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Concentration and Anti-concentration

X : a random variable.

Concentration. If I is a long interval far from EX , then P(X ∈ I )
is small.

Anti-concentration. If I is a short interval anywhere, then
P(X ∈ I ) is small.
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The central limit theorem

ξ1, . . . , ξn are iid copies of ξ with mean 0 and variance 1, then

ξ1 + · · ·+ ξn√
n

−→ N(0, 1).

In other words, for X :=
∑n

i=1 ξi/
√

n, and any fixed t > 0

P(X ∈ [t,∞))→ 1√
2π

∫ ∞
t

e−t
2/2dt = O(e−t

2/2).

Concentration. Results of this type with general X (Chernoff,
Bernstein, Azuma, Talagrand etc).
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The central limit theorem

Berry-Esséen (1941): ξ has bounded third moment, then the rate
of convergence is O(n−1/2). For any t,

P(X ∈ [t,∞)) =
1√
2π

∫ ∞
t

e−t
2/2dt + O(n−1/2).

This implies that for any interval I

P(X ∈ I ) =
1√
2π

∫
I

e−t
2/2dt + O(n−1/2).

The error term n−1/2 is sharp: Take ξ = ±1 (Bernoulli) and n

even, then P(X = 0) =
( n
n/2)
2n = Θ(n−1/2).

Anti-concentration. Results of this type with more general X .
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Littlewood-Offord-Erdös

A = {a1, . . . , an} (multi-) set of deterministic coefficients

SA := a1ξ1 + · · ·+ anξn.

Theorem (Littlewood-Offord 1940)

If ξ is Bernoulli (taking values ±1 with probability 1/2) and ai have
absolute value at least 1, then for any open interval I of length 1,

P(SA ∈ I ) = O(
log n

n1/2
).

SA may not satisfy the Central Limit Theorem.

Theorem (Erdös 1943)

P(SA ∈ I ) ≤

( n
bn/2c

)
2n

= O(
1

n1/2
). (1)
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Kolmogorov-Rogozin

Levy’s concentration function: Q(λ,X ) = sup|I |=λ P(X ∈ I ).

Theorem (Kolmogorov-Rogozin 1959-1961)

S = X1 + · · ·+ Xn where Xi are independent. Then

Q(λ, S) = O(
1√∑n

i=1(1− Q(λ,Xi ))
).

Kesten, Esseen, Halász (60s-70s).



Littlewood-Offord-Erdos: refinement

Recall A := {a1, . . . , an}

SA := ξ1ξ1 + · · ·+ anξn.

One can improve anti-concentration bounds significantly under
extra assumptions on the additive structure of A.

Discrete setting; ξi are iid ±1; ai are integers:

ρ(A) := sup
x

P(SA = x)

(instead of sup|I |=l P(X ∈ I )).
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Littlewood-Offord-Erdos:refinements

Theorem (Erdös-Moser 1947)

Let ai be distinct integers, then

ρ(A) = O(n−3/2 log n).

Theorem (Sárkozy-Szemerédi 1965)

ρ(A) = O(n−3/2).



Stanley’s characterization

Theorem (Stanley 1980; Proctor 1982)

Let n be odd and A0 :=
{
− n−1

2 , . . . , n−12
}

. Let A be any set of n
distinct real numbers, then

ρ(A) ≤ ρ(A0).

The proofs are algebraic (hard Lepschetz theorem, Lie algebra).



Extensions

Stronger conditions, more dimensions etc: Beck, Katona,
Kleitman, Griggs, Frank-Furedi, Halasz, Sali etc (1970s-1980s).

Theorem (Halasz 1979)

Let k be a fixed integer and Rk be the number of solutions of the
equation ai1 + · · ·+ aik = aj1 + · · ·+ ajk . Then

ρA = O(n−2k−
1
2 Rk).
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A new look at anti-concentration

What cause large anti-concentration probability ?

Inverse Principle [Tao-V. 2005]
A set A with large ρA must have a strong additive structure.

Arak (1980s)

We will give many illustrations of this principle with applications.
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Motivation: Additive Combinatorics

Freiman Inverse theorem: If A + A = {a + a′|a, a′ ∈ A} is small,
then A has a strong additive structure.

Example. A is a dense subset (of density δ, say) of an interval J of
length n/δ,

|A + A| ≤ |J + J| ≤ 2n/δ ≤ 2

δ
|A|.

Example. If A is a dense subset (of density δ, say) of a GAP of
rank d then

|A + A| ≤ |J + J| ≤ 2dn/δ ≤ 2d

δ
|A|.
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Freiman Inverse Theorem

Theorem (Freiman Inverse Theorem 1975)

For any constant C there are constants d and δ > 0 such that if
|A + A| ≤ C |A|, then A is a subset of density at least δ of a
(generalized) arithmetic progression of rank at most d.

Collisions of pairs a + a′ vs collisions of subset sums
∑

a∈B;B⊂A a.



Freiman Inverse Theorem

Theorem (Freiman Inverse Theorem 1975)

For any constant C there are constants d and δ > 0 such that if
|A + A| ≤ C |A|, then A is a subset of density at least δ of a
(generalized) arithmetic progression of rank at most d.

Collisions of pairs a + a′ vs collisions of subset sums
∑

a∈B;B⊂A a.



Inverse Littlewood-Offord theorems

Example. If A is a subset of a generalized arithmetic progression Q
of rank d of cardinality nC , then all numbers of the form
±a1 ± a2 + · · · ± an belong to nQ, which has cardinality at most
nd |Q| = nd+C ; by pigeon hole principle

ρA := supxP(SA = x) ≥ n−d−C .

Theorem (First Inverse Littlewood-Offord theorem; Tao-V. 2006)

If ρA ≥ n−B then there are constants d ,C > 0 such that most of
A belongs to a (generalize) arithmetic progression of cardinality nC

of rank at most d.
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Inverse Littlewood-Offord theory

Extensions: Tao-V, Rudelson-Vershynin, Friedland-Sodin, Hoi
Nguyen, Nguyen-V., Elliseeva-Zaitsev et al. etc

Sharp relations between B,C , d .

General ξi (not Bernoulli).

Multi-dimensional versions Rd ; Abelian versions.

Small probability version P(SA ∈ I ) (I interval in R or small
ball in Rk).

Relaxing n−B to (1− c)n.

Sum of not necessary independent random variables; etc.



Little bit about the proof

Toy case. ai are elements of Fp for some large prime p, viewed as
integers between 0 and p − 1, and

ρ = ρ(A) = P(S = 0).

Notation. ep(x) for exp(2π
√
−1x/p).

ρ = P(S = 0) = EIS=0 = E
1

p

∑
t∈Fp

ep(tS).

By independence

Eep(tS) =
n∏

i=1

Eep(tξiai ) =
n∏

i=1

cos
πtai

p
.



Thus

ρ ≤ 1

p

∑
t∈Fp

∏
i

|cosπai t

p
|.

Facts. | sinπz | ≥ 2‖z‖ where ‖z‖ is the distance of z to the
nearest integer.

| cos
πx

p
| ≤ 1− 1

2
sin2 πx

p
≤ 1− 2‖x

p
‖2 ≤ exp(−2‖x

p
‖2).

Key inequality

ρ ≤ 1

p

∑
t∈Fp

∏
i

| cos
πai t

p
| ≤ 1

p

∑
t∈Fp

exp(−2
n∑

i=1

‖ai t

p
‖2).

If ai , t were vectors in a vector space, the key inequality suggests
that ai · t is close to zero very often. Thus, most ai are close to a
small dimensional subspace.
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Second step: Large level sets

Consider the level sets Sm := {t|
∑n

i=1 ‖ai t/p‖2 ≤ m}.

n−C ≤ ρ ≤ 1

p

∑
t∈Fp

exp(−2
n∑

i=1

‖ai t

p
‖2) ≤ 1

p
+

1

p

∑
m≥1

exp(−2(m−1))|Sm|.

Since
∑

m≥1 exp(−m) < 1, there must be is a large level set Sm

such that

|Sm| exp(−m + 2) ≥ ρp. (2)

In fact, since ρ ≥ n−C , we can assume that m = O(log n).



Double counting the the triangle inequality

By double counting we have

n∑
i=1

∑
t∈Sm

‖ai t

p
‖2 =

∑
t∈Sm

n∑
i=1

‖ai t

p
‖2 ≤ m|Sm|.

So, for most ai ∑
t∈Sm

‖ai t

p
‖2 ≤ m

n′
|Sm|. (3)

By averaging, the set of ai satisfying (3) has size at least n − n′.
We are going to show that A′ is a large subset of a GAP.
Since ‖ · ‖ is a norm, by the triangle inequality, we have for any
a ∈ kA′ ∑

t∈Sm

‖at

p
‖2 ≤ k2 m

n′
|Sm|. (4)

More generally, for any l ≤ k and a ∈ lA′∑
t∈Sm

‖at

p
‖2 ≤ k2 m

n′
|Sm|. (5)



Duality

Define S∗m := {a|
∑

t∈Sm ‖
at
p ‖

2 ≤ 1
200 |Sm|}; S∗m can be viewed as

some sort of a dual set of Sm. In fact,

|S∗m| ≤
8p

|Sm|
. (6)

To see this, define Ta :=
∑

t∈Sm cos 2πat
p . Using the fact that

cos 2πz ≥ 1− 100‖z‖2 for any z ∈ R, we have, for any a ∈ S∗m

Ta ≥
∑
t∈Sm

(1− 100‖at

p
‖2) ≥ 1

2
|Sm|.

One the other hand, using the basic identity∑
a∈Fp

cos 2πax
p = pIx=0, we have∑

a∈Fp

T 2
a ≤ 2p|Sm|.

(6) follows from the last two estimates and averaging.

Set k := c1

√
n′

m , for a properly chosen constant c1. By (5) we

have ∪kl=1lA′ ⊂ S∗m. Set A
′′

= A′ ∪ {0}; we have kA
′′ ⊂ S∗m ∪ {0}.

This results in the critical bound

|kA
′′ | = O(

p

|Sm|
) = O(ρ−1 exp(−m + 2)). (7)



Long range inverse theorem

The role of Fp is now no longer important, so we can view the ai
as integers. Notice that (7) leads us to a situation similar to that
of Freiman’s inverse result. In that theorem, we have a bound on
|2A| and conclude that A has a strong additive structure. In the
current situation, 2 is replaced by k , which can depend on |A|.

Theorem (Long range inverse theorem)

Let γ > 0 be constant. Assume that X is a subset of a torsion-free
group such that 0 ∈ X and |kX | ≤ kγ |X | for some integer k ≥ 2
that may depend on |X |. Then there is proper symmetric GAP Q
of rank r = O(γ) and cardinality Oγ(k−r |kX |) such that X ⊂ Q.



Applications: Quick proofs of forward theorems

Example. Sárközy-Szemerédi 1965. If ai are different integers, then

ρA = O(n−3/2).

Assume ρA ≥ Cn−3/2, say, then the optimal inverse theorem
implies that most of ai belong to a GAP of cardinality at most cn,
with c → 0 as C →∞. So for large C we obtain a contradiction.

Example. A stable version of Stanley’s result.

Theorem (H. Nguyen 2010)

If ρA ≥ (C0 − ε)n−3/2 for an optimal constant C0, then A is δ-close
to {−bn/2c, . . . , bn/2c}.

Example. Frankl-Füredi 1988 conjecture on Erdös’ type (sharp)
bound in high dimensions (Kleitman d = 2, Tao-V. 2010, d ≥ 3 ).
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Applications: Random matrices and the singular probability
problem

Let Mn be a random matrix whose entries a random Bernoulli
variables (±1).

Problem. Estimate pn := P(Mn singular) = P(det Mn = 0).

Komlos 1967: pn = o(1)

Komlos 1975: pn ≤ n−1/2.

Kahn-Komlos-Szemeredi 1995: pn ≤ .999n

Tao-V. 2004: pn ≤ .952n.

Tao-V. 2005 pn ≤ (3/4 + o(1))n.

Bourgain-V.-Wood (2009) pn ≤ ( 1√
2

+ o(1))n.
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Applications: Bounding the singular probability

Insight. Let Xi be the row vectors and v = (a1, . . . , an) be the
normal vector of Span(X1, . . . ,Xn−1)

P(Xn ∈ Span(X1, . . . ,Xn−1) = P(Xn·v = 0) = P(a1ξ1+· · ·+anξn = 0).

By Inverse Theorems this probability is either very small, or
A = {a1, . . . , an} has a strong structure, which is also unlikely as it
forms a normal vector of a random hyperplane.
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A = {a1, . . . , an} has a strong structure, which is also unlikely as it
forms a normal vector of a random hyperplane.



Applications: Random matrices and the least singular value
problem

Replacing P(Xn · v = 0) by

P(|Xn · v | ≤ ε) = P(a1ξ1 + · · ·+ anξn ∈ [−ε, ε]),

one can show that with high probability |Xn · v | is not very small.
This, in turn, bounds the least singular value from below.

Tao-V 2006: For any C , there is B such that
P(σminMn ≤ n−B) ≤ n−C .

Rudelson-Vershynin 2007:
P(σminMn ≤ εn−1/2) ≤ C (ε+ .9999n) for any ε > 0.



Applications: Random matrices and the Circular Law

Conjecture (Circular Law 1960s)

Let Mn(ξ) be a random matrix whose entries are iid collies of a
random variable ξ with mean 0 and variance 1. Then the
distribution of the eigenvalues of 1√

n
Mn tends to the uniform

distribution on the unit circle.



Mehta (1960s), Edelman (1980s), Girko (1980s), Bai (1990s),
Gotze-Tykhomirov, Pan-Zhu (2000s); Tao-V (2007); (Tao-V:
Bullentin AMS; Chafai et al.: Surveys in Probability).

Laws for matrices with dependent entries.

Chafai et. al (2008): Markov matrices.

Hoi Nguyen (2011): proving Chatterjee-Diaconnis conjecture
concerning random double stochastic matrices.

Gotze-Tykhomirov; Sosnyikov et. al. (2011): law for product
of random matrices.

Adamczak et. al. (2010): law for matrices with independent
rows

Naumov, Nguyen-O’rourke (2013): Elliptic Law.



Applications: Random walks

In 1921, Polya proved his famous drunkard’s walk theorem on Zd .

Sn :=
n∑

j=1

ξj fj

where fj is chosen uniformly from E := {e1, . . . , ed}.

Theorem (Drunkard walk’s theorem; Polya 1921)

For any d ≥ 1, P(Sn = 0) = Θ(n−d/2). In particular, the walk is
recurrent only if d = 1, 2.

What happens if f1, . . . , fn are n different unit vectors ?



Theorem (Suburban drunkard walk’s theorem; Herdade-V. 2014)

Consider a set V of n different unit vectors which is effectively
d-dimensional. Then

For d ≥ 4, P(Sn,V = 0) ≤ n−
d
2
− d

d−2
+ o(1).

For d = 3, P(Sn,V = 0) ≤ n−4+o(1).

For d = 2, P(Sn,V = 0) ≤ n−ω(1).

Case d = 2. If P(Sn,V = 0) ≥ n−C , then V belongs to a small
GAP by Inverse theorems. But it also belongs to the unit circle.
These two cannot occur at the same time due to number theoretic
reasons.

Toy example. For any R, the square grid has only Ro(1) points on
C (0,R) (Sum of two squares problem).
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Applications: Random polynomials

Pn(x) = ξnxn + · · ·+ ξ1x + ξ0.

ξi are iid copies of ξ having mean 0 and variance 1.

How many real roots does Pn have ?

This leads the development of the theory of random functions.
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Applications: Random polynomials

Pn(x) = ξnxn + · · ·+ ξ1x + ξ0.

ξi are iid copies of ξ having mean 0 and variance 1.

How many real roots does Pn have ?

This leads the development of the theory of random functions.



Number of real roots of a random polynomials

Waring (1782): n = 3, Sylvester.

Bloch-Polya (1930s): ξ Bernoulli, ENn = O(
√

n).

Littlewood-Offord (1939-1943) General ξ,

log n

log log n
≤ ENn ≤ log2 n.

Kac (1943) ξ Gaussian

ENn =
1

π

∫ ∞
−∞

√
1

(t2 − 1)2
+

(n + 1)2t2n

(t2n+2 − 1)2
dt = (

2

π
+o(1)) log n.

Kac (1949) ξ uniform on [−1, 1] , ENn = ( 2
π + o(1)) log n.

Stevens (1967) ENn = ( 2
π + o(1)) log n, ξ smooth.

Erdös-Offord (1956) ENn = ( 2
π + o(1)) log n, ξ Bernoulli.

Ibragimov-Maslova (1969) ENn = ( 2
π + o(1)) log n, general ξ.



Number of real roots: The error term

Willis (1980s), Edelman-Kostlan (1995): If ξ is Gaussian

ENn −
2

π
log n→ CGauss ≈ .625738.

This was done by carefully evaluating Kac’s integral formula.

Tao-V. 2013, Hoi Nguyen-Oanh Nguyen-V. (2014)

Theorem (Yen Do-Hoi Nguyen-V 2015)

There is a constant Cξ depending on ξ such that

ENn −
2

π
log n→ Cξ.

The value of Cξ depends on ξ and is not known in general, even
for ξ = ±1.



Number of real roots: The error term

Willis (1980s), Edelman-Kostlan (1995): If ξ is Gaussian

ENn −
2

π
log n→ CGauss ≈ .625738.

This was done by carefully evaluating Kac’s integral formula.

Tao-V. 2013, Hoi Nguyen-Oanh Nguyen-V. (2014)

Theorem (Yen Do-Hoi Nguyen-V 2015)

There is a constant Cξ depending on ξ such that

ENn −
2

π
log n→ Cξ.

The value of Cξ depends on ξ and is not known in general, even
for ξ = ±1.



Number of real roots: The error term

Willis (1980s), Edelman-Kostlan (1995): If ξ is Gaussian

ENn −
2

π
log n→ CGauss ≈ .625738.

This was done by carefully evaluating Kac’s integral formula.

Tao-V. 2013, Hoi Nguyen-Oanh Nguyen-V. (2014)

Theorem (Yen Do-Hoi Nguyen-V 2015)

There is a constant Cξ depending on ξ such that

ENn −
2

π
log n→ Cξ.

The value of Cξ depends on ξ and is not known in general, even
for ξ = ±1.



Number of real roots: The error term

Willis (1980s), Edelman-Kostlan (1995): If ξ is Gaussian

ENn −
2

π
log n→ CGauss ≈ .625738.

This was done by carefully evaluating Kac’s integral formula.

Tao-V. 2013, Hoi Nguyen-Oanh Nguyen-V. (2014)

Theorem (Yen Do-Hoi Nguyen-V 2015)

There is a constant Cξ depending on ξ such that

ENn −
2

π
log n→ Cξ.

The value of Cξ depends on ξ and is not known in general, even
for ξ = ±1.



Random polynomials: Double roots and Common roots

S := xnξn + · · ·+ xξ1 + ξ0.

Theorem (Yen Do-Hoi Nguyen-V 2014+)

For general ξ, the probability that Pn has a double root is
essentially the probability that it has a double root at 1 or −1.
(This probability is O(n−2)).

Theorem (Kozma- Zeitouni 2012)

A system of d + 1 random Bernoulli polynomials in d variables
does not have common roots whp.
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Applications: Complexity theory

Scott Aaronson-H. Nguyen (2014)
Let Cn := {−1, 1}n. For a matrix M, define the score of M

s0(M) := Px∈Cn(Mx ∈ Cn).

If M is a product of permutation and reflection matrices, then
s0 = 1.

Does one have an inverse statement in some sense ?

Theorem (H. Nguyen-Aaronson 2014+)

If M is orthogonal and has score at least n−C , then most rows
contain an entry of absolute value at least 1− n−1+ε.



Extensions: Higher degree Littlewood-Offord

Instead of SA =
∑n

i aiξi consider a quadratic form

QA =
∑

1≤i ,j≤n
aijξiξj .

Theorem (Costello-Tao-V. 2005)

Let A = {aij} be a set of non-zero real numbers, then

P(QA = 0) ≤ n−1/4.

Costello (2009) improve to bound to n−1/2+o(1) which is best
possible.

Theorem (Quadratic Littewood-Offord )

Let A = {aij} be a set of non-zero real numbers, then

sup
x

P(QA = x) ≤ n−1/2+o(1).
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Extensions: Higher degree Littlewood-Offord

Theorem (Costello-Tao-V. 2005)

Let P be a polynomial of degree d with non-zero coefficients in
ξ1, dots, ξn, then

P(P = 0) ≤ n−cd .

cd = 2−d
2
;

Razborov-Viola 2013 (complexity theory): cd = 2−d .
Meka-Oanh Nguyen-V. (2015): cd = 1/2 + o(1).
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Applications of higher degree Littlewood-Offord inequalities

Bounding the singular probability of random symmetric matrix.

Costello-Tao-V 2005: psym
n = o(1) (establishing a conjecture

of B. Weiss 1980s).

Costello 2009: psym
n ≤ n−1/2+o(1).

H. Nguyen 2011: psum
n ≤ n−ω(1).

Vershynin 2011: psym
n ≤ exp(−nε).

Bounding the least singular value: H. Nguyen, Vershynin (2011).



Directions of research

Sharp bound for high degree polynomials (Meka et al. 2015)

Inverse theorems for high degree polynomials (Hoi Nguyen
2012, H. Nguyen-O’rourke 2013).

Dependent models (Pham et al., Nguyen, Tao 2015).

Further applications.


