Inverse Theorems in Probability

Van H. Vu

Department of Mathematics
Yale University

Concentration and Anti-concentration

X : a random variable.
X : a random variable.
Concentration. If I is a long interval far from $\mathbf{E} X$, then $\mathbf{P}(X \in I)$ is small.
X : a random variable.
Concentration. If I is a long interval far from $\mathbf{E} X$, then $\mathbf{P}(X \in I)$ is small.

Anti-concentration. If I is a short interval anywhere, then $\mathbf{P}(X \in I)$ is small.
ξ_{1}, \ldots, ξ_{n} are iid copies of ξ with mean 0 and variance 1 , then

$$
\frac{\xi_{1}+\cdots+\xi_{n}}{\sqrt{n}} \longrightarrow \mathbf{N}(0,1)
$$

ξ_{1}, \ldots, ξ_{n} are iid copies of ξ with mean 0 and variance 1 , then

$$
\frac{\xi_{1}+\cdots+\xi_{n}}{\sqrt{n}} \longrightarrow \mathbf{N}(0,1) .
$$

In other words, for $X:=\sum_{i=1}^{n} \xi_{i} / \sqrt{n}$, and any fixed $t>0$

$$
\mathbf{P}(X \in[t, \infty)) \rightarrow \frac{1}{\sqrt{2} \pi} \int_{t}^{\infty} e^{-t^{2} / 2} d t=O\left(e^{-t^{2} / 2}\right)
$$

ξ_{1}, \ldots, ξ_{n} are iid copies of ξ with mean 0 and variance 1 , then

$$
\frac{\xi_{1}+\cdots+\xi_{n}}{\sqrt{n}} \longrightarrow \mathbf{N}(0,1) .
$$

In other words, for $X:=\sum_{i=1}^{n} \xi_{i} / \sqrt{n}$, and any fixed $t>0$

$$
\mathbf{P}(X \in[t, \infty)) \rightarrow \frac{1}{\sqrt{2} \pi} \int_{t}^{\infty} e^{-t^{2} / 2} d t=O\left(e^{-t^{2} / 2}\right)
$$

Concentration. Results of this type with general X (Chernoff, Bernstein, Azuma, Talagrand etc).
ξ_{1}, \ldots, ξ_{n} are iid copies of ξ with mean 0 and variance 1 , then

$$
\frac{\xi_{1}+\cdots+\xi_{n}}{\sqrt{n}} \longrightarrow \mathbf{N}(0,1) .
$$

In other words, for $X:=\sum_{i=1}^{n} \xi_{i} / \sqrt{n}$, and any fixed $t>0$

$$
\mathbf{P}(X \in[t, \infty)) \rightarrow \frac{1}{\sqrt{2} \pi} \int_{t}^{\infty} e^{-t^{2} / 2} d t=O\left(e^{-t^{2} / 2}\right)
$$

Concentration. Results of this type with general X (Chernoff, Bernstein, Azuma, Talagrand etc).

Berry-Esséen (1941): ξ has bounded third moment, then the rate of convergence is $O\left(n^{-1 / 2}\right)$. For any t,

$$
\mathbf{P}(X \in[t, \infty))=\frac{1}{\sqrt{2} \pi} \int_{t}^{\infty} e^{-t^{2} / 2} d t+O\left(n^{-1 / 2}\right)
$$

Berry-Esséen (1941): ξ has bounded third moment, then the rate of convergence is $O\left(n^{-1 / 2}\right)$. For any t,

$$
\mathbf{P}(X \in[t, \infty))=\frac{1}{\sqrt{2} \pi} \int_{t}^{\infty} e^{-t^{2} / 2} d t+O\left(n^{-1 / 2}\right)
$$

This implies that for any interval I

$$
\mathbf{P}(X \in I)=\frac{1}{\sqrt{2} \pi} \int_{I} e^{-t^{2} / 2} d t+O\left(n^{-1 / 2}\right)
$$

Berry-Esséen (1941): ξ has bounded third moment, then the rate of convergence is $O\left(n^{-1 / 2}\right)$. For any t,

$$
\mathbf{P}(X \in[t, \infty))=\frac{1}{\sqrt{2} \pi} \int_{t}^{\infty} e^{-t^{2} / 2} d t+O\left(n^{-1 / 2}\right)
$$

This implies that for any interval I

$$
\mathbf{P}(X \in I)=\frac{1}{\sqrt{2} \pi} \int_{I} e^{-t^{2} / 2} d t+O\left(n^{-1 / 2}\right)
$$

The error term $n^{-1 / 2}$ is sharp: Take $\xi= \pm 1$ (Bernoulli) and n
even, then $\mathbf{P}(X=0)=\frac{\binom{n}{n / 2}}{2^{n}}=\Theta\left(n^{-1 / 2}\right)$.

Berry-Esséen (1941): ξ has bounded third moment, then the rate of convergence is $O\left(n^{-1 / 2}\right)$. For any t,

$$
\mathbf{P}(X \in[t, \infty))=\frac{1}{\sqrt{2} \pi} \int_{t}^{\infty} e^{-t^{2} / 2} d t+O\left(n^{-1 / 2}\right)
$$

This implies that for any interval I

$$
\mathbf{P}(X \in I)=\frac{1}{\sqrt{2} \pi} \int_{I} e^{-t^{2} / 2} d t+O\left(n^{-1 / 2}\right)
$$

The error term $n^{-1 / 2}$ is sharp: Take $\xi= \pm 1$ (Bernoulli) and n even, then $\mathbf{P}(X=0)=\frac{\binom{n}{n / 2}}{2^{n}}=\Theta\left(n^{-1 / 2}\right)$.
Anti-concentration. Results of this type with more general X.

Berry-Esséen (1941): ξ has bounded third moment, then the rate of convergence is $O\left(n^{-1 / 2}\right)$. For any t,

$$
\mathbf{P}(X \in[t, \infty))=\frac{1}{\sqrt{2} \pi} \int_{t}^{\infty} e^{-t^{2} / 2} d t+O\left(n^{-1 / 2}\right)
$$

This implies that for any interval I

$$
\mathbf{P}(X \in I)=\frac{1}{\sqrt{2} \pi} \int_{I} e^{-t^{2} / 2} d t+O\left(n^{-1 / 2}\right)
$$

The error term $n^{-1 / 2}$ is sharp: Take $\xi= \pm 1$ (Bernoulli) and n even, then $\mathbf{P}(X=0)=\frac{\binom{n}{n / 2}}{2^{n}}=\Theta\left(n^{-1 / 2}\right)$.
Anti-concentration. Results of this type with more general X.

Littlewood-Offord-Erdös

$A=\left\{a_{1}, \ldots, a_{n}\right\}$ (multi-) set of deterministic coefficients

$$
S_{A}:=a_{1} \xi_{1}+\cdots+a_{n} \xi_{n} .
$$

Theorem (Littlewood-Offord 1940)

If ξ is Bernoulli (taking values ± 1 with probability $1 / 2$) and a_{i} have absolute value at least 1, then for any open interval I of length 1,

$$
\mathbf{P}\left(S_{A} \in I\right)=O\left(\frac{\log n}{n^{1 / 2}}\right)
$$

Littlewood-Offord-Erdös

$A=\left\{a_{1}, \ldots, a_{n}\right\}$ (multi-) set of deterministic coefficients

$$
S_{A}:=a_{1} \xi_{1}+\cdots+a_{n} \xi_{n} .
$$

Theorem (Littlewood-Offord 1940)

If ξ is Bernoulli (taking values ± 1 with probability $1 / 2$) and a_{i} have absolute value at least 1, then for any open interval I of length 1,

$$
\mathbf{P}\left(S_{A} \in I\right)=O\left(\frac{\log n}{n^{1 / 2}}\right)
$$

S_{A} may not satisfy the Central Limit Theorem.
Theorem (Erdös 1943)

$$
\begin{equation*}
\mathbf{P}\left(S_{A} \in I\right) \leq \frac{\binom{n}{\lfloor n / 2\rfloor}}{2^{n}}=O\left(\frac{1}{n^{1 / 2}}\right) \tag{1}
\end{equation*}
$$

Levy's concentration function: $Q(\lambda, X)=\sup _{|| |=\lambda} \mathbf{P}(X \in I)$.
Theorem (Kolmogorov-Rogozin 1959-1961)
$S=X_{1}+\cdots+X_{n}$ where X_{i} are independent. Then

$$
Q(\lambda, S)=O\left(\frac{1}{\sqrt{\sum_{i=1}^{n}\left(1-Q\left(\lambda, X_{i}\right)\right)}}\right)
$$

Kesten, Esseen, Halász (60s-70s).

Recall $A:=\left\{a_{1}, \ldots, a_{n}\right\}$

$$
S_{A}:=\xi_{1} \xi_{1}+\cdots+a_{n} \xi_{n}
$$

Recall $A:=\left\{a_{1}, \ldots, a_{n}\right\}$

$$
S_{A}:=\xi_{1} \xi_{1}+\cdots+a_{n} \xi_{n}
$$

One can improve anti-concentration bounds significantly under extra assumptions on the additive structure of A.

Recall $A:=\left\{a_{1}, \ldots, a_{n}\right\}$

$$
S_{A}:=\xi_{1} \xi_{1}+\cdots+a_{n} \xi_{n}
$$

One can improve anti-concentration bounds significantly under extra assumptions on the additive structure of A.

Discrete setting; ξ_{i} are iid $\pm 1 ; a_{i}$ are integers:

$$
\rho(A):=\sup _{x} \mathbf{P}\left(S_{A}=x\right)
$$

Recall $A:=\left\{a_{1}, \ldots, a_{n}\right\}$

$$
S_{A}:=\xi_{1} \xi_{1}+\cdots+a_{n} \xi_{n}
$$

One can improve anti-concentration bounds significantly under extra assumptions on the additive structure of A.

Discrete setting; ξ_{i} are iid $\pm 1 ; a_{i}$ are integers:

$$
\rho(A):=\sup _{x} \mathbf{P}\left(S_{A}=x\right)
$$

(instead of $\sup _{|I|=I} \mathbf{P}(X \in I)$).

Littlewood-Offord-Erdos:refinements

Theorem (Erdös-Moser 1947)
Let a_{i} be distinct integers, then

$$
\rho(A)=O\left(n^{-3 / 2} \log n\right) .
$$

Theorem (Sárkozy-Szemerédi 1965)

$$
\rho(A)=O\left(n^{-3 / 2}\right)
$$

Theorem (Stanley 1980; Proctor 1982)

Let n be odd and $A_{0}:=\left\{-\frac{n-1}{2}, \ldots, \frac{n-1}{2}\right\}$. Let A be any set of n distinct real numbers, then

$$
\rho(A) \leq \rho\left(A_{0}\right)
$$

The proofs are algebraic (hard Lepschetz theorem, Lie algebra).

Extensions

Stronger conditions, more dimensions etc: Beck, Katona, Kleitman, Griggs, Frank-Furedi, Halasz, Sali etc (1970s-1980s).

Stronger conditions, more dimensions etc: Beck, Katona, Kleitman, Griggs, Frank-Furedi, Halasz, Sali etc (1970s-1980s).

Theorem (Halasz 1979)

Let k be a fixed integer and R_{k} be the number of solutions of the equation $a_{i_{1}}+\cdots+a_{i_{k}}=a_{j_{1}}+\cdots+a_{j_{k}}$. Then

$$
\rho_{A}=O\left(n^{-2 k-\frac{1}{2}} R_{k}\right)
$$

What cause large anti-concentration probability ?

What cause large anti-concentration probability ?
Inverse Principle [Tao-V. 2005]
A set A with large ρ_{A} must have a strong additive structure.

What cause large anti-concentration probability ?
Inverse Principle [Tao-V. 2005]
A set A with large ρ_{A} must have a strong additive structure.
Arak (1980s)
We will give many illustrations of this principle with applications.

Freiman Inverse theorem: If $A+A=\left\{a+a^{\prime} \mid a, a^{\prime} \in A\right\}$ is small, then A has a strong additive structure.
Example. A is a dense subset (of density δ, say) of an interval J of length n / δ,

$$
|A+A| \leq|J+J| \leq 2 n / \delta \leq \frac{2}{\delta}|A|
$$

Freiman Inverse theorem: If $A+A=\left\{a+a^{\prime} \mid a, a^{\prime} \in A\right\}$ is small, then A has a strong additive structure.
Example. A is a dense subset (of density δ, say) of an interval J of length n / δ,

$$
|A+A| \leq|J+J| \leq 2 n / \delta \leq \frac{2}{\delta}|A|
$$

Example. If A is a dense subset (of density δ, say) of a GAP of rank d then

$$
|A+A| \leq|J+J| \leq 2^{d} n / \delta \leq \frac{2^{d}}{\delta}|A|
$$

Theorem (Freiman Inverse Theorem 1975)

For any constant C there are constants d and $\delta>0$ such that if $|A+A| \leq C|A|$, then A is a subset of density at least δ of a (generalized) arithmetic progression of rank at most d.

Theorem (Freiman Inverse Theorem 1975)

For any constant C there are constants d and $\delta>0$ such that if $|A+A| \leq C|A|$, then A is a subset of density at least δ of a (generalized) arithmetic progression of rank at most d.

Collisions of pairs $a+a^{\prime}$ vs collisions of subset sums $\sum_{a \in B ; B \subset A} a$.

Example. If A is a subset of a generalized arithmetic progression Q of rank d of cardinality n^{C}, then all numbers of the form $\pm a_{1} \pm a_{2}+\cdots \pm a_{n}$ belong to $n Q$, which has cardinality at most $n^{d}|Q|=n^{d+C}$; by pigeon hole principle

$$
\rho_{A}:=\sup _{x} \mathbf{P}\left(S_{A}=x\right) \geq n^{-d-C}
$$

Example. If A is a subset of a generalized arithmetic progression Q of rank d of cardinality n^{C}, then all numbers of the form $\pm a_{1} \pm a_{2}+\cdots \pm a_{n}$ belong to $n Q$, which has cardinality at most $n^{d}|Q|=n^{d+C}$; by pigeon hole principle

$$
\rho_{A}:=\sup _{x} \mathbf{P}\left(S_{A}=x\right) \geq n^{-d-C}
$$

Theorem (First Inverse Littlewood-Offord theorem; Tao-V. 2006)

If $\rho_{A} \geq n^{-B}$ then there are constants $d, C>0$ such that most of A belongs to a (generalize) arithmetic progression of cardinality n^{C} of rank at most d.

Extensions: Tao-V, Rudelson-Vershynin, Friedland-Sodin, Hoi Nguyen, Nguyen-V., Elliseeva-Zaitsev et al. etc

- Sharp relations between B, C, d.
- General ξ_{i} (not Bernoulli).

■ Multi-dimensional versions \mathbf{R}^{d}; Abelian versions.
■ Small probability version $\mathbf{P}\left(S_{A} \in I\right)$ (I interval in \mathbf{R} or small ball in \mathbf{R}^{k}).

- Relaxing n^{-B} to $(1-c)^{n}$.
- Sum of not necessary independent random variables; etc.

Toy case. a_{i} are elements of F_{p} for some large prime p, viewed as integers between 0 and $p-1$, and

$$
\rho=\rho(A)=\mathbf{P}(S=0)
$$

Notation. $e_{p}(x)$ for $\exp (2 \pi \sqrt{-1} x / p)$.

$$
\rho=\mathbf{P}(S=0)=\mathbf{E l}_{S=0}=\mathbf{E} \frac{1}{p} \sum_{t \in F_{p}} e_{p}(t S)
$$

By independence

$$
\mathrm{E} e_{p}(t S)=\prod_{i=1}^{n} \mathrm{E} e_{p}\left(t \xi_{i} a_{i}\right)=\prod_{i=1}^{n} \cos \frac{\pi t a_{i}}{p}
$$

Thus

$$
\rho \leq \frac{1}{p} \sum_{t \in \mathbb{F}_{p}} \prod_{i}\left|\frac{\cos \pi a_{i} t}{p}\right| .
$$

Facts. $|\sin \pi z| \geq 2\|z\|$ where $\|z\|$ is the distance of z to the nearest integer.

$$
\left|\cos \frac{\pi x}{p}\right| \leq 1-\frac{1}{2} \sin ^{2} \frac{\pi x}{p} \leq 1-2\left\|\frac{x}{p}\right\|^{2} \leq \exp \left(-2\left\|\frac{x}{p}\right\|^{2}\right)
$$

Key inequality

$$
\rho \leq \frac{1}{p} \sum_{t \in \mathbb{F}_{p}} \prod_{i}\left|\cos \frac{\pi a_{i} t}{p}\right| \leq \frac{1}{p} \sum_{t \in F_{p}} \exp \left(-2 \sum_{i=1}^{n}\left\|\frac{a_{i} t}{p}\right\|^{2}\right) .
$$

Thus

$$
\rho \leq \frac{1}{p} \sum_{t \in \mathbb{F}_{p}} \prod_{i}\left|\frac{\cos \pi a_{i} t}{p}\right| .
$$

Facts. $|\sin \pi z| \geq 2\|z\|$ where $\|z\|$ is the distance of z to the nearest integer.

$$
\left|\cos \frac{\pi x}{p}\right| \leq 1-\frac{1}{2} \sin ^{2} \frac{\pi x}{p} \leq 1-2\left\|\frac{x}{p}\right\|^{2} \leq \exp \left(-2\left\|\frac{x}{p}\right\|^{2}\right)
$$

Key inequality

$$
\rho \leq \frac{1}{p} \sum_{t \in \mathbb{F}_{p}} \prod_{i}\left|\cos \frac{\pi a_{i} t}{p}\right| \leq \frac{1}{p} \sum_{t \in F_{p}} \exp \left(-2 \sum_{i=1}^{n}\left\|\frac{a_{i} t}{p}\right\|^{2}\right)
$$

If a_{i}, t were vectors in a vector space, the key inequality suggests that $a_{i} \cdot t$ is close to zero very often. Thus, most a_{i} are close to a small dimensional subspace.

Consider the level sets $S_{m}:=\left\{t \mid \sum_{i=1}^{n}\left\|a_{i} t / p\right\|^{2} \leq m\right\}$.

$$
n^{-C} \leq \rho \leq \frac{1}{p} \sum_{t \in \mathbb{F}_{p}} \exp \left(-2 \sum_{i=1}^{n}\left\|\frac{a_{i} t}{p}\right\|^{2}\right) \leq \frac{1}{p}+\frac{1}{p} \sum_{m \geq 1} \exp (-2(m-1))\left|S_{m}\right|
$$

Since $\sum_{m \geq 1} \exp (-m)<1$, there must be is a large level set S_{m} such that

$$
\begin{equation*}
\left|S_{m}\right| \exp (-m+2) \geq \rho p \tag{2}
\end{equation*}
$$

In fact, since $\rho \geq n^{-C}$, we can assume that $m=O(\log n)$.

By double counting we have

$$
\sum_{i=1}^{n} \sum_{t \in S_{m}}\left\|\frac{a_{i} t}{p}\right\|^{2}=\sum_{t \in S_{m}} \sum_{i=1}^{n}\left\|\frac{a_{i} t}{p}\right\|^{2} \leq m\left|S_{m}\right|
$$

So, for most a_{i}

$$
\begin{equation*}
\sum_{t \in S_{m}}\left\|\frac{a_{i} t}{p}\right\|^{2} \leq \frac{m}{n^{\prime}}\left|S_{m}\right| \tag{3}
\end{equation*}
$$

By averaging, the set of a_{i} satisfying (3) has size at least $n-n^{\prime}$. We are going to show that A^{\prime} is a large subset of a GAP. Since $\|\cdot\|$ is a norm, by the triangle inequality, we have for any $a \in k A^{\prime}$

$$
\begin{equation*}
\sum_{t \in S_{m}}\left\|\frac{a t}{p}\right\|^{2} \leq k^{2} \frac{m}{n^{\prime}}\left|S_{m}\right| \tag{4}
\end{equation*}
$$

More generally, for any $I \leq k$ and $a \in I A^{\prime}$

Define $S_{m}^{*}:=\left\{\left.a\left|\sum_{t \in S_{m}}\left\|\frac{a t}{p}\right\|^{2} \leq \frac{1}{200}\right| S_{m} \right\rvert\,\right\} ; S_{m}^{*}$ can be viewed as some sort of a dual set of S_{m}. In fact,

$$
\begin{equation*}
\left|S_{m}^{*}\right| \leq \frac{8 p}{\left|S_{m}\right|} \tag{6}
\end{equation*}
$$

To see this, define $T_{a}:=\sum_{t \in S_{m}} \cos \frac{2 \pi a t}{p}$. Using the fact that $\cos 2 \pi z \geq 1-100\|z\|^{2}$ for any $z \in \mathbf{R}$, we have, for any $a \in S_{m}^{*}$

$$
T_{a} \geq \sum_{t \in S_{m}}\left(1-100\left\|\frac{a t}{p}\right\|^{2}\right) \geq \frac{1}{2}\left|S_{m}\right|
$$

One the other hand, using the basic identity $\sum_{a \in \mathbb{F}_{p}} \cos \frac{2 \pi a x}{p}=p \mathbf{I}_{x=0}$, we have

$$
\sum_{a \in \mathbb{F}_{p}} T_{a}^{2} \leq 2 p\left|S_{m}\right|
$$

(6) follows from the last two estimates and averaging. Set $k:=c_{1} \sqrt{\frac{n^{\prime}}{m}}$, for a properly chosen constant c_{1}. By (5) we

The role of \mathbb{F}_{p} is now no longer important, so we can view the a_{i} as integers. Notice that (7) leads us to a situation similar to that of Freiman's inverse result. In that theorem, we have a bound on $|2 A|$ and conclude that A has a strong additive structure. In the current situation, 2 is replaced by k, which can depend on $|A|$.

Theorem (Long range inverse theorem)

Let $\gamma>0$ be constant. Assume that X is a subset of a torsion-free group such that $0 \in X$ and $|k X| \leq k^{\gamma}|X|$ for some integer $k \geq 2$ that may depend on $|X|$. Then there is proper symmetric GAP Q of rank $r=O(\gamma)$ and cardinality $O_{\gamma}\left(k^{-r}|k X|\right)$ such that $X \subset Q$.

Example. Sárközy-Szemerédi 1965. If a_{i} are different integers, then

$$
\rho_{A}=O\left(n^{-3 / 2}\right)
$$

Example. Sárközy-Szemerédi 1965. If a_{i} are different integers, then

$$
\rho_{A}=O\left(n^{-3 / 2}\right)
$$

Assume $\rho_{A} \geq \mathrm{Cn}^{-3 / 2}$, say, then the optimal inverse theorem implies that most of a_{i} belong to a GAP of cardinality at most $c n$, with $c \rightarrow 0$ as $C \rightarrow \infty$. So for large C we obtain a contradiction.

Example. Sárközy-Szemerédi 1965. If a_{i} are different integers, then

$$
\rho_{A}=O\left(n^{-3 / 2}\right)
$$

Assume $\rho_{A} \geq C n^{-3 / 2}$, say, then the optimal inverse theorem implies that most of a_{i} belong to a GAP of cardinality at most $c n$, with $c \rightarrow 0$ as $C \rightarrow \infty$. So for large C we obtain a contradiction.

Example. A stable version of Stanley's result.

Theorem (H. Nguyen 2010)

If $\rho_{A} \geq\left(C_{0}-\epsilon\right) n^{-3 / 2}$ for an optimal constant C_{0}, then A is δ-close to $\{-\lfloor n / 2\rfloor, \ldots,\lfloor n / 2\rfloor\}$.

Example. Sárközy-Szemerédi 1965. If a_{i} are different integers, then

$$
\rho_{A}=O\left(n^{-3 / 2}\right)
$$

Assume $\rho_{A} \geq C n^{-3 / 2}$, say, then the optimal inverse theorem implies that most of a_{i} belong to a GAP of cardinality at most $c n$, with $c \rightarrow 0$ as $C \rightarrow \infty$. So for large C we obtain a contradiction.

Example. A stable version of Stanley's result.

Theorem (H. Nguyen 2010)

If $\rho_{A} \geq\left(C_{0}-\epsilon\right) n^{-3 / 2}$ for an optimal constant C_{0}, then A is δ-close to $\{-\lfloor n / 2\rfloor, \ldots,\lfloor n / 2\rfloor\}$.

Example. Frankl-Füredi 1988 conjecture on Erdös' type (sharp) bound in high dimensions (Kleitman $d=2$, Tao-V. 2010, $d \geq 3$).

Let M_{n} be a random matrix whose entries a random Bernoulli variables (± 1).

Let M_{n} be a random matrix whose entries a random Bernoulli variables (± 1).

Problem. Estimate $p_{n}:=\mathbf{P}\left(M_{n}\right.$ singular $)=\mathbf{P}\left(\operatorname{det} M_{n}=0\right)$.

Let M_{n} be a random matrix whose entries a random Bernoulli variables (± 1).

Problem. Estimate $p_{n}:=\mathbf{P}\left(M_{n}\right.$ singular $)=\mathbf{P}\left(\operatorname{det} M_{n}=0\right)$.
■ Komlos 1967: $p_{n}=o(1)$

- Komlos 1975: $p_{n} \leq n^{-1 / 2}$.

■ Kahn-Komlos-Szemeredi 1995: $p_{n} \leq .999^{n}$

- Tao-V. 2004: $p_{n} \leq .952^{n}$.

■ Tao-V. $2005 p_{n} \leq(3 / 4+o(1))^{n}$.
■ Bourgain-V.-Wood (2009) $p_{n} \leq\left(\frac{1}{\sqrt{2}}+o(1)\right)^{n}$.

Insight. Let X_{i} be the row vectors and $v=\left(a_{1}, \ldots, a_{n}\right)$ be the normal vector of $\operatorname{Span}\left(X_{1}, \ldots, X_{n-1}\right)$
$\mathbf{P}\left(X_{n} \in \operatorname{Span}\left(X_{1}, \ldots, X_{n-1}\right)=\mathbf{P}\left(X_{n} \cdot v=0\right)=\mathbf{P}\left(a_{1} \xi_{1}+\cdots+a_{n} \xi_{n}=0\right)\right.$.

Insight. Let X_{i} be the row vectors and $v=\left(a_{1}, \ldots, a_{n}\right)$ be the normal vector of $\operatorname{Span}\left(X_{1}, \ldots, X_{n-1}\right)$
$\mathbf{P}\left(X_{n} \in \operatorname{Span}\left(X_{1}, \ldots, X_{n-1}\right)=\mathbf{P}\left(X_{n} \cdot v=0\right)=\mathbf{P}\left(a_{1} \xi_{1}+\cdots+a_{n} \xi_{n}=0\right)\right.$.

By Inverse Theorems this probability is either very small, or $A=\left\{a_{1}, \ldots, a_{n}\right\}$ has a strong structure, which is also unlikely as it forms a normal vector of a random hyperplane.

Replacing $\mathbf{P}\left(X_{n} \cdot v=0\right)$ by

$$
\mathbf{P}\left(\left|X_{n} \cdot v\right| \leq \epsilon\right)=\mathbf{P}\left(a_{1} \xi_{1}+\cdots+a_{n} \xi_{n} \in[-\epsilon, \epsilon]\right)
$$

one can show that with high probability $\left|X_{n} \cdot v\right|$ is not very small. This, in turn, bounds the least singular value from below.

- Tao-V 2006: For any C, there is B such that $\mathbf{P}\left(\sigma_{\min } M_{n} \leq n^{-B}\right) \leq n^{-C}$.
■ Rudelson-Vershynin 2007:

$$
\mathbf{P}\left(\sigma_{\min } M_{n} \leq \epsilon n^{-1 / 2}\right) \leq C\left(\epsilon+.9999^{n}\right) \text { for any } \epsilon>0 .
$$

Conjecture (Circular Law 1960s)

Let $M_{n}(\xi)$ be a random matrix whose entries are iid collies of a random variable ξ with mean 0 and variance 1 . Then the distribution of the eigenvalues of $\frac{1}{\sqrt{n}} M_{n}$ tends to the uniform distribution on the unit circle.

Mehta (1960s), Edelman (1980s), Girko (1980s), Bai (1990s), Gotze-Tykhomirov, Pan-Zhu (2000s); Tao-V (2007); (Tao-V: Bullentin AMS; Chafai et al.: Surveys in Probability).

Laws for matrices with dependent entries.

- Chafai et. al (2008): Markov matrices.

■ Hoi Nguyen (2011): proving Chatterjee-Diaconnis conjecture concerning random double stochastic matrices.
■ Gotze-Tykhomirov; Sosnyikov et. al. (2011): law for product of random matrices.

■ Adamczak et. al. (2010): law for matrices with independent rows

■ Naumov, Nguyen-O'rourke (2013): Elliptic Law.

In 1921, Polya proved his famous drunkard's walk theorem on \mathbf{Z}^{d}.

$$
S_{n}:=\sum_{j=1}^{n} \xi_{j} f_{j}
$$

where f_{j} is chosen uniformly from $E:=\left\{e_{1}, \ldots, e_{d}\right\}$.
Theorem (Drunkard walk's theorem; Polya 1921)
For any $d \geq 1, \mathbf{P}\left(S_{n}=0\right)=\Theta\left(n^{-d / 2}\right)$. In particular, the walk is recurrent only if $d=1,2$.

What happens if f_{1}, \ldots, f_{n} are n different unit vectors ?

Theorem (Suburban drunkard walk's theorem; Herdade-V. 2014)
Consider a set V of n different unit vectors which is effectively d-dimensional. Then

- For $d \geq 4, \mathbf{P}\left(S_{n, v}=0\right) \leq n^{-\frac{d}{2}-\frac{d}{d-2}+o(1)}$.
- For $d=3, \mathbf{P}\left(S_{n, V}=0\right) \leq n^{-4+o(1)}$.

Theorem (Suburban drunkard walk's theorem; Herdade-V. 2014)

Consider a set V of n different unit vectors which is effectively d-dimensional. Then

- For $d \geq 4, \mathbf{P}\left(S_{n, V}=0\right) \leq n^{-\frac{d}{2}-\frac{d}{d-2}+o(1)}$.
- For $d=3, \mathbf{P}\left(S_{n, V}=0\right) \leq n^{-4+o(1)}$.
- For $d=2, \mathbf{P}\left(S_{n, V}=0\right) \leq n^{-\omega(1)}$.

Case $d=2$. If $\mathbf{P}\left(S_{n, V}=0\right) \geq n^{-C}$, then V belongs to a small GAP by Inverse theorems. But it also belongs to the unit circle.

Theorem (Suburban drunkard walk's theorem; Herdade-V. 2014)

Consider a set V of n different unit vectors which is effectively d-dimensional. Then

- For $d \geq 4, \mathbf{P}\left(S_{n, V}=0\right) \leq n^{-\frac{d}{2}-\frac{d}{d-2}+o(1)}$.
- For $d=3, \mathbf{P}\left(S_{n, V}=0\right) \leq n^{-4+o(1)}$.
- For $d=2, \mathbf{P}\left(S_{n, V}=0\right) \leq n^{-\omega(1)}$.

Case $d=2$. If $\mathbf{P}\left(S_{n, V}=0\right) \geq n^{-C}$, then V belongs to a small GAP by Inverse theorems. But it also belongs to the unit circle. These two cannot occur at the same time due to number theoretic reasons.

Theorem (Suburban drunkard walk's theorem; Herdade-V. 2014)

Consider a set V of n different unit vectors which is effectively d-dimensional. Then

- For $d \geq 4, \mathbf{P}\left(S_{n, V}=0\right) \leq n^{-\frac{d}{2}-\frac{d}{d-2}+o(1)}$.
- For $d=3, \mathbf{P}\left(S_{n, V}=0\right) \leq n^{-4+o(1)}$.
- For $d=2, \mathbf{P}\left(S_{n, V}=0\right) \leq n^{-\omega(1)}$.

Case $d=2$. If $\mathbf{P}\left(S_{n, V}=0\right) \geq n^{-C}$, then V belongs to a small GAP by Inverse theorems. But it also belongs to the unit circle. These two cannot occur at the same time due to number theoretic reasons.

Toy example. For any R, the square grid has only $R^{o(1)}$ points on $C(0, R)$ (Sum of two squares problem).

$$
P_{n}(x)=\xi_{n} x^{n}+\cdots+\xi_{1} x+\xi_{0}
$$

ξ_{i} are iid copies of ξ having mean 0 and variance 1 .

$$
P_{n}(x)=\xi_{n} x^{n}+\cdots+\xi_{1} x+\xi_{0}
$$

ξ_{i} are iid copies of ξ having mean 0 and variance 1 .
How many real roots does P_{n} have?

$$
P_{n}(x)=\xi_{n} x^{n}+\cdots+\xi_{1} x+\xi_{0}
$$

ξ_{i} are iid copies of ξ having mean 0 and variance 1 .
How many real roots does P_{n} have?
This leads the development of the theory of random functions.

- Waring (1782): $n=3$, Sylvester.

■ Bloch-Polya (1930s): ξ Bernoulli, E $N_{n}=O(\sqrt{n})$.
■ Littlewood-Offord (1939-1943) General ξ,

$$
\frac{\log n}{\log \log n} \leq \mathbf{E} N_{n} \leq \log ^{2} n
$$

■ Kac (1943) ξ Gaussian

$$
\mathbf{E} N_{n}=\frac{1}{\pi} \int_{-\infty}^{\infty} \sqrt{\frac{1}{\left(t^{2}-1\right)^{2}}+\frac{(n+1)^{2} t^{2 n}}{\left(t^{2 n+2}-1\right)^{2}}} d t=\left(\frac{2}{\pi}+o(1)\right) \log n
$$

■ Kac (1949) ξ uniform on $[-1,1], \mathbf{E} N_{n}=\left(\frac{2}{\pi}+o(1)\right) \log n$.
■ Stevens (1967) E $N_{n}=\left(\frac{2}{\pi}+o(1)\right) \log n, \xi$ smooth.

- Erdös-Offord (1956) EN $N_{n}=\left(\frac{2}{\pi}+o(1)\right) \log n, \xi$ Bernoulli.
- Ibragimov-Maslova (1969) E $N_{n}=\left(\frac{2}{\pi}+o(1)\right) \log n$, general ξ.

Willis (1980s), Edelman-Kostlan (1995): If ξ is Gaussian

$$
\mathrm{E} N_{n}-\frac{2}{\pi} \log n \rightarrow C_{\text {Gauss }} \approx .625738
$$

Willis (1980s), Edelman-Kostlan (1995): If ξ is Gaussian

$$
\mathrm{E} N_{n}-\frac{2}{\pi} \log n \rightarrow C_{\text {Gauss }} \approx .625738
$$

This was done by carefully evaluating Kac's integral formula.

Willis (1980s), Edelman-Kostlan (1995): If ξ is Gaussian

$$
\mathrm{E} N_{n}-\frac{2}{\pi} \log n \rightarrow C_{\text {Gauss }} \approx .625738
$$

This was done by carefully evaluating Kac's integral formula.
Tao-V. 2013, Hoi Nguyen-Oanh Nguyen-V. (2014)
Theorem (Yen Do-Hoi Nguyen-V 2015)
There is a constant C_{ξ} depending on ξ such that

$$
\mathbf{E} N_{n}-\frac{2}{\pi} \log n \rightarrow C_{\xi} .
$$

Willis (1980s), Edelman-Kostlan (1995): If ξ is Gaussian

$$
\mathrm{E} N_{n}-\frac{2}{\pi} \log n \rightarrow C_{G a u s s} \approx .625738
$$

This was done by carefully evaluating Kac's integral formula.
Tao-V. 2013, Hoi Nguyen-Oanh Nguyen-V. (2014)

Theorem (Yen Do-Hoi Nguyen-V 2015)

There is a constant C_{ξ} depending on ξ such that

$$
\mathrm{E} N_{n}-\frac{2}{\pi} \log n \rightarrow C_{\xi} .
$$

The value of C_{ξ} depends on ξ and is not known in general, even for $\xi= \pm 1$.

$$
S:=x^{n} \xi_{n}+\cdots+x \xi_{1}+\xi_{0} .
$$

$$
S:=x^{n} \xi_{n}+\cdots+x \xi_{1}+\xi_{0} .
$$

Theorem (Yen Do-Hoi Nguyen-V 2014+)

For general ξ, the probability that P_{n} has a double root is essentially the probability that it has a double root at 1 or -1 . (This probability is $O\left(n^{-2}\right)$).

Theorem (Kozma- Zeitouni 2012)
A system of d +1 random Bernoulli polynomials in d variables does not have common roots whp.

Scott Aaronson-H. Nguyen (2014)
Let $C_{n}:=\{-1,1\}^{n}$. For a matrix M, define the score of M

$$
s_{0}(M):=\mathbf{P}_{x \in C_{n}}\left(M x \in C_{n}\right)
$$

If M is a product of permutation and reflection matrices, then $s_{0}=1$.

Does one have an inverse statement in some sense ?
Theorem (H. Nguyen-Aaronson 2014+)
If M is orthogonal and has score at least n^{-C}, then most rows contain an entry of absolute value at least $1-n^{-1+\epsilon}$.

Instead of $S_{A}=\sum_{i}^{n} a_{i} \xi_{i}$ consider a quadratic form

$$
Q_{A}=\sum_{1 \leq i, j \leq n} a_{i j} \xi_{i} \xi_{j}
$$

Theorem (Costello-Tao-V. 2005)
Let $A=\left\{a_{i j}\right\}$ be a set of non-zero real numbers, then

$$
\mathbf{P}\left(Q_{A}=0\right) \leq n^{-1 / 4}
$$

Instead of $S_{A}=\sum_{i}^{n} a_{i} \xi_{i}$ consider a quadratic form

$$
Q_{A}=\sum_{1 \leq i, j \leq n} a_{i j} \xi_{i} \xi_{j}
$$

Theorem (Costello-Tao-V. 2005)
Let $A=\left\{a_{i j}\right\}$ be a set of non-zero real numbers, then

$$
\mathbf{P}\left(Q_{A}=0\right) \leq n^{-1 / 4}
$$

Costello (2009) improve to bound to $n^{-1 / 2+o(1)}$ which is best possible.

Theorem (Quadratic Littewood-Offord)

Let $A=\left\{a_{i j}\right\}$ be a set of non-zero real numbers, then

$$
\sup _{x} \mathbf{P}\left(Q_{A}=x\right) \leq n^{-1 / 2+o(1)} .
$$

Theorem (Costello-Tao-V. 2005)

Let P be a polynomial of degree d with non-zero coefficients in ξ_{1}, dots, ξ_{n}, then

$$
\mathbf{P}(P=0) \leq n^{-c_{d}} .
$$

Theorem (Costello-Tao-V. 2005)

Let P be a polynomial of degree d with non-zero coefficients in ξ_{1}, dots, ξ_{n}, then

$$
\mathbf{P}(P=0) \leq n^{-c_{d}} .
$$

$$
c_{d}=2^{-d^{2}}
$$

Theorem (Costello-Tao-V. 2005)

Let P be a polynomial of degree d with non-zero coefficients in ξ_{1}, dots, ξ_{n}, then

$$
\mathbf{P}(P=0) \leq n^{-c_{d}} .
$$

$c_{d}=2^{-d^{2}}$;
Razborov-Viola 2013 (complexity theory): $c_{d}=2^{-d}$.

Theorem (Costello-Tao-V. 2005)

Let P be a polynomial of degree d with non-zero coefficients in ξ_{1}, dots, ξ_{n}, then

$$
\mathbf{P}(P=0) \leq n^{-c_{d}} .
$$

$c_{d}=2^{-d^{2}} ;$
Razborov-Viola 2013 (complexity theory): $c_{d}=2^{-d}$. Meka-Oanh Nguyen-V. (2015): $c_{d}=1 / 2+o(1)$.

Bounding the singular probability of random symmetric matrix.
■ Costello-Tao-V 2005: $p_{n}^{\text {sym }}=o(1)$ (establishing a conjecture of B. Weiss 1980s).

- Costello 2009: $p_{n}^{\text {sym }} \leq n^{-1 / 2+o(1)}$.
- H. Nguyen 2011: $p_{n}^{\text {sum }} \leq n^{-\omega(1)}$.
- Vershynin 2011: $p_{n}^{\text {sym }} \leq \exp \left(-n^{\epsilon}\right)$.

Bounding the least singular value: H. Nguyen, Vershynin (2011).

■ Sharp bound for high degree polynomials (Meka et al. 2015)
■ Inverse theorems for high degree polynomials (Hoi Nguyen 2012, H. Nguyen-O'rourke 2013).
■ Dependent models (Pham et al., Nguyen, Tao 2015).

- Further applications.

