On Multiplicative Bases and some Related Problems

Péter Pal Pach

Budapest University of Technology and Economics

13 April 2016

This research was supported by the Hungarian Scientific Research Funds
(Grant Nr. OTKA PD115978 and OTKA K108947) and the Janos Bolyai
Research Scholarship of the Hungarian Academy of Sciences.

Péter Pal Pach On Multiplicative Bases and some Related Problems



Questions

Péter P3l Pach On Multiplicative Bases and some Related Problems



@ How dense can a set A C N be, if the equation ab = cd has no
solution consisting of distinct elements of A?
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@ How dense can a set A C N be, if the equation ab = cd has no
solution consisting of distinct elements of A? (multiplicative
Sidon-set)

@ How dense can a set A C N be, if the equation
ajay...ax = biby ... bx has no solution consisting of distinct
elements of A?

@ How dense can a set A C N be, if the equation

2
X® = ajaz...a (31,32,...,32kEA)

has no solution consisting of distinct elements?
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@ How dense can a set A C N be, if none of its elements divides any
other?
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@ How dense can a set A C N be, if none of its elements divides any
other?
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@ How dense can a set A C N be, if none of its elements divides any
other? (primitive set)
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@ How dense can a set A C N be, if none of its elements divides any
other? (primitive set)

@ How dense can a set A C N be, if none of its elements divides the
product of k others?
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Connection

ai,...,ak, b1, ..., bg are distinct
3132...ak:b1b2...bk — 31...akb1...bk:X2
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Connection

ai,...,ak, b1, ..., bg are distinct
3132...ak:b1b2...bk — 31...akb1...bk:X2

x2 = aj...ap, has no solution in A = aj1ay...ax = biby ... by has no
solution in A
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Multiplicative Sidon-sequences

aia» = bi by has no solution in A J
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Multiplicative Sidon-sequences

aia» = bi by has no solution in A J

AC{L1,2,...,n} = max|A| ~ m(n)
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Multiplicative Sidon-sequences

aia» = bi by has no solution in A J

AC{1,2,...,n} = max|A| ~ m(n), moreover:
8)

7(n) 4+ c1n®*(log n)~3/2 < max|A| < m(n) + cun3/*
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Multiplicative Sidon-sequences

aia» = bi by has no solution in A J

AC{1,2,...,n} = max|A| ~ m(n), moreover:
(1938) 7(n) 4 c1n®*(log n)~3/2 < max|A| < m(n) + con3/*
(1969) 7(n) 4 c1n®/*(log n)~3/? < max|A| < m(n) + c2n**(log n)~3/2
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ajayas = bibybs

didpds3 = bl b2 b3

max |A|
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ajayas = bibybs

didpds3 = bl b2 b3

max |A|
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didpds3 = bl b2 b3

max |A|> 7(n)
A={p|p<n,pisaprime}
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ajayas = bibybs

max |A| > 7(n) + 7(n/2)
A={p|p<n,pisaprime}U{2q]| qg<n/2qisa prime}
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element — edge

m = uv —> uv edge
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element — edge

m = uv —> uv edge
V(G)={1,2,...,n}
E(G) = {u,~v,- | m; € A}

If x1x0x3x4X5X6x1 is @ 6-cycle in G, then
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element — edge

m = uv —> uv edge
V(G)={1,2,...,n}
E(G) = {u,~v,- | m; € A}

If x1x0x3x4X5X6x1 is @ 6-cycle in G, then
(X1X2)(X3X4)(X5X6) = (X2X3)(X4X5)(X6X1).
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element — edge

m = uv —> uv edge
V(G)={1,2,...,n}
E(G) = {u,~v,- | m; € A}

If x1x0x3x4X5X6x1 is @ 6-cycle in G, then
(X1X2)(X3X4)(X5X6) = (X2X3)(X4X5)(X6X1).
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What are the edges in G?

Lemma (Erdés)

Vm < ndu,v:m= uv and
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What are the edges in G?

Lemma (Erdés)

Vm < ndu,v:m= uv and

(1) u,v < n?/3 or
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What are the edges in G?

Lemma (Erdés)

Vm < ndu,v:m= uv and
(1) u,v < n?/3 or

(2) u> n?/3, uis a prime.
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What are the edges in G?

Vm < ndu,v:m= uv and

1) u,v<+/n-g,or
( g
(2) u> n?/3, uis a prime, or
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What are the edges in G?

Vm < ndu,v:m= uv and

1) u,v<+/n-g,or
( g
(2) u> n?/3, uis a prime, or

(3) vn-g <u<n?3?and Q(u)ﬁ%
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What are the edges in G?

Vm < ndu,v:m= uv and

1) u,v<+/n-g,or
( g
(2) u> n?/3, uis a prime, or

(3) ﬁ-g§u§n2/3andﬂ(u)§2"|’o% )
How to choose g(n)?
condition (3) —» g(n) = e'ogn/loglogn
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Maximal number of edges of Cs-free graphs

Furedi, Naor, Verstraéte, Gyori
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Maximal number of edges of Cs-free graphs

Furedi, Naor, Verstraéte, Gyori

e ex(n, Gs) < cn’
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Maximal number of edges of Cs-free graphs

Furedi, Naor, Verstraéte, Gyori

e ex(n, Gs) < cn’
o ex(u,v, Gs) < (uv)?3 +16(u+ v)
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Maximal number of edges of Cs-free graphs

Furedi, Naor, Verstraéte, Gyori

e ex(n, Gs) < cn’
o ex(u,v, Gs) < (uv)?3 +16(u+ v)
o ex(u,v, Gg) < 2u+v?/2
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ajayas = bibybs

Theorem (P.)

m(n)+7(n/2)+ cn?/3(log n)~*/3 < max|A| < 7r(n)+7r(n/2)+cn2/3lolg°l%
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Theorem (P.)

2|k,2 < k = max|A| < w(n) 4+ cn®3logn

2tk = max|A| < 7w(n)+ m(n/2) + cn?/3 Iolgoign
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Erdés, Sarkozy, T. Sés (1995)
21k = max|A| < w(n)+n(n/2) +cn’/®logn
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Erdés, Sarkozy, T. Sés (1995)
21k = max|A| < w(n)+n(n/2) +cn’/®logn

Gyéri (1997)
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aias ... axk :X2

Erdés, Sarkozy, T. Sés (1995)
21k = max|A| < w(n)+n(n/2) +cn’/®logn

Gyéri (1997)
21k = max|A| < 7(n)+m(n/2) + cn®3logn

Péter Pal Pach On Multiplicative Bases and some Related Problems



aias ... axk :X2

Erdés, Sarkozy, T. Sés (1995)
21k = max|A| < w(n)+n(n/2) +cn’/®logn

Gyéri (1997)
21k = max|A| < 7(n)+m(n/2) + cn®3logn

Theorem (P.)
2tk = max|A| < w(n)+7w(n/2) + cn?/ log log n

3 logn
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Erdés, Sarkozy, T. Sés (1995)

2lk = max|A| < m(n) + cn®*(log n)~3/2
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Erdés, Sarkozy, T. Sés (1995)

2lk = max|A| < m(n) + cn®*(log n)~3/2

Theorem (P.)

2|k,2 < k = max|A| < n(n) + cn®3logn
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Erdés, Sarkozy, T. Sés (1995)
7(n) 4 cn®/7(log n)8/7 < max |A|
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Erdés, Sarkozy, T. Sés (1995)
7(n) 4 cn®/7(log n)8/7 < max |A|
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Erdés, Sarkozy, T. Sés (1995)
7(n) 4 cn®/7(log n)8/7 < max |A|

Theorem (P.)

7(n) + n®/>(log n)~%/5 < max |A|
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Fi(n): maximal size of such a subset of {1,2,...,n} J
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Fi(n): maximal size of such a subset of {1,2,...,n} )

o (Erdss, 1938) Fo(n) < w(n) + n?/3

2
@ (Chan, Gybri, Sarkozy, 2010) 7(n) + 872'7(?;71"); < Fi(n)
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2
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Fi(n): maximal size of such a subset of {1,2,...,n} )

o (Erdss, 1938) Fo(n) < w(n) + n?/3

2
o (Chan, Gydri, Sarkozy, 2010) =(n) + 872'7(?;71"); < Fk( )

/2
fog T

(
o (Chan, Gydri, Sarkozy, 2010) F3(n) < w(n) + crt~s
(Chan, Gyéri, Sarkdzy, 2010) F4(n) < m(n) + cn®/®
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Fi(n): maximal size of such a subset of {1,2,...,n} )

o (Erdss, 1938) Fo(n) < w(n) + n?/3

2
Chan, Gyéri, Sarkozy, 2010) 7(n) + 872%; < Fi(n)
/2

o (Chan, Gydri, Sarkozy, 2010) F3(n) < w(n) + c(Iog oL

° (
(

o (Chan, Gydri, Sarkozy, 2010) Fa(n) < w(n) + cn?®/5
(

n k+1

Chan, 2011) 7(n) + —;(k—+)z < Fi(n) < () + ck® et
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ap 1 a1a> . . . ax and multiplicative bases

If B is a multiplicative basis of order k for {1,2,...,n}, then Fx(n) < |B|.
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ap 1 a1a> . . . ax and multiplicative bases

If B is a multiplicative basis of order k for {1,2,...,n}, then Fx(n) < |B|.

How small can a MB of order k be?
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ap 1 a1a> . . . ax and multiplicative bases

If B is a multiplicative basis of order k for {1,2,...,n}, then Fx(n) < |B|.

How small can a MB of order k be?

@ Gg(n): minimal size of a MB of order k for {1,2,...,n}
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ap 1 a1a> . . . ax and multiplicative bases

If B is a multiplicative basis of order k for {1,2,...,n}, then Fx(n) < |B|.

How small can a MB of order k be?

@ Gg(n): minimal size of a MB of order k for {1,2,...,n}
2

2 2
o (Chan, 2011) 7(n) + & 2% < Fi(n) < Gi(n) < m(n) + k2 Lo
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ap 1 a1a> . . . ax and multiplicative bases

If B is a multiplicative basis of order k for {1,2,...,n}, then Fx(n) < |B|.

How small can a MB of order k be?

@ Gg(n): minimal size of a MB of order k for {1,2,...,n}
2

2 2
o (Chan, 2011) 7(n) + & 2% < Fi(n) < Gi(n) < m(n) + k2 Lo

o 2
e (P., Séndor) w(n) + C1k(|"o;—+nl)z < Gi(n) < 7(n) + C2k(|':>;+nl)2
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ap 1 a1a> . . . ax and multiplicative bases

If B is a multiplicative basis of order k for {1,2,...,n}, then Fx(n) < |B|.

How small can a MB of order k be?

@ Gg(n): minimal size of a MB of order k for {1,2,...,n}
2

2 2
o (Chan, 2011) 7(n) + & 2% < Fi(n) < Gi(n) < m(n) + k2 Lo

2

2
e (P., Séndor) w(n) + C1k(|"o;—+nl)z < Gi(n) < m(n) + C2k(|':>;+nl)2

et 2
o (P Sindon () + 8 < Fln) < () + i
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Multiplicative bases (of order k)

Lemma

Let By = {primes < n} U {x x < AL }

If a<nisnotin B(’,‘, then
a=pip2.. -Pk+1a/7

2
where p;1 > p2 > -+ - > pg41 are primes such that pgpyri1 > %.
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Multiplicative bases (of order k)

B
Let By = {primes < n} U {x i x < (I'Z)ﬂ;}

If a< nis not in BX, then

/
a=pip2...pPk+1d,

2
where p;1 > p2 > -+ - > pg41 are primes such that pgpyri1 > %.

To get a MB of order k
We need at least one edge in each {p1, p2,. .., Pk+1}-
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Multiplicative bases (of order k)

Lemma

B
Let By = {primes < n} U {x i x < ((70;21)2}

If a< nis not in BX, then
a=pip2.. -Pk+la/7

2
where p;1 > p2 > -+ - > pg41 are primes such that pgpyri1 > ﬁ.

To get a MB of order k

We need at least one edge in each {p1,p2,..., pPki1}-

The sets {p1, p2, - -

., Pk+1} intersect each other in at most one element.
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Infinite multiplicative bases (of order k)

Raikov (1938)

B is a MB of order k —> I|msupM > I'( ) '
n—oco n/(logn) k
For every k > 2 3 a MB of order k such that lim sup L)'l < 0.
n—oo n/(logn) k
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Infinite multiplicative bases (of order k)

Raikov (1938)

B is a MB of order k —> I|msupM>I’( ) '

n—oo n/(logn) k

For every k > 2 3 a MB of order k such that lim sup L)'l < 0.
n—oo n/(logn) k

Theorem (P., Sédndor)

B is a MB of order k — ImsupM > \e/—f.
n—oo n/(logn) K

3C > 0: For every k > 2 4 a MB of order k such that

lim sup% < C.

n—oo n/(logn) kK
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Infinite multiplicative bases (of order k)

Raikov (1938)
B is a MB of order k —> I|msupM > F( ) '

n—oo n/(logn) kK

For every k > 2 3 a MB of order k such that lim sup L)'l < 00.
n—oo n/(logn) k

Theorem (P., Sédndor)

B is a MB of order k — IimsupL")Ik > g.

n—oo n/(log n)%

3C > 0: For every k > 2 4 a MB of order k such that

IimsupLﬂk,1 < C.

n—oo n/(logn) kK

Theorem (P., Séndor)

B is a MB of order k —> Iimim"mifn)| > 1.

n—o00 log n

But it can be < 1+ €.
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ap 1 ay . ..ax-problem, infinite case

Theorem (P., Sédndor)

Vk >23 AC Z" such that limsup A0 o,

n—oo (log ")2
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ap 1 ay . ..ax-problem, infinite case

Theorem (P., Sédndor)

Vk >2 3 AC Z* such that lim sup A=) - ¢

n2/(k+1)
n—oo (log ")2

Theorem (P., Sédndor)

V5>Ol|m|nfw<oo.

n—oo

But 3¢ > 0 such that Yk > 2 3A C ZT such that
c/log k
|A(n)| > m(n) 4 exp {(Iog n)'~ v'°g'°g"} holds for every n > 10.

Péter Pal Pach On Multiplicative Bases and some Related Problems



ap { ay ... ax-problem, infinite case, liminf

Theorem (P., Séndor)
Ve >0 I|m|nfM < oo.
n— o0

But 3¢ > 0 such that Yk > 2 3A C Z1 such that
_cVlogk_
|A(n)| > m(n) + exp {(Iog n)1 vloglogn} holds for every n > 10.
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ap 1 aj ... ag-problem, infinite case, liminf

Theorem (P., Sandor)
Ve >0 ||m|nfM < o0.
n—o0

But 3¢ > 0 such that Yk > 2 3A C Z1 such that
_cVlogk_
|A(n)| > m(n) + exp {(Iog n)1 Vioglog n } holds for every n > 10.

Upper bound

| A\,

Lemma: Let Q be a subset of the prime numbers satisfying |Q(n)| < n©
for some constant ¢ > 0. Then for every € > 0 there exists some integer
No = Nop(e, Q) such that for every n > Ny we have

|{k : k < n and every prime divisor of k is in @} < n°*¢
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ap 1 aj ... ag-problem, infinite case, liminf
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ap 1 aj ... ag-problem, infinite case, liminf

Construction

o Take 3 sequences:
In = k"

In
f, satisfies the recurrence formula f,1; = <722;k)

g satisfies the recurrence formula g, 11 = gk’
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ap 1 aj ... ag-problem, infinite case, liminf

o Take 3 sequences:
In= k"
In
f, satisfies the recurrence formula f,1; = (*J"k)
n

g satisfies the recurrence formula g, 11 = gk’

@ Modify the set P of primes in the following way:
P := {first f,, primes after g}
B.: a set of ki, — k + 1-factor products from P,, such that none of

them divides the product of k others

Im
B, can be chosen such that |Bp,| > (W) .
All elements of By, are less than gpm1.

A= (1 Ge) v ( )
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ap { ay ... ax-problem, infinite case, liminf
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ap { ay ... ax-problem, infinite case, liminf

o A= (p\ 0 pn)u<6 B,,)
n=1 n=1
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ap { ay ... ax-problem, infinite case, liminf

o A= (p\ 0 pn)u<6 B,,)
n=1 n=1

@ Then for gm+1 < n < gmy2 we have
m—+1
A(n)] = m(n) - (; |P,-\) T |Bl.

. = |A(n)| > m(n) + exp {(Iog n)l_\/m

c+/log k }
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Logarithmic density

Theorem (P., Séndor)

1

bEBZ<nb V6
B is a MB of order k — |Innl)lorlf k\k/lai >—7T

1

2 5
dC Vk > 2 9B MB of order k such that Iirrp_)solip —b:fk/'% < C
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Logarithmic density

Theorem (P., Séndor)

1
5
beB,a<n >
B is a MB of order k — |Innl)lorlf ¥ Vlogn

alé

1

Y 3
3C Yk > 2 3B MB of order k such that ||rr1’n_)solép ‘f’;‘j% < C.

ap 1 ay . ..ak-problem, logarithmic density
loglog n + O(1)
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