On Multiplicative Bases and some Related Problems

Péter Pál Pach

Budapest University of Technology and Economics

13 April 2016

This research was supported by the Hungarian Scientific Research Funds (Grant Nr. OTKA PD115978 and OTKA K108947) and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Questions

Questions

- How dense can a set $A \subseteq \mathbb{N}$ be, if the equation $a b=c d$ has no solution consisting of distinct elements of A ?

Questions

- How dense can a set $A \subseteq \mathbb{N}$ be, if the equation $a b=c d$ has no solution consisting of distinct elements of A ?

Questions

- How dense can a set $A \subseteq \mathbb{N}$ be, if the equation $a b=c d$ has no solution consisting of distinct elements of A ? (multiplicative Sidon-set)

Questions

- How dense can a set $A \subseteq \mathbb{N}$ be, if the equation $a b=c d$ has no solution consisting of distinct elements of A ? (multiplicative Sidon-set)
- How dense can a set $A \subseteq \mathbb{N}$ be, if the equation $a_{1} a_{2} \ldots a_{k}=b_{1} b_{2} \ldots b_{k}$ has no solution consisting of distinct elements of A ?

Questions

- How dense can a set $A \subseteq \mathbb{N}$ be, if the equation $a b=c d$ has no solution consisting of distinct elements of A ? (multiplicative Sidon-set)
- How dense can a set $A \subseteq \mathbb{N}$ be, if the equation $a_{1} a_{2} \ldots a_{k}=b_{1} b_{2} \ldots b_{k}$ has no solution consisting of distinct elements of A ?

Questions

- How dense can a set $A \subseteq \mathbb{N}$ be, if the equation $a b=c d$ has no solution consisting of distinct elements of A ? (multiplicative Sidon-set)
- How dense can a set $A \subseteq \mathbb{N}$ be, if the equation $a_{1} a_{2} \ldots a_{k}=b_{1} b_{2} \ldots b_{k}$ has no solution consisting of distinct elements of A ?
- How dense can a set $A \subseteq \mathbb{N}$ be, if the equation

$$
x^{2}=a_{1} a_{2} \ldots a_{2 k}\left(a_{1}, a_{2}, \ldots, a_{2 k} \in A\right)
$$

has no solution consisting of distinct elements?

Questions

Questions

- How dense can a set $A \subseteq \mathbb{N}$ be, if none of its elements divides any other?

Questions

- How dense can a set $A \subseteq \mathbb{N}$ be, if none of its elements divides any other?

Questions

- How dense can a set $A \subseteq \mathbb{N}$ be, if none of its elements divides any other? (primitive set)

Questions

- How dense can a set $A \subseteq \mathbb{N}$ be, if none of its elements divides any other? (primitive set)
- How dense can a set $A \subseteq \mathbb{N}$ be, if none of its elements divides the product of k others?

Connection

$$
\begin{aligned}
& a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \text { are distinct } \\
& a_{1} a_{2} \ldots a_{k}=b_{1} b_{2} \ldots b_{k} \Longrightarrow a_{1} \ldots a_{k} b_{1} \ldots b_{k}=x^{2}
\end{aligned}
$$

Connection

$$
\begin{aligned}
& a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \text { are distinct } \\
& a_{1} a_{2} \ldots a_{k}=b_{1} b_{2} \ldots b_{k} \Longrightarrow a_{1} \ldots a_{k} b_{1} \ldots b_{k}=x^{2}
\end{aligned}
$$

$x^{2}=a_{1} \ldots a_{2 k}$ has no solution in $A \Longrightarrow a_{1} a_{2} \ldots a_{k}=b_{1} b_{2} \ldots b_{k}$ has no solution in A

Multiplicative Sidon-sequences

$a_{1} a_{2}=b_{1} b_{2}$ has no solution in A

Multiplicative Sidon-sequences

$a_{1} a_{2}=b_{1} b_{2}$ has no solution in A

Erdős
$A \subseteq\{1,2, \ldots, n\} \Longrightarrow \max |A| \sim \pi(n)$

Multiplicative Sidon-sequences

$a_{1} a_{2}=b_{1} b_{2}$ has no solution in A

Erdős
$A \subseteq\{1,2, \ldots, n\} \Longrightarrow \max |A| \sim \pi(n)$

Multiplicative Sidon-sequences

$a_{1} a_{2}=b_{1} b_{2}$ has no solution in A

Erdős

$A \subseteq\{1,2, \ldots, n\} \Longrightarrow \max |A| \sim \pi(n)$, moreover:
(1938) $\pi(n)+c_{1} n^{3 / 4}(\log n)^{-3 / 2}<\max |A|<\pi(n)+c_{2} n^{3 / 4}$

Multiplicative Sidon-sequences

$a_{1} a_{2}=b_{1} b_{2}$ has no solution in A

Erdős

$A \subseteq\{1,2, \ldots, n\} \Longrightarrow \max |A| \sim \pi(n)$, moreover:
(1938) $\pi(n)+c_{1} n^{3 / 4}(\log n)^{-3 / 2}<\max |A|<\pi(n)+c_{2} n^{3 / 4}$
(1969) $\pi(n)+c_{1} n^{3 / 4}(\log n)^{-3 / 2}<\max |A|<\pi(n)+c_{2} n^{3 / 4}(\log n)^{-3 / 2}$

$a_{1} a_{2} a_{3}=b_{1} b_{2} b_{3}$

$a_{1} a_{2} a_{3}=b_{1} b_{2} b_{3}$ $\max |A|$

$a_{1} a_{2} a_{3}=b_{1} b_{2} b_{3}$

$a_{1} a_{2} a_{3}=b_{1} b_{2} b_{3}$ $\max |A|$

$a_{1} a_{2} a_{3}=b_{1} b_{2} b_{3}$

$$
\begin{aligned}
& a_{1} a_{2} a_{3}=b_{1} b_{2} b_{3} \\
& \max |A| \geq \pi(n) \\
& A=\{p \mid p \leq n, p \text { is a prime }\}
\end{aligned}
$$

$a_{1} a_{2} a_{3}=b_{1} b_{2} b_{3}$

$$
\begin{aligned}
& a_{1} a_{2} a_{3}=b_{1} b_{2} b_{3} \\
& \max |A| \geq \pi(n)+\pi(n / 2) \\
& A=\{p \mid p \leq n, p \text { is a prime }\} \cup\{2 q \mid q \leq n / 2, q \text { is a prime }\}
\end{aligned}
$$

G: graph

element \longrightarrow edge
 $m=u v \longrightarrow u v$ edge

G: graph

element \longrightarrow edge
 $m=u v \longrightarrow u v$ edge

G: graph

$$
\begin{aligned}
& \text { element } \longrightarrow \text { edge } \\
& m=u v \longrightarrow u v \text { edge } \\
& V(G)=\{1,2, \ldots, n\}
\end{aligned}
$$

G: graph

$$
\begin{aligned}
& \text { element } \longrightarrow \text { edge } \\
& m=u v \longrightarrow u v \text { edge } \\
& V(G)=\{1,2, \ldots, n\} \\
& E(G)=\left\{u_{i} v_{i} \mid m_{i} \in A\right\}
\end{aligned}
$$

G: graph

element \longrightarrow edge

$m=u v \longrightarrow u v$ edge
$V(G)=\{1,2, \ldots, n\}$
$E(G)=\left\{u_{i} v_{i} \mid m_{i} \in A\right\}$

G is C_{6}-free

G: graph

element \longrightarrow edge

$m=u v \longrightarrow u v$ edge
$V(G)=\{1,2, \ldots, n\}$
$E(G)=\left\{u_{i} v_{i} \mid m_{i} \in A\right\}$

G is C_{6}-free

G: graph

$$
\begin{aligned}
& \text { element } \longrightarrow \text { edge } \\
& m=u v \longrightarrow u v \text { edge } \\
& V(G)=\{1,2, \ldots, n\} \\
& E(G)=\left\{u_{i} v_{i} \mid m_{i} \in A\right\}
\end{aligned}
$$

G is C_{6}-free

If $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{1}$ is a 6 -cycle in G, then

G: graph

$$
\begin{aligned}
& \text { element } \longrightarrow \text { edge } \\
& m=u v \longrightarrow u v \text { edge } \\
& V(G)=\{1,2, \ldots, n\} \\
& E(G)=\left\{u_{i} v_{i} \mid m_{i} \in A\right\}
\end{aligned}
$$

G is C_{6}-free

If $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{1}$ is a 6 -cycle in G, then $\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)\left(x_{5} x_{6}\right)=\left(x_{2} x_{3}\right)\left(x_{4} x_{5}\right)\left(x_{6} x_{1}\right)$.

G: graph

$$
\begin{aligned}
& \text { element } \longrightarrow \text { edge } \\
& m=u v \longrightarrow u v \text { edge } \\
& V(G)=\{1,2, \ldots, n\} \\
& E(G)=\left\{u_{i} v_{i} \mid m_{i} \in A\right\}
\end{aligned}
$$

G is C_{6}-free

If $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{1}$ is a 6 -cycle in G, then $\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)\left(x_{5} x_{6}\right)=\left(x_{2} x_{3}\right)\left(x_{4} x_{5}\right)\left(x_{6} x_{1}\right)$.

What are the edges in G ?

```
Lemma (Erdős)
\forallm\leqn\existsu,v:m=uv and
```


What are the edges in G ?

$$
\begin{aligned}
& \text { Lemma (Erdős) } \\
& \forall m \leq n \exists u, v: m=u v \text { and } \\
& \text { (1) } u, v \leq n^{2 / 3} \text {, or }
\end{aligned}
$$

What are the edges in G ?

Lemma (Erdős)

$\forall m \leq n \exists u, v: m=u v$ and
(1) $u, v \leq n^{2 / 3}$, or
(2) $u>n^{2 / 3}, u$ is a prime.

What are the edges in G ?

Lemma
 $\forall m \leq n \exists u, v: m=u v$ and

What are the edges in G ?

$$
\begin{aligned}
& \text { Lemma } \\
& \forall m \leq n \exists u, v: m=u v \text { and } \\
& \text { (1) } u, v \leq \sqrt{n} \cdot g \text {, or }
\end{aligned}
$$

What are the edges in G ?

$$
\begin{aligned}
& \text { Lemma } \\
& \forall m \leq n \exists u, v: m=u v \text { and } \\
& \text { (1) } u, v \leq \sqrt{n} \cdot g \text {, or } \\
& \text { (2) } u>n^{2 / 3}, u \text { is a prime, or }
\end{aligned}
$$

What are the edges in G ?

$$
\begin{aligned}
& \text { Lemma } \\
& \forall m \leq n \exists u, v: m=u v \text { and } \\
& \text { (1) } u, v \leq \sqrt{n} \cdot g \text {, or } \\
& \text { (2) } u>n^{2 / 3}, u \text { is a prime, or }
\end{aligned}
$$

What are the edges in G ?

Lemma

$\forall m \leq n \exists u, v: m=u v$ and
(1) $u, v \leq \sqrt{n} \cdot g$, or
(2) $u>n^{2 / 3}, u$ is a prime, or
(3) $\sqrt{n} \cdot g \leq u \leq n^{2 / 3}$ and $\Omega(u) \leq \frac{\log n}{2 \log g}$

What are the edges in G ?

Lemma

$\forall m \leq n \exists u, v: m=u v$ and
(1) $u, v \leq \sqrt{n} \cdot g$, or
(2) $u>n^{2 / 3}, u$ is a prime, or
(3) $\sqrt{n} \cdot g \leq u \leq n^{2 / 3}$ and $\Omega(u) \leq \frac{\log n}{2 \log g}$

How to choose $g(n)$?
condition $(3) \longrightarrow g(n)=e^{c \log n / \log \log n}$

Maximal number of edges of C_{6}-free graphs

Füredi, Naor, Verstraëte, Győri

Maximal number of edges of C_{6}-free graphs

Füredi, Naor, Verstraëte, Győri

- $e x\left(n, C_{6}\right)<c n^{\frac{4}{3}}$

Maximal number of edges of C_{6}-free graphs

Füredi, Naor, Verstraëte, Győri

- $e x\left(n, C_{6}\right)<c n^{\frac{4}{3}}$
- ex $\left(u, v, C_{6}\right)<(u v)^{2 / 3}+16(u+v)$

Maximal number of edges of C_{6}-free graphs

Füredi, Naor, Verstraëte, Győri

- ex $\left(n, C_{6}\right)<c n^{\frac{4}{3}}$
- ex $\left(u, v, C_{6}\right)<(u v)^{2 / 3}+16(u+v)$
- ex $\left(u, v, C_{6}\right)<2 u+v^{2} / 2$

$a_{1} a_{2} a_{3}=b_{1} b_{2} b_{3}$

Theorem (P.)

$\pi(n)+\pi(n / 2)+c n^{2 / 3}(\log n)^{-4 / 3} \leq \max |A| \leq \pi(n)+\pi(n / 2)+c n^{2 / 3} \frac{\log n}{\log \log n}$

$a_{1} a_{2} \ldots a_{k}=b_{1} b_{2} \ldots b_{k}$

Theorem (P.)

$2|k, 2<k \Longrightarrow \max | A \mid \leq \pi(n)+c n^{2 / 3} \log n$
$2 \nmid k \Longrightarrow \max |A| \leq \pi(n)+\pi(n / 2)+c n^{2 / 3} \frac{\log n}{\log \log n}$

$a_{1} a_{2} \ldots a_{2 k}=x^{2}$

Erdős, Sárközy, T. Sós (1995)
 $2 \nmid k \Longrightarrow \max |A| \leq \pi(n)+\pi(n / 2)+c n^{7 / 9} \log n$

$a_{1} a_{2} \ldots a_{2 k}=x^{2}$

Erdős, Sárközy, T. Sós (1995)

$2 \nmid k \Longrightarrow \max |A| \leq \pi(n)+\pi(n / 2)+c n^{7 / 9} \log n$

Győri (1997)

$a_{1} a_{2} \ldots a_{2 k}=x^{2}$

Erdős, Sárközy, T. Sós (1995)

$2 \nmid k \Longrightarrow \max |A| \leq \pi(n)+\pi(n / 2)+c n^{7 / 9} \log n$

Győri (1997)

$$
a_{1} a_{2} \ldots a_{2 k}=x^{2}
$$

Erdős, Sárközy, T. Sós (1995)

$2 \nmid k \Longrightarrow \max |A| \leq \pi(n)+\pi(n / 2)+c n^{7 / 9} \log n$

Györi (1997)

$2 \nmid k \Longrightarrow \max |A| \leq \pi(n)+\pi(n / 2)+c n^{2 / 3} \log n$

$a_{1} a_{2} \ldots a_{2 k}=x^{2}$

Erdős, Sárközy, T. Sós (1995)

$2 \nmid k \Longrightarrow \max |A| \leq \pi(n)+\pi(n / 2)+c n^{7 / 9} \log n$

Gyơri (1997)

$2 \nmid k \Longrightarrow \max |A| \leq \pi(n)+\pi(n / 2)+c n^{2 / 3} \log n$

Theorem (P.)

$2 \nmid k \Longrightarrow \max |A| \leq \pi(n)+\pi(n / 2)+c n^{2 / 3} \frac{\log n}{\log \log n}$

$a_{1} a_{2} \ldots a_{2 k}=x^{2}$

Erdős, Sárközy, T. Sós (1995)
 $2|k \Longrightarrow \max | A \mid \leq \pi(n)+c n^{3 / 4}(\log n)^{-3 / 2}$

$a_{1} a_{2} \ldots a_{2 k}=x^{2}$

Erdős, Sárközy, T. Sós (1995)
 $2|k \Longrightarrow \max | A \mid \leq \pi(n)+c n^{3 / 4}(\log n)^{-3 / 2}$

$a_{1} a_{2} \ldots a_{2 k}=x^{2}$

Erdős, Sárközy, T. Sós (1995)

$2|k \Longrightarrow \max | A \mid \leq \pi(n)+c n^{3 / 4}(\log n)^{-3 / 2}$

Theorem (P.)

$2|k, 2<k \Longrightarrow \max | A \mid \leq \pi(n)+c n^{2 / 3} \log n$

$$
a_{1} a_{2} \ldots a_{8}=x^{2}
$$

Erdős, Sárközy, T. Sós (1995)

$\pi(n)+c n^{4 / 7}(\log n)^{-8 / 7} \leq \max |A|$

$$
a_{1} a_{2} \ldots a_{8}=x^{2}
$$

Erdős, Sárközy, T. Sós (1995)

$\pi(n)+c n^{4 / 7}(\log n)^{-8 / 7} \leq \max |A|$

$$
a_{1} a_{2} \ldots a_{8}=x^{2}
$$

Erdős, Sárközy, T. Sós (1995)

$\pi(n)+c n^{4 / 7}(\log n)^{-8 / 7} \leq \max |A|$

Theorem (P.)

$\pi(n)+n^{3 / 5}(\log n)^{-6 / 5} \leq \max |A|$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$

$F_{k}(n)$: maximal size of such a subset of $\{1,2, \ldots, n\}$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$

$F_{k}(n)$: maximal size of such a subset of $\{1,2, \ldots, n\}$
$A \subseteq\{1,2, \ldots, n\}$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$

$F_{k}(n)$: maximal size of such a subset of $\{1,2, \ldots, n\}$
$A \subseteq\{1,2, \ldots, n\}$

- (Erdős, 1938) $F_{2}(n) \leq \pi(n)+n^{2 / 3}$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$

$F_{k}(n)$: maximal size of such a subset of $\{1,2, \ldots, n\}$
$A \subseteq\{1,2, \ldots, n\}$

- (Erdős, 1938) $F_{2}(n) \leq \pi(n)+n^{2 / 3}$
- (Chan, Győri, Sárközy, 2010) $\pi(n)+\frac{n^{2}+1}{8 k^{2}(\log n)^{2}} \leq F_{k}(n)$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$

$F_{k}(n)$: maximal size of such a subset of $\{1,2, \ldots, n\}$
$A \subseteq\{1,2, \ldots, n\}$

- (Erdős, 1938) $F_{2}(n) \leq \pi(n)+n^{2 / 3}$
- (Chan, Györi, Sárközy, 2010) $\pi(n)+\frac{n^{2} k^{2}}{8 k^{2}(\log n)^{2}} \leq F_{k}(n)$
- (Chan, Györi, Sárközy, 2010) $F_{3}(n) \leq \pi(n)+c \frac{n^{1 / 2}}{(\log n)^{2}}$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$

$F_{k}(n)$: maximal size of such a subset of $\{1,2, \ldots, n\}$
$A \subseteq\{1,2, \ldots, n\}$

- (Erdős, 1938) $F_{2}(n) \leq \pi(n)+n^{2 / 3}$
- (Chan, Györi, Sárközy, 2010) $\pi(n)+\frac{n^{2} k^{2}}{8 k^{2}(\log n)^{2}} \leq F_{k}(n)$
- (Chan, Györi, Sárközy, 2010) $F_{3}(n) \leq \pi(n)+c \frac{n^{1 / 2}}{(\log n)^{2}}$
- (Chan, Györi, Sárközy, 2010) $F_{4}(n) \leq \pi(n)+c n^{2 / 5}$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$

$F_{k}(n)$: maximal size of such a subset of $\{1,2, \ldots, n\}$
$A \subseteq\{1,2, \ldots, n\}$

- (Erdős, 1938) $F_{2}(n) \leq \pi(n)+n^{2 / 3}$
- (Chan, Györi, Sárközy, 2010) $\pi(n)+\frac{n^{2}{ }^{2}+1}{8 k^{2}(\log n)^{2}} \leq F_{k}(n)$
- (Chan, Györi, Sárközy, 2010) $F_{3}(n) \leq \pi(n)+c \frac{n^{1 / 2}}{(\log n)^{2}}$
- (Chan, Györi, Sárközy, 2010) $F_{4}(n) \leq \pi(n)+c n^{2 / 5}$
- (Chan, 2011) $\pi(n)+\frac{c}{k^{2}} \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}} \leq F_{k}(n) \leq \pi(n)+c k^{2} \frac{n^{2}+1}{(\log n)^{2}}$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$ and multiplicative bases

Lemma

If B is a multiplicative basis of order k for $\{1,2, \ldots, n\}$, then $F_{k}(n) \leq|B|$.

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$ and multiplicative bases

Lemma

If B is a multiplicative basis of order k for $\{1,2, \ldots, n\}$, then $F_{k}(n) \leq|B|$.

How small can a MB of order k be?

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$ and multiplicative bases

Lemma

If B is a multiplicative basis of order k for $\{1,2, \ldots, n\}$, then $F_{k}(n) \leq|B|$.

How small can a MB of order k be?

- $G_{k}(n)$: minimal size of a MB of order k for $\{1,2, \ldots, n\}$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$ and multiplicative bases

Lemma

If B is a multiplicative basis of order k for $\{1,2, \ldots, n\}$, then $F_{k}(n) \leq|B|$.

How small can a MB of order k be?

- $G_{k}(n)$: minimal size of a MB of order k for $\{1,2, \ldots, n\}$
- (Chan, 2011) $\pi(n)+\frac{c_{1}}{k^{2}} \frac{n^{2}}{(\log n)^{2}} \leq F_{k}(n) \leq G_{k}(n) \leq \pi(n)+c_{2} k^{2} \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$ and multiplicative bases

Lemma

If B is a multiplicative basis of order k for $\{1,2, \ldots, n\}$, then $F_{k}(n) \leq|B|$.

How small can a MB of order k be?

- $G_{k}(n)$: minimal size of a MB of order k for $\{1,2, \ldots, n\}$
- (Chan, 2011) $\pi(n)+\frac{c_{1}}{k^{2}} \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}} \leq F_{k}(n) \leq G_{k}(n) \leq \pi(n)+c_{2} k^{2} \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}$
- (P., Sándor) $\pi(n)+c_{1} k \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}} \leq G_{k}(n) \leq \pi(n)+c_{2} k \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}$

$a_{0} \nmid a_{1} a_{2} \ldots a_{k}$ and multiplicative bases

Lemma

If B is a multiplicative basis of order k for $\{1,2, \ldots, n\}$, then $F_{k}(n) \leq|B|$.

How small can a MB of order k be?

- $G_{k}(n)$: minimal size of a MB of order k for $\{1,2, \ldots, n\}$
- (Chan, 2011) $\pi(n)+\frac{c_{1}}{k^{2}} \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}} \leq F_{k}(n) \leq G_{k}(n) \leq \pi(n)+c_{2} k^{2} \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}$
- (P., Sándor) $\pi(n)+c_{1} k \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}} \leq G_{k}(n) \leq \pi(n)+c_{2} k \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}$
- (P., Sándor) $\pi(n)+c_{1} \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}} \leq F_{k}(n) \leq \pi(n)+c_{2} \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}$

Multiplicative bases (of order k)

Lemma

Let $B_{0}=\{$ primes $\leq n\} \cup\left\{x: x \leq \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}\right\}$.
If $a \leq n$ is not in B_{0}^{k}, then

$$
a=p_{1} p_{2} \ldots p_{k+1} a^{\prime}
$$

where $p_{1} \geq p_{2} \geq \cdots \geq p_{k+1}$ are primes such that $p_{k} p_{k+1}>\frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}$.

Multiplicative bases (of order k)

Lemma

Let $B_{0}=\{$ primes $\leq n\} \cup\left\{x: x \leq \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}\right\}$.
If $a \leq n$ is not in B_{0}^{k}, then

$$
a=p_{1} p_{2} \ldots p_{k+1} a^{\prime}
$$

where $p_{1} \geq p_{2} \geq \cdots \geq p_{k+1}$ are primes such that $p_{k} p_{k+1}>\frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}$.
To get a MB of order k
We need at least one edge in each $\left\{p_{1}, p_{2}, \ldots, p_{k+1}\right\}$.

Multiplicative bases (of order k)

Lemma

Let $B_{0}=\{$ primes $\leq n\} \cup\left\{x: x \leq \frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}\right\}$.
If $a \leq n$ is not in B_{0}^{k}, then

$$
a=p_{1} p_{2} \ldots p_{k+1} a^{\prime}
$$

where $p_{1} \geq p_{2} \geq \cdots \geq p_{k+1}$ are primes such that $p_{k} p_{k+1}>\frac{n^{\frac{2}{k+1}}}{(\log n)^{2}}$.
To get a MB of order k
We need at least one edge in each $\left\{p_{1}, p_{2}, \ldots, p_{k+1}\right\}$.
$a_{0} \nmid a_{1} \ldots a_{k}$-problem
The sets $\left\{p_{1}, p_{2}, \ldots, p_{k+1}\right\}$ intersect each other in at most one element.

Infinite multiplicative bases (of order k)

Raikov (1938)

B is a MB of order $k \Longrightarrow \limsup _{n \rightarrow \infty} \frac{|B(n)|}{n /(\log n)^{\frac{k-1}{k}}} \geq \Gamma\left(\frac{1}{k}\right)^{-1}$.
For every $k \geq 2 \exists$ a MB of order k such that $\limsup _{n \rightarrow \infty} \frac{|B(n)|}{n /(\log n)^{\frac{k-1}{k}}}<\infty$.

Infinite multiplicative bases (of order k)

Raikov (1938)

B is a MB of order $k \Longrightarrow \limsup _{n \rightarrow \infty} \frac{|B(n)|}{n /(\log n)^{\frac{k-1}{k}}} \geq \Gamma\left(\frac{1}{k}\right)^{-1}$.
For every $k \geq 2 \exists$ a MB of order k such that $\limsup _{n \rightarrow \infty} \frac{|B(n)|}{n /(\log n)^{\frac{k-1}{k}}}<\infty$.

Theorem (P., Sándor)

B is a MB of order $k \Longrightarrow \limsup _{n \rightarrow \infty} \frac{|B(n)|}{n /(\log n)^{\frac{k-1}{k}}} \geq \frac{\sqrt{6}}{e \pi}$.
$\exists C>0$: For every $k \geq 2 \exists$ a MB of order k such that $\limsup _{n \rightarrow \infty} \frac{|B(n)|}{n /(\log n)^{\frac{k-1}{k}}}<C$.

Infinite multiplicative bases (of order k)

Raikov (1938)

B is a MB of order $k \Longrightarrow \limsup _{n \rightarrow \infty} \frac{|B(n)|}{n /(\log n)^{\frac{k-1}{k}}} \geq \Gamma\left(\frac{1}{k}\right)^{-1}$.
For every $k \geq 2 \exists$ a MB of order k such that $\limsup _{n \rightarrow \infty} \frac{|B(n)|}{n /(\log n)^{\frac{k-1}{k}}}<\infty$.

Theorem (P., Sándor)

B is a MB of order $k \Longrightarrow \limsup _{n \rightarrow \infty} \frac{|B(n)|}{n /(\log n)^{\frac{k-1}{k}}} \geq \frac{\sqrt{6}}{e \pi}$.
$\exists C>0$: For every $k \geq 2 \exists$ a MB of order k such that $\limsup _{n \rightarrow \infty} \frac{|B(n)|}{n /(\log n)^{\frac{k-1}{k}}}<\bar{C}$.

Theorem (P., Sándor)

B is a MB of order $k \Longrightarrow \liminf _{n \rightarrow \infty} \frac{|B(n)|}{\frac{n}{\log n}}>1$.
But it can be $<1+\varepsilon$.

$a_{0} \nmid a_{1} \ldots a_{k}$-problem, infinite case

Theorem (P., Sándor)

$\forall k \geq 2 \exists A \subseteq \mathbb{Z}^{+}$such that $\limsup _{n \rightarrow \infty} \frac{|A(n)|-\pi(n)}{\frac{n^{2}(k+1)}{(\log n)^{2}}}>0$.

$a_{0} \nmid a_{1} \ldots a_{k}$-problem, infinite case

Theorem (P., Sándor)

$\forall k \geq 2 \exists A \subseteq \mathbb{Z}^{+}$such that $\limsup _{n \rightarrow \infty} \frac{|A(n)|-\pi(n)}{\frac{n^{2} /(k+1)}{(\log n)^{2}}}>0$.

Theorem (P., Sándor)

$\forall \varepsilon>0 \liminf _{n \rightarrow \infty} \frac{|A(n)|-\pi(n)}{n^{\varepsilon}}<\infty$.
But $\exists c>0$ such that $\forall k \geq 2 \exists A \subseteq \mathbb{Z}^{+}$such that
$|A(n)| \geq \pi(n)+\exp \left\{(\log n)^{1-\frac{c \sqrt{\log k}}{\sqrt{\log \log n}}}\right\}$ holds for every $n \geq 10$.

$a_{0} \nmid a_{1} \ldots a_{k}$-problem, infinite case, liminf

Theorem (P., Sándor)

$\forall \varepsilon>0 \liminf _{n \rightarrow \infty} \frac{|A(n)|-\pi(n)}{n^{\varepsilon}}<\infty$.
But $\exists c>0$ such that $\forall k \geq 2 \exists A \subseteq \mathbb{Z}^{+}$such that
$|A(n)| \geq \pi(n)+\exp \left\{(\log n)^{1-\frac{c \sqrt{\log k}}{\sqrt{\log \log n}}}\right\}$ holds for every $n \geq 10$.

$a_{0} \nmid a_{1} \ldots a_{k}$-problem, infinite case, liminf

Theorem (P., Sándor)

$\forall \varepsilon>0 \liminf _{n \rightarrow \infty} \frac{|A(n)|-\pi(n)}{n^{\varepsilon}}<\infty$.
But $\exists c>0$ such that $\forall k \geq 2 \exists A \subseteq \mathbb{Z}^{+}$such that
$|A(n)| \geq \pi(n)+\exp \left\{(\log n)^{1-\frac{c \sqrt{\log k}}{\sqrt{\log \log n}}}\right\}$ holds for every $n \geq 10$.

Upper bound

Lemma: Let Q be a subset of the prime numbers satisfying $|Q(n)| \ll n^{c}$ for some constant $c>0$. Then for every $\varepsilon>0$ there exists some integer $N_{0}=N_{0}(\varepsilon, Q)$ such that for every $n \geq N_{0}$ we have
$\mid\{k: k \leq n$ and every prime divisor of k is in $Q\} \mid \leq n^{c+\varepsilon}$.

$a_{0} \nmid a_{1} \ldots a_{k}$-problem, infinite case, liminf

Construction

$a_{0} \nmid a_{1} \ldots a_{k}$-problem, infinite case, liminf

Construction

- Take 3 sequences:
$I_{n}=k^{n}$
f_{n} satisfies the recurrence formula $f_{n+1}=\left(\frac{f_{n}}{2 I_{n} k}\right)^{I_{n}}$
g_{n} satisfies the recurrence formula $g_{n+1}=g_{n}^{k l_{n}}$

$a_{0} \nmid a_{1} \ldots a_{k}$-problem, infinite case, liminf

Construction

- Take 3 sequences:
$I_{n}=k^{n}$
f_{n} satisfies the recurrence formula $f_{n+1}=\left(\frac{f_{n}}{2 I_{n} k}\right)^{I_{n}}$
g_{n} satisfies the recurrence formula $g_{n+1}=g_{n}^{k l_{n}}$
- Modify the set P of primes in the following way:
$P_{m}:=\left\{\right.$ first f_{m} primes after $\left.g_{m}\right\}$
B_{m} : a set of $k l_{m}-k+1$-factor products from P_{m} such that none of them divides the product of k others
B_{m} can be chosen such that $\left|B_{m}\right| \geq\left(\frac{f_{m}}{2\left(k I_{m}-k+1\right)}\right)^{I_{m}}$.
All elements of B_{m} are less than g_{m+1}.
$A=\left(P \backslash \bigcup_{n=1}^{\infty} P_{n}\right) \cup\left(\bigcup_{n=1}^{\infty} B_{n}\right)$

$a_{0} \nmid a_{1} \ldots a_{k}$-problem, infinite case, liminf

Construction

$a_{0} \nmid a_{1} \ldots a_{k}$-problem, infinite case, liminf

Construction

- $A=\left(P \backslash \bigcup_{n=1}^{\infty} P_{n}\right) \cup\left(\bigcup_{n=1}^{\infty} B_{n}\right)$

$a_{0} \nmid a_{1} \ldots a_{k}$-problem, infinite case, liming

Construction

- $A=\left(P \backslash \bigcup_{n=1}^{\infty} P_{n}\right) \cup\left(\bigcup_{n=1}^{\infty} B_{n}\right)$
- Then for $g_{m+1} \leq n<g_{m+2}$ we have

$$
|A(n)| \geq \pi(n)-\left(\sum_{i=1}^{m+1}\left|P_{i}\right|\right)+\left|B_{m}\right| .
$$

$\ldots \Longrightarrow|A(n)|>\pi(n)+\exp \left\{(\log n)^{\left.1-\frac{c \sqrt{\log k}}{\sqrt{\log \log n}}\right\}}\right.$

Logarithmic density

Theorem (P., Sándor)

B is a MB of order $k \Longrightarrow \liminf _{n \rightarrow \infty} \frac{\sum_{b \in B, a \leq n} \frac{1}{b}}{k \sqrt[k]{\log n}} \geq \frac{\sqrt{6}}{e \pi}$.
$\exists C \forall k \geq 2 \exists B \mathrm{MB}$ of order k such that $\limsup _{n \rightarrow \infty} \frac{\sum_{n \in B, a \leq n} \frac{1}{b}}{k \sqrt[k]{\log n}}<C$.

Logarithmic density

Theorem (P., Sándor)

B is a MB of order $k \Longrightarrow \liminf _{n \rightarrow \infty} \frac{\sum_{b \in B, a \leq n} \frac{1}{b}}{k \sqrt[k]{\log n}} \geq \frac{\sqrt{6}}{e \pi}$.
$\exists C \forall k \geq 2 \exists B \mathrm{MB}$ of order k such that $\limsup _{n \rightarrow \infty} \frac{\sum_{n \in B, a \leq n} \frac{1}{b}}{k \sqrt[k]{\log n}}<C$.
$a_{0} \nmid a_{1} \ldots a_{k}$-problem, logarithmic density
$\log \log n+O(1)$

