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Zero-sum problems in finite abelian groups

Let (G,+,0) be a finite abelian group.
Let S = g1 . . . gn be a sequence of elements of G.
Simple fact: If n is large enough, there exists a non-empty
I ⊂ [1,n] such that ∑

i∈I

gi = 0.

‘If S is sufficiently long, then it has a zero-sum subsequence.’
Question (Davenport, 66): What does ‘sufficiently long’ mean
precisely?
Note: Numerous variants of this problem; e.g., imposing a
restriction on the length of the subsequence (Harborth;
Erdős–Ginzburg–Ziv).
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Davenport constant

For (G,+) finite abelian group. Let D(G) denote the Davenport
constant, i.e.,

I the smallest ` such that each sequence g1 . . . g` over G
has a (non-empty) zero-sum subsequence, i.e.,∑

i∈I gi = 0 for some ∅ 6= I ⊂ {1, . . . `}.
I equivalently, 1 plus the maximal length of a zero-sum free

sequence.
I equivalently, the maximal length of a minimal zero-sum

sequence, i.e.,
∑`

i=1 gi = 0 yet
∑

i∈I gi 6= 0 for
∅ 6= I ( {1, . . . `}.

Studied since the mid 1960s.
Motivated by questions of Baayen, Davenport, Erdős.
Various applications: Number Theory (Carmichael numbers,
Factorizations), Graph Theory
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Some results on D(G)

Let G = Cn1 ⊕ · · · ⊕ Cnr with ni | ni+1. Then,

D(G) ≥ 1 +
r∑

i=1

(ni − 1) = D∗(G).

Equality holds for (Olson, Kruyswijk, van Emde Boas, 1969)
I p-groups (group rings, later polynomial method).
I groups of rank at most 2 (inductive method, reduction to

p-groups).
In some other cases, e.g.,

I C2
2 ⊕ C2n (van Emde Boas).

I C2
3 ⊕ C3n (Bhowmik, Schlage-Puchta).

I C2
4 ⊕ C4n and C2

6 ⊕ C6n (S.).
But, not always. For example (Baayen), for odd n,

D(C4
2 ⊕ C2n) > D∗(C4

2 ⊕ C2n).

Numerous other examples (but none for groups of rank three or
Cr

n).
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Upper bounds

Balasubramanian–Bhowmik and Bhowmik–Schlage-Puchta

D(G) ≤ |G|
k

+ k − 1

for k not ‘too large’ relative to |G|/exp(G).

D(G) ≤ exp(G)(1 + log
|G|

exp(G)
)

Kruyswijk/van Emde Boas (later Meshulam)
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Other zero-sum constants

Let (G,+) fin. ab. group. Let j ∈ N with j ≥ exp(G).
s≤j(G) denotes the smallest ` in N such that for each sequence
g1 . . . g` there exists ∅ 6= I ⊂ {1, . . . , `} such that

∑
i∈I gi = 0

with |I| ≤ j .

η(G) = s≤exp(G)(G).
Similarly s=j(G) denotes the smallest ` in N such that for each
sequence g1 . . . g` there exists ∅ 6= I ⊂ {1, . . . , `} such that∑

i∈I gi = 0 with |I| = j .
s(G) = s=exp(G)(G) (Erdős–Ginzburg–Ziv constant).
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Weighted zero-sum constants

Introduced by about a decade in a series of papers by Adhikari,
Balasubramanian, Chen, Friedlander, Konyagin, Pappalardi,
Rath.
For (G,+) finite abelian group and W ⊂ Z. Let DW (G) denote
the W -weighted Davenport constant, i.e.,

I the smallest ` such that each sequence g1 . . . g` over G
has a (non-empty) W -weighted zero-sum subsequence,
i.e.,

∑
i∈I wigi = 0 for some ∅ 6= I ⊂ {1, . . . `} and wi ∈W .

Analogously, one defines s=j,W (G) and s≤j,W (G).
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The j-wise Davenport constant

If n is large enough, there exists I1, . . . , Ij ⊂ [1,n] disjoint such
that ∑

i∈Ij

gi = 0

for each j .
‘If S is sufficiently long, then it has j (disjoint) zero-sum
subsequence.’
Question (Halter-Koch, 92): What does ‘sufficiently long’ mean
precisely?
I.o.w: Determine the smallest Dj(G) such that each sequence
of length at least Dj(G) has a j disjoint zero-sum subsequence.
Equivalently: determine the maximum length of a sequence in
G without j disjoint zero-sum subsequence (few zero-free
subsequences).
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A motivation, Recasting the Inductive Method

Delorme, Ordaz, Quiroz showed:
Let G be a finite abelian group and H a subgroup, then

D(G) ≤ DD(H)(G/H).



Results on Dj(G)

Exact value:
Known for groups of rank at most two and in closely related
situations (Halter-Koch; Delorme, Ordaz, Quiroz).
Yet, in contrast to the standard Davenport constant, not known
for general p-groups.
For elementary p-groups its is known (for all j) for:

I C3
2 (Delorme, Ordaz, Quiroz)

I C3
3 (Bhowmik, Schlage-Puchta)

I C4
2 , C5

2 (Freeze, S.)
For specific j , in particular j = 2, known for some more Cr

2.
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Some classical bounds on Dj(G)

Lower bound:
Let G = H ⊕ Cn with n = exp(G). Then,

Dj(G) ≥ j exp(G) + D(H)− 1.

Sharp for groups of rank ≤ 2, and some other cases; but this
is/should be a rare phenomenon.
Upper bounds:
Clearly, Dj(G) ≤ j D(G); this is only sharp for cyclic groups.

Dj(G) ≤ j exp(G) + max{D(G)− exp(G), η(G)− 2 exp(G)}.

(Sharp for groups of rank ≤ 2; some other cases but rarely.)
For example for G = Cr

2, r ≥ 3, one gets

r − 1 + 2j ≤ Dj(G) ≤ 2r − 4 + 2j .
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Dj(G) ≤ j exp(G) + max{D(G)− exp(G), η(G)− 2 exp(G)}.

(Sharp for groups of rank ≤ 2; some other cases but rarely.)
For example for G = Cr

2, r ≥ 3, one gets

r − 1 + 2j ≤ Dj(G) ≤ 2r − 4 + 2j .
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Elementary 2-groups, small j

Theorem (Plagne and S.)

For each sufficiently large integer r we have

1.261 r ≤ D2(Cr
2) ≤ 1.396 r ,

1.500 r ≤ D3(Cr
2) ≤ 1.771 r ,

1.723 r ≤ D4(Cr
2) ≤ 2.131 r ,

1.934 r ≤ D5(Cr
2) ≤ 2.478 r ,

2.137 r ≤ D6(Cr
2) ≤ 2.815 r ,

2.333 r ≤ D7(Cr
2) ≤ 3.143 r ,

2.523 r ≤ D8(Cr
2) ≤ 3.464 r ,

2.709 r ≤ D9(Cr
2) ≤ 3.778 r ,

2.890 r ≤ D10(Cr
2) ≤ 4.087 r .

For j = 2, Komlós and Katona–Srivastava; in a different context.



Elementary 2-groups, small j , II

Theorem (Plagne and S.)

When j tends to infinity, we have the following:

log 2
(

j
log j

)
. lim inf

r→+∞

Dj(Cr
2)

r
≤ lim sup

r→+∞

Dj(Cr
2)

r
. 2 log 2

(
j

log j

)
.



Link to coding theory

(Cohen–Zémor)
Let g1 . . . gn sequence in Cr

2. Consider gi = (a1
i , . . . ,a

r
i )

T with
aj

i ∈ C2.
Then

∑
i∈I gi = 0 if and only if

[g1 | · · · | gn]xI = 0

where xT
I = (x j

I ) ∈ Cn
2 with x j

I equal 1 if j ∈ I and 0 otherwise.
Thus, g1 . . . gn has a zero-sum subsequence of length at most
d if and only if the minimal distance of the code with parity
check matrix [g1 | · · · | gn] has minimal distance at most d .
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Intersecting codes

A code is called intersecting if each two non-zero codewords do
not have disjoint support. (Studied by Katona, Miklós,
Cohen–Lempel,...)
The following are (essentially) equivalent [Cohen–Zémor]:

I Determine for which n, k intersecting [n, k ]-codes exist.
I Determine D2(Cr

2).
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Argument for the upper bounds

Delorme, Ordaz, and Quiroz:

Dj+1(G) ≤ min
i∈N

max{Dj(G) + i , s≤i(G)− 1}.

Need/want knowledge on s≤i(Cr
2); then apply repeatedly.
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Some ad-hoc terminology

Let f : [0,1]→ [0,1] (non-increasing, continuous, and) each
[n, k ,d ] code (binary linear) satisfies

k
n
≤ f

(
d
n

)
.

I.o.w., the functions in the upper bounds of the rate of a code by
a function of its normalized minimal distance. Call it
“upper-bounding function”; and “asypmtotically upper-bounding
function” if holds for all large n.
E.g. Hamming bound:

f (δ) = 1− h
(
δ

2

)
.

with
h(u) = −u log2 u − (1− u) log2(1− u)

binary entropy.
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Key lemma

Lemma
Let f be an [asymptotic] upper-bounding function. Let d, n, and
r be three positive integers [n sufficiently large] satisfying
2 ≤ d ≤ n − 1 and

n − r
n

> f
(

d + 1
n

)
,

then
s≤d(Cr

2) ≤ n.



Upper bounds, summary

I Use DOQ to reduce to s≤i(Cr
2).

I Reduce s≤i(Cr
2) to “bounds on codes.”

I Use bounds from coding theory (small j , McEliece,
Rodemich, Rumsey, and Welch; asymt. Hamming)

I Perform some computations and assemble the pieces.
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Lower bounds

Let j be a positive integer. Then

Dj(Cr
2) ≥ log 2

j
log(j + 1)

r

as r tends to infinity.

Proved via a counting argument similar to argument of
Cohen–Lempel for intersecting codes, j = 2.



Lower bounds

Let j be a positive integer. Then

Dj(Cr
2) ≥ log 2

j
log(j + 1)

r

as r tends to infinity.

Proved via a counting argument similar to argument of
Cohen–Lempel for intersecting codes, j = 2.



True value?

Extrapolating a Conjecture of Cohen–Lempel:
For any positive integer j ,

lim
r→+∞

Dj(Cr
2)

r
∼ log 2

(
j

log j

)
.

That is the lower bound.



Weighted Davenport constant, recall

For (G,+) finite abelian group and W ⊂ Z. Let DW (G) denote
the W -weighted Davenport constant, i.e.,

I the smallest ` such that each sequence g1 . . . g` over G
has a (non-empty) W -weighted zero-sum subsequence,
i.e.,

∑
i∈I wigi = 0 for some ∅ 6= I ⊂ {1, . . . `} and wi ∈W .



Multiwise weighted Davenport constant

Let DW ,j(G) denote the W -weighted j-wise Davenport constant,
i.e.,

I the smallest ` such that each sequence g1 . . . g` over G
has a j disjoint (non-empty) W -weighted zero-sum
subsequence, i.e.,

∑
i∈Ik wigi = 0 for some disjoint

∅ 6= Ik ⊂ {1, . . . `} and wi ∈W (for k = 1, . . . , j).
(Marchan, Ordaz, Santos, S.)



Which sets of weights?

We focus on:
I {−1,1} (plus-minus weighted)
I A = {1,2, . . . ,exp(G)− 1} (fully weighted)

But there are plenty of other options (see next talk).
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Equivalences

Lemma
Let p be an odd prime, and let r ≥ 3 and n ≥ 4 be integers. Let
g1, . . . ,gn ∈ Cr

p \ {0} and assume the gi ’s generate Cr
p. The

following statements are equivalent.
1. The sequence g1 . . . gn has no A-weighted zero-subsum of

lengths at most 3.
2. The [n,n − r ]p-code with parity check matrix [g1 | · · · | gn]

has minimal distance at least 4.
3. The set of points represented by the gi ’s in the projective

space of dimension r − 1 over the field with p elements is a
cap set of size n, that is there are no three points on a line.
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Equivalences, II

In particular, the following integers are equal.
I sA,≤3(Cr

p)− 1.
I The maximal n such that there exists an [n,n − r ]p-code of

minimal distance at least four.
I The maximal cardinality of a cap set in the projective space

of dimension r − 1 over Fp.
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Equivalences, III

Let g1 . . . gn sequence in Cr
p. Consider gi = (a1

i , . . . ,a
r
i )

T with
aj

i ∈ Cp.
Then

∑
i∈I wigi = 0 if and only if

[g1 | · · · | gn]xI = 0

where xT
I = (x j

I ) ∈ Cn
p with x j

I equal wi if j ∈ I and 0 otherwise.
Thus, g1 . . . gn has a A-weighted zero-sum subsequence of
length at most d if and only if the minimal distance of the code
with parity check matrix [g1 | · · · | gn] has minimal distance at
most d .
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Lemma
Let j ∈ N and let p be a prime number. Then, for sufficiently
large r , with A = {1, . . . ,p − 1},

DA,j(Cr
p) ≥ log p

j
log(1 + j(p − 1))

r .

Theorem (Marchan, Ordaz, Santos, S.)

Let p be a primer number and A = {1, · · · ,p − 1}. When m
tends to infinity, we have

lim sup
r→+∞

DA,j(C r
p )

r
. 2 log p

j
log j

.
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