Weighted zero-sum problems and codes

W.A. Schmid ${ }^{1}$
LAGA, Université Paris 8

April 2016

Zero-sum problems in finite abelian groups

Let $(G,+, 0)$ be a finite abelian group.
Let $S=g_{1} \ldots g_{n}$ be a sequence of elements of G.
Simple fact: If n is large enough, there exists a non-empty
$I \subset[1, n]$ such that

'If S is sufficiently long, then it has a zero-sum subsequence.' Question (Davenport, 66): What does 'sufficiently long' mean
precisely?
Note: Numerous variants of this problem; e.g., imposing a restriction on the length of the subsequence (Harborth;
Erdős-Ginzburg-Ziv).

Zero-sum problems in finite abelian groups

Let $(G,+, 0)$ be a finite abelian group.
Let $S=g_{1} \ldots g_{n}$ be a sequence of elements of G.
Simple fact: If n is large enough, there exists a non-empty
$I \subset[1, n]$ such that

$$
\sum_{i \in I} g_{i}=0
$$

'If S is sufficiently long, then it has a zero-sum subsequence.'
Question (Davenport, 66): What does 'sufficiently long' mean
precisely?
Note: Numerous variants of this problem; e.g., imposing a
restriction on the length of the subsequence (Harborth;
Erdős-Ginzburg-Ziv).

Zero-sum problems in finite abelian groups

Let $(G,+, 0)$ be a finite abelian group.
Let $S=g_{1} \ldots g_{n}$ be a sequence of elements of G.
Simple fact: If n is large enough, there exists a non-empty
$I \subset[1, n]$ such that

$$
\sum_{i \in I} g_{i}=0
$$

'If S is sufficiently long, then it has a zero-sum subsequence.' Question (Davenport, 66): What does 'sufficiently long' mean precisely?
Note: Numerous variants of this problem; e.g., imposing a
restriction on the length of the subsequence (Harborth;
Erdős-Ginzburg-Ziv).

Zero-sum problems in finite abelian groups

Let $(G,+, 0)$ be a finite abelian group.
Let $S=g_{1} \ldots g_{n}$ be a sequence of elements of G.
Simple fact: If n is large enough, there exists a non-empty
$I \subset[1, n]$ such that

$$
\sum_{i \in I} g_{i}=0
$$

'If S is sufficiently long, then it has a zero-sum subsequence.'
Question (Davenport, 66): What does 'sufficiently long' mean precisely?
Note: Numerous variants of this problem; e.g., imposing a restriction on the length of the subsequence (Harborth;
Erdős-Ginzburg-Ziv).

Davenport constant

For $(G,+)$ finite abelian group. Let $D(G)$ denote the Davenport constant, i.e.,

- the smallest ℓ such that each sequence $g_{1} \ldots g_{\ell}$ over G has a (non-empty) zero-sum subsequence, i.e., $\sum_{i \in I} g_{i}=0$ for some $\emptyset \neq I \subset\{1, \ldots \ell\}$.
- equivalently, 1 plus the maximal length of a zero-sum free sequence.
- equivalently, the maximal length of a minimal zero-sum sequence, i.e., $\sum_{i=1}^{\ell} g_{i}=0$ yet $\sum_{i \in 1} g_{i} \neq 0$ for

Studied since the mid 1960s.
Motivated by questions of Baayen, Davenport, Erdős.
Various applications: Number Theory (Carmichael numbers,
Factorizations), Graph Theory

Davenport constant

For $(G,+)$ finite abelian group. Let $D(G)$ denote the Davenport constant, i.e.,

- the smallest ℓ such that each sequence $g_{1} \ldots g_{\ell}$ over G has a (non-empty) zero-sum subsequence, i.e., $\sum_{i \in I} g_{i}=0$ for some $\emptyset \neq I \subset\{1, \ldots \ell\}$.
- equivalently, 1 plus the maximal length of a zero-sum free sequence.
- equivalently, the maximal length of a minimal zero-sum sequence, i.e., $\sum_{i=1}^{\ell} g_{i}=0$ yet $\sum_{i \in 1} g_{i} \neq 0$ for

Studied since the mid 1960s.
Motivated by questions of Baayen, Davenport, Erdős.
Various applications: Number Theory (Carmichael numbers, Factorizations), Graph Theory

Davenport constant

For $(G,+)$ finite abelian group. Let $D(G)$ denote the Davenport constant, i.e.,

- the smallest ℓ such that each sequence $g_{1} \ldots g_{\ell}$ over G has a (non-empty) zero-sum subsequence, i.e., $\sum_{i \in I} g_{i}=0$ for some $\emptyset \neq I \subset\{1, \ldots \ell\}$.
- equivalently, 1 plus the maximal length of a zero-sum free sequence.
- equivalently, the maximal length of a minimal zero-sum sequence, i.e., $\sum_{i=1}^{\ell} g_{i}=0$ yet $\sum_{i \in l} g_{i} \neq 0$ for $\emptyset \neq I \subsetneq\{1, \ldots \ell\}$.
Studied since the mid 1960s.
Motivated by questions of Baayen, Davenport, Erdős.
Various applications: Number Theory (Carmichael numbers, Factorizations), Graph Theory

Davenport constant

For $(G,+)$ finite abelian group. Let $D(G)$ denote the Davenport constant, i.e.,

- the smallest ℓ such that each sequence $g_{1} \ldots g_{\ell}$ over G has a (non-empty) zero-sum subsequence, i.e., $\sum_{i \in I} g_{i}=0$ for some $\emptyset \neq I \subset\{1, \ldots \ell\}$.
- equivalently, 1 plus the maximal length of a zero-sum free sequence.
- equivalently, the maximal length of a minimal zero-sum sequence, i.e., $\sum_{i=1}^{\ell} g_{i}=0$ yet $\sum_{i \in l} g_{i} \neq 0$ for $\emptyset \neq I \subsetneq\{1, \ldots \ell\}$.
Studied since the mid 1960s.
Motivated by questions of Baayen, Davenport, Erdős.
Various applications: Number Theory (Carmichael numbers, Factorizations), Graph Theory

Davenport constant

For $(G,+)$ finite abelian group. Let $D(G)$ denote the Davenport constant, i.e.,

- the smallest ℓ such that each sequence $g_{1} \ldots g_{\ell}$ over G has a (non-empty) zero-sum subsequence, i.e., $\sum_{i \in I} g_{i}=0$ for some $\emptyset \neq I \subset\{1, \ldots \ell\}$.
- equivalently, 1 plus the maximal length of a zero-sum free sequence.
- equivalently, the maximal length of a minimal zero-sum sequence, i.e., $\sum_{i=1}^{\ell} g_{i}=0$ yet $\sum_{i \in I} g_{i} \neq 0$ for $\emptyset \neq I \subsetneq\{1, \ldots \ell\}$.
Studied since the mid 1960s.
Motivated by questions of Baayen, Davenport, Erdős.
Various applications: Number Theory (Carmichael numbers, Factorizations), Graph Theory

Some results on $D(G)$

Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $n_{i} \mid n_{i+1}$. Then,

$$
\mathrm{D}(G) \geq 1+\sum_{i=1}^{r}\left(n_{i}-1\right)=\mathrm{D}^{*}(G)
$$

Equality holds for (Olson, Kruyswijk, van Emde Boas, 1969)

In some other cases, e.g.,

But, not always. For example (Baayen), for odd n,

$$
\mathrm{D}\left(C_{2}^{4} \oplus C_{2 n}\right)>\mathrm{D}^{*}\left(C_{2}^{4} \oplus C_{2 n}\right)
$$

Numerous other examples (but none for groups of rank three or $\left.C_{n}^{r}\right)$.

Some results on $D(G)$

Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $n_{i} \mid n_{i+1}$. Then,

$$
\mathrm{D}(G) \geq 1+\sum_{i=1}^{r}\left(n_{i}-1\right)=\mathrm{D}^{*}(G)
$$

Equality holds for (Olson, Kruyswijk, van Emde Boas, 1969)

- p-groups (group rings, later polynomial method).

In some other cases, e.g.,

But, not always. For example (Baayen), for odd n,

Numerous other examples (but none for groups of rank three or

Some results on $D(G)$

Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $n_{i} \mid n_{i+1}$. Then,

$$
\mathrm{D}(G) \geq 1+\sum_{i=1}^{r}\left(n_{i}-1\right)=\mathrm{D}^{*}(G)
$$

Equality holds for (Olson, Kruyswijk, van Emde Boas, 1969)

- p-groups (group rings, later polynomial method).
- groups of rank at most 2 (inductive method, reduction to p-groups).
In some other cases, e.g.,

But, not always. For example (Baayen), for odd n,

Numerous other examples (but none for groups of rank three or

Some results on $D(G)$

Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $n_{i} \mid n_{i+1}$. Then,

$$
\mathrm{D}(G) \geq 1+\sum_{i=1}^{r}\left(n_{i}-1\right)=\mathrm{D}^{*}(G)
$$

Equality holds for (Olson, Kruyswijk, van Emde Boas, 1969)

- p-groups (group rings, later polynomial method).
- groups of rank at most 2 (inductive method, reduction to p-groups).
In some other cases, e.g.,

But, not always. For example (Baayen), for odd n,

Numerous other examples (but none for groups of rank three or

Some results on $D(G)$

Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $n_{i} \mid n_{i+1}$. Then,

$$
\mathrm{D}(G) \geq 1+\sum_{i=1}^{r}\left(n_{i}-1\right)=\mathrm{D}^{*}(G)
$$

Equality holds for (Olson, Kruyswijk, van Emde Boas, 1969)

- p-groups (group rings, later polynomial method).
- groups of rank at most 2 (inductive method, reduction to p-groups).
In some other cases, e.g.,
- $C_{2}^{2} \oplus C_{2 n}$ (van Emde Boas).

But, not always. For example (Baayen), for odd n,

Some results on $D(G)$

Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $n_{i} \mid n_{i+1}$. Then,

$$
\mathrm{D}(G) \geq 1+\sum_{i=1}^{r}\left(n_{i}-1\right)=\mathrm{D}^{*}(G)
$$

Equality holds for (Olson, Kruyswijk, van Emde Boas, 1969)

- p-groups (group rings, later polynomial method).
- groups of rank at most 2 (inductive method, reduction to p-groups).
In some other cases, e.g.,
- $C_{2}^{2} \oplus C_{2 n}$ (van Emde Boas).
- $C_{3}^{2} \oplus C_{3 n}$ (Bhowmik, Schlage-Puchta).

But, not always. For example (Baayen), for odd n,

Some results on $D(G)$

Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $n_{i} \mid n_{i+1}$. Then,

$$
\mathrm{D}(G) \geq 1+\sum_{i=1}^{r}\left(n_{i}-1\right)=\mathrm{D}^{*}(G)
$$

Equality holds for (Olson, Kruyswijk, van Emde Boas, 1969)

- p-groups (group rings, later polynomial method).
- groups of rank at most 2 (inductive method, reduction to p-groups).
In some other cases, e.g.,
- $C_{2}^{2} \oplus C_{2 n}$ (van Emde Boas).
- $C_{3}^{2} \oplus C_{3 n}$ (Bhowmik, Schlage-Puchta).
- $C_{4}^{2} \oplus C_{4 n}$ and $C_{6}^{2} \oplus C_{6 n}$ (S.).

But, not always. For example (Baayen), for odd n,

Some results on $D(G)$

Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $n_{i} \mid n_{i+1}$. Then,

$$
\mathrm{D}(G) \geq 1+\sum_{i=1}^{r}\left(n_{i}-1\right)=\mathrm{D}^{*}(G)
$$

Equality holds for (Olson, Kruyswijk, van Emde Boas, 1969)

- p-groups (group rings, later polynomial method).
- groups of rank at most 2 (inductive method, reduction to p-groups).
In some other cases, e.g.,
- $C_{2}^{2} \oplus C_{2 n}$ (van Emde Boas).
- $C_{3}^{2} \oplus C_{3 n}$ (Bhowmik, Schlage-Puchta).
- $C_{4}^{2} \oplus C_{4 n}$ and $C_{6}^{2} \oplus C_{6 n}$ (S.).

But, not always. For example (Baayen), for odd n,

Some results on $D(G)$

Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $n_{i} \mid n_{i+1}$. Then,

$$
\mathrm{D}(G) \geq 1+\sum_{i=1}^{r}\left(n_{i}-1\right)=\mathrm{D}^{*}(G)
$$

Equality holds for (Olson, Kruyswijk, van Emde Boas, 1969)

- p-groups (group rings, later polynomial method).
- groups of rank at most 2 (inductive method, reduction to p-groups).
In some other cases, e.g.,
- $C_{2}^{2} \oplus C_{2 n}$ (van Emde Boas).
- $C_{3}^{2} \oplus C_{3 n}$ (Bhowmik, Schlage-Puchta).
- $C_{4}^{2} \oplus C_{4 n}$ and $C_{6}^{2} \oplus C_{6 n}$ (S.).

But, not always. For example (Baayen), for odd n,

$$
\mathrm{D}\left(C_{2}^{4} \oplus C_{2 n}\right)>\mathrm{D}^{*}\left(C_{2}^{4} \oplus C_{2 n}\right)
$$

Numerous other examples (but none for groups of rank three or $\left.C_{n}^{r}\right)$.

Upper bounds

Balasubramanian-Bhowmik and Bhowmik-Schlage-Puchta

$$
D(G) \leq \frac{|G|}{k}+k-1
$$

for k not 'too large' relative to $|G| / \exp (G)$.

Kruyswijk/van Emde Boas (later Meshulam)

Upper bounds

Balasubramanian-Bhowmik and Bhowmik-Schlage-Puchta

$$
D(G) \leq \frac{|G|}{k}+k-1
$$

for k not 'too large' relative to $|G| / \exp (G)$.

$$
D(G) \leq \exp (G)\left(1+\log \frac{|G|}{\exp (G)}\right)
$$

Kruyswijk/van Emde Boas (later Meshulam)

Other zero-sum constants

Let $(G,+)$ fin. ab. group. Let $j \in \mathbb{N}$ with $j \geq \exp (G)$.
$\mathrm{s}_{\leq j}(G)$ denotes the smallest ℓ in \mathbb{N} such that for each sequence $g_{1} \ldots g_{\ell}$ there exists $\emptyset \neq I \subset\{1, \ldots, \ell\}$ such that $\sum_{i \in I} g_{i}=0$ with $\mid \| \leq j$.
$\eta(G)=s_{\leq \exp (G)}(G)$.
Similarly $\mathrm{s}_{=j}(G)$ denotes the smallest ℓ in \mathbb{N} such that for each sequence $g_{1} \ldots g_{\ell}$ there exists $\emptyset \neq I \subset\{1, \ldots, \ell\}$ such that $s(G)=s_{=\exp (G)}(G)$ (Erdős-Ginzburg-Ziv constant).

Other zero-sum constants

Let $(G,+)$ fin. ab. group. Let $j \in \mathbb{N}$ with $j \geq \exp (G)$.
$\mathrm{s}_{\leq j}(G)$ denotes the smallest ℓ in \mathbb{N} such that for each sequence $g_{1} \ldots g_{\ell}$ there exists $\emptyset \neq I \subset\{1, \ldots, \ell\}$ such that $\sum_{i \in I} g_{i}=0$ with $\mid \| \leq j$.
$\eta(G)=\mathbf{s}_{\leq \exp (G)}(G)$.
Similarly $S_{j}(G)$ denotes the smallest ℓ in \mathbb{N} such that for each
sequence $g_{1} \ldots g_{\ell}$ there exists $\emptyset \neq I \subset\{1, \ldots, \ell\}$ such that
$\mathrm{s}(G)=\mathrm{s}_{=\exp (G)}(G)$ (Erdős-Ginzburg-Ziv constant).

Other zero-sum constants

Let $(G,+)$ fin. ab. group. Let $j \in \mathbb{N}$ with $j \geq \exp (G)$.
$\mathrm{s}_{\leq j}(G)$ denotes the smallest ℓ in \mathbb{N} such that for each sequence $g_{1} \ldots g_{\ell}$ there exists $\emptyset \neq I \subset\{1, \ldots, \ell\}$ such that $\sum_{i \in I} g_{i}=0$ with $\mid \| \leq j$.
$\eta(G)=\mathbf{s}_{\leq \exp (G)}(G)$.
Similarly $\mathrm{s}_{=j}(G)$ denotes the smallest ℓ in \mathbb{N} such that for each sequence $g_{1} \ldots g_{\ell}$ there exists $\emptyset \neq I \subset\{1, \ldots, \ell\}$ such that
$\sum_{i \in 1} g_{i}=0$ with $\mid \|=j$.

Other zero-sum constants

Let $(G,+)$ fin. ab. group. Let $j \in \mathbb{N}$ with $j \geq \exp (G)$.
$\mathrm{s}_{\leq j}(G)$ denotes the smallest ℓ in \mathbb{N} such that for each sequence $g_{1} \ldots g_{\ell}$ there exists $\emptyset \neq I \subset\{1, \ldots, \ell\}$ such that $\sum_{i \in I} g_{i}=0$ with $\mid \| \leq j$.
$\eta(G)=\mathbf{s}_{\leq \exp (G)}(G)$.
Similarly $\mathrm{s}_{=j}(G)$ denotes the smallest ℓ in \mathbb{N} such that for each sequence $g_{1} \ldots g_{\ell}$ there exists $\emptyset \neq I \subset\{1, \ldots, \ell\}$ such that $\sum_{i \in I} g_{i}=0$ with $\mid \|=j$.
$\mathrm{s}(G)=\mathrm{s}_{=\exp (G)}(G)$ (Erdős-Ginzburg-Ziv constant).

Weighted zero-sum constants

Introduced by about a decade in a series of papers by Adhikari, Balasubramanian, Chen, Friedlander, Konyagin, Pappalardi, Rath.
For $(G,+)$ finite abelian group and $W \subset \mathbb{Z}$. Let $D_{W}(G)$ denote
the W-weighted Davenport constant, i.e.,

Analogously, one defines $s_{=j, W}(G)$ and $s_{\leq j, W}(G)$.

Weighted zero-sum constants

Introduced by about a decade in a series of papers by Adhikari, Balasubramanian, Chen, Friedlander, Konyagin, Pappalardi, Rath.
For $(G,+)$ finite abelian group and $W \subset \mathbb{Z}$. Let $D_{W}(G)$ denote the W-weighted Davenport constant, i.e.,

- the smallest ℓ such that each sequence $g_{1} \ldots g_{\ell}$ over G has a (non-empty) W-weighted zero-sum subsequence, i.e., $\sum_{i \in I} w_{i} g_{i}=0$ for some $\emptyset \neq I \subset\{1, \ldots \ell\}$ and $w_{i} \in W$.

Analogously, one defines $\mathrm{s}_{=j, W}(G)$ and $\mathrm{s}_{\leq j, W}(G)$.

Weighted zero-sum constants

Introduced by about a decade in a series of papers by Adhikari, Balasubramanian, Chen, Friedlander, Konyagin, Pappalardi, Rath.
For $(G,+)$ finite abelian group and $W \subset \mathbb{Z}$. Let $D_{W}(G)$ denote the W-weighted Davenport constant, i.e.,

- the smallest ℓ such that each sequence $g_{1} \ldots g_{\ell}$ over G has a (non-empty) W-weighted zero-sum subsequence, i.e., $\sum_{i \in I} w_{i} g_{i}=0$ for some $\emptyset \neq I \subset\{1, \ldots \ell\}$ and $w_{i} \in W$.

Analogously, one defines $\mathrm{s}_{=j, W}(G)$ and $\mathrm{s}_{\leq j, W}(G)$.

Weighted zero-sum constants

Introduced by about a decade in a series of papers by Adhikari, Balasubramanian, Chen, Friedlander, Konyagin, Pappalardi, Rath.
For $(G,+)$ finite abelian group and $W \subset \mathbb{Z}$. Let $D_{W}(G)$ denote the W-weighted Davenport constant, i.e.,

- the smallest ℓ such that each sequence $g_{1} \ldots g_{\ell}$ over G has a (non-empty) W-weighted zero-sum subsequence, i.e., $\sum_{i \in I} w_{i} g_{i}=0$ for some $\emptyset \neq I \subset\{1, \ldots \ell\}$ and $w_{i} \in W$.

Analogously, one defines $\mathrm{s}_{=j, W}(G)$ and $\mathrm{s}_{\leq j, W}(G)$.

The j-wise Davenport constant

If n is large enough, there exists $l_{1}, \ldots, l_{j} \subset[1, n]$ disjoint such that

$$
\sum_{i \in l_{j}} g_{i}=0
$$

for each j.
'If S is sufficiently long, then it has j (disjoint) zero-sum subsequence.'
Question (Halter-Koch, 92): What does 'sufficiently long' mean
precisely?
I.o.w: Determine the smallest $D_{j}(G)$ such that each sequence of length at least $D_{j}(G)$ has a j disjoint zero-sum subsequence. Equivalently: determine the maximum length of a sequence in G without j disjoint zero-sum subsequence (few zero-free subsequences).

The j-wise Davenport constant

If n is large enough, there exists $l_{1}, \ldots, l_{j} \subset[1, n]$ disjoint such that

$$
\sum_{i \in I_{j}} g_{i}=0
$$

for each j.
'If S is sufficiently long, then it has j (disjoint) zero-sum subsequence.'
Question (Halter-Koch, 92): What does 'sufficiently long' mean precisely?
I.o.w: Determine the smallest $D_{j}(G)$ such that each sequence of length at least $D_{j}(G)$ has a j disjoint zero-sum subsequence. Equivalently: determine the maximum length of a sequence in G without j disjoint zero-sum subsequence (few zero-free subsequences).

A motivation, Recasting the Inductive Method

Delorme, Ordaz, Quiroz showed:
Let G be a finite abelian group and H a subgroup, then

$$
\mathrm{D}(G) \leq \mathrm{D}_{\mathrm{D}(H)}(G / H)
$$

Results on $D_{j}(G)$

Exact value:

Known for groups of rank at most two and in closely related situations (Halter-Koch; Delorme, Ordaz, Quiroz).
Yet, in contrast to the standard Davenport constant, not known
for general p-groups.
For elementary p-groups its is known (for all j) for:

For specific j, in particular $j=2$, known for some more C_{2}^{r}.

Results on $D_{j}(G)$

Exact value:

Known for groups of rank at most two and in closely related situations (Halter-Koch; Delorme, Ordaz, Quiroz). Yet, in contrast to the standard Davenport constant, not known for general p-groups.
For elementary p-groups its is known (for all j) for:

For specific j, in particular $j=2$, known for some more C_{2}^{r}.

Results on $D_{j}(G)$

Exact value:
Known for groups of rank at most two and in closely related situations (Halter-Koch; Delorme, Ordaz, Quiroz).
Yet, in contrast to the standard Davenport constant, not known for general p-groups.
For elementary p-groups its is known (for all j) for:

- C_{2}^{3} (Delorme, Ordaz, Quiroz)
- C_{3}^{3} (Bhowmik, Schlage-Puchta)
- C_{2}^{4}, C_{2}^{5} (Freeze, S.)

For specific j, in particular $j=2$, known for some more C_{2}^{r}.

Results on $D_{j}(G)$

Exact value:
Known for groups of rank at most two and in closely related situations (Halter-Koch; Delorme, Ordaz, Quiroz).
Yet, in contrast to the standard Davenport constant, not known for general p-groups.
For elementary p-groups its is known (for all j) for:

- C_{2}^{3} (Delorme, Ordaz, Quiroz)
- C_{3}^{3} (Bhowmik, Schlage-Puchta)
- C_{2}^{4}, C_{2}^{5} (Freeze, S.)

For specific j, in particular $j=2$, known for some more C_{2}^{r}.

Results on $D_{j}(G)$

Exact value:
Known for groups of rank at most two and in closely related situations (Halter-Koch; Delorme, Ordaz, Quiroz).
Yet, in contrast to the standard Davenport constant, not known for general p-groups.
For elementary p-groups its is known (for all j) for:

- C_{2}^{3} (Delorme, Ordaz, Quiroz)
- C_{3}^{3} (Bhowmik, Schlage-Puchta)
- C_{2}^{4}, C_{2}^{5} (Freeze, S.)

For specific j, in particular $j=2$, known for some more C_{2}^{r}.

Results on $D_{j}(G)$

Exact value:
Known for groups of rank at most two and in closely related situations (Halter-Koch; Delorme, Ordaz, Quiroz).
Yet, in contrast to the standard Davenport constant, not known for general p-groups.
For elementary p-groups its is known (for all j) for:

- C_{2}^{3} (Delorme, Ordaz, Quiroz)
- C_{3}^{3} (Bhowmik, Schlage-Puchta)
- C_{2}^{4}, C_{2}^{5} (Freeze, S.)

For specific j, in particular $j=2$, known for some more C_{2}^{r}.

Results on $D_{j}(G)$

Exact value:
Known for groups of rank at most two and in closely related situations (Halter-Koch; Delorme, Ordaz, Quiroz).
Yet, in contrast to the standard Davenport constant, not known for general p-groups.
For elementary p-groups its is known (for all j) for:

- C_{2}^{3} (Delorme, Ordaz, Quiroz)
- C_{3}^{3} (Bhowmik, Schlage-Puchta)
- C_{2}^{4}, C_{2}^{5} (Freeze, S.)

For specific j, in particular $j=2$, known for some more C_{2}^{r}.

Some classical bounds on $D_{j}(G)$

Lower bound:

Let $G=H \oplus C_{n}$ with $n=\exp (G)$. Then,

$$
\mathrm{D}_{j}(G) \geq j \exp (G)+\mathrm{D}(H)-1
$$

Sharp for groups of rank ≤ 2, and some other cases; but this is/should be a rare phenomenon.
Upper bounds:
Clearly, $D_{j}(G) \leq j D(G)$; this is only sharp for cyclic groups.

$$
D_{j}(G) \leq j \exp (G)+\max \{D(G)-\exp (G), \eta(G)-2 \exp (G)\}
$$

(Sharp for groups of rank ≤ 2; some other cases but rarely.)
For example for $G=C_{2}^{r}, r \geq 3$, one gets

$$
r-1+2 j \leq D_{j}(G) \leq 2^{r}-4+2 j
$$

Some classical bounds on $D_{j}(G)$

Lower bound:

Let $G=H \oplus C_{n}$ with $n=\exp (G)$. Then,

$$
\mathrm{D}_{j}(G) \geq j \exp (G)+\mathrm{D}(H)-1
$$

Sharp for groups of rank ≤ 2, and some other cases; but this is/should be a rare phenomenon.
Upper bounds:
Clearly, $\mathrm{D}_{j}(G) \leq j \mathrm{D}(G)$; this is only sharp for cyclic groups.
$D_{j}(G) \leq j \exp (G)+\max \{D(G)-\exp (G), \eta(G)-2 \exp (G)\}$
(Sharp for groups of rank ≤ 2; some other cases but rarely.)
For example for $G=C_{2}^{r}, r \geq 3$, one gets

$$
r-1+2 j \leq D_{j}(G) \leq 2^{r}-4+2 j
$$

Some classical bounds on $\mathrm{D}_{j}(G)$

Lower bound:

Let $G=H \oplus C_{n}$ with $n=\exp (G)$. Then,

$$
\mathrm{D}_{j}(G) \geq j \exp (G)+\mathrm{D}(H)-1
$$

Sharp for groups of rank ≤ 2, and some other cases; but this is/should be a rare phenomenon.
Upper bounds:
Clearly, $D_{j}(G) \leq j D(G)$; this is only sharp for cyclic groups.

$$
D_{j}(G) \leq j \exp (G)+\max \{D(G)-\exp (G), \eta(G)-2 \exp (G)\}
$$

(Sharp for groups of rank ≤ 2; some other cases but rarely.)
For example for $G=C_{2}^{r}, r \geq 3$, one gets

Some classical bounds on $D_{j}(G)$

Lower bound:

Let $G=H \oplus C_{n}$ with $n=\exp (G)$. Then,

$$
\mathrm{D}_{j}(G) \geq j \exp (G)+\mathrm{D}(H)-1
$$

Sharp for groups of rank ≤ 2, and some other cases; but this is/should be a rare phenomenon.

Upper bounds:

Clearly, $\mathrm{D}_{j}(G) \leq j \mathrm{D}(G)$; this is only sharp for cyclic groups.

$$
\mathrm{D}_{j}(G) \leq j \exp (G)+\max \{\mathrm{D}(G)-\exp (G), \eta(G)-2 \exp (G)\}
$$

(Sharp for groups of rank ≤ 2; some other cases but rarely.)
For example for $G=C_{2}^{r}, r \geq 3$, one gets

$$
r-1+2 j \leq \mathrm{D}_{j}(G) \leq 2^{r}-4+2 j
$$

Elementary 2-groups, small j

Theorem (Plagne and S.)

For each sufficiently large integer r we have
$1.261 r \leq D_{2}\left(C_{2}^{r}\right) \leq 1.396 r$,
$1.500 r \leq D_{3}\left(C_{2}^{r}\right) \leq 1.771 r$,
$1.723 r \leq D_{4}\left(C_{2}^{r}\right) \leq 2.131 r$,
$1.934 r \leq D_{5}\left(C_{2}^{r}\right) \leq 2.478 r$,
$2.137 r \leq D_{6}\left(C_{2}^{r}\right) \leq 2.815 r$,
$2.333 r \leq D_{7}\left(C_{2}^{r}\right) \leq 3.143 r$,
$2.523 r \leq D_{8}\left(C_{2}^{r}\right) \leq 3.464 r$,
$2.709 r \leq D_{9}\left(C_{2}^{r}\right) \leq 3.778 r$,
$2.890 r \leq D_{10}\left(C_{2}^{r}\right) \leq 4.087 r$.

For $j=2$, Komlós and Katona-Srivastava; in a different context.

Elementary 2-groups, small j, II

Theorem (Plagne and S.)

When j tends to infinity, we have the following:
$\log 2\left(\frac{j}{\log j}\right) \lesssim \liminf _{r \rightarrow+\infty} \frac{\mathrm{D}_{j}\left(C_{2}^{r}\right)}{r} \leq \limsup _{r \rightarrow+\infty} \frac{\mathrm{D}_{j}\left(C_{2}^{r}\right)}{r} \lesssim 2 \log 2\left(\frac{j}{\log j}\right)$.

Link to coding theory

(Cohen-Zémor)
Let $g_{1} \ldots g_{n}$ sequence in C_{2}^{r}. Consider $g_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{r}\right)^{T}$ with $a_{i}^{j} \in C_{2}$.
Then $\sum_{i \in I} g_{i}=0$ if and only if

where $x_{l}^{T}=\left(x_{l}^{j}\right) \in C_{2}^{n}$ with x_{l}^{j} equal 1 if $j \in I$ and 0 otherwise.
Thus, $g_{1} \ldots g_{n}$ has a zero-sum subsequence of length at most
d' if and only if the minimal distance of the code with parity
check matrix $\left[g_{1}|\cdots| g_{n}\right]$ has minimal distance at most d.

Link to coding theory

(Cohen-Zémor)
Let $g_{1} \ldots g_{n}$ sequence in C_{2}^{r}. Consider $g_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{r}\right)^{T}$ with $a_{i}^{j} \in C_{2}$.
Then $\sum_{i \in I} g_{i}=0$ if and only if

$$
\left[g_{1}|\cdots| g_{n}\right] x_{l}=0
$$

where $x_{I}^{T}=\left(x_{I}^{j}\right) \in C_{2}^{n}$ with x_{I}^{j} equal 1 if $j \in I$ and 0 otherwise.
Thus, $g_{1} \ldots g_{n}$ has a zero-sum subsequence of length at most d if and only if the minimal distance of the code with parity check matrix $\left[g_{1}|\cdots| g_{n}\right]$ has minimal distance at most d.

Link to coding theory

(Cohen-Zémor)
Let $g_{1} \ldots g_{n}$ sequence in C_{2}^{r}. Consider $g_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{r}\right)^{T}$ with $a_{i}^{j} \in C_{2}$.
Then $\sum_{i \in I} g_{i}=0$ if and only if

$$
\left[g_{1}|\cdots| g_{n}\right] x_{l}=0
$$

where $x_{I}^{T}=\left(x_{I}^{j}\right) \in C_{2}^{n}$ with x_{l}^{j} equal 1 if $j \in I$ and 0 otherwise. Thus, $g_{1} \ldots g_{n}$ has a zero-sum subsequence of length at most d if and only if the minimal distance of the code with parity check matrix $\left[g_{1}|\cdots| g_{n}\right]$ has minimal distance at most d.

Intersecting codes

A code is called intersecting if each two non-zero codewords do not have disjoint support. (Studied by Katona, Miklós, Cohen-Lempel,...)
The following are (essentially) equivalent [Cohen-Zémor]:

Intersecting codes

A code is called intersecting if each two non-zero codewords do not have disjoint support. (Studied by Katona, Miklós, Cohen-Lempel,...)
The following are (essentially) equivalent [Cohen-Zémor]:

- Determine for which n, k intersecting $[n, k]$-codes exist.
- Determine $\mathrm{D}_{2}\left(C_{2}^{r}\right)$.

Intersecting codes

A code is called intersecting if each two non-zero codewords do not have disjoint support. (Studied by Katona, Miklós, Cohen-Lempel,...)
The following are (essentially) equivalent [Cohen-Zémor]:

- Determine for which n, k intersecting $[n, k]$-codes exist.
- Determine $\mathrm{D}_{2}\left(C_{2}^{r}\right)$.

Argument for the upper bounds

Delorme, Ordaz, and Quiroz:

$$
\mathrm{D}_{j+1}(G) \leq \min _{i \in \mathbb{N}} \max \left\{\mathrm{D}_{j}(G)+i, \mathrm{~s}_{\leq i}(G)-1\right\}
$$

Need/want knowledge on $\mathrm{S}_{\leq i}\left(\mathrm{C}_{2}^{r}\right)$; then apply repeatedly.

Argument for the upper bounds

Delorme, Ordaz, and Quiroz:

$$
\mathrm{D}_{j+1}(G) \leq \min _{i \in \mathbb{N}} \max \left\{\mathrm{D}_{j}(G)+i, \mathrm{~s}_{\leq i}(G)-1\right\}
$$

Need/want knowledge on $\mathrm{s}_{\leq i}\left(C_{2}^{r}\right)$; then apply repeatedly.

Some ad-hoc terminology

Let $f:[0,1] \rightarrow[0,1]$ (non-increasing, continuous, and) each [n, k, d] code (binary linear) satisfies

$$
\frac{k}{n} \leq f\left(\frac{d}{n}\right)
$$

I.o.w., the functions in the upper bounds of the rate of a code by a function of its normalized minimal distance. Call it "upper-bounding function"; and "asypmtotically upper-bounding function" if holds for all large n.
E.g. Hamming bound:

with

Some ad-hoc terminology

Let $f:[0,1] \rightarrow[0,1]$ (non-increasing, continuous, and) each [n, k, d] code (binary linear) satisfies

$$
\frac{k}{n} \leq f\left(\frac{d}{n}\right)
$$

I.o.w., the functions in the upper bounds of the rate of a code by a function of its normalized minimal distance. Call it "upper-bounding function"; and "asypmtotically upper-bounding function" if holds for all large n.
E.g. Hamming bound:

$$
f(\delta)=1-h\left(\frac{\delta}{2}\right)
$$

with

$$
h(u)=-u \log _{2} u-(1-u) \log _{2}(1-u)
$$

binary entropy.

Key lemma

Lemma

Let f be an [asymptotic] upper-bounding function. Let d, n, and r be three positive integers [n sufficiently large] satisfying
$2 \leq d \leq n-1$ and

$$
\frac{n-r}{n}>f\left(\frac{d+1}{n}\right)
$$

then

$$
\mathbf{s}_{\leq d}\left(C_{2}^{r}\right) \leq n
$$

Upper bounds, summary

- Use DOQ to reduce to $\mathrm{s}_{\leq i}\left(C_{2}^{r}\right)$.
- Reduce $\mathrm{s}_{\leq i}\left(\mathrm{C}_{2}^{r}\right)$ to "bounds on codes."
- Use bounds from coding theory (small j, McEliece, Rodemich, Rumsey, and Welch; asymt. Hamming)
- Perform some computations and assemble the pieces.

Upper bounds, summary

- Use DOQ to reduce to $\mathrm{s}_{\leq i}\left(C_{2}^{r}\right)$.
- Reduce $\mathrm{s}_{\leq i}\left(C_{2}^{r}\right)$ to "bounds on codes."
- Use bounds from coding theory (small j, McEliece, Rodemich, Rumsey, and Welch; asymt. Hamming)
- Perform some computations and assemble the pieces.

Upper bounds, summary

- Use DOQ to reduce to $\mathrm{s}_{\leq i}\left(C_{2}^{r}\right)$.
- Reduce $\mathrm{s}_{\leq i}\left(C_{2}^{r}\right)$ to "bounds on codes."
- Use bounds from coding theory (small j, McEliece, Rodemich, Rumsey, and Welch; asymt. Hamming)
- Perform some computations and assemble the pieces.

Upper bounds, summary

- Use DOQ to reduce to $\mathrm{s}_{\leq i}\left(C_{2}^{r}\right)$.
- Reduce $\mathrm{s}_{\leq i}\left(C_{2}^{r}\right)$ to "bounds on codes."
- Use bounds from coding theory (small j, McEliece, Rodemich, Rumsey, and Welch; asymt. Hamming)
- Perform some computations and assemble the pieces.

Lower bounds

Let j be a positive integer. Then

$$
\mathrm{D}_{j}\left(C_{2}^{r}\right) \geq \log 2 \frac{j}{\log (j+1)} r
$$

as r tends to infinity.
Proved via a counting argument similar to argument of Cohen-Lempel for intersecting codes, $j=2$.

Lower bounds

Let j be a positive integer. Then

$$
\mathrm{D}_{j}\left(C_{2}^{r}\right) \geq \log 2 \frac{j}{\log (j+1)} r
$$

as r tends to infinity.
Proved via a counting argument similar to argument of Cohen-Lempel for intersecting codes, $j=2$.

True value?

Extrapolating a Conjecture of Cohen-Lempel:
For any positive integer j,

$$
\lim _{r \rightarrow+\infty} \frac{\mathrm{D}_{j}\left(C_{2}^{r}\right)}{r} \sim \log 2\left(\frac{j}{\log j}\right)
$$

That is the lower bound.

Weighted Davenport constant, recall

For $(G,+)$ finite abelian group and $W \subset \mathbb{Z}$. Let $D_{W}(G)$ denote the W-weighted Davenport constant, i.e.,

- the smallest ℓ such that each sequence $g_{1} \ldots g_{\ell}$ over G has a (non-empty) W-weighted zero-sum subsequence, i.e., $\sum_{i \in I} w_{i} g_{i}=0$ for some $\emptyset \neq I \subset\{1, \ldots \ell\}$ and $w_{i} \in W$.

Multiwise weighted Davenport constant

Let $D_{W, j}(G)$ denote the W-weighted j-wise Davenport constant, i.e.,

- the smallest ℓ such that each sequence $g_{1} \ldots g_{\ell}$ over G has a j disjoint (non-empty) W-weighted zero-sum subsequence, i.e., $\sum_{i \in l_{k}} w_{i} g_{i}=0$ for some disjoint $\emptyset \neq I_{k} \subset\{1, \ldots \ell\}$ and $w_{i} \in W$ (for $k=1, \ldots, j$).
(Marchan, Ordaz, Santos, S.)

Which sets of weights?

We focus on:

- $\{-1,1\}$ (plus-minus weighted)
- $A=\{1,2, \ldots, \exp (G)-1\}$ (fully weighted)

But there are plenty of other options (see next talk).

Which sets of weights?

We focus on:

- $\{-1,1\}$ (plus-minus weighted)
- $A=\{1,2, \ldots, \exp (G)-1\}$ (fully weighted)

But there are plenty of other options (see next talk).

Which sets of weights?

We focus on:

- $\{-1,1\}$ (plus-minus weighted)
- $A=\{1,2, \ldots, \exp (G)-1\}$ (fully weighted)

But there are plenty of other options (see next talk).

Which sets of weights?

We focus on:

- $\{-1,1\}$ (plus-minus weighted)
- $A=\{1,2, \ldots, \exp (G)-1\}$ (fully weighted)

But there are plenty of other options (see next talk).

Equivalences

Lemma

Let p be an odd prime, and let $r \geq 3$ and $n \geq 4$ be integers. Let $g_{1}, \ldots, g_{n} \in C_{p}^{r} \backslash\{0\}$ and assume the g_{i} 's generate C_{p}^{r}. The following statements are equivalent.

1. The sequence $g_{1} \ldots g_{n}$ has no A-weighted zero-subsum of lengths at most 3.
2. The $[n, n-r]_{D}$-code with parity check matrix $\left[g_{1}\right.$
has minimal distance at least 4 .
3. The set of points represented by the g_{i} 's in the projective space of dimension $r-1$ over the field with p elements is a cap set of size n, that is there are no three points on a line.

Equivalences

Lemma

Let p be an odd prime, and let $r \geq 3$ and $n \geq 4$ be integers. Let $g_{1}, \ldots, g_{n} \in C_{p}^{r} \backslash\{0\}$ and assume the g_{i} 's generate C_{p}^{r}. The following statements are equivalent.

1. The sequence $g_{1} \ldots g_{n}$ has no A-weighted zero-subsum of lengths at most 3.
2. The $[n, n-r]_{p}$-code with parity check matrix $\left[g_{1}\right.$ has minimal distance at least 4.
3. The set of points represented by the gi's in the projective space of dimension r-1 over the field with p elements is a cap set of size n, that is there are no three points on a line.

Equivalences

Lemma

Let p be an odd prime, and let $r \geq 3$ and $n \geq 4$ be integers. Let $g_{1}, \ldots, g_{n} \in C_{p}^{r} \backslash\{0\}$ and assume the g_{i} 's generate C_{p}^{r}. The following statements are equivalent.

1. The sequence $g_{1} \ldots g_{n}$ has no A-weighted zero-subsum of lengths at most 3.
2. The $[n, n-r]_{p}$-code with parity check matrix $\left[g_{1}|\cdots| g_{n}\right]$ has minimal distance at least 4.
3. The set of points represented by the g_{i} 's in the projective space of dimension $r-1$ over the field with p elements is a cap set of size n, that is there are no three points on a line.

Equivalences

Lemma

Let p be an odd prime, and let $r \geq 3$ and $n \geq 4$ be integers. Let $g_{1}, \ldots, g_{n} \in C_{p}^{r} \backslash\{0\}$ and assume the g_{i} 's generate C_{p}^{r}. The following statements are equivalent.

1. The sequence $g_{1} \ldots g_{n}$ has no A-weighted zero-subsum of lengths at most 3.
2. The $[n, n-r]_{p}$-code with parity check matrix $\left[g_{1}|\cdots| g_{n}\right]$ has minimal distance at least 4.
3. The set of points represented by the g_{i} 's in the projective space of dimension $r-1$ over the field with p elements is a cap set of size n, that is there are no three points on a line.

Equivalences, II

In particular, the following integers are equal.

- $\mathrm{s}_{A, \leq 3}\left(C_{p}^{r}\right)-1$.
- The maximal n such that there exists an $[n, n-r]_{p}$-code of minimal distance at least four.
- The maximal cardinality of a can set in the projective space of dimension $r-1$ over \mathbb{F}_{p}.

Equivalences, II

In particular, the following integers are equal.

- $\mathrm{s}_{A, \leq 3}\left(C_{p}^{r}\right)-1$.
- The maximal n such that there exists an $[n, n-r]_{p}$-code of minimal distance at least four.
- The maximal cardinality of a cap set in the projective space of dimension r - 1 over \mathbb{F}_{p}.

Equivalences, II

In particular, the following integers are equal.

- $\mathrm{S}_{A, \leq 3}\left(C_{p}^{r}\right)-1$.
- The maximal n such that there exists an $[n, n-r]_{p}$-code of minimal distance at least four.
- The maximal cardinality of a cap set in the projective space of dimension $r-1$ over \mathbb{F}_{p}.

Equivalences, III

Let $g_{1} \ldots g_{n}$ sequence in C_{p}^{r}. Consider $g_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{r}\right)^{T}$ with $a_{i}^{j} \in C_{p}$.
Then $\sum_{i \in I} w_{i} g_{i}=0$ if and only if

$$
\left[g_{1}|\cdots| g_{n}\right] x_{l}=0
$$

where $x_{l}^{T}=\left(x_{l}^{j}\right) \in C_{p}^{n}$ with x_{l}^{j} equal w_{i} if $j \in I$ and 0 otherwise. Thus, $g_{1} \ldots g_{n}$ has a A-weighted zero-sum subsequence of length at most dif and only if the minimal distance of the code with parity check matrix $\left[g_{1}|\cdots| g_{n}\right]$ has minimal distance at most d.

Equivalences, III

Let $g_{1} \ldots g_{n}$ sequence in C_{p}^{r}. Consider $g_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{r}\right)^{T}$ with $a_{i}^{j} \in C_{p}$.
Then $\sum_{i \in I} w_{i} g_{i}=0$ if and only if

$$
\left[g_{1}|\cdots| g_{n}\right] x_{l}=0
$$

where $x_{I}^{T}=\left(x_{I}^{j}\right) \in C_{p}^{n}$ with x_{I}^{j} equal w_{i} if $j \in I$ and 0 otherwise.
Thus, $g_{1} \ldots g_{n}$ has a A-weighted zero-sum subsequence of
length at most d if and only if the minimal distance of the code with parity check matrix $\left[g_{1}|\cdots| g_{n}\right]$ has minimal distance at
most d.

Equivalences, III

Let $g_{1} \ldots g_{n}$ sequence in C_{p}^{r}. Consider $g_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{r}\right)^{T}$ with $a_{i}^{j} \in C_{p}$.
Then $\sum_{i \in I} w_{i} g_{i}=0$ if and only if

$$
\left[g_{1}|\cdots| g_{n}\right] x_{l}=0
$$

where $x_{I}^{T}=\left(x_{I}^{j}\right) \in C_{p}^{n}$ with x_{I}^{j} equal w_{i} if $j \in I$ and 0 otherwise. Thus, $g_{1} \ldots g_{n}$ has a A-weighted zero-sum subsequence of length at most d if and only if the minimal distance of the code with parity check matrix $\left[g_{1}|\cdots| g_{n}\right]$ has minimal distance at most d.

Lemma

Let $j \in \mathbb{N}$ and let p be a prime number. Then, for sufficiently large r, with $A=\{1, \ldots, p-1\}$,

$$
\mathrm{D}_{A, j}\left(C_{p}^{r}\right) \geq \log p \frac{j}{\log (1+j(p-1))} r
$$

Theorem (Marchan, Ordaz, Santos, S.)
Let p be a primer number and $\Delta=\{1, \cdots, n-1\}$. When m tends to infinity, we have

Lemma

Let $j \in \mathbb{N}$ and let p be a prime number. Then, for sufficiently large r, with $A=\{1, \ldots, p-1\}$,

$$
\mathrm{D}_{A, j}\left(C_{p}^{r}\right) \geq \log p \frac{j}{\log (1+j(p-1))} r
$$

Theorem (Marchan, Ordaz, Santos, S.)

Let p be a primer number and $A=\{1, \cdots, p-1\}$. When m tends to infinity, we have

$$
\limsup _{r \rightarrow+\infty} \frac{\mathrm{D}_{A, j}\left(C_{p}^{r}\right)}{r} \lesssim 2 \log p \frac{j}{\log j}
$$

Weighted zero-sum problems and codes

W.A. Schmid ${ }^{2}$

LAGA, Université Paris 8

April 2016

