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Péter Pál Pach On Multiplicative Bases and some Related Problems



Questions

How dense can a set A ⊆ N be, if the equation ab = cd has no
solution consisting of distinct elements of A?

(multiplicative
Sidon-set)

How dense can a set A ⊆ N be, if the equation
a1a2 . . . ak = b1b2 . . . bk has no solution consisting of distinct
elements of A?

How dense can a set A ⊆ N be, if the equation

x2 = a1a2 . . . a2k (a1, a2, . . . , a2k ∈ A)

has no solution consisting of distinct elements?
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Péter Pál Pach On Multiplicative Bases and some Related Problems



Questions

How dense can a set A ⊆ N be, if the equation ab = cd has no
solution consisting of distinct elements of A?

(multiplicative
Sidon-set)

How dense can a set A ⊆ N be, if the equation
a1a2 . . . ak = b1b2 . . . bk has no solution consisting of distinct
elements of A?

How dense can a set A ⊆ N be, if the equation

x2 = a1a2 . . . a2k (a1, a2, . . . , a2k ∈ A)

has no solution consisting of distinct elements?
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Questions

How dense can a set A ⊆ N be, if none of its elements divides any
other?

(primitive set)

How dense can a set A ⊆ N be, if none of its elements divides the
product of k others?
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Connection

a1, . . . , ak , b1, . . . , bk are distinct
a1a2 . . . ak = b1b2 . . . bk =⇒ a1 . . . akb1 . . . bk = x2

x2 = a1 . . . a2k has no solution in A =⇒ a1a2 . . . ak = b1b2 . . . bk has no
solution in A
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Multiplicative Sidon-sequences

a1a2 = b1b2 has no solution in A

Erdős

A ⊆ {1, 2, . . . , n} =⇒ max |A| ∼ π(n)

, moreover:
(1938) π(n) + c1n

3/4(log n)−3/2 < max |A| < π(n) + c2n
3/4

(1969) π(n) + c1n
3/4(log n)−3/2 < max |A| < π(n) + c2n

3/4(log n)−3/2
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a1a2a3 = b1b2b3

a1a2a3 = b1b2b3

max |A|

≥ π(n)
A = {p | p ≤ n, p is a prime}
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a1a2a3 = b1b2b3

a1a2a3 = b1b2b3

max |A| ≥ π(n) + π(n/2)
A = {p | p ≤ n, p is a prime} ∪ {2q | q ≤ n/2, q is a prime}
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G : graph

element −→ edge

m = uv −→ uv edge

V (G ) = {1, 2, . . . , n}
E (G ) = {uivi | mi ∈ A}

G is C6-free

If x1x2x3x4x5x6x1 is a 6-cycle in G , then
(x1x2)(x3x4)(x5x6) = (x2x3)(x4x5)(x6x1).
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Péter Pál Pach On Multiplicative Bases and some Related Problems



What are the edges in G?

Lemma (Erdős)

∀m ≤ n ∃u, v : m = uv and

(1) u, v ≤ n2/3, or

(2) u > n2/3, u is a prime.
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What are the edges in G?

Lemma

∀m ≤ n ∃u, v : m = uv and

(1) u, v ≤
√
n · g , or

(2) u > n2/3, u is a prime, or

(3)
√
n · g ≤ u ≤ n2/3 and Ω(u) ≤ log n

2 log g

How to choose g(n)?

condition (3) −→ g(n) = ec log n/ log log n
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Maximal number of edges of C6-free graphs

Füredi, Naor, Verstraëte, Győri

ex(n,C6) < cn
4
3

ex(u, v ,C6) < (uv)2/3 + 16(u + v)

ex(u, v ,C6) < 2u + v2/2
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ex(n,C6) < cn
4
3

ex(u, v ,C6) < (uv)2/3 + 16(u + v)

ex(u, v ,C6) < 2u + v2/2
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Füredi, Naor, Verstraëte, Győri

ex(n,C6) < cn
4
3

ex(u, v ,C6) < (uv)2/3 + 16(u + v)

ex(u, v ,C6) < 2u + v2/2
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a1a2a3 = b1b2b3

Theorem (P.)

π(n)+π(n/2)+cn2/3(log n)−4/3 ≤ max |A| ≤ π(n)+π(n/2)+cn2/3 log n
log log n
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a1a2 . . . ak = b1b2 . . . bk

Theorem (P.)

2|k , 2 < k =⇒ max |A| ≤ π(n) + cn2/3 log n
2 - k =⇒ max |A| ≤ π(n) + π(n/2) + cn2/3 log n

log log n
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a1a2 . . . a2k = x2

Erdős, Sárközy, T. Sós (1995)

2 - k =⇒ max |A| ≤ π(n) + π(n/2) + cn7/9 log n

Győri (1997)

2 - k =⇒ max |A| ≤ π(n) + π(n/2) + cn2/3 log n

Theorem (P.)

2 - k =⇒ max |A| ≤ π(n) + π(n/2) + cn2/3 log n
log log n
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a1a2 . . . a2k = x2

Erdős, Sárközy, T. Sós (1995)

2|k =⇒ max |A| ≤ π(n) + cn3/4(log n)−3/2

Theorem (P.)

2|k , 2 < k =⇒ max |A| ≤ π(n) + cn2/3 log n
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a1a2 . . . a8 = x2

Erdős, Sárközy, T. Sós (1995)

π(n) + cn4/7(log n)−8/7 ≤ max |A|

Theorem (P.)

π(n) + n3/5(log n)−6/5 ≤ max |A|
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a0 - a1a2 . . . ak

Fk(n): maximal size of such a subset of {1, 2, . . . , n}

A ⊆ {1, 2, . . . , n}

(Erdős, 1938) F2(n) ≤ π(n) + n2/3

(Chan, Győri, Sárközy, 2010) π(n) + n
2

k+1

8k2(log n)2 ≤ Fk(n)

(Chan, Győri, Sárközy, 2010) F3(n) ≤ π(n) + c n1/2

(log n)2

(Chan, Győri, Sárközy, 2010) F4(n) ≤ π(n) + cn2/5

(Chan, 2011) π(n) + c
k2

n
2

k+1

(log n)2 ≤ Fk(n) ≤ π(n) + ck2 n
2

k+1

(log n)2
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(Chan, Győri, Sárközy, 2010) π(n) + n
2

k+1

8k2(log n)2 ≤ Fk(n)
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a0 - a1a2 . . . ak and multiplicative bases

Lemma

If B is a multiplicative basis of order k for {1, 2, . . . , n}, then Fk(n) ≤ |B|.

How small can a MB of order k be?

Gk(n): minimal size of a MB of order k for {1, 2, . . . , n}

(Chan, 2011) π(n) + c1
k2

n
2

k+1

(log n)2 ≤ Fk(n) ≤ Gk(n) ≤ π(n) + c2k
2 n

2
k+1

(log n)2

(P., Sándor) π(n) + c1k
n

2
k+1

(log n)2 ≤ Gk(n) ≤ π(n) + c2k
n

2
k+1

(log n)2

(P., Sándor) π(n) + c1
n

2
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(log n)2 ≤ Fk(n) ≤ π(n) + c2
n

2
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(log n)2
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Péter Pál Pach On Multiplicative Bases and some Related Problems



a0 - a1a2 . . . ak and multiplicative bases

Lemma

If B is a multiplicative basis of order k for {1, 2, . . . , n}, then Fk(n) ≤ |B|.

How small can a MB of order k be?

Gk(n): minimal size of a MB of order k for {1, 2, . . . , n}

(Chan, 2011) π(n) + c1
k2

n
2

k+1

(log n)2 ≤ Fk(n) ≤ Gk(n) ≤ π(n) + c2k
2 n

2
k+1

(log n)2

(P., Sándor) π(n) + c1k
n

2
k+1

(log n)2 ≤ Gk(n) ≤ π(n) + c2k
n

2
k+1

(log n)2

(P., Sándor) π(n) + c1
n

2
k+1

(log n)2 ≤ Fk(n) ≤ π(n) + c2
n

2
k+1

(log n)2
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Multiplicative bases (of order k)

Lemma

Let B0 = {primes ≤ n} ∪
{
x : x ≤ n

2
k+1

(log n)2

}
.

If a ≤ n is not in Bk
0 , then

a = p1p2 . . . pk+1a
′,

where p1 ≥ p2 ≥ · · · ≥ pk+1 are primes such that pkpk+1 >
n

2
k+1

(log n)2 .

To get a MB of order k

We need at least one edge in each {p1, p2, . . . , pk+1}.

a0 - a1 . . . ak-problem

The sets {p1, p2, . . . , pk+1} intersect each other in at most one element.
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Infinite multiplicative bases (of order k)

Raikov (1938)

B is a MB of order k =⇒ lim sup
n→∞

|B(n)|

n/(log n)
k−1
k

≥ Γ
(

1
k

)−1
.

For every k ≥ 2 ∃ a MB of order k such that lim sup
n→∞

|B(n)|

n/(log n)
k−1
k

<∞.

Theorem (P., Sándor)

B is a MB of order k =⇒ lim sup
n→∞

|B(n)|

n/(log n)
k−1
k

≥
√

6
eπ .

∃C > 0 : For every k ≥ 2 ∃ a MB of order k such that
lim sup
n→∞

|B(n)|

n/(log n)
k−1
k

< C .

Theorem (P., Sándor)

B is a MB of order k =⇒ lim inf
n→∞

|B(n)|
n

log n
> 1.

But it can be < 1 + ε.
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a0 - a1 . . . ak-problem, infinite case

Theorem (P., Sándor)

∀k ≥ 2 ∃ A ⊆ Z+ such that lim sup
n→∞

|A(n)|−π(n)
n2/(k+1)

(log n)2

> 0.

Theorem (P., Sándor)

∀ε > 0 lim inf
n→∞

|A(n)|−π(n)
nε <∞.

But ∃c > 0 such that ∀k ≥ 2 ∃A ⊆ Z+ such that

|A(n)| ≥ π(n) + exp

{
(log n)

1− c
√

log k√
log log n

}
holds for every n ≥ 10.
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a0 - a1 . . . ak-problem, infinite case, liminf

Theorem (P., Sándor)

∀ε > 0 lim inf
n→∞

|A(n)|−π(n)
nε <∞.

But ∃c > 0 such that ∀k ≥ 2 ∃A ⊆ Z+ such that

|A(n)| ≥ π(n) + exp

{
(log n)

1− c
√

log k√
log log n

}
holds for every n ≥ 10.

Upper bound

Lemma: Let Q be a subset of the prime numbers satisfying |Q(n)| � nc

for some constant c > 0. Then for every ε > 0 there exists some integer
N0 = N0(ε,Q) such that for every n ≥ N0 we have

|{k : k ≤ n and every prime divisor of k is in Q}| ≤ nc+ε.
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a0 - a1 . . . ak-problem, infinite case, liminf

Construction

Take 3 sequences:
ln = kn

fn satisfies the recurrence formula fn+1 =
(

fn
2lnk

)ln
gn satisfies the recurrence formula gn+1 = gkln

n

Modify the set P of primes in the following way:
Pm := {first fm primes after gm}
Bm: a set of klm − k + 1-factor products from Pm such that none of
them divides the product of k others

Bm can be chosen such that |Bm| ≥
(

fm
2(klm−k+1)

)lm
.

All elements of Bm are less than gm+1.

A =

(
P \

∞⋃
n=1

Pn

)
∪
( ∞⋃

n=1
Bn

)
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Péter Pál Pach On Multiplicative Bases and some Related Problems



a0 - a1 . . . ak-problem, infinite case, liminf
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|Pi |
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1− c
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log k√
log log n
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Péter Pál Pach On Multiplicative Bases and some Related Problems



a0 - a1 . . . ak-problem, infinite case, liminf

Construction

A =

(
P \

∞⋃
n=1

Pn

)
∪
( ∞⋃

n=1
Bn

)
Then for gm+1 ≤ n < gm+2 we have

|A(n)| ≥ π(n)−
(

m+1∑
i=1
|Pi |
)

+ |Bm|.

. . . =⇒ |A(n)| > π(n) + exp

{
(log n)

1− c
√

log k√
log log n

}
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Logarithmic density

Theorem (P., Sándor)

B is a MB of order k =⇒ lim inf
n→∞

∑
b∈B,a≤n

1
b

k k√log n
≥
√

6
eπ .

∃C ∀k ≥ 2 ∃B MB of order k such that lim sup
n→∞

∑
b∈B,a≤n

1
b

k k√log n
< C .

a0 - a1 . . . ak-problem, logarithmic density

log log n + O(1)
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