0 = a_0 < a_1 < \dots < a_{k-1}\}$ is stable if $2A \cap [0, a_{k-1}] = A.$

A is right-stable if its reflexion A^- is stable.

Theorem (Freiman (2009))

Let A be an extremal set with $|2A| \le 3k - 4$. There are A_0 stable set, P segment and A_1 right-stable set such that

$$A=A_0\circ P\circ A_1,$$

where $X \circ Y = X \cup (\max(X) + Y)$ denotes concatenation. Moreover

$$2A = A_0 \circ P' \circ A_1.$$

• A stable if $2A \cap [0, \max(A)] = A$ and $1, \max(A) - 1 \notin A$

• If A is stable then $|A \cap [0, x]| \leq \left\lceil \frac{x+1}{2} \right\rceil$.

Chain extension

Lemma

Let $A = A_0 \circ P \circ A_2$ be an extremal set with $|2A| \le 3|A| - 4$.

If $A_x = A \cup \{x\}$ is extremal with $|2A_x| > 3|A_x| - 4$, then x is even and

 $x \ge \ell(A_1) + \ell(A_2) - 2$ and $|A_1 \cap (t + A_2) \cap [0, 2a - x]| = \left\lceil \frac{2a - x + 1}{2} \right\rceil$.

<ロ> (日) (日) (日) (日) (日)

Chain extension

Lemma

Let $A = A_0 \circ P \circ A_2$ be an extremal set with $|2A| \le 3|A| - 4$.

If $A_x = A \cup \{x\}$ is extremal with $|2A_x| > 3|A_x| - 4$, then x is even and

 $x \ge \ell(A_1) + \ell(A_2) - 2$ and $|A_1 \cap (t + A_2) \cap [0, 2a - x]| = \left\lceil \frac{2a - x + 1}{2}
ight
ceil.$

The last condition can only hold if both A_1 and A_2 are 2-progressions. Otherwise x = 2a.

Lemma

If the only extension of an extremal set A is $A' = A \cup 2 \max(A)$ then the same happens with A'.

<ロ> (日) (日) (日) (日) (日)

Theorem

Let A be a chain. Then,

$$\operatorname{vol}_{\mathcal{C}}(A) = \mu(|A|, |2A|).$$

Moreover, there is a subchain $B = B_0 \circ P \circ B_1$ with $|2B| \le 3|B| - 4$ such that

ν

 $A=D^t(B)$

unless B_0 , B_1 are both 2-progressions.

Beyond chains: a (4k - 8)-theorem

Theorem

Let A be an extremal set with $T \leq 4k - 8$. Then,

 $vol(A) = \mu(k, T).$

Moreover, A is 1-dimensional.

Dimension descent

Largest volume occurs for 1-dimensional sets.

Theorem

Let A be 2-dimensional set with cardinality k and doubling T = T(A).

There is a 1–dimensional set B and an injective Freiman homomorphism $\phi: A \to B$ such that

T(B) < T(A) and Vol(B) > Vol(A).

Dimension descent

Lemma

Let $A \subset \mathbb{Z}^d$ be a *d*-dimensional set and $\phi : \mathbb{Z}^d \to \mathbb{Z}^m$ a group homomorphism. If ϕ is injective on A then

- (i) dim $(\phi(A)) \leq \dim(A)$, and
- (ii) $T(\phi(A)) \leq T(A)$.

Dimension descent

Lemma

Let $A \subset \mathbb{Z}^d$ be a *d*-dimensional set and $\phi : \mathbb{Z}^d \to \mathbb{Z}^m$ a group homomorphism. If ϕ is injective on A then

- (i) dim $(\phi(A)) \leq \dim(A)$, and
- (ii) $T(\phi(A)) \leq T(A)$.

A projection can be found such that $dim(\phi(A)) = 1$ and $vol(\phi(A)) > vol(A)$.

A (4k - 8)-theorem

Theorem

Let A be an extremal set with $T \leq 4k - 8$. Then,

$$\mathsf{vol}(\mathsf{A})=\mu(\mathsf{k},\mathsf{T}).$$

Moreover A is 1-dimensional.

- Proved if $T \leq 3k 4$ and if A is a chain.
- If $T \ge 3k 3$ and A is not a chain, find a sequence $A_i \subset A_{i+1} \subset \cdots \subset A$ of 1-dimensional sets where A_i is not extremal and A_{i+1} is extremal: one shows that $\max(A_{i+1}) = \mu(|A_i|, |2A_i|)$.

<ロ> (日) (日) (日) (日) (日)

Some applications: the Freiman-Vosper Theorem

Theorem (Freiman)

Let $A \subset \mathbb{Z}/p\mathbb{Z}$ with $|A| \leq p/35$ and $|2A| \leq (5/2)|A|$. Then A is covered by an arithmetic progression of length at most |2A| - |A| + 1.

<ロト < 回 > < 回 > < 回 > < 回 >

Some applications: the Freiman–Vosper Theorem

Theorem (Freiman)

Let $A \subset \mathbb{Z}/p\mathbb{Z}$ with $|A| \leq p/35$ and $|2A| \leq (5/2)|A|$. Then A is covered by an arithmetic progression of length at most |2A| - |A| + 1.

Conjecture (Bilu, Lev Ruzsa; Serra, Zémor)

Let $A \subset \mathbb{Z}/p\mathbb{Z}$ with k = |A|. If

 $|2A| = 2k - 1 + b, \ 0 \le b \le \min\{k - 3, p/2 - k - 1\}$

then A is contained in a progression with length at most k + b.

- Vosper–Freiman theorem. Improved to $|A| \le p/10$ by Rødseth.
- b = 1 (Hamidoune-Rødseth)
- $|A| \le 10^{-180} p$ (Green and Ruzsa: rectification)
- $|2A| \leq (2 + \epsilon)p$ (Serra and Zémor: isoperimetric method and rectification)

イロン イヨン イヨン イヨン

Some applications: the Freiman–Vosper Theorem

Theorem (Freiman)

Let $A \subset \mathbb{Z}/p\mathbb{Z}$ with $|A| \leq p/35$ and $|2A| \leq (5/2)|A|$. Then A is covered by an arithmetic progression of length at most |2A| - |A| + 1.

Conjecture (Bilu, Lev Ruzsa; Serra, Zémor)

Let $A \subset \mathbb{Z}/p\mathbb{Z}$ with k = |A|. If

 $|2A| = 2k - 1 + b, \ 0 \le b \le \min\{k - 3, p/2 - k - 1\}$

then A is contained in a progression with length at most k + b.

Theorem (Freiman, Rué, Serra, Spiegel)

The BLR conjecture holds for 1-dimensional sets.

Final remarks

- Is it possible to prove the Freiman conjecture for c = f(|A|)?
- The Freiman-Ruzsa theorem is extended to abelian groups: the Green-Ruzsa theorem. Can the structure of extremal sets be given in this case?
- The knowledge of structure of extremal sets will be helpful in many of the applications of Freiman theorem. How relevant will it be?
- Some steps in the extension of Freiman-Ruzsa theorem to nonabelian groups (approximate groups) rely on the Freiman-Ruzsa theorem for the integers. How relevant can the structure of extremal sets be in that step?

イロト 不得下 イヨト イヨト