# Applications of the removal lemma 

Lluís Vena

IUUK, Charles University, Prague
Institut de Mathématiques de Bordeaux
Bordeuax, April 11-15, 2016

## Stating the problem

## Context

Given $k$ and a group $G$, consider $P \subset G^{k}$ (set of configurations).
Then $S \subset G$ is said to be solution-free if $S^{k} \cap P=\emptyset$.

## Questions

- Maximal size and stability of solution-free sets.
- How many solution-free sets $S$ are there?
- How many solution-free sets $S$ of size $t$ are there?

We consider $P$ to be the solution set of a linear system (or a significant/non-trivial part); we consider sequences of systems and asymptotic results.

## Examples

Roth'53 for $k=3$, Szemerédi'75.
$k$-term AP-free in dense sets in [ $n$ ].
Ajtai-Szemerédi'74 corners, Furstenberg-Katznelson'78 any F
$F$ finite and fixed subset of $[n]^{m}$.
Structures of the type $\{x+a F\}$ in dense sets of $[n]^{m}$.
(Corners: $\left.\left\{\left(x_{1}, x_{2}\right)+a(0,0),\left(x_{1}, x_{2}\right)+a(1,0),\left(x_{1}, x_{2}\right)+a(0,1)\right\}\right)$.
Green'04, Sapozhenko'03, (Cameron-Erdős conj.)
There are $O\left(2^{n / 2}\right)$ sum-free sets in $[1, n]$.

## Examples

Roth'53 for $k=3$, Szemerédi'75.
$k$-term AP-free in dense sets in [ $n$ ].
Ajtai-Szemerédi'74 corners, Furstenberg-Katznelson'78 any F
$F$ finite and fixed subset of $[n]^{m}$.
Structures of the type $\{x+a F\}$ in dense sets of $[n]^{m}$.
(Corners: $\left.\left\{\left(x_{1}, x_{2}\right)+a(0,0),\left(x_{1}, x_{2}\right)+a(1,0),\left(x_{1}, x_{2}\right)+a(0,1)\right\}\right)$.
Green'04, Sapozhenko'03, (Cameron-Erdős conj.)
There are $O\left(2^{n / 2}\right)$ sum-free sets in $[1, n]$.
Arithmetic Removal Lemma. Green'05
If a set does not have many sums, it is "close" to being sum-free. (removing few elements $\rightarrow$ sum-free).

## Removal lemma statements

Theorem (Removal lemma-like statements)
If in Context-Setting
there are Few Substructures
then, by removing Few elements
a new Context-Setting with no Substructures is obtained.

## Removal lemma statements

Theorem (Removal lemma-like statements)
If in Context-Setting
there are Few Substructures
then, by removing Few elements
a new Context-Setting with no Substructures is obtained.

| Setting |  | Elements |
| :--- | :--- | :--- |
| $(1):$ Graph $K$ | edges |  |
|  |  | Few subs. |
| Substructures | $o\left(\|K\|^{3}\right)$ | Few elem. |
| Triangles $K_{3}$ |  | $o\left(\|K\|^{2}\right)$ |
|  |  |  |
|  |  |  |

(1): Ruzsa-Szemerédi'78.

## Removal lemma statements

Theorem (Removal lemma-like statements)


| Setting |  | Elements |
| :--- | :--- | :--- |
| $(2):$ Hypergraph $K$ |  | k-uniform edges |
|  |  |  |
| Substructures | $o\left(\|K\|^{H \mid}\right)$ | $o\left(\|K\|^{k}\right)$ |
| Hypergraph $H$ |  |  |
|  |  |  |
|  |  |  |

(2): Nagel-Rödl-Schacht-Skokan'06, Gowers'07, Tao'06, Elek-Szegedy'12.

## Removal lemma statements

Theorem (Removal lemma-like statements)


| Setting |  | Elements |
| :--- | :--- | :--- |
| (2): Hypergraph $K$  <br> $(3): ~$ $X_{i} \subset G$, finite abelian group | $k$-uniform edges <br> elements in the group |  |
| Substructures | Few subs. | Few elem. |
| Hypergraph $H$ | $o\left(\|K\|^{H \mid}\right)$ | $o\left(\|K\|^{k}\right)$ |
| solutions to $x_{1}+\cdots+x_{k}=0$ | $o\left(\|G\|^{k-1}\right)$ | $o(\|G\|)$ |
|  |  |  |

(2): several authors. (3): Green'05

## Removal lemma statements

Theorem (Removal lemma-like statements)


| Setting |  | Elements |
| :--- | :--- | :--- |
| $(2):$ Hypergraph $K$ | $k$-uniform edges |  |
| (4): $X_{i} \subset G$, finite abelian group |  |  |
| Substructures | Few subs. | Few elem. |
| Hypergraph $H$ | $o\left(\|K\|^{\|H\|}\right)$ | $o\left(\|K\|^{k}\right)$ |
| solutions to $x_{1} \cdots x_{k}=1$ | $o\left(\|G\|^{k-1}\right)$ | $o(\|G\|)$ |
|  |  |  |

(2): several authors. (4): Král'-Serra-V.'09

## Removal lemma statements

Theorem (Removal lemma-like statements)


| Setting |  | Elements |
| :--- | :--- | :--- |
| Hypergraph $K$ | $k$-uniform edges |  |
| $(4): X_{i} \subset G$, finite group | elements in the group |  |
| $(5): X_{i} \subset G$, finite abelian group | Few subs. | elements in the group |
| Substructures | $o\left(\|K\|^{\|H\|}\right)$ | Few elem. |
| Hypergraph $H$ | $o\left(\|G\|^{k-1}\right)$ | $o\left(\|K\|^{k}\right)$ |
| solutions to $x_{1} \cdots \cdots x_{k}=1$ | $o(\|G\|)$ |  |
| solutions to $A x=0, A m \times k$ | $o\left(\|G\|^{k-m}\right)$ | $o(\|G\|)$ |
| integer matrix, $d_{m}(A)=1$ |  |  |

(4): KSV. (5): Král'-Serra-V.'13.

## Consequences and applications

## Distance result

not many substructures $\Rightarrow$ very close to be substructure-free

## Consequences and applications

## Distance result

not many substructures $\Rightarrow$ very close to be substructure-free

Conversely
several disjoint unavoidable structures $\Rightarrow$ many solutions overall

## Consequences and applications

## Distance result

not many substructures $\Rightarrow$ very close to be substructure-free

Conversely
several disjoint unavoidable structures $\Rightarrow$ many solutions overall

Also supersaturation
positive proportion above maximal size structure-free set
$\Downarrow$
positive proportion of solutions

## RL for linear configurations

Theorem (RL homomorphisms in abelian groups)

| Context | $X_{i} \subset G$ finite abelian group, |
| :--- | :--- |
|  | $A: G^{k} \rightarrow G^{m}$ group morphism, |
|  | $\forall \epsilon>0 \exists \delta(\epsilon, k)>0$ |
| If Not many | $\left\|\left\{x_{i} \in X_{i}: A(x)=b\right\}\right\|<\delta \mid$ ker $_{G} A \mid$ |
| then Remv. Few | $\exists X_{i}^{\prime} \subset X_{i},\left\|X_{i}^{\prime}\right\|<\epsilon\left\|\pi_{i}\left(k_{G} A\right)\right\|$ |
| No Solutions left | $\left\|\left\{x_{i} \in X_{i} \backslash X_{i}^{\prime}: A(x)=b\right\}\right\|=0$ |

## RL for linear configurations

Theorem (RL homomorphisms in abelian groups)
Context $\quad X_{i} \subset G$ finite abelian group, $A: G^{k} \rightarrow G^{m}$ group morphism, $\forall \epsilon>0 \exists \delta(\epsilon, k)>0$
If Not many $\quad\left|\left\{x_{i} \in X_{i}: A(x)=b\right\}\right|<\delta\left|\operatorname{ker}_{G} A\right|$
then Remv. Few $\exists X_{i}^{\prime} \subset X_{i},\left|X_{i}^{\prime}\right|<\epsilon\left|\pi_{i}\left(\operatorname{ker}_{G} A\right)\right|$
No Solutions left $\left|\left\{x_{i} \in X_{i} \backslash X_{i}^{\prime}: A(x)=b\right\}\right|=0$
(3) Includes integer matrices, and more.

Equations between coordinates in $G=\prod_{i \in I} \mathbb{Z}_{i}$.
(3) Multidimensional Szemerédi (Furstenberg-Katznelson'78).

- $x_{1}+2\left(x_{2}+x_{3}\right)=0$ in $\mathbb{Z}_{2}^{n}$ implies $x_{1}=0$.
- Determinantal condition: $2\left(x_{1}+x_{2}+x_{3}\right)=0$.


## Counting configuration-free sets

## Balogh-Morris-Samotij'15

For every positive $\delta$ and every positive integers $r, k$ and every $F \subset \mathbb{N}^{k}$, there exist $n_{0}(\delta, k, r, F)$ and $C(\delta, r, k, F)$ such that, if | $m \geq C n^{1-\frac{1}{k-1}}$ | $m \geq C n^{k-\frac{1}{\|F\|-1}}$ | $m \geq C n^{1-\frac{1}{k r}}$ |
| :--- | :--- | :--- |

then there are at most
$m$-subsets of [ $n$ ] that contain no $k$ term AP.
$\binom{2 \delta n^{k}}{m}$
$m$-subsets of $[n]^{k}$ containing no homothetic copy of $F$.
$\binom{2 \delta n}{m}$
$m$-subsets of [ $n$ ] that contain no set of the form $\left\{a, a+d^{r}, \ldots, a+\right.$ $\left.k d^{r}, d \in \mathbb{Z}\right\}$.

## Saxton-Thomason'16+

Let $\mathbb{F}$ be a finite field and $A$ be a $m \times k$ linear system over $\mathbb{F}$ with $\sum A_{i}=0$ over $\mathbb{F}$ and $\operatorname{rank}\left(A \backslash\left\{A_{i}, A_{j}\right\}\right)=\operatorname{rank}(A)=k-m$ for each $i, j \in[k]$, then there are at most $2^{\operatorname{ex}(\mathbb{F}, A, b)+o(|F|)}$ solution-free sets.

## Tools used

Both previous results use:
I a hypergraph container result: each independent set of a hypergraph $H$ is contained in some container $C \subset V(H)$. Not many containers. Each $C$ contains few edges.

## Tools used

Both previous results use:
I a hypergraph container result: each independent set of a hypergraph $H$ is contained in some container $C \subset V(H)$. Not many containers. Each $C$ contains few edges.
Tools developed independently by Balogh-Morris-Samotij'15, and by Saxton-Thomason'16+.
Key ideas were in Kleitman-Winston'82. Other authors used similar ideas: Green-Ruzsa or Rödl-Schacht.

## Tools used

Both previous results use:
I a hypergraph container result: each independent set of a hypergraph $H$ is contained in some container $C \subset V(H)$. Not many containers. Each $C$ contains few edges.
Tools developed independently by Balogh-Morris-Samotij'15, and by Saxton-Thomason'16+.
Key ideas were in Kleitman-Winston'82. Other authors used similar ideas: Green-Ruzsa or Rödl-Schacht.
II a strong counting/supersaturation/Varnavides-type result: for every $\delta$ there exist a $\gamma$ for which, given any $S \subset G$ with $|S| \geq \delta|G|$, then $\left|S^{k} \cap P\right| \geq \gamma P$.

## Tools used

Both previous results use:
I a hypergraph container result: each independent set of a hypergraph $H$ is contained in some container $C \subset V(H)$. Not many containers. Each $C$ contains few edges.
Tools developed independently by Balogh-Morris-Samotij'15, and by Saxton-Thomason'16+.
Key ideas were in Kleitman-Winston'82. Other authors used similar ideas: Green-Ruzsa or Rödl-Schacht.
II a strong counting/supersaturation/Varnavides-type result: for every $\delta$ there exist a $\gamma$ for which, given any $S \subset G$ with $|S| \geq \delta|G|$, then $\left|S^{k} \cap P\right| \geq \gamma P$. This is provided by averaging arguments in the first case (BMS'15), and an arithmetic removal lemma in the second (ST'16+).

## Tools used

Both previous results use:
I a hypergraph container result: each independent set of a hypergraph $H$ is contained in some container $C \subset V(H)$. Not many containers. Each $C$ contains few edges.
Tools developed independently by Balogh-Morris-Samotij'15, and by Saxton-Thomason'16+.
Key ideas were in Kleitman-Winston'82. Other authors used similar ideas: Green-Ruzsa or Rödl-Schacht.
II a strong counting/supersaturation/Varnavides-type result: for every $\delta$ there exist a $\gamma$ for which, given any $S \subset G$ with $|S| \geq \delta|G|$, then $\left|S^{k} \cap P\right| \geq \gamma P$. This is provided by averaging arguments in the first case (BMS'15), and an arithmetic removal lemma in the second (ST'16+).
Our goal: extend this strategy to linear configurations in finite abelian groups, or other supersaturated contexts.

## Counting configurations II

Density condition provided by an arithmetic removal lemma:
Green'05
$G$ finite abelian group,
$\epsilon_{i} \in\{-1,1\}$ with $\sum_{i=1}^{k} \epsilon_{i}=0$,
$P=\left\{\left(x_{i}\right) \mid \epsilon_{1} x_{1}+\cdots+\epsilon_{k} x_{k}=0\right\}$ satisfies supersaturation.
Kral'-Serra-V.'09
$G$ finite group,
$\epsilon_{i} \in\{-1,1\}$ with $\sum_{i=1}^{k} \epsilon_{i}=0$,
$P=\left\{\left(x_{i}\right) \mid x_{1}^{\epsilon_{1}} \cdots x_{k}^{\epsilon_{k}}=1\right\}$ satisfies supersaturation.
V.'16+
$G$ finite abelian group,
$A: G^{k} \rightarrow G^{m}$ group morphism, $A(g, \ldots, g)=0$ for each $g \in G$, then $P=A^{-1}(0)$ satisfies supersaturation.

## Counting configurations I

Theorem: Counting configuration-free sets
Let $k>0$ be an integer and $1 / 40>\delta>0$. Let $(A, G)$ be a "supersaturated system", largest configuration-free set has size $<\delta / 2|G|$,

$$
t \geq C(k, \delta, A)|G| \max _{\ell \in[2, k]}\left\{\left(\frac{\alpha_{\ell}^{k}}{\alpha_{1}^{k}}\right)^{\frac{1}{\ell-1}}\right\}
$$

there are at most

$$
\binom{2 \delta|G|}{t}
$$

sets of size $t$ with no solution in $S^{k}(A, G)$.

## Counting configurations I

Theorem: Counting configuration-free sets
Let $k>0$ be an integer and $1 / 40>\delta>0$. Let $(A, G)$ be a "supersaturated normal system", largest configuration-free set has size $<\delta / 2|G|$,

$$
t \geq C(k, \delta, A)|G| \max _{\ell \in[2, k]}\left\{\left(\frac{\alpha_{\ell}^{k}}{\alpha_{1}^{k}}\right)^{\frac{1}{\ell-1}}\right\}
$$

there are at most

$$
\binom{2 \delta|G|}{t}
$$

sets of size $t$ with no solution in $S^{k}(A, G)$.
$\alpha_{i}^{k}: i$-th degree of freedom.
Measure concentrations over partial solutions.
Generalization of $m_{A}$ (Rödl-Ruciński'97).

## Counting configurations I

Theorem: Counting configuration-free sets
Let $k>0$ be an integer and $1 / 40>\delta>0$. Let $(A, G)$ be a "supersaturated normal system", largest configuration-free set has size $<\delta / 2|G|$,

$$
t \geq C(k, \delta, A)|G| \max _{\ell \in[2, k]}\left\{\left(\frac{\alpha_{\ell}^{k}}{\alpha_{1}^{k}}\right)^{\frac{1}{\ell-1}}\right\}
$$

there are at most

$$
\binom{2 \delta|G|}{t}
$$

sets of size $t$ with no solution in $S^{k}(A, G)$.
Used with sequence $\left\{\left(A_{i}, G_{i}\right)\right\}_{i \in \mathbb{N}}$ where supersaturation $\gamma=$ $\gamma(\delta$, whole sequence).

## Counting configurations I

Theorem: Counting configuration-free sets
Let $k>0$ be an integer and $1 / 40>\delta>0$. Let $(A, G)$ be a "supersaturated normal system", largest configuration-free set has size $<\delta / 2|G|$,

$$
t \geq C(k, \delta, A)|G| \max _{\ell \in[2, k]}\left\{\left(\frac{\alpha_{\ell}^{k}}{\alpha_{1}^{k}}\right)^{\frac{1}{\ell-1}}\right\}
$$

there are at most

$$
\binom{2 \delta|G|}{t}
$$

sets of size $t$ with no solution in $S^{k}(A, G)$.
Proof based on hypergraph containers: Balogh-Morris-Samotij'15, and Saxton-Thomason'16+.

## Examples

- Equations in non-abelian groups.
- (Linear) point configurations in finite abelian groups which include:
- Integer linear systems, such as $k$-APs, in abelian groups.
- homothetic configurations with one or multiple degrees of freedom in $[n]^{k}$, such as homothetic copies of simplices (multidimensional Szemerédi).
- More involved configurations involving different subgroups.

Some of these results were known ( $k-\mathrm{AP}$ in the integers, configurations in $[n]^{\prime}$ with one degree of freedom, linear systems in finite fields).
Some are new.
Some can be obtained using other supersaturation results (Tao, Sidorenko,...).

## Comments

Difficulties and considerations:

- We should consider solutions where all the variables are different.
- Restrictions imposed by subconfigurations on the threshold of application $t$ (balanced graphs, Rödl-Ruziński's $m_{A}$ ) $\rightarrow \alpha_{i}^{k}$.
- Some thresholds for $t$ (lower bound) can be too large to say something interesting (such as for Sidon sets) $\rightarrow$ Shapira: for most integer linear systems, any polynomial bound on $t$ is meaningful.


## Example

Theorem (Rué-Serra-V. Rectangles in abelian groups) $\left\{G_{i}\right\}_{i \in \mathbb{N}}$ finite abelian groups, $H_{i}, K_{i} \subset G_{i},\left|H_{i}\right|,\left|K_{i}\right|,\left|G_{i}\right| \rightarrow \infty$.
$S\left(A, G_{i}\right)=\left\{(x, x+a, x+b, x+a+b)\right.$ with $\left.x \in G_{i}, a \in H_{i}, b \in K_{i}\right\}$
Assume $\max \left\{\left|H_{i}\right|,\left|K_{i}\right|\right\} \leq\left(\left|S^{k}\left(A, G_{i}\right)\right| /\left|G_{i}\right|\right)^{2 / 3}$. For each $1 / 40>\delta>0$ there exist a $C(\delta)$ and an $i_{0}(\delta$, family), such that, For each $i \geq i_{0}$ the number of sets free of configurations in $S^{k}(A, G)$ of size $t, t>\frac{C}{\delta}\left(\frac{\left|G_{i}\right|^{4}}{\left|S^{k}\left(A, G_{i}\right)\right|}\right)^{1 / 3}$, is at most

$$
\binom{2 \delta\left|G_{i}\right|}{t}
$$

If $G=\mathbb{Z}_{n}^{2}, H=\mathbb{Z}_{n} \times 0, K=0 \times \mathbb{Z}_{n}$ : count number of $C_{4}$-free graphs

## Example

Theorem (Rué-Serra-V. Rectangles in abelian groups) $\left\{G_{i}\right\}_{i \in \mathbb{N}}$ finite abelian groups, $H_{i}, K_{i} \subset G_{i},\left|H_{i}\right|,\left|K_{i}\right|,\left|G_{i}\right| \rightarrow \infty$.
$S\left(A, G_{i}\right)=\left\{(x, x+a, x+b, x+a+b)\right.$ with $\left.x \in G_{i}, a \in H_{i}, b \in K_{i}\right\}$
Assume $\max \left\{\left|H_{i}\right|,\left|K_{i}\right|\right\} \leq\left(\left|S^{k}\left(A, G_{i}\right)\right| /\left|G_{i}\right|\right)^{2 / 3}$. For each $1 / 40>\delta>0$ there exist a $C(\delta)$ and an $i_{0}(\delta$, family), such that, For each $i \geq i_{0}$ the number of sets free of configurations in $S^{k}(A, G)$ of size $t, t>\frac{C}{\delta}\left(\frac{\left|G_{i}\right|^{4}}{\left|S^{k}\left(A, G_{i}\right)\right|}\right)^{1 / 3}$, is at most

$$
\binom{2 \delta\left|G_{i}\right|}{t}
$$

If $G=\mathbb{Z}_{n}^{2}, H=\mathbb{Z}_{n} \times 0, K=0 \times \mathbb{Z}_{n}$ : count number of $C_{4}$-free graphs (not trivial as $t \geq n^{4 / 3} \ll n^{3 / 2}$, but not good upper bound).

## Random sparse analogues

Consider sequence of systems $\left\{\left(A_{i}, G_{i}\right)\right\}, 1>\delta>0$, for probability $p$ consider $\left[G_{i}\right]_{p}$ (pick elements from $G_{i}$ uniformly and random with probability $p$ ).
Does there exist a $p^{\prime}$ such that (?)

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\text { each } S \subset[G]_{p},|S|>\delta\left|[G]_{p}\right|,\right. \text { contains a }\left.s \in S^{k}\left(A_{i}, G_{i}\right)\right) \\
&= \begin{cases}0, & p \ll p^{\prime} \\
1, & p \gg p^{\prime}\end{cases} \tag{1}
\end{align*}
$$

Breakthrough by Conlon-Gowers, Schacht: showed upper bound matches lower bound given by the alteration method.
Containers gives correct upper bound (Balogh-Morris-Samotij, Saxton-Thomason).

## Example sparse random

Theorem (Rué-Serra-V.'16+)
For every positive $1>\delta>0$ and finite group with $|G| \geq n_{0}(\delta)$ and $|G|$ odd, then for the binomial random set $G_{p}$ of $G$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\text { each } S \subset G_{p},|S| \geq \delta\left|G_{p}\right|, \text { has } x, y, z \in S \text { with } x y=z^{2}\right)
$$

$$
=\left\{\begin{array}{l}
0, p<c_{1}(\delta)|G|^{-1 / 2} \\
1, p>c_{2}(\delta)|G|^{-1 / 2}
\end{array}\right.
$$

## Continuous Setting

Theorem (RL homomorphisms in abelian groups)
Context
$X_{i} \subset G$ finite abelian group,
$A: G^{k} \rightarrow G^{m}$ group morphism, $\forall \epsilon>0 \exists \delta(\epsilon, k)>0$
If Not many $\quad\left|\left\{x_{i} \in X_{i}: A(x)=b\right\}\right|<\delta\left|\operatorname{ker}_{G} A\right|$
then Remv. Few $\exists X_{i}^{\prime} \subset X_{i},\left|X_{i}^{\prime}\right|<\epsilon\left|\pi_{i}\left(\operatorname{ker}_{G} A\right)\right|$
No Solutions left $\left|\left\{x_{i} \in X_{i} \backslash X_{i}^{\prime}: A(x)=b\right\}\right|=0$
Theorem (RL CAG. Candela-Szegedy-V'16+)
Context
Borel $X_{i} \subset G$ Hausdorff cmpct. ab. group,
$A: G^{k} \rightarrow G^{m}$ integer matrix, $d_{m}(A)=1$, $\forall \epsilon>0 \exists \delta(\epsilon, A)>0$
If Not many $\quad \mu_{\text {ker }} A\left(\Pi_{1}^{k} X_{i} \cap \operatorname{ker}_{G} A\right)<\delta$
then Remv. Few $\exists X_{i}^{\prime} \subset X_{i}$, Borel $\mu_{G}\left(X_{i}^{\prime}\right)<\epsilon$
No Solutions left $\left[\operatorname{ker}_{G} A\right] \cap \prod_{1}^{k} X_{i} \backslash X_{i}^{\prime}=\emptyset$

## Sketch of the proof, compact abelian

Hypergraph representation

- Removal lemma for measurable hypergraphs. RL with symmetry preserving.
- Adequate representation of the system by a measurable hypergraph. Second-countable compact abelian groups.
- Retrieve information in original setting for second-countable compact abelian groups.
- Extend the result to all compact abelian groups.

Adequate representation:

- Giving solution, every edge has unique extension: deal with $x+2 y+2 z=0$.
- Circular matrices.


## Applications RL compact abelian groups

Szemerédi Theorem for compact abelian groups
For every $\epsilon, k$ there exist a $c$ such that

$$
\int_{G} \int_{G} 1_{A}(x) 1_{A}(x+r) \cdots 1_{A}(x+(k-1) r) \mathrm{d} \mu_{G}(r) \geq c
$$

for every measurable set $A, \mu(A) \geq \epsilon$, in any Hausdorff compact abelian group.

## Questions

- Delete the $d_{k}(A)$ condition.
- Homomorphisms?
- Small proportion with respect projection?

Merci pour votre attention!

# Applications of the removal lemma 

Lluís Vena

IUUK, Charles University, Prague
Institut de Mathématiques de Bordeaux
Bordeuax, April 11-15, 2016

